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Abstract 
 
 
Friction factor data for adiabatic cross-flow of water in a staggered tube array was 

obtained over a Reynolds number range (based on hydraulic diameter and gap velocity) 

of about 10,000 to 250,000.  The tubes were 12.7mm (0.5 inch) outer diameter, in a 

uniformly spaced triangular arrangement with a pitch-to-diameter ratio of 1.5. The 

friction factor was compared to several literature correlations, and was found to be best 

matched by the Idelchik correlation.  Other correlations were found to vary significantly 

from the test data.  Based on the test data, a new correlation is proposed for this tube 

bundle geometry which covers the entire Reynolds number range tested. 
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Introduction 
 
 
Pressure drop across a tube bank is one of the primary design considerations for shell and 

tube heat exchangers.  The pressure drop is a function, among other things, of tube 

arrangement and packing as well as total system flow.  Friction factor correlations have 

been used for many years to determine the pressure loss based on relevant design 

parameters.  These correlations offer a means of assessing the pressure losses quickly 

without the need for expensive and time consuming computational methods. 

 

A summary of early work is provided by Chilton and Generaux[1].  In this paper, a 

general equation for friction factor, based on tube gap spacing and gap velocity, was 

developed by fitting a curve to eight data sets.  Later, Gunter and Shaw [2] considered a 

broader set of data, and concluded that the data best collapsed using an equivalent 

hydraulic diameter as well as transverse and longitudinal pitch to diameter ratios.  

Friction factors for bare tubes of diameters between 0.5 and 127mm were included, with 

transverse and longitudinal pitches ranging from 1.25 to 5 diameters. 

 

Perhaps the most widely referenced correlation is that provided by Zukauskas [3].  This 

correlation, in graphical form, has been reprinted in numerous heat transfer and heat 

exchanger design manuals [4,5].  The correlation is plotted as a function of pitch and 

spacing as well as Reynolds number based on gap velocity and tube diameter.  It covers a 

wide range of Reynolds number, from 10 to 1,000,000.  Another useful, well regarded 

resource for pressure losses in a variety of geometries is provided by Idelchik [6].  Here, 

a method for obtaining friction factor in staggered tube arrays is provided based on gap 
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velocity, tube diameter and numerous geometric factors.    

 

The tube configuration currently being considered is made up of an equally spaced, 

staggered triangular array with tube OD = 12.7mm.  Several methods, including those 

described above, were used to determine friction factor for this geometry, and a large 

spread was observed for the Reynolds number range of interest (i.e., between 10,000 and 

250,000).  The data of Kays and London [7] which most closely matched our test 

configuration, although limited to Reynolds numbers less than 23,000, indicated a 

relatively low friction factor, nearly half that of Chilton-Generaux.  The predictions of 

Gunter-Shaw, Zukauskas, and Idelchick lay in between, each successively giving 

decreasing values of friction factor.  As a result of the spread of these predictions and the 

lack of high Reynolds number data, a test was performed to obtain more specific data for 

the desired tube geometry. 

 
 
Calculation of Tube Bundle Geometric Parameters 
 

Figure 1 illustrates the nomenclature associated with modeling pressure drop in a 

triangular tube array.  
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       Figure 1.  Schematic of Triangular Tube Array 
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A single unit cell of the rod array (the cross hatched region in Figure 1) can be analyzed 

to derive the volume porosity and hydraulic diameter.  For uniformly spaced triangular 

rod arrays ( 3
2

S P= ): 

2

1
2 3v

fluid volume D
total volume P

πγ ⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

   (1) 

 

24 2 3 1v
x fluid volume PD D
wetted area Dπ

⎡ ⎤⎛ ⎞= = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

   (2) 

     

For a triangular array with D=12.7mm and P/D=1.5, Eq. (1) gives γv=0.597 and Eq. (2) 

gives Dv=18.8mm. These values are derived for a large tube array free of wall effects. If 

the walls of the test section are included in the wetted area calculation, the volume 

porosity is unchanged and the volumetric hydraulic diameter decreases 9% to 17.3mm. 

However, while the wetted area contributes to the hydraulic diameter, it is believed to 

have an insignificant effect on the pressure drop, because crossflow resistance is 

dominated by the form drag of the tubes. Therefore, the infinite bundle hydraulic 

diameter of 18.8mm has been used in the data reduction calculations. 

 
Experimental Description 
 

Test Section.  A sketch of the test section is shown in Figure 2.  The test 

section consisted of a stainless steel rectangular duct, 30.48cm (12 inches) by 11.43cm 

(4.5 inches) in cross section and 182.88cm (72 inches) long. The test section was oriented 

horizontally, with the tubes parallel to the floor.  The test section included a flow 
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straightener at the inlet, consisting of a perforated plate followed by a bundle of 9.5mm 

(3/8 inch) OD thin walled tubes. The test section contained 60 rows of tubes with six 

tubes per row, arranged in a triangular pitch.  The surface of the tubes was nominally 

smooth. The rows alternate between a row with five full tubes with two half tubes welded 

to the wall, and a row with six full tubes. Pressure tap locations are shown in Figure 2; 

the taps were flush to the sidewall of the test assembly.  An acrylic window was included 

in the test section for future visualization or laser measurements.    

 

60 tube rows = 98.98cm 

Flow
Straightener

9.898cm spacing between interior pressure taps

114.22 cm. spacing between plenum pressure taps

188.5cm test section total length

11.43cm

Cross Section view
from the outer plenum:

11.43 cm.

30.48cm.

Bundle of thin-wall tubes

Perforated Plate

Window

3

Tap: 4          5          6         7          8         9     10         11        12

131      2

14      15           16

 

 

                               Figure 2: Test Section Schematic (not to scale) 

 

 

Instrumentation.  Calibrated differential Rosemount transducers were used to 

measure the pressure drop with an uncertainty of +/-1% of reading or +/-0.01 psi, 

 

188.9cm test section total length
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whichever was greater.  Care was taken to thoroughly bleed the transducers so that no air 

bubbles were present.  Measurements taken at zero flow confirmed that no measurement 

bias due to trapped air was present (i.e., the data indicated <0.01 psi at zero flow).   

 

A Venturi flow device calibrated for tube bundle Re>10,000 was used to measure the 

flow rate with an uncertainty of +/-1%.  The primary Venturi used to take the flow rate 

data was checked with a second in-line Venturi and the two measurements agreed to 

within 1% for the applicable range of the second Venturi (i.e., Re>100,000).  Standard 

Type-K thermocouples were used to measure the water temperature (within +/-1.1oC).   

 

As a check of the pressure data accuracy, the 10 bundle incremental pressure drops were 

added together, and compared to the total plenum to plenum ∆P 3-13.  The difference was 

at most a 2% error for the lowest flow tested.  For higher flows where pressure drops are 

greater, the difference was generally within two tenths of a percent.  

 

Experimental Method for Obtaining Friction Factor.  For convenience in 

making comparisons, the incremental pressure drops were converted to loss factors by 

dividing the pressure drop by the dynamic head:  

 

 
21

2

PK
Vρ

∆
=      (3) 

 

For the dynamic head, we used either the average velocity in the tube gaps (VG) if the ∆P 

was in the bundle, or the average velocity in the un-rodded part of the duct (3VG) if the 
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∆P was across the perforated plate or flow straightener. 

 

For comparison purposes, the loss factor is plotted versus position in the test section in 

Figure 3.  All the data taken (i.e., at different flows and temperatures) is plotted to show 

the overall trends, as well as the mean results.  For tap 3 to 4, the pressure drop is higher 

because the flow must be accelerated (by a factor of 3) from the open duct velocity to the 

gap velocity. Conversely, for tap 12 to 13, the flow decelerates by the same amount, 

causing a pressure recovery, and a smaller loss factor. 
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Figure 3 Loss Factor versus Position in the test section 

 

It is also observed in Figure 3 that, for the incremental pressure drops within the bundle, 

the loss factor from tap 11 to tap 12 is greater than the other seven bundle incremental 

loss factors by 5% (on the average). This may have been due to a flow perturbation at the 

window, or possibly a defect in tap 11 or 12, such as a burr. For this reason, the friction 
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factor was based on the sum of the pressure drops from tap 4 to tap 11 rather than tap 4 to 

tap 12. The Darcy friction factor is therefore defined as: 

 

( ) 114
2

1142

−

−∆
=

L
D

AQ
Pf v

Gρ
          (4) 

 

Experimental Uncertainty in the Friction Factor.  By propagating errors 

through Eq. (4), the error in friction factor can be expressed in terms of the error in the 

measured parameters. Neglecting density uncertainty and uncertainty in the length 

between pressure taps:  

 

2222

4 vDf QP A

gap vf P Q A D
εε εε ε∆

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪⎡ ⎤= + + +⎢ ⎥⎨ ⎬ ⎢ ⎥⎢ ⎥⎢ ⎥∆⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎭⎩
   (5) 

 

The uncertainty for the pressure drop and flow rate measurements within the calibrated 

range of the primary Venturi (i.e., Re>11,000) was +/-1%.  The effect on flow area of a 

rod being at an off nominal position was studied and showed that a 0.127mm error in rod 

position resulted in less than a tenth of a percent change in gap flow area.  From test 

section design tolerances, the uncertainties in flow area and hydraulic diameter were 

estimated to be +/-1%. Using these values in Eq. (5), the uncertainty in friction factor is 

+/-3.2%.  A similar propagation of errors on Reynolds number yields: 
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2 22 2
Re

Re
vDQ A

gap vQ A D
υ

εεε εε
υ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
    (6) 

 

Based on the uncertainty in loop temperature (+/-1.1oC), the uncertainty in viscosity is  

+/-3% for the range of loop temperatures studied.  The overall uncertainty in Reynolds 

number is therefore +/-3.5%.  

 

Results and Discussion 

 

The friction factor data (119 points total) is plotted versus Reynolds number in Figure 4 

with the error bars determined from Eqs. (5) and (6).  Temperatures were varied from 

10oC to 45oC to extend the range of Reynolds number and to confirm no temperature 

sensitivities existed.  The scatter in the data is seen to be within the specified 

measurement uncertainty. 
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Figure 4: Cross-flow Friction Factor Data vs. Other Sources 

Also included in Figure 4 are predictions from other sources to provide context for the 

present data.  The points for Zukauskas [3] and Kays and London [4] were taken directly 

from the graphs provided in those references.  The Zukauskas method matched the 

current tube geometry while the Kays and London data closely matched it (P/D=1.5 and 

S/D=1.25).  The correlations for Idelchik, Chilton-Generaux, and Gunter-Shaw are 

summarized as follows: 

 

Idelchik Method.  For 53 10Re103 << Dx : 

 

NKf DI
27.0Re −=      (7) 
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( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ +

−
=

DSP

DPS
2225.0

 = 1    (8) 

 

For 44.1/ ≥DP  and 7.11.0 << S : 

 

( ) 5.17.166.02.3 SK −+= = 3.59   (9) 

L
Dff v

I=       (10) 

D
Dv

DReRe =       (11) 

 

Chilton and Generaux Method.  For 4102Re50 xG << : 

 

Nf GGC
2.0Re3 −

− =      (12) 

L
D

ff v
GC−=       (13) 

G
Dv

GReRe =       (14) 

Note:  the correlation was based on data for 1.25<P/D<5. 

 

Gunter-Shaw Method.  For isothermal flow in an equally spaced triangular tube array 

and 52 103Re105 xx v << : 

4.0
145.0Re92.1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

P
D

f v
v     (15) 
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As seen in Figure 4, the data is best matched overall by Idelchik, especially for Re > 

80,000.  For Re < 80,000, the data departs slightly from Idelchik, and exhibits a curvature 

similar to Zukauskas.  The Kays and London data is in excellent agreement within the 

range 10,000 < Re < 23,000 and Chilton-Generaux is noticeably higher.  Except for 

Chilton-Generaux, which has no explicit sensitivity to pitch or spacing ratios, it is unclear 

why such variation exists.  As far as the data is concerned, differences in working fluid, 

errors in density or viscosity, flow-pressure measurement errors, unknown wall effects, 

variations in tube pitch and/or spacing, limited number of tube rows, and uncertainties in 

surface roughness are possible culprits, all of which make it difficult to obtain universal 

correlations.  It does appear, that for most accurate results, testing in the particular 

geometry of interest is recommended.  Based on this, a new correlation was developed 

for our data as follows: 

 

 

0.2337

4.49740.3532
6

6

6

3.6862 Re 27,582
Re

Re0.1527 0.818 1 27,582 Re 10
10

0.1527 Re 10

v
v

v
v

v

if

f if

if

⎧ <⎪
⎪
⎪ ⎡ ⎤⎪ ⎛ ⎞= + − ≤ ≤⎢ ⎥⎨ ⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎣ ⎦
⎪ >⎪
⎪⎩

  (16) 

Note that the traditional power law relationship between f and Re accurately matches the 

data up to Re of about 30,000, (where fitting yields f=3.6862/Re.2337). At higher Re the 

alternative equation shown above was required to obtain a good fit.  

 

This fit matches the data to within +/-5% (effectively the uncertainty of the data), and the 

RMS error in f is 0.00393.  In practice, Eq. (16) is valid for Reynolds numbers ranging 
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from 10,000 to 250,000, where data was taken. Use of the correlation outside the data 

range should take into consideration additional uncertainty. However, based on the trends 

observed in the Zukauskus correlation (which is based on air data up to a million Re), the 

correlation may be extrapolated up to a million Reynolds number. For Re greater than a 

million a constant value of  f=0.1527 is assumed, based on similar high Re trends in the 

Zukauskus correlation and the present data. 

 

As a sensitivity study, the pressure drop across the tube bundle was calculated using the 

friction factors in Figure 4 and compared to the pressure drop for the hypothetical case 

with the tubes removed and flow held constant.  The results are presented in Table 1 for a 

range of Reynolds number, indicating a ∆P ratio between 1000 and 1500.  Thus, even 

though the tube bundle friction factor is only an order of magnitude higher than the 

standard duct friction factor, the velocity and L/D effects contribute to an overall pressure 

drop that is three orders of magnitude higher.    

 

With Tubes Without Tubes Q 
(m3/s) Re f V (m/s) ∆P (kPa) Re f V (m/s) ∆P (Pa) 

∆Pratio 

8.6E-3 10,645 0.427 0.74 0.6 32,280 0.0231 0.25 0.4 1475 

3.3E-2 47,440 0.275 2.89 5.9 316,930 0.0162 0.94 4.3 1357 

4.4E-2 104,505 0.201 3.79 7.6 143,870 0.0162 1.26 7 1087 

9.4E-2 246,386 0.166 8.1 28.7 316,930 0.0146 2.69 26.9 1068 

 

Table 1.  Calculated pressure drop in test section described in Figure 2 for two 
cases: with and without tubes.  The density was taken to be 1000 kg/m3; With tubes: 
L/Dv=5.27, A=0.0116m2; Without tubes: L/DH=0.6, A=0.035m2.     
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Conclusions 

 

Experiments have been carried out to determine the friction factor for cross flow in an 

equally spaced triangular tube array with P/D=1.5.  This data extends the Reynolds 

number range of previous data taken by Kays and London in a similar tube geometry by a 

factor of ten (up to Re = 250,000).  In the overlap region between data sets, (10,000 < Re 

< 22,500) excellent agreement was noted.  However, there is a wide variation in 

prediction of pressure drop in this geometry when employing available correlations, that 

is, nearly a factor of two in friction factor.  The Idelchik correlation best matched the data 

for Re > 80,000 while the Zukauskas method best matched the shape of the data between 

10,000 < Re < 250,000.  A new correlation was presented which matches the data to 

within +/-5% over the full Reynolds number range.  Since there are numerous factors 

which impact the overall friction factor, particularly tube spacing and surface roughness, 

future testing in a variety of tube configurations may allow for construction of a more 

accurate, general correlation which covers a wider range of tube geometries.  

 

Nomenclature 
 
A Cross flow area, m2 

AG Flow area in gap between tubes, m2 
D Tube outside diameter (mm)  
Dv Tube bundle hydraulic diameter, defined volumetrically (mm) 
f Darcy friction factor, based on Dv  
G Gap spacing between tubes (mm) 
N Number of tube rows between ∆P taps 
P Distance between tubes centers (pitch, mm) 
Q Volumetric flow rate (m3/s) 
Re Reynolds number, based on gap velocity and hydraulic diameter 
ReD Reynolds number, based on gap velocity and tube diameter 
ReG Reynolds number, based on gap velocity and gap spacing 
S Row to row spacing between tubes (inches) 
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VG Average velocity in the gaps between tubes (m/sec) 
ρ Density (kg/m3) 
µ Dynamic viscosity (kg/s-m) 
υ Kinematic viscosity (m2/s) 
∆P Pressure drop (Pa)  
γv Volume porosity 
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