
 
SANDIA REPORT 
 

SAND2004-1944 
Unlimited Release 
Printed September 2004 

 
 
On the Performance of Tensor  
Methods for Solving Ill-conditioned 
Problems 

Brett W. Bader and Robert B. Schnabel 
 

 
Prepared by Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 

 



 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.osti.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
2 
 

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


SAND20041944 
Unlimited Release 

Printed September 2004 

On the Performance of Tensor Methods 
for Solving Ill-conditioned  Problems 

Brett W. Bader 
Computational Sciences Department 

Sandia National Laboratories 

Albuquerque, NM 87185-0316 
Robert B. Schnabel 

Department of Computer Science 
University of Colorado at Boulder 

Boulder, CO 80309-0040 

P.O. BOX  5800,  MS-0316 

Abstract 

This  paper  investigates the performance of tensor  methods  for  solving  small- 
and largescale systems of  nonlinear  equations  where the Jacobian matrix at 
the root  is  ill-conditioned or singular.  This  condition  occurs  on  many  classes 
of  problems, such as identifying  or  approaching turning points  in path fol- 
lowing  problems. The singular  case  has  been  studied  more than  the highly 
ill-conditioned  case,  for both Newton and  tensor  methods. It is known that 
Newton-based  methods do not work  well with  singular  problems  because  they 
converge  linearly to the solution and, in some  cases,  with  poor  accuracy.  On 
the other  hand,  direct  tensor  methods  have  performed well  on singular prob 
lems  and  have  superlinear  convergence on such problems  under  certain  condi- 
tions.  This  behavior  originates  from the use of a special,  restricted  form of the 
second-order  term  included  in the local  tensor  model that provides  information 
lacking  in a (nearly)  singular  Jacobian. With several  implementations  avail- 
able  for  largescale  problems,  tensor  methods now are  capable of  solving  larger 
problems.  We  compare the performance of tensor  methods  and  Newton-based 
methods  for both small- and largescale problems  over  a  range  of  conditionings, 
from  well-conditioned to ill-conditioned to singular.  Previous  studies  with  ten- 
sor  methods  only  concerned the ends of this spectrum.  Our  results show that 
tensor  methods are increasingly  superior to Newton-based  methods as the prob 
lem  grows  more  ill-conditioned. 
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On the Performance of Tensor 
Methods for Solving 

Ill-conditioned  Problems . 

1 Introduction 

This  paper examines two  classes of methods for  solving the nonlinear equations prob- 
lem 

given F : R” + R”, fmd x* E 1w“ such that F(z,) = 0, (1) 

where it is assumed that F(z )  is at least once continuously differentiable. General sys- 
tems of nonlinear equations defined  by (1) arise in many  practical  situations, includ- 
ing systems produced by  finite-difference or finite-element discretizations of boundary 
value  problems  for ordinary and  partial differential equations. 

As a subset of the general nonlinear equations problem (l), there is a class 01 

important problems where F’(z.) is singular or, at least, very ill-conditioned. Such 
examples arise in bifurcation tracking and  path following problems where the goal is 
to locate  turning  points, such as the ignition and  extinction  points in chemical  com- 
bustion. Resolving these  features is important to engineers, who,  for instance, may 
be designing control systems for such applications and may  need to know important 
operating boundaries. 

Standard  methods for  solving (l), such as Newton’s method, base each iteration 
upon a local, linear model M(zk + d)  of the function F(z) around the current iter- 
ate z k  € R”. Standard  methods work  well  for problems where the Jacobian at the 
solution, F’(z,), is well-conditioned; but they face  difficulties when the Jacobian is 
singular, or even nearly singular, at  the solution. Many authors have analyzed the 
behavior of Newton’s method  on singular problems and have proposed acceleration 
techniques as remedies (see, e.g.,  Decker,  Keller, and Kelley [8]; Decker and Kelley 
[9, 10, 111; Griewank [17]; Griewank and Osborne [18]; Kelley and Suresh [20]; and 
Reddien [24]). Their collective analysis shows that, from many starting points, New- 
ton’s method is locally q-linearly  convergent with  constant converging to ; on singular 
problems where the second-order term F”(zk) contains appropriate null space infor- 
mation. Acceleration techniques can improve this behavior; however, they require 
a priori knowledge that  the problem is singular, which is not  practical for general 
problem solving. 

Tensor methods, however, do not require a priori knowledge of whether the prob- 
lem is singular or not. These methods were introduced by Schnabel and Frank in 
[26] and base each iteration on a simplified quadratic model of F(z) such that  the 
quadratic  term is a low-rank secant approximation that augments the  standard linear 
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model. Tensor methods also have been extended by other  authors to utilize iterative 
solvers, making the  methods  appropriate for  solving  large-scale problems (see [l, 21, 
PI, and ~ 5 1 ) .  

The analysis in [14]  proves that direct tensor  methods have quadratic convergence 
on nonsingular problems and a faster convergence rate on problems where the J a m  
bian matrix at  the solution is singular. Specifically, when the rank of the Jacobian at 
the root is n - 1, “practical”  tensor  methods (Le., those using secant approximations 
for the tensor  term) have three-step superlinear convergence behavior with q-order 
$. In practice, one-step superlinear convergence frequently is observed on these prob- 
lems, which  makes the  method even more attractive.  The second-order term provides 
higher order information in recent step directions, which aids in cases where the Ja- 
cobian is (nearly) singular at  the solution. As the  iterates approach the solution, the 
Jacobian lacks information in the null space direction, and  the second-order term sup- 
plies useful information for a better quality  step.  Computational evidence in [26] on 
small problems shows that tensor  methods have about 20% average improvement over 
standard methods on nonsingular problems and  about 40% improvement on singular 
problems with  rank(F’(z,)) = n - 1. 

While tensor  methods have encouraging theoretical and computational  results on 
singular problems, less is known about  their performance relative to Newton’s method 
on ill-conditioned problems. Do tensor  methods  outperform Newton’s method  due to  
the close relationship of ill-conditioned matrices  with singular matrices? Or do  tensor 
methods only exhibit  superior behavior when the problem is truly singular? Does the 
computational performance of Newton’s method degrade gradually as  the problem 
becomes more singular, or sharply at  the singularity? The performance comparison 
over a spectrum of ill-conditioned problems was previously unknown. Thus,  this  paper 
examines the performance of tensor  methods versus standard methods  as the problem 
becomes more ill-conditioned. We consider tensor  methods using direct factorizations 
of the Jacobian  matrix for  small-scale problems in addition to Krylov-based iterative 
tensor  methods for large-scale problems. 

The organization of this paper is as follows. Because this research involves meth- 
ods for solving small- to large-scale problems, this  paper includes background for both 
types in section 2. Specifically, we review direct methods for  solving small-scale prob- 
lems, and we review Krylov-based iterative  methods for  solving large-scale problems, 
including the relevant algorithms from [l, 21 and (151. Section 3 presents numeri- 
cal results on several small- and large-scale ill-conditioned test problems to examine 
the performance of tensor  methods on problems over a range of conditionings, from 
well-conditioned to singular. Finally, section 4 summarizes the numerical results and 
provides some concluding remarks. 

Throughout this  paper, a subscript k refers to  the current  iterate of a nonlinear 
solver. We denote the Jacobian F’(z) by J ( z )  and  abbreviate J ( z ~ )  as Jk. Similarly, 
F(zk )  is abbreviated  often as Fk. When  the context is clear, we may drop  the subscript 
k while still referring to  the “current” values at an  iteration. 
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2 Algorithms 

In this section, we introduce the relevant methods for  solving systems of nonlinear 
equations. We start with  methods that use a direct factorization of the Jacobian 
matrix,  and then we discuss inexact methods that use Krylov subspace projection 
techniques. General references  for these topics in nonlinear solvers include [12], [19], 
[23], and [25]. 

2.1 Standard Methods 

In this paper, we denote by standard  methods  the class of methods for  solving (1) 
that uses a linear approximation to  F(x)  at each iterate  around  the current  iterate 
xk E Wn. Most notable  among these methods is  Newton’s method, which uses the 
linear local model 

MN(x~  + d )  = F k  + Jkd, (2) 
where d E Wn is the  step and J k  E Etnxn is either the current  Jacobian  matrix or an 
approximation to  it. A root of this local model provides the Newton step 

dN = -JclFk, 

which  is  used to reach the next  trial point. Thus, Newton’s method is defined  when 
J k  is nonsingular and consists of updating  the  current point with the Newton step, 

If the Jacobian J(xk) is Lipschitz continuous in a neighborhood containing the root 
x* and  J(x,) is nonsingular, then  the sequence of iterates produced by (3) converges 
locally and q-quadratically to x.. That is, there  exists  constants 6 > 0 and c 2 0 
such that  the sequence of iterates xk produced by  Newton’s method obeys 

if 1 1 ~ 0  - x*11 5 6. 

When  these standard approaches use direct factorizations of the Jacobian  matrix, 
we  will  refer to these  methods as direct methods. Due to  the storage  and linear 
algebra costs, direct  methods  are only practical for  solving small, dense problems. 

2.2 Tensor methods 

Tensor methods [26] solve (1) by including a second-order term in the local model at 
each iteration.  The local tensor model has the general form 

M T ( X k  + d )  = F k  + Jkd + i T k d d ,  (4) 
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where T k  E Wnxnxn is the tensor term  at xk and is selected so that  the model in- 
terpolates a small number p of function values in the recent history of iterates. By 
choosing the smallest Tk in the Frobenius norm, T k  has  rank p and Tkdd is both sim- 
ple in form and inexpensive to find.  Because (4) may not have a root, one  solves the 
minimization subproblem 

and a root or minimizer of the model is the tensor  step. 

The additional cost of forming, storing, or solving the model is minor compared 
to Newton’s method. Specifically, the additional cost is about n’p multiplications 
(QR implementation)  and 2p vectors of length n in storage. For our numerical ex- 
periments, we will only consider the simplest case of p = 1. Computational evidence 
in [26] suggests that additional  past  iterates add  little benefit to  the computational 
performance of the tensor  method. 

Tensor methods are considerably more efficient and  robust than  standard methods 
on singular problems and, to a lesser extent,  on nonsingular problems. The second- 
order term provides higher order information in recent step directions, which aids in 
cases where the Jacobian is (nearly) singular at  the solution. As the  iterates approach 
the solution, the Jacobian lacks information in these directions, and  the second-order 
term supplies useful information for a better step. 

The analysis in [14] confirms that tensor  methods have at least quadratic con- 
vergence on nonsingular problems. In  addition, [14] also  shows that tensor meth- 
ods have local superlinear convergence  for a large class of singular problems with 
rank(F‘(z,)) = n - 1 under mild conditions. In  contrast, Newton’s method  without 
any acceleration techniques on such problems exhibits only q-linear  convergence with 
constant converging to $. 

Computational evidence in [26] on small problems shows that tensor methods hold 
21-23% average improvement over standard methods on nonsingular problems and 
4@43% improvement on problems with rank(F‘(z,)) = n - 1. Thus, tensor methods 
outperform standard methods on many problems, especially on singular problems. 

2.3 Newton-Krylov methods 

Up to  this point, we have discussed direct methods for the solution of small, dense 
problems, such that  the local model is  solved with direct factorizations of the Jacobian 
matrix.  Standard direct methods, such as Newton’s method,  are  impractical on 
largescale problems because of their high linear algebra costs and large memory 
requirements. Thus, most large systems often are solved  successfully using a class of 
“inexact” Newton methods: 

%+I = x k  + dlcr where F’(xrc)dk = - F ( x k )  + Tkr b’kl l  5 v k  llF(xk)II 3 (6) 
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such that  the local model typically is solved  only approximately at each step using 
a less expensive approach. These  “inexact”  steps then locate the next trial point. 
Successively better approximations to  the linear model at each iteration preserve the 
rapid convergence behavior of Newton’s method when nearing the solution. The com- 
putational savings reflected in  this less expensive inner iteration is usually partially 
offset with more outer  iterations, but  the overall savings still is quite significant on 
large-scale problems by avoiding the direct methods that solve the local model exactly. 

The most  common methods for approximately solving the local Newton model are 
Krylov-based methods, which iteratively solve the linear system projected  onto the 
Krylov subspace IC. A linear Krylov subspace method is a projection  method that 
seeks an approximate solution x, to  the linear system Az = b from an m-dimensional 
&ne subspace zo +IC,. Here IC, is the subspace 

where TO = b - Azo is the residual at an  initial guess 20. A popular Krylov subspace 
method is the Generalized Minimum Residual method  (GMRES), which computes 
a solution z, E zo + IC, such that  the residual norm over all vectors in zo + IC, 
is minimized. That is, at  the  mth  step, GMRES finds z, such that I(b - Az,ll, is 
minimized  for all z, E zo + IC,. 

Newton-GMRES is one specific method in the class of Newton-Krylov methods. 
Here, the linear system is the Newton equation J k d  = -Fk, and the system is solved 
via GMRES according to  the tolerance q in (6). Krylov subspace methods have the 
appeal of requiring almost no  matrix  storage  due to their exclusive  use of Jacobian- 
vector products, which  may be calculated by a finite-difference directional derivative. 
For this reason and  others, Newton-GMRES is a popular algorithm for solving large- 
scale problems, and  it will be  the  standard  largescale Newton-based algorithm for 
comparisons in OUT numerical experiments. 

Newton-Krylov methods have been considered by many authors, including Brown 
and Saad [5, 61, Chan  and Jackson [7], and Brown and Hindmarsh [4]. Their com- 
putational  results show that Newton-Krylov methods  can be quite effective  for many 
classes of problems in the context of systems of partial differential equations and 
ordinary differential equations. 

2.4 Tensor-Krylov methods 

Direct methods  cannot efficiently  solve  large-scale problems due to large storage con- 
siderations and the expensive direct solution of the local model. To this  end,  the 
three tensor-Krylov methods described in [l, 21 combine t,he concepts from direct ten- 
sor methods  with concepts from inexact Newton methods using Krylov-based linear 
solvers. The tensor-Krylov methods  calculate an inexact tensor step from a specially 
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chosen  Krylov subspace that facilitates the solution of a minimization subproblem at 
each step. Here we just give a very  brief  overview of these  methods. 

All large-scale tensor  methods in this paper only consider a rank-one tensor model, 
which only interpolates the function value at  the previous iterate.  Thus  the rank-p 
model of (4) reduces to 

M T ( X ~  + d )  = Fk + Jkd + : % ( S T @ ,  (7) 

such that 

S k  E R" = xk--1 - xk. (9) 

In each of the tensor-Krylov methods, the tensor step is found by approximately 
solving the minimization subproblem 

min l lFk + Jkd+  &(s,d) [ I 2  
d E K ,  

where IC, is a specially chosen  Krylov subspace that facilitates the solution of the 
quadratic model. The  three methods described in [l, 21 differ in their choice of 
IC,, and  they  are identified by this  characteristic difference. TK2 and TK2+ use a 
Krylov-based local solver that  starts  with an initial block of two vectors (TK2+ also 
augments the Krylov subspace in a special way). Similarly, TK3 uses an initial block 
of size three. The  three  methods  share  the  ability to calculate an approximate tensor 
step  that satisfies the tensor model to within a specified tolerance. Their cost per 
nonlinear iteration exceeds that of Newton-GMRES by at most 10n + 4mn + 6m2 
multiplications (cf. GMRES costs U(nm2) multiplications). The methods  can  be 
readily combined with  either left or right preconditioning. More details of these 
Krylov-subspace methods for solving the tensor model may be found in [l] and [2]. 

T 2  
(10) 

2.5 Tensor-GMRES method 

Another large-scale tensor  method is that of Feng and  Pulliam [15], which  uses  Krylov 
subspace projection techniques for solving the local tensor model. In particular, it 
uses GMRES to first find the approximate Newton step dN = do + V,y,. The 
columns of V, form an orthonormal basis for the Krylov subspace IC,,, generated by 
the corresponding Arnoldi process, and  the Hessenberg matrix H, is also generated 
from the Arnoldi process. Given these key matrices,  their tensor-GMRES algorithm 
proceeds to solve a  projected version of the tensor model (7) along a subspace that 
spans the Newton step direction and  the Krylov subspace from the Newton step 
solution. (That is, the approximate tensor step is in the  span of the Krylov subspace 
IC," and &, or equivalently the  span of the  matrix [V,, &I). Thus,  their  algorithm 
solves the least-squares problem 

min llFk + Jkd + iPa(sTd)211 , (11) 
dE{&)UKg 
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where P is the projection matrix 

P = Y(YTY)-’YT, where Y = Jk[Vmr do]. (12) 

The analysis in [15]  shows that  the same superlinear convergence properties for the 
unprojected  tensor model considered in [14] also hold  for the projected tensor model 
(11). The complete tensor-GMRES algorithm for solving (11) at  the  kth nonlinear 
iteration is listed in [15]. 

Despite the algorithm’s difficult algebra, the design actually is rather  straight- 
forward. The algorithm may be viewed as an extension of Newton-GMRES, where 
the inexact Newton step is calculated via GMRES in the  standard way. The tensor 
step is calculated subsequently using the Krylov subspace information generated for 
the Newton step. In this way, the method also is consistent with preconditioning 
techniques and a matrix-free implementation, which  makes it appealing for general 
use. 

The  extra work and  storage beyond GMRES for computing the tensor step is 
quite small. The  extra work is at most 4mn + 5n + 2m2 + O(m) multiplications plus 
a single Jacobian-vector product for evaluating the tensor term a,+. The  extra storage 
amounts to two extra n-vectors for a and s plus a few smaller working vectors of 
length  m. 

The results in [15] show the superlinear convergence behavior of tensor-GMRES 
on three singular and nearly singular problems, where the Newton-GMRES method 
exhibits linear convergence due  to a lack of sufficient first-order information. The 
margin of improvement (in  terms of reduction of nonlinear iterations over  Newton’s 
method) varied from 20% to 55%  on the simpler problems and 32% to  60% improve- 
ment on the more dficult Euler problem. Running times and  the  total number of 
Jacobian-vector products for each method were not reported in [15], but from our 
own experience with the algorithm, we assume that these performance metrics are 
correlated with the number of nonlinear iterations. 

3 Numerical experiments on ill-conditioned  prob- 
lems 

3.1 Small problems solved with direct methods 

This section investigates the performance of direct tensor methods as well as Newton’s 
method on a set of small problems tha,t include a parameter for adjusting the ill- 
conditioning of the Jacobian matrix  at the  root.  The results show that Newton’s 
method requires increasingly more iterations as the problem ill-conditioning grows, 
whereas the direct tensor methods  are only mildly affected. 
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Following the approach in [26], we created ill-conditioned problems by modifying 
nonsingular test problems to  be of the form 

&,X) = F ( ~ )  - X F ‘ ( G ) A ( A ~ A ) - ~ A ~ ( ~  - x*), (13) 

where F ( x )  is the  standard nonsingular test function, z* is its  root, A E Rnxj is 
an  arbitrary  matrix  that has full column rank with 1 j 5 n, and X E [0,1] is 
a  parameter for ill-conditioning. We denote by j(z,X) as the Jacobian  matrix of 
F(z, X) with respect to x: 

These new test problems are similar to problems in continuation or homotopy 
methods, except that p(x,X) has  the same root as F ( x )  (i.e., x,) for all values of 
X. While the problem becomes harder to solve as X approaches 1, the idea is not to  
follow the  path over a sequence of values of X. Rather, we solve the modified problem 
for each value of X from the same starting point across all tests and record the number 
of iterations required to reach the solution, 

One special quality of this modified problem is that if X = 1 and F‘(z,) has full 
rank,  then  the  rank of j(z*, X) equals rank(F’(z,)) - rank(A) = n - rank(A).  Thus, 
as X approaches 1, the rank deficiency of j(z*, X) approaches the  rank of A. Stated 
another way, a set of the smallest singular values of j (z*,  X) equal to  the rank of A 
will approach 0 as X approaches 1. 

Different sets of singular and ill-conditioned problems may be  created using the 
matrix A in (13); adding more independent columns to A serves to decrease the rank 
of j(zc., 1). We routinely used the matrices 

A E W X 1 ,  A T = (  1 1 1 . . .  1 ) ,  

A E Rnxz, 
1 1  

A T = (  1 -1 1 . . .  fl 
and 

1 1  
A E Wnx3, AT = ( 1 -1 1 ... f l  

1 1 -1 . . .  f l ,  7 
because they provide “balanced” problems by acting equally on the whole Jacobian 
F‘(z,). Letting  A equal the  unit vector el, for example, would only operate on the 
(1,l) element of F’(x). 

We chose six problems for testing from the  standard small dimensional test  set of 
Mor6, Garbow, and Hillstrom [22] and modified them according to (13). Table 1 lists 
the problems used in our numerical tests, along with the corresponding dimensions. 
For all problems, the  starting vector zo was the  standard  starting point for each 
problem published in [22]. Except for the cases mentioned below, these starting 
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Table 1. Ill-conditioned test problems. 

I Problem I Size I 
I Brovden Tkidiaonal I 50 I 1 Broiden Bandei 1 ; 1 

Discrete Boundary Value Function 
Discrete Integral Equation 

Brown Almost Linear 
Fbsenbrock’s Function 

points  did not require a global strategy to reach the solution (i.e., the full step was 
accepted at all iterations). 

We chose the parameter X in (13) to asymptotically  approach X = 1 by using the 
values X = 1 - lO-j,j = 0,1,2,. . . . Thus, for j = 0 the problem is the original, 
unmodified problem, and each subsequent value of j makes the problem more ill- 
conditioned. At some point, round-off errors in the evaluation of &x, X) as well as 
the numerical precision of the root 5, make the numerical solution indistinguishable 
from the cme of X = 1. All subsequent values of X would produce the same result, 
so we collected only the results up  to these  points and indicated the case of X = 1 at 
the rightmost extent of our plots. 

We used the following  two stopping conditions in all these  tests: IIF(xk)lI, 5 
or l l ~ k  - xk-lll, 5 which are the same conditions Eisenstat and Walker 

used  when analyzing inexact Newton methods in [13]. In many practical  applications, 
less stringent convergence tolerances are commonly used, but these  tight tolerances 
were used in this experiment (and later  experiments) to differentiate results at higher 
condition numbers and  to allow asymptotic convergence behavior to become evident. 
The numerical differences are still present but less striking at looser stopping toler- 
ances. 

As a prelude to these results and  to help explain what is happening in these 
experiments, we first provide a graphical description. Figure 1 shows the typical 
iteration profiles  for different values of X that we observed. This figure graphs the 
function value at  each iteration for the tensor and Newton methods on a typical 
problem approaching rank n - 1 with various values of X = 0,0.9,0.99,0.999,. . . ,1. 
All of the tensor  method profiles are bunched together on the left, requiring few 
iterations even as X nears 1, whereas the profiles of Newton’s method  are  spread  out 
and require increasingly more iterations for  convergence as the problem becomes more 
ill-conditioned. This plot of iteration profiles is typical for all problems. Thus, while 
all of the tensor runs display superlinear convergence throughout the iterations, it is 
evident that Newton’s method converges linearly for a number of iterations before 
accelerating to quadratic convergence. With increasing ill-conditioning, the region of 
quadratic convergence for Newton’s method  shrinks in size, acting  as if the problem 
were singular outside of this region. 
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Figure 1. Superimposed iteration profiles of the tensor 
method (‘7, solid  lines)  and  Newton’s  method (0, dashed 
lines)  when  solving the Modified  Broyden  Tridiagonal  func- 
tion as it approaches  rank n - 1. For both methods  and  their 
corresponding set of iteration profiles,  problem  difficulty (X) 
increases  from  left to right, making the problem  more  ill- 
conditioned  and  requiring more iterations to solve. 

Figure 2 shows the relative performance of Newton’s method versus a rank-one 
tensor  method on the six problems, in the case where each Jacob~an at the solution 
approaches rank n-1. The condition number j(x*, X) is plotted  on  the abscissa, while 
the number of iterations for both  methods is plotted on the  ordinate axis. One tensor 
method  iteration is just slightly more expensive than a Newton iteration.  There were 
no linesearches in all cases except on Rosenbrock’s function at X = 0, which explains 
the unusual spike on  the left in that plot. Also, both  methods arrived at different 
solutions in the Brown Almost Linear problem at X = 0, so these  points were not 
included in that plot. For all other  points,  both  methods arrived at  the same x*. 

The six  plots of Figure 2 show that BS the ill-conditioning of a particular problem 
grows, Newton’s method  requires more iterations whereas the tensor  method is  very 
mildly affected. This is a key result. Previously, tensor  methods were suggested 
to behave reasonably well on ill-conditioned problems, but  there was no numerical 
testing of this conjecture. 

However, because the condition number  is just a single value representing the ra- 
tio of the largest to  the smallest magnitude  singular values, it does not  capture  the 
singular value spectrum of the Jacobian. Say,  for instance, that there  are  multiple 
singular values approaching zero, creating a very ill-conditioned matrix. One might 
speculate that a tensor  method using a rank-one tensor term would be less advanta- 
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Figure 2. Comparison of a rank-one tensor  method (V, 
solid line) with  Newton's  method (0, dashed line) on variably 
ill-conditioned test problems that approach rank n - 1. 

geous in  this case because it could "handle" only one direction,  perhaps the direction 
associated with the smallest singular value, leaving other  (near) singular directions to  
impede convergence. Figures 3 and 4 consider exactly  these cases where the Jacobians 
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approach rank n - 2 and n - 3, respectively, while still using a rank-one tensor model. 
Two problems were not included in these figures for different reasons. The Modified 
Rosenbrock Function had excessive linesearches that obscured the results in the rank 
n - 2 problems, and the rank n - 3 problem is not possible with the Rosenbrock 
Function due to its small dimension of n = 2. For the Brown Almost Linear problem, 
each method arrived at a solution that was different from the root x* used in (13). 
For these reasons, these two problems were not included in Figures 3 and 4. 

It is evident that the results for higher rank deficiencies are not as striking as in 
Figure 2, but the general trend still remains-tensor methods perform better than 
Newton’s method on ill-conditioned problems, even when the Jacobian approaches a 
rank deficiency greater than the rank of the tensor term. A few peculiarities exist in 
the results that warrant explanation. We attribute the “humps” in both curves to 
the random paths each method takes to arrive at the solution, and we believe this 
shape is coincidental. The “spikes” in both methods for the two Discrete problems in 
Figure 4 are due to linesearches occurring at a specific value of A. The linesearches 
force a few more outer iterations to eventually solve the problems. 

3.2 Moderate-size problems solved with inexact methods 

This subsection investigates the performance of Newton-GMRES, tensor-GMRES, 
and the tensor-Krylov methods on three ill-conditioned problems of moderate size 
and complexity: the Bratu problem, a modified discrete boundary value function, 
and a modified Broyden tridiagonal problem. The tests on the ill-conditioned prob- 
lems have a similar design as the study performed in section 3.1, and we investi- 
gate to what extent the benefits of using direct tensor methods for solving small 
ill-conditioned/singular problems that were shown section 3.1 extend to large-scale, 
inexact versions of tensor methods. 

We implemented all of the methods in MATLAB using double precision arithmetic. 
For objective comparisons, we used the same level of basic linear algebra routines in 
MATLAB in all of our tests. Thus, the results in this section do not reflect the 
most efficient implementations that are available, but the statistics that we collected 
(nonlinear iterations, function evaluations) are invariant to optimal implementations. 

For the numerical tests, we used the same stopping conditions and parameters as 
in section 3.1. For the inner method, we solved the local model to a constant relative 
tolerance of lop4, which requires uniformly close approximations to Newton and/or 
tensor steps at each iterate and results in fast local q-linear convergence. Using a 
constant relative tolerance may not be ideal in practice (see [13] for alternatives), but 
it provides for more unbiased comparisons among the methods. 

In practice, the Krylov subspace dimension should be kept small to reduce arith- 
metic and storage costs, which may be accomplished via restarted Krylov methods 
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Figure 3. Comparison of a rank-one tensor method (V, 
solid line) with Newton's method (0, dashed line) on variably 
ill-conditioned test problems that approach rank n - 2. 

and preconditioning. However, to eliminate any ill effects of small Krylov subspaces 
preventing convergence in the local model and affecting the outer iterations, the max- 
imum Krylov subspace was set to the problem dimension, mmaZ = n, and the solver 
was not restarted. We used preconditioners that are appropriate for the problem, and 
they will be discussed with each problem. 

In the next three subsections, we present numerical results on the ill-conditioned 
problems. The results of the tensor-Krylov method TK2 are virtually identical to 
TK2+, so we do not include them here. 

3.2.1 Bratu problem 

The Bratu problem is a simplified model for nonlinear diffusion phenomena occurring, 
for example, in semiconductors and combustion, where the source term is related to 
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Figure 4. Comparison of a rank-one  tensor  method ( V ,  
solid  line)  with  Newton's  method (0, dashed line) on variably 
ill-conditioned test problems that approach  rank n - 3. 

the Arrhenius law  for modeling exothermic reactions. The following  version  is taken 
from the set of nonlinear model problems collected  by Mor6 [21]. The problem is the 
nonlinear partial differential equation in u 

where V2 = C ~ = 1 a 2 / d x ~  is the Laplace operator, X E IR is a  parameter, R is the 
bounded domain (0 , l )  x (0, l), and 8 R  the boundary of R. 

Problem (14) has a unique solution for X 5 0, but for X > 0, there may be zero, 
one, or two solutions (cf.,  [16]). The critical value x' = 6.80812 is a limit point such 
that for 0 < X < x*, problem (14) has two solutions; and for X > X*, it has no 
solutions. Also, the problem at  the limit point is singular with  a  rank of n - 1, and 
as X approaches the limit point,  the discretized problem becomes harder to solve.  To 
investigate the effects of ill-conditioning on the inexact algorithms, we increased X 
over the range X E [5,6.806652], which increased the condition number of J(z,) from 
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about lo3 to  lo6. 

When  testing the  Bratu problem, the initial  approximate solution was  zero on a 
uniform grid of size 31 x 31. The Laplace operator was discretized using centered 
differences (5-point stencil),  and  our preconditioner was also the centered differences 
discretization of the Laplace operator. We computed Jacobian-vector products using 
first-order forward differences.  Hence, the number of function evaluations is the sum 
of the  total number of Arnoldi iterations,  the number of linesearch backtracks (if 
any),  and  the  total number of nonlinear iterations.  Thus, the number of function 
evaluations provides a relative measure of overall work for each algorithm. 

Figure 5 presents the results of these  tests, comparing the number of function 
evaluations computed for each method using the  three choices of preconditioning 
(none,  left, and right preconditioning). If one considers the condition number of the 
preconditioned Jacobian at  the root  (i.e., M-lJ(z , )  or J(z,)M-’),  then  the condition 
numbers in the  bottom two plots  span the range of 3 x loo to about lo4 instead of lo3 
to lo6 for the Jacobian itself. The results in the figure are similar to those in figures in 
section 3, where Newton-GMRES requires increasingly more function evaluations as 
the problem becomes more ill-conditioned and difficult. The tensor-Krylov methods 
required from 4 to 7 outer  iterations, whereas Newton-GMRES required from 4 to 
13  outer  iterations. That is, Newton-GMRES required almost double the number 
of tensor-Krylov iterations on the most ill-conditioned problem. The  three plots 
in Figure 5 uphold the prior conclusion that increased ill-conditioning only  mildly 
increases the number of outer  iterations for tensor  methods. 

In all cases, when the problem is not overly  difficult (e.g., the experiment at 
condition number of lo3 on the left-hand side of the figure), Newton-GMRES is more 
efficient in terms of nonlinear iterations than  the tensor methods. Here, the number 
of iterations for all of the methods is equal, but GMRES is more efficient at solving 
the local Newton model,  which results in  fewer total function evaluations. When 
the problem is more difficult, however, the tensor  methods  are superior to Newton- 
GMRES by a factor of up  to 1.9. Approaching the limit point even closer  would  have 
given even more of an advantage to  the tensor-Krylov methods. 

When comparing only the tensor methods, the tensor-GMRES method of Feng 
and  Pulliam is more efficient than  the  TK3 and TK2+ methods. It  appears  that 
the  step produced from the projected tensor model of the Feng-Pulliam method is 
nearly the same as the  steps calculated from the more precise  local models of the 
tensor-Krylov methods,  and it is  less expensive to compute.  This behavior may be 
understood more clearly by investigating the iteration history of all of the methods, 
which we describe next. 

To investigate the  step quality of each tensor-Krylov method, we tested the  Bratu 
problem with X = 6.806652,  which has a condition number of roughly 1.5 x lo6. 
Using right preconditioning, the results in the first plot of Figure 6 show the faster 
outer  (nonlinear)  iterations of the  three  tensor  methods, which display very similar 
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Figure 5. Effects of ill-conditioning on the inexact alg- 
rithms as seen in the Bratu problem. 

performance. All methods start by exhibiting linear convergence until the respective 
method  can overcome the near singularity and accelerate Convergence. The tensor 
methods accelerate convergence sooner than Newton-GMRES (iteration 2 versus it- 
eration 5 ) ,  and  this is typical behavior for ill-conditioned problem-Newton-type 
methods  branch  into superlinear convergence later  and  later as the ill-conditioning 
grows.  Because the forcing term for the inner iterative  method is constant (instead 
of decreasing each iteration), all methods  exhibit  asymptotic linear convergence, as 
evidenced by their  straight  trajectories near the solution. 

When we consider function evaluations in the  bottom  plot,  the tensor-Krylov 
methods  separate from the Feng-Pulliam method.  The block  size of the method is a 
clear indicator of the relative efficiency of the method. Specifically, tensor-GMRES, 
which  uses the scalar (block  size one) implementation of GMRES, is more efficient 
than  TK2+ (block  size two) and TK3 (block  size three).  The  Bratu problem is unique 
among our tests in that  the steps  computed from a projected local tensor model are of 
roughly the same quality as the  steps from TK2+  and  TK3. Therefore, the number of 
outer  iterations  are the same,  but because tensor-GMRES is more efficient in solving 
the local model, tensor-GMRES has  the advantage. 
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Figure 6. Example  iteration  history on the Bratu  problem 
at X = 6.806652. 

3.2.2 Modified discrete boundary  value  problem 

Thc discrct,c boundary va,lue problem is a simple test, prohlenl from [ 2 2 ] .  The  standa,rd 
discret,e boundary value problem is 

fi(.) = 2ri - - Ti+l + + t i  + I ) ~ :  1 I 2 5 (15) 

where h = x: ti = ih,  and so = z,~+~ = 0. The initial  approximate solution is 
zero on a, problem size of n. = 100 equa,tions. For our test,sl we have  modified (15) in 
acrordan(:e with equat,iorl (13) of sect,iorl 3.1. 

I 

When testing t,his problem: we used a preconditioner that, corresponds to t,he 
Jacobian of (15) but without, t,hr t,erm t i .  We computed Jacobian-vector products 
using an a,na,lytic evaluat,ion of t.he Jacobian, m t l  we tallied the number of "function 
evaluat,iorl equivalents," which  is t,he sum of funct,ion evaluations and Jacobian-vector 
product,s. If these  products were approximated by first-order forwa,rd diffcrcnces, as 
is generally the case with complex problemsl then "funct,ion evalua,t,ion equivalents" 
would  be equal t,o the numbcr of funct,ion evaluations. This number  a,lso provides a, 
relative measure of overall work for each algorithm. 
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Figure 7 presents the results of these tests, comparing the number of function 
evaluation equivalents computed for each method using the  three choices of pre- 
conditioning (none,  left,  and right preconditioning) for the various values of X = 
1 - lO-j,j = 0,1,2,. . . in equation (13). If one considers the condition number of 
the preconditioned Jacobian at  the root (i.e., M-'J(z,) or J(z , )M-l ) ,  then  the con- 
dition numbers in the  bottom two plots span the range of 1 X 10' to about 2 X lo6 
(left preconditioning) or 2 x lo8 (right preconditioning) instead of 4 x lo3 to 2 X lo9 
for the Jacobian,  not counting the singular case. 

The  results for the modified discrete boundary value problem are similar to those 
of the  Bratu problem in Figure 5: Newton-GMRES requires increasingly more  func- 
tion evaluations as the problem becomes more ill-conditioned, whereas the number of 
function evaluations required by the tensor methods increases to a lesser extent.  It 
is interesting to note that  the tensor  methods  are  virtually identical in performance 
without preconditioning and resemble the results in section 3.1.  However,  once pre- 
conditioning is used, the tensor  methods are affected by the ill-conditioning of the 
problem, yet still to a lesser extent  than Newton-GMRES. 

Figure 7. Effects of ill-conditioning on the inexact alg- 
rithms as seen in the discrete  boundary  value  problem. 

When comparing only the tensor  methods while using left and right precondition- 
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ing, the tensor-GMRES method of Feng and  Pulliam is  more  efficient than  the  TK3 
and  TK2+  methods on the easier problems but less  efficient on the hardest problems, 
which is different from the experience with  the  Brat,u problem above. We explain this 
relative difference by not,ing that Tensor-GMRES required more nonlinear iterations 
as  the problem grew  more ill-conditioned. Because the tensor-Krylov methods gen- 
erally require more Arnoldi (inner)  iterations to solve the local tensor model due to 
the less  efficient block-Arnoldi process, any computational savings must come  from 
fewer nonlinear (out,er)  iterations. 

To better  illustrate  this behavior, Figure 8 presents the  iteration  history of all 
methods for one  test case in  Figure 7. We present the  results of the modified problem 
using right preconditioning with X = 1, which corresponds to the right-most, set 
of points in the  bottom plot of Figure 7. Here, the  top plot of Figure 8 shows 
that Newton-GMRES has linear convergence, and  after  one good step on the second 
iteration, Tensor-GMRES appears  to have linear convergence t,hat is slightly faster 
t,han Newton-GMRES. The  TK2+  and  TK3  methods  appear  to have superlinear 
convergence with nearly the same  steps.  This profile indicates that  the tensor  step 
found from a  projected  tensor model is not as good  for this problem as  the t,ensor- 
Krylov steps which  use the full tensor model. That, is! the projection of the tensor 
model loses  some information that is import'ant for achieving superlinear convergence. 

When we consider function  evaluations in the  bottom plot of Figure 8, two features 
are evident. First,the slope of the Newton-GMRES and tensor-GMRES lines are 
nearly  identical, which indicates that  the cost of solving the projected  tensor model 
in  terms of function evaluations is roughly the same as solving the Newton model in 
Newton-GMRES. Second, the TK2+ and TK3 trajectories  separate, which indicates 
that  the block-2+ local solver  in TK2+ is  more  efficient than  the block-3  solver in 
TK3. 

3.2.3 Modified Broyden tridiagonal problem 

This modification is similar to  the problem studied by  Feng and Pulliam  in [15] 
and makes the problem more ill-conditioned as X asymptotically approaches one  and 
singular at X = 1 with a  rank n - 1. We used the values X = 1 - lO-j, j = 0,1,2, .  . . , 
until  the  results were indistinguishable from X = 1 due  to round-off error,  at which 
point we just, use X = 1. For our  t,ests, we set n = 100 and used (-1,. . . , -l)T as the 
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Figure 8. Example  iteration  history on the  discrete  bound- 
ary value  problem at X = 1. 

starting vector. We used the  Jacobian of (16) as our preconditioner for all values of 
x. 

Figure 9 presents the results of the ill-conditioning tests over the  span of problems 
X E [0,1], which  affects the condition number of J(z,). The  three plots represent the 
three choices  of preconditioning (none, left, and right preconditioning), and each 
compares the number of function evaluation equivalents computed for the different 
.methods. If one  considers the condition number of the preconditioned Jacobian at 
the root (Le., M-'J(z,) or J(z , )M-') ,  then  the condition numbers in  the  bottom 
two plots (not counting the singular case) span the range of 1 X 10' to 2 X lo6 instead 
of 3 x loo to 3 x lo6 for the Jacobian. 

Here again the results show that Newton-GMRES requires increasingly more func- 
tion evaluations as the problem  becomes more ill-conditioned. The tensor methods 
are affected somewhat at  the low condition numbers, but there is a plateau where the 
number of function evaluations required by the tensor methods  are no  longer  affected 
by the ill-conditioning of the problem. Near X = 1, Newton-GMRES requires almost 
t.wice the number of function evaluations as the tensor methods. 
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Figure 9. Effects of ill-conditioning  on the inexact alge 
rithms aa seen in the modified  Broyden llidiagonal problem. 

When comparing only the tensor  methods while using left and right precondition- 
ing, the tensor-GMRES method of Feng and Pulliam is roughly comparable to TK3. 
The  TK2+  method is  more  efficient on all problems except one, where tensor-GMRES 
is the  best. In comparison with Newton-GMRES  on the easier problems with left or 
right preconditioning, TK2+ requires the same number or fewer function evaluation 
equivalents. 

Figure 10 presents the  iteration  history of all methods for the right-most  test case 
(X = 1) in the right preconditioning plot in Figure 9. The  top plot of Figure 10 shows 
that, Newton-GMRES has  linear convergence  on this singular problem, and  the t,ensor 
methods have superlinear convergence.  Once again, the two tensor-Krylov methods 
have the same  quality of steps,  but  the tensor-GMRES method no longer shares the 
same trajectory as TK2+ and TK3, which indicates t,hat  the projected  tensor model 
loses  some critical  directional  information. 

The  bottom plot of Figure 10 considers the function  evaluation equivalents on the 
x-axis. It shows that tensor-GMRES is generally more  efficient than  TK3  at solving 
the local model. Thus, while TK3 is  more  efficient in total nonlinear iterations, tensor- 
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Figure 10. Example  iteration  history on the modified Broy- 
den tridiagonal  problem at X = 1. 

GMRES is more efficient at solving the local model, which accounts for the difference. 
Another feature evident in the  bottom plot  is that  the TK2+ and TK3 trajectories 
separate. As with the discrete boundary value  problem  above, this indicates that  the 
block-2+ local solver in TK2+ is more efficient than  the block-3  solver  in TK3. 

4 Summary and conclusions 

This paper has investigated the performance of small- and large-scale tensor methods 
on problems over a range of conditionings, from well-conditioned to ill-conditioned 
to singular. Our results showed that tensor methods outperform Newton's method 
as the problems become more ill-conditioned. Prior to  this investigation, studies on 
direct tensor methods only  focused  on singular problems or on general problems that 
are well-conditioned. 

Specifically, our results show that, eventual quadratic convergence notwithstand- 
ing, the performance of Newton's method will degrade as the ill-conditioning grows, 
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whereas tensor methods  appear to be relatively unaffected or only mildly  affected 
(in the case of larger rank deficiencies).  Newton-based methods  do not handle these 
singular problems well because they converge linearly to  the solution and, in some 
cases, with poor accuracy. 

For the  largescale  methods,  despite  the use of an iterative inner method  with  an 
approximate solve, the tensor-Krylov methods  appear to retain superlinear conver- 
gence properties on ill-conditioned problems. On  the other  hand, Newton-GMRES is 
affected by the ill-conditioning and branches into superlinear convergence later  and 
later  as  the problems become more ill-conditioned. Thus, tensor methods  are espe- 
cially  useful  for  large-scale problems that are highly ill-conditioned or singular, where 
Newton-based algorithms exhibit very  slow  convergence. 

There  are  many  important  and  practical problems that have  ill-conditioned or 
singular Jacobian matrices at  the solution, such as large PDE problems that ex- 
hibit “turning points” and/or shocks. The conclusions of this research indicate that 
concepts from tensor methods may benefit algorithms for bifurcation tracking and 
stability analysis. We intend to investigate these applications in future research. 
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