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Abstract 

 
This report summarizes the work performed as part of a one-year LDRD project, “Evolutionary 
Complexity for Protection of Critical Assets.” A brief introduction is given to the topics of 
genetic algorithms and genetic programming, followed by a discussion of relevant results 
obtained during the project’s research, and finally the conclusions drawn from those results. The 
focus is on using genetic programming to evolve solutions for relatively simple algebraic 
equations as a prototype application for evolving complexity in computer codes. The results were 
obtained using the lil-gp genetic program, a C code for evolving solutions to user-defined 
problems and functions. These results suggest that genetic programs are not well-suited to 
evolving complexity for critical asset protection because they cannot efficiently evolve solutions 
to complex problems, and introduce unacceptable performance penalties into solutions for simple 
ones. 
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Introduction 
 
The natural evolution of organisms has created remarkable systems that slowly change in 
response to sometimes harsh and unforgiving environments. This process shows that starting 
from the simplest one-celled bacteria, amazingly complex, well-adapted creatures that function 
on a high level can evolve in response to external stimuli. It is natural, therefore, to conclude that 
a similar paradigm might potentially be an extremely useful problem solving technique. 
Evolutionary methods for solving complex problems were introduced in 1975 by John Holland 
in his book, Adaptation in Natural and Artifical Systems. The field of Evolutionary Computing 
(EC) is generally divided into two major subfields, genetic algorithms (GA) and genetic 
programming (GP), which both use the concept of evolutionary methods although for different 
problems. We describe both GA and GP in detail, below. 
 
Genetic Algorithms 
 
With EC methods, in general, one starts with a population of trial solutions to a problem. As an 
example, we will demonstrate the use of a GA to find the minimum value of the function 
 

f(x) = (x - 192)2,        (1) 
 
with an initial population consisting of a collection of random integers. Each organism in the 
population (i.e. each integer) can be assigned a fitness that describes how well it solves the 
problem. An example population with only four individuals is given in Table 1, below. The 
organisms in the population here are shown by their genome (i.e. their representation in binary 
notation) in order to simplify later discussions. 
 
In this trivial example, the fitness for each organism n is the value F(n). The population is ranked 
according to fitness (in this case, lower values being better), and then a certain number of the 
fittest individuals are replicated in the next generation. In this example, we keep organisms 2 and 
3 for transmission to the next generation. This is referred to as reproduction, and is clearly 
asexual. The more fit individuals in the population also undergo sexual reproduction, which is 
referred to as crossover. Crossover begins with the selection of a subset of the more fit 
individuals, which are then randomly paired so that information can be exchanged between the 
genomes. In our example problem, the genome has been chosen to be the binary representation 
of the numbers, as shown in Table 1. A random point in the genome is chosen as the crossover 
point, and the bits to the right of this point are swapped between the parents to give two children, 
as shown in Fig. 1. After this operation, there are four members of the new population as shown 
in Table 2. 
 
 

 
 
Figure 1.  Example of crossover between two genomes. 
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Table 1.  First generation of solutions to f(x) = (x - 192)2. 
 

Organism 
Number 

Genome Value Fitness 

1 01011100 92 10000 
2 10111010 186 36 
3 11000111 199 49 
4 00011011 27 27225 

 
 
Table 2.  Second generation of solutions to f(x) = (x - 192)2. 
 

Organism 
Number 

Genome Value Fitness 

1 10111010 186 36 
2 11000111 199 49 
3 10111111 191 1 
4 11000010 194 4 

 
 
As is clear from Table 2, the overall fitness of the population has increased greatly. There are 
now two organisms that are very close to the correct answer of 192. The procedure of 
reproduction and crossover is continued until either a given number of generations has been 
reached, or an exact solution is found. There is one final mechanism available for modification 
of the genome that is distinct from the two forms of reproduction demonstrated above. This 
operation is the mutation operator, and for this example would consist of randomly flipping a bit 
in the genome (i.e. 0 becomes 1 or vice versa). As in biological evolution, the probability of a 
beneficial random mutation is small, and thus the rate of mutation in the algorithm must be kept 
correspondingly low. 
 
Genetic Programming 
 
The procedure for GP is essentially the same as that for GA in that a given population is 
evaluated for fitness, and the more fit individuals are chosen to propagate to the next generation 
through both reproduction and crossover. The essential difference is that GA seek potential 
solutions to a given problem (e.g. numbers, blackjack strategy tables, or electronic circuits), 
whereas GP evolves self-contained computer code whose fitness is determined by its output. 
There are a number of different methods that can generate, evaluate, and evolve a population of 
programs, but we will only describe two here. The first method is exemplified by the freely 
available Avida platform (http://dllab.caltech.edu/avida/). In this code, the genome of the 
organisms consists of programs in Avida’s own stripped-down assembly language which runs on 
a virtual machine. Each organism contains code that allows it to replicate, and hence to 
reproduce. The programs compete for CPU time and resources that are allocated based on 
fitness. We determined that the Avida platform was not appropriate for this project. We instead 
used the common alternate paradigm developed by Koza [1], in which organisms are represented 
by snippets of Lisp code. To generate and execute codes we use the package lil-gp [2], which 
strictly adheres to Koza’s methods. Before describing the method of GP with Lisp, however, it is 
first useful to explain the basics of Lisp itself. 
 

http://dllab.caltech.edu/avida/


Lisp is a simple language consisting of a small basic instruction set from which more complex 
instructions can be made. Operations are constructed in the form 
 

( op A B ),         (2) 
 
where op is an operator, also known as a terminal; and A and B are the arguments. For example, 
the expression (+ 3 5 ) would evaluate to 3+5, i.e. 8. Both A and B can be expressions of their 
own, so that the more complex expression (+ 3 (+ 3 2 ) ) would also evaluate to 8. The nested 
operator (+ 3 2 ) is evaluated first, with the result passed up to the enclosing operator. 
 
The structure of Lisp codes makes them ideal to represent as parse trees. The example above can 
be written as the tree shown in Fig. 2. More complex functions including variables can also be 
constructed in Lisp. For example, the function f(x) = x 3+x2+x can be  represented by the Lisp 
expresion ( + ( + ( * X ( * X X ) ) (* X X ) ) X ), or more conveniently as the parse tree shown in 
Fig. 3a. In Fig. 3b we show an alternate method of representing this parse tree that we will use 
below for longer, more complicated functions that would be excessively large if written as 
shown in Fig. 3a. It is precisely the method of representing Lisp programs shown in Fig. 3a that 
makes it ideal for GP. Each individual organism can be represented as a parse tree, and crossover 
can be achieved by selecting a random node in two organisms, and swapping the subtrees at that 
node. As an example, if we were to perform crossover between the organisms in Fig.s 2 and 3, 
with the nodes selected being the ones marked in red, the resulting organisms are those shown in 
Fig. 4. 

 
 
Figure 2.  Example of a Lisp parse tree. 
 

 
 

 
 
Figure 3.  Example representations of Lisp parse trees for x 3+x2+x. 
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In GP, as in GA, it has been found that when solutions are generated, they are often exceedingly 
complex and difficult to understand [3]. As an example, consider the function f(x) = x 3, given by 
the simple Lisp expression ( * ( * X X ) X ). A GP used to evolve this function, however, arrives 
at the equally correct expression ( * ( + ( + ( / X X ) ( * X X ) ) (- ( * X X ) ( / X X) ) ( - ( / ( * X 
X ) ( + X X ) ) ( + ( - X X) ( - X X ) ) ) ). Clearly the evolved expression is more complicated to 
understand than the original one. It is, of course, possible to develop complicated expressions for 
f(x) = x3 by hand, but it is unlikely that human-developed expressions will be as perverse as 
those derived by a program that evolves solutions. Just as in nature, where organisms evolve into 
complex and mysterious systems, the results of GP can be obfuscated through indirect and 
redundant methods resulting from the lack of human intervention. Here we will discuss attempts 
to exploit this aspect of GP in order to develop intentionally obfuscated code with the goal of 
protecting of critical intellectual property from reverse-engineering attempts. 
 
Obfuscation 
 
The goal of code obfuscation is to transform working source into code that is functionally 
identical, yet much more complex syntactically. Such a transformation is desirable for preventing 
reverse-engineering of concepts or algorithms that are important intellectual property or crucial 
for national security. The difficulty with code obfuscation is that, while in some cases it can be 
easy to identify code that is intentionally obfuscated as compared to code that is not, there is no 
clear way to quantify the obfuscation because, unlike in cryptography, there has not yet been a 
theory developed that allows such a measure [4]. Obfuscation differs from cryptography, 
however, in that once a cryptographic cipher is broken the code is no longer protected. With 
obfuscated code, the deobfuscation of one section of code, hopefully a time-consuming process, 
is of little to no use in attempts to deobfuscate other sections. In this sense, obfuscation is a 
complementary technique to cryptography. In general, actively preventing reverse engineering is 
a difficult prospect. The International Obfuscated C Code contest is a prime example of the 
lengths some will go to in order to hamper reverse engineering. As an example, consider the 
following code, one of the winners in 1998: 
 
 
 
 
 
 

 
 
Figure 4.  Example Lisp parse trees after crossover. 
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#include <stdio.h> main(t,_,a) char *a; { return!0<t?t<3?main(-79,-13,a+main(-87,1-
_,main(-86,0,a+1)+a)): 1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13? 
main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,"@n'+,#'/*{}w+/w#cdnr/+, 
{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+, /n{n+,/+#n+,/#\ ;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K 
w'K:'+}e#';dq#'l \ q#'+d'K#!/+k#;q#'r}eKK#} w'r}eKK{nl]'/#;#q#n') 
{)#}w'){){nl]'/+#n';d}rw' i;# \ ){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/ 
w#q#n'wk nw' \ iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'} {nlwb!/*de}'c \ ;;{nl'-
{}rw]'/+,}##'*}#nc,', #nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \ }'+}##(!!/") :t<-
50?_==*a?putchar(31[a]):main(-65,_,a+1): main((*a=='/')+t,_,a+1) 
:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc i@bK'(q)-
[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1); } 

 
It is unlikely that anyone can decipher this code, which prints all of The Twelve Days of 
Christmas, without enormous effort. Similarly, however, writing this code was not a simple 
process. The emerging view in computer science is that automatic code obfuscation through the 
use of transformations similar to compiler optimizations is the most appropriate path for the 
prevention of reverse engineering. On the other hand, some experts feel that this type of 
obfuscation is impossible because a corresponding deobfuscator can always be devised [5]. This 
is partially the motivation for evolved complexity – human engineers and programmers, no 
matter how talented they may be, generally work within constrained mathematical models of 
idealized systems, and attack problems with particular, well-defined methods. This is why it is 
possible to create deobfuscators for human-developed obfuscation techniques. The enormous 
complexity of biological systems, and the correspondingly copious funding currently being 
allocated to researchers attempting to reverse engineer their functionality, demonstrates that 
evolution is the ideal technique for developing complex solutions that would never occur to 
human engineers. As Jostein Gaarder wrote, “If the human brain were simple enough for us to 
understand, we would still [sic.] be so stupid that we couldn’t understand it.” [6] 
 
While it is indeed true that no theory of obfuscation has yet been developed, there have been a 
number of researchers who have studied various techniques used in code obfuscation and 
attempted to classify them. Such a classification is beyond the scope of this work, and the reader 
is referred to the excellent review by Campbell [7] for a more complete introduction to 
obfuscation and the attempts to quantify it. 
 
The GP method will naturally lead to code that is large and difficult to understand even for 
extremely simple functions. For most practitioners this is an undesirable side effect referred to as 
“code-bloat,” and efforts have been made to try to understand its cause in order to prevention it. 
This is clearly antithetical to our purposes here, but understanding the cause of code-bloat can 
also potentially lead to methods for encouraging rather than discouraging it. The major effort in 
the GP community has been on the relationship of code-bloat and introns (i.e. sections of 
nonfunctioning code such as are found in DNA), although there is no consensus on which is the 
cause and which is the effect [8,9]. Simple examples of introns that occur in GP include 
multiplying or dividing large expressions by one [often in the form ( / A A )], adding or 
subtracting zero [often in the form ( - A A ) or a large, complex expression that is multiplied by 
this], and combinations of these. Introns are evolutionarily useful for the organism itself since 
they provide protection from crossover. The more introns that exist in a parse tree, the more 
likely it is that the subtree selected for crossover is useless to the overall function of that 
organism, and thus the more likely it is that the code will perform identically before and after 
crossover. 
 



Introns are one of three types of obfuscation that occur naturally in code produced by GP. These 
types can be further classified according to the taxonomy of obfuscation due to Collberg et al. 
[4], but this detail is not necessary for our purposes here.  The second trivial form of obfuscation 
arises from the overall allowed tree depth. Often the tree depth is constrained (generally to 
around 17 [1]) in order to prevent code bloat. Clearly the tree depth and introns are related in the 
production of code bloat. We have performed some experiments of induced obfuscation through 
tree depth manipulation which will be described below. 
 
The third form of obfuscation from GP is algorithmic obfuscation. Algorithmic obfuscation is 
essentially using a complicated algorithm where a simpler one would do – in some sense it is the 
opposite of simplification of an equation. This form is arguably the most important for true code 
obfuscation, as introns can be easy to spot and ignore. This can greatly speed up understanding 
of a parse tree, particularly when large sub-trees (as occur with increased tree depth) can be 
ignored. 
 
 
Results 
 
Simple Functions 
 
We begin by presenting results of GP runs to produce simple functions. The goal here is to study 
the method itself and to understand the types of obfuscation produced. To this end, we will show 
examples of the three types of obfuscation described above as produced by actual GP runs on a 
simple function. For this section we choose the trivial function f(x) = 2x. 
 
We begin with an example of an intron. In Fig. 5 we show a successful run in lil-gp to generate 
f(x) = 2x. The code shown evaluates to X + [ (X – X) + X ], or 2X. The appearance of the intron 
( - X X ) does little to obfuscate the code here, and it is clear that it can be ignored upon only 
cursory examination of the parse tree. It is not surprising that this example is trivial, however, 
since it was generated as one of the original random trees in the population, and just happened to 
be correct. 
 
The code shown in Fig. 6 in the alternative format is an excellent example of a more complicated 
intron that cannot easily be distinguished from important code. This code appeared in generation 
10 of the run, and contains 47 nodes with a tree depth of 7. The code is equivalent to the 
expression 
 
 
 

 
 
Figure 5.  An example of an intron in a GP-evolved solution for f(x) = 2x. 
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where it can easily be understood that the third term is identically zero. It is, however, also more 
difficult to parse this expression than the trivial one shown in Fig. 5. This code shows how 
introns and increased tree depth lead to code bloat. 
 
To give an example of algorithmic obfuscation we move to the slightly more complicated 
function f(x) = x3. For this example we show in Fig. 7a and 7b two different results that evolved 
to find this solution. In Fig. 7a, the code shown evaluates to  [ X2 * X – (X – X)(X – X) ] – [ (X 
+ X) – (X + X) ] [X2 * X2], which simplifies to X3 + 0. Although this code looks complicated, it 
is essentially obfuscation by introns, and is not particularly interesting. The purpose of showing 
this code, however, is that while it looks nearly identical to the code shown in Fig. 7b, there are 
distinct differences. 
 
The code shown in Fig. 7b is an example of algorithmic obfuscation. Evaluation of the tree leads 
to the partially simplified expression (X/X + X2 + X2 – X/X) [ X2/2X – (X – X) + (X – X) ]. 
Clearly there are introns in this expression, but after their removal further simplification steps 
give (X2 + X2)(X2/2X), then 2X2 * (X/2), and finally X3. The fundamental difference between the 
expressions in Fig. 7a and 7b is that in Fig. 7a after removal of the introns, one is left with 
simply X3; whereas in Fig. 7b, removal of the introns leaves one with an expression that must be 
evaluated to give X3. This, then, is what is meant by algorithmic obfuscation. 
 
Polynomial Functions 
 
Let us now turn our attention to the practical example of the obfuscation of the polynomial, f(x) 
= x3+x2+x. While it is clear from the preceding discussion that introns and algorithmic 
obfuscation tend to arise naturally during the course of GP optimization, we will further 
encourage obfuscation by incorporating not only the accuracy of the output but also the size of  
 

 
 
Figure 6.  An expression for f(x) = 2x that contains numerous introns. Everything after the first 
line equates to 0. 
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the evolved tree in the fitness criterion. Specifically, consider a GP in which the available 
terminals are +, -, *, and / and the arguments are functions of X. (This is the same sort of GP 
presented above.) In order to evolve a program that computes f(x) = x3+x2+x, it is natural to 
choose a fitness function like 
 

F = f (x) − g(x)
trials
∑         (4) 

 
where the summation is performed over some predetermined set of fitness cases or “trials” (i.e. 
values of x), and g(x) is the evolved GP that is attempting to evaluate to f(x). Lower values of F 
represent a higher fitness. While the optimum fitness value, F = 0, might never be reached (in a 
tractable time) for complex target functions, something as simple as f(x) = x3+x2+x is generally 
achievable in relatively few generations of the GP. 
 
For example, we ran lil-gp with input values of 5120 trees (i.e. organisms), initial tree depth 
between 2 and 8, maximum depth of 32, a 9:1 ratio of crossover to reproduction rates, and 200 
randomly-selected trial values for x between –1 and 1. This required only one generation to 
evolve the Lisp tree ( + ( / ( * X X ) ( * ( / X X ) X ) ) ( * ( + X ( * X X ) ) ( + X ( - X X ) ) ) ).  
 
 

 
(a) 

 

 
(b) 

 
Figure 7.  Evolved versions of f(x) = x3 that show a) no evidence and b) clear evidence of 
algorithmic obfuscation. 
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Substituting ( - X X ) = 0, ( / X X ) = 1, and ( * X X ) = X2 yields ( + ( / X2 ( * 1 X ) ) ( * ( + X 
X2 ) ( + X 0 ) ) ), which clearly reduces to ( + X ( * ( + X X2 ) X ) ) = X + X2 + X3. Thus, the 
evolved program contains introns, but is equivalent to the target function f(x) = x3+x2+x. For 
comparison, the fitness function in Eq. 4 was used to evolve solutions to both f(x) = x4+x3+x2+x 
and f(x) = x5+x4+x3+x2+x, with 10240 trees, initial tree depth between 2 and 10, and maximum 
depth of 64. The first accurate solution to the fourth-order polynomial lived in the 33rd generation 
and had the form ( * X ( + ( / X X ) ( * ( + ( * ( + ( * X X ) X ) X ) X ) ( / X X ) ) ) ), which 
contains two instances of the intron ( / X X ). (The construct, X+1, is common in these examples 
for obvious reasons, and the only viable mechanism for generating a 1 is via ( / X X ).) 
Surprisingly, for the fifth-order polynomial, the eighth generation contained the individual ( - ( * 
( + ( * ( * X X ) X ) X ) ( + X ( * X X ) ) ) ( - X ( + X X ) ) ), which is a match to the target 
function and contains no introns. 
 
In order to see how quickly the GP can arrive at a completely unobfuscated solution, it is useful 
to modify the fitness function to discourage bloat, such that 
 

F = N f (x) − g(x) +1⎡⎣ ⎤⎦
trials
∑ ,       (5) 

 
where N is the number of nodes in the tree. While this is an overly simplified representation of 
obfuscation as applied to the fitness function, it is satisfactory for our present purpose. In this 
case, using lil-gp with the same input parameters as above, the GP arrived after only two 
generations at the solution ( + ( * ( + ( * X X ) X ) X ) X ), which is clearly X3 + X2 + X. For 
comparison, the fitness function in Eq. 5 was used as before to evolve solutions to both f(x) = 
x4+x3+x2+x and f(x) = x5+x4+x3+x2+x over 256 generations, with 10240 trees, initial tree depth 
between 2 and 10, and maximum depth of 64. The best solution to the fourth-order polynomial 
lived in the sixth generation and had the form ( * ( + ( / X X ) X ) ( + X ( * ( * X X ) X ) ) ), 
which again contains the intron ( / X X ). The GP could not evolve a match to the fifth-order 
polynomial within 256 generations, and ended up with the rather poor solution of X itself with a 
fitness of F = 97.6. (The strong bias in Eq. 5 against large trees is partly to blame for this.) 
 
The preceding examples demonstrate that the feasibility of evolving polynomial functions 
decreases rapidly with increasing complexity of the target function. However, for the purposes of 
the present study, it is useful to consider tractable functions and to examine how the GP evolves 
solutions for them when obfuscation is rewarded rather than penalized. To do this, we use the 
fitness function 
 

F = f (x) − g(x) +1⎡⎣ ⎤⎦ N
trials
∑ .      (6) 

 
and the same input parameters as above, to evolve f(x) = x3+x2+x. The fittest individual lived in 
generation 10 and is shown in Fig. 8. The tree in Fig. 8 simplifies to exactly X3 + X2 + X, but 
clearly has numerous introns and algorithmic obfuscations. As discussed above, while this tree 
can be simplified to reveal its functionality in a relatively short time, a more complex code 
containing many similarly obfuscated functions would be much harder to decipher. 
 
However, it is apparent that the evaluation of the tree in Fig. 8 might require substantially more 
computer time than the evaluation of X3 + X2 + X itself. To quantify this, we converted the tree 
into the C code shown in Fig. 9a, and compared its performance with the code in Fig. 9b. The 
codes were compiled using the GNU Compiler Suite’s gcc 3.3.3 on an 800Mhz Intel Pentium III 
Xeon processor running Red Hat Fedora Core 2 (kernel 2.6.5 and glibc 2.3.3). The assembler 
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instructions for two main() functions from Fig. 9 are shown in Fig. 10. Each benchmark 
represents the average over ten executions of the code. Without any compiler optimizations, the 
target code (Fig. 9b) evaluated in 0.4 sec and the evolved code (Fig. 9a) in 18.90 sec. When 
compiled with compiler optimization at level 3 (via the –O3 flag), producing the assembler 
instructions in Fig. 11, each code completed in 0.15 sec. This is because, as is evident from Fig. 
11, the compiler’s optimizations have simplified the assembler instructions of the obfuscated 
code (Fig. 9a) so that they are identical to those of the target code (Fig. 9b). In an attempt to 
reduce the optimizer’s ability to rearrange the code, we converted all the arithmetic operations 
into function calls, as reflected in Fig. 12. While this is in general a bad idea from the perspective 
of the code’s performance, it is a useful exercise for the present purpose. Without compiler 
optimizations, the compiled codes in Fig. 12b and 12a executed in 4.41 and 54.28 sec, 
respectively, compared to 2.48 and 35.85 sec with level 3 optimization. In this case, the 
compiler’s optimizer was unable to substantially simplify the code in Fig. 12a, as evidenced by 
the assembler instructions in Fig. 13. 
 
 
 
 

 
 
Figure 8.  A solution to f(x) = x3+x2+x, evolved with a fitness function rewarding large trees. 
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Figure 9.  C code representations of a) the tree in Fig. 8, and b) the function X3 + X2 + X. 
 
 
 
 
 
 
 
 
 
 
 
 

16 
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Figure 10.  Assembler instructions for the C codes in Fig. 9, compiled without optimization. 
 
 

17 



 
 
 
 
 
 
 

 
(a) 

 
 

 
(b) 

 
 

Figure 11.  Assembler instructions for the C codes in Fig. 9, compiled with level 3 optimization. 
Note that the two sets of assembler instructions are identical. 
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(a) 

 
 

 
(b) 

 
 
Figure 12.  C code representations of a) the tree in Fig. 8, and b) the function X3 + X2 + X, using 
function calls in place of arithmetic operators. 
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Figure 13. Assembler instructions for the C codes in Fig. 12 with level 3 optimization. 
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(a) (cont’d) 

 
 

 
(b) 

 
 
Figure 13 (cont’d).  Assembler instructions for the C codes in Fig. 12 with level 3 optimization. 
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Conclusions 
 
Our results point to a few fundamental shortcoming inherent in GP, when applied to obfuscation 
for asset protection. 
 
First, the very nature of evolution by reproduction and mutation makes it unlikely that a random 
population will converge to any complex solutions in a tractable time frame. In addition, the 
primary mechanism for obfuscation is complexity through introns, and the presence of introns 
will by definition increase the number of operations required to evaluate a function, for example. 
Therefore, using the tools and approaches detailed herein, it is practical to apply GP only to 
relatively simple functions and algorithms, and the natural process of obfuscation by introns 
leads to dramatic penalties in performance when compared to an unobfuscated solution, as 
evidenced by the benchmarks described above. 
 
Second, introns are potentially very easy to identify, especially in algorithms that use basic 
operators like arithmetic. This means not only that a human might quickly simplify smaller 
algorithms obfuscated using a GP, but also that a computer can easily simplify the algorithm to 
its target form through compiler optimization, for example. While steps can be taken to mitigate 
this shortcoming, e.g. by replacing basic operations with function calls, this procedure is 
potentially impractical in both its logistical implications and its impact on the performance of the 
obfuscated algorithm. 
 
We therefore conclude that GP is not an appropriate mechanism for the obfuscation of code 
because complex functions can not be reproduced exactly, and the obfuscation of multiple 
smaller functions will lead to unacceptable penalties in performance. 
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