

SANDIA REPORT

SAND2004-5372
Unlimited Release
Printed January 2005

Evolutionary Complexity for Protection
of Critical Assets

Michael E. Chandross and Corbett C. Battaile

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71304842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov

3

SAND 2004-5372
Unlimited Release

Printed January 2005

Evolutionary Complexity for Protection of Critical Assets

Michael E. Chandross and Corbett C. Battaile

Computational Materials and Molecular Sciences

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-1411 USA

Abstract

This report summarizes the work performed as part of a one-year LDRD project, “Evolutionary
Complexity for Protection of Critical Assets.” A brief introduction is given to the topics of
genetic algorithms and genetic programming, followed by a discussion of relevant results
obtained during the project’s research, and finally the conclusions drawn from those results. The
focus is on using genetic programming to evolve solutions for relatively simple algebraic
equations as a prototype application for evolving complexity in computer codes. The results were
obtained using the lil-gp genetic program, a C code for evolving solutions to user-defined
problems and functions. These results suggest that genetic programs are not well-suited to
evolving complexity for critical asset protection because they cannot efficiently evolve solutions
to complex problems, and introduce unacceptable performance penalties into solutions for simple
ones.

4

This Page
Involuntarily Left Blank

5

Contents

Introduction... 6

Genetic Algorithms.. 6
Genetic Programming.. 7
Obfuscation.. 9

Results... 11
Simple Functions ... 11
Polynomial Functions .. 12

Conclusions... 22
References... 22

List of Figures and Tables

Figure 1. Example of crossover between two genomes... 6
Table 1. First generation of solutions to f(x) = (x - 192)2. ... 7
Table 2. Second generation of solutions to f(x) = (x - 192)2.. 7
Figure 2. Example of a Lisp parse tree. ... 8
Figure 3. Example representations of Lisp parse trees for x 3+x2+x. .. 8
Figure 4. Example Lisp parse trees after crossover. .. 9
Figure 5. An example of an intron in a GP-evolved solution for f(x) = 2x. 11
Figure 6. An expression for f(x) = 2x that contains numerous introns. 12
Figure 7. Evolved versions of f(x) = x3.. 13
Figure 8. A solution to f(x) = x3+x2+x, evolved with a fitness function rewarding large trees. . 15
Figure 9. C code representations of a) the tree in Fig. 8, and b) the function X3 + X2 + X......... 16
Figure 10. Assembler instructions for the C codes in Fig. 9, compiled without optimization. ... 17
Figure 11. Assembler instructions for the C codes in Fig. 9, compiled with lvl 3 optimization. 18
Figure 12. C code representations of a) the tree in Fig. 8, and b) the function X3 + X2 + X, using
function calls in place of arithmetic operators. ... 19
Figure 13. Assembler instructions for the C codes in Fig. 12 with level 3 optimization. 20

Introduction

The natural evolution of organisms has created remarkable systems that slowly change in
response to sometimes harsh and unforgiving environments. This process shows that starting
from the simplest one-celled bacteria, amazingly complex, well-adapted creatures that function
on a high level can evolve in response to external stimuli. It is natural, therefore, to conclude that
a similar paradigm might potentially be an extremely useful problem solving technique.
Evolutionary methods for solving complex problems were introduced in 1975 by John Holland
in his book, Adaptation in Natural and Artifical Systems. The field of Evolutionary Computing
(EC) is generally divided into two major subfields, genetic algorithms (GA) and genetic
programming (GP), which both use the concept of evolutionary methods although for different
problems. We describe both GA and GP in detail, below.

Genetic Algorithms

With EC methods, in general, one starts with a population of trial solutions to a problem. As an
example, we will demonstrate the use of a GA to find the minimum value of the function

f(x) = (x - 192)2, (1)

with an initial population consisting of a collection of random integers. Each organism in the
population (i.e. each integer) can be assigned a fitness that describes how well it solves the
problem. An example population with only four individuals is given in Table 1, below. The
organisms in the population here are shown by their genome (i.e. their representation in binary
notation) in order to simplify later discussions.

In this trivial example, the fitness for each organism n is the value F(n). The population is ranked
according to fitness (in this case, lower values being better), and then a certain number of the
fittest individuals are replicated in the next generation. In this example, we keep organisms 2 and
3 for transmission to the next generation. This is referred to as reproduction, and is clearly
asexual. The more fit individuals in the population also undergo sexual reproduction, which is
referred to as crossover. Crossover begins with the selection of a subset of the more fit
individuals, which are then randomly paired so that information can be exchanged between the
genomes. In our example problem, the genome has been chosen to be the binary representation
of the numbers, as shown in Table 1. A random point in the genome is chosen as the crossover
point, and the bits to the right of this point are swapped between the parents to give two children,
as shown in Fig. 1. After this operation, there are four members of the new population as shown
in Table 2.

Figure 1. Example of crossover between two genomes.

6

7

Table 1. First generation of solutions to f(x) = (x - 192)2.

Organism
Number

Genome Value Fitness

1 01011100 92 10000
2 10111010 186 36
3 11000111 199 49
4 00011011 27 27225

Table 2. Second generation of solutions to f(x) = (x - 192)2.

Organism
Number

Genome Value Fitness

1 10111010 186 36
2 11000111 199 49
3 10111111 191 1
4 11000010 194 4

As is clear from Table 2, the overall fitness of the population has increased greatly. There are
now two organisms that are very close to the correct answer of 192. The procedure of
reproduction and crossover is continued until either a given number of generations has been
reached, or an exact solution is found. There is one final mechanism available for modification
of the genome that is distinct from the two forms of reproduction demonstrated above. This
operation is the mutation operator, and for this example would consist of randomly flipping a bit
in the genome (i.e. 0 becomes 1 or vice versa). As in biological evolution, the probability of a
beneficial random mutation is small, and thus the rate of mutation in the algorithm must be kept
correspondingly low.

Genetic Programming

The procedure for GP is essentially the same as that for GA in that a given population is
evaluated for fitness, and the more fit individuals are chosen to propagate to the next generation
through both reproduction and crossover. The essential difference is that GA seek potential
solutions to a given problem (e.g. numbers, blackjack strategy tables, or electronic circuits),
whereas GP evolves self-contained computer code whose fitness is determined by its output.
There are a number of different methods that can generate, evaluate, and evolve a population of
programs, but we will only describe two here. The first method is exemplified by the freely
available Avida platform (http://dllab.caltech.edu/avida/). In this code, the genome of the
organisms consists of programs in Avida’s own stripped-down assembly language which runs on
a virtual machine. Each organism contains code that allows it to replicate, and hence to
reproduce. The programs compete for CPU time and resources that are allocated based on
fitness. We determined that the Avida platform was not appropriate for this project. We instead
used the common alternate paradigm developed by Koza [1], in which organisms are represented
by snippets of Lisp code. To generate and execute codes we use the package lil-gp [2], which
strictly adheres to Koza’s methods. Before describing the method of GP with Lisp, however, it is
first useful to explain the basics of Lisp itself.

http://dllab.caltech.edu/avida/

Lisp is a simple language consisting of a small basic instruction set from which more complex
instructions can be made. Operations are constructed in the form

(op A B), (2)

where op is an operator, also known as a terminal; and A and B are the arguments. For example,
the expression (+ 3 5) would evaluate to 3+5, i.e. 8. Both A and B can be expressions of their
own, so that the more complex expression (+ 3 (+ 3 2)) would also evaluate to 8. The nested
operator (+ 3 2) is evaluated first, with the result passed up to the enclosing operator.

The structure of Lisp codes makes them ideal to represent as parse trees. The example above can
be written as the tree shown in Fig. 2. More complex functions including variables can also be
constructed in Lisp. For example, the function f(x) = x 3+x2+x can be represented by the Lisp
expresion (+ (+ (* X (* X X)) (* X X)) X), or more conveniently as the parse tree shown in
Fig. 3a. In Fig. 3b we show an alternate method of representing this parse tree that we will use
below for longer, more complicated functions that would be excessively large if written as
shown in Fig. 3a. It is precisely the method of representing Lisp programs shown in Fig. 3a that
makes it ideal for GP. Each individual organism can be represented as a parse tree, and crossover
can be achieved by selecting a random node in two organisms, and swapping the subtrees at that
node. As an example, if we were to perform crossover between the organisms in Fig.s 2 and 3,
with the nodes selected being the ones marked in red, the resulting organisms are those shown in
Fig. 4.

Figure 2. Example of a Lisp parse tree.

Figure 3. Example representations of Lisp parse trees for x 3+x2+x.

8

In GP, as in GA, it has been found that when solutions are generated, they are often exceedingly
complex and difficult to understand [3]. As an example, consider the function f(x) = x 3, given by
the simple Lisp expression (* (* X X) X). A GP used to evolve this function, however, arrives
at the equally correct expression (* (+ (+ (/ X X) (* X X)) (- (* X X) (/ X X)) (- (/ (* X
X) (+ X X)) (+ (- X X) (- X X)))). Clearly the evolved expression is more complicated to
understand than the original one. It is, of course, possible to develop complicated expressions for
f(x) = x3 by hand, but it is unlikely that human-developed expressions will be as perverse as
those derived by a program that evolves solutions. Just as in nature, where organisms evolve into
complex and mysterious systems, the results of GP can be obfuscated through indirect and
redundant methods resulting from the lack of human intervention. Here we will discuss attempts
to exploit this aspect of GP in order to develop intentionally obfuscated code with the goal of
protecting of critical intellectual property from reverse-engineering attempts.

Obfuscation

The goal of code obfuscation is to transform working source into code that is functionally
identical, yet much more complex syntactically. Such a transformation is desirable for preventing
reverse-engineering of concepts or algorithms that are important intellectual property or crucial
for national security. The difficulty with code obfuscation is that, while in some cases it can be
easy to identify code that is intentionally obfuscated as compared to code that is not, there is no
clear way to quantify the obfuscation because, unlike in cryptography, there has not yet been a
theory developed that allows such a measure [4]. Obfuscation differs from cryptography,
however, in that once a cryptographic cipher is broken the code is no longer protected. With
obfuscated code, the deobfuscation of one section of code, hopefully a time-consuming process,
is of little to no use in attempts to deobfuscate other sections. In this sense, obfuscation is a
complementary technique to cryptography. In general, actively preventing reverse engineering is
a difficult prospect. The International Obfuscated C Code contest is a prime example of the
lengths some will go to in order to hamper reverse engineering. As an example, consider the
following code, one of the winners in 1998:

Figure 4. Example Lisp parse trees after crossover.

9

10

#include <stdio.h> main(t,_,a) char *a; { return!0<t?t<3?main(-79,-13,a+main(-87,1-
,main(-86,0,a+1)+a)): 1,t<?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,"@n'+,#'/*{}w+/w#cdnr/+,
{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+, /n{n+,/+#n+,/#\ ;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K
w'K:'+}e#';dq#'l \ q#'+d'K#!/+k#;q#'r}eKK#} w'r}eKK{nl]'/#;#q#n')
{)#}w'){){nl]'/+#n';d}rw' i;# \){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/
w#q#n'wk nw' \ iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'} {nlwb!/*de}'c \ ;;{nl'-
{}rw]'/+,}##'*}#nc,', #nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \ }'+}##(!!/") :t<-
50?_==*a?putchar(31[a]):main(-65,_,a+1): main((*a=='/')+t,_,a+1)
:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc i@bK'(q)-
[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1); }

It is unlikely that anyone can decipher this code, which prints all of The Twelve Days of
Christmas, without enormous effort. Similarly, however, writing this code was not a simple
process. The emerging view in computer science is that automatic code obfuscation through the
use of transformations similar to compiler optimizations is the most appropriate path for the
prevention of reverse engineering. On the other hand, some experts feel that this type of
obfuscation is impossible because a corresponding deobfuscator can always be devised [5]. This
is partially the motivation for evolved complexity – human engineers and programmers, no
matter how talented they may be, generally work within constrained mathematical models of
idealized systems, and attack problems with particular, well-defined methods. This is why it is
possible to create deobfuscators for human-developed obfuscation techniques. The enormous
complexity of biological systems, and the correspondingly copious funding currently being
allocated to researchers attempting to reverse engineer their functionality, demonstrates that
evolution is the ideal technique for developing complex solutions that would never occur to
human engineers. As Jostein Gaarder wrote, “If the human brain were simple enough for us to
understand, we would still [sic.] be so stupid that we couldn’t understand it.” [6]

While it is indeed true that no theory of obfuscation has yet been developed, there have been a
number of researchers who have studied various techniques used in code obfuscation and
attempted to classify them. Such a classification is beyond the scope of this work, and the reader
is referred to the excellent review by Campbell [7] for a more complete introduction to
obfuscation and the attempts to quantify it.

The GP method will naturally lead to code that is large and difficult to understand even for
extremely simple functions. For most practitioners this is an undesirable side effect referred to as
“code-bloat,” and efforts have been made to try to understand its cause in order to prevention it.
This is clearly antithetical to our purposes here, but understanding the cause of code-bloat can
also potentially lead to methods for encouraging rather than discouraging it. The major effort in
the GP community has been on the relationship of code-bloat and introns (i.e. sections of
nonfunctioning code such as are found in DNA), although there is no consensus on which is the
cause and which is the effect [8,9]. Simple examples of introns that occur in GP include
multiplying or dividing large expressions by one [often in the form (/ A A)], adding or
subtracting zero [often in the form (- A A) or a large, complex expression that is multiplied by
this], and combinations of these. Introns are evolutionarily useful for the organism itself since
they provide protection from crossover. The more introns that exist in a parse tree, the more
likely it is that the subtree selected for crossover is useless to the overall function of that
organism, and thus the more likely it is that the code will perform identically before and after
crossover.

Introns are one of three types of obfuscation that occur naturally in code produced by GP. These
types can be further classified according to the taxonomy of obfuscation due to Collberg et al.
[4], but this detail is not necessary for our purposes here. The second trivial form of obfuscation
arises from the overall allowed tree depth. Often the tree depth is constrained (generally to
around 17 [1]) in order to prevent code bloat. Clearly the tree depth and introns are related in the
production of code bloat. We have performed some experiments of induced obfuscation through
tree depth manipulation which will be described below.

The third form of obfuscation from GP is algorithmic obfuscation. Algorithmic obfuscation is
essentially using a complicated algorithm where a simpler one would do – in some sense it is the
opposite of simplification of an equation. This form is arguably the most important for true code
obfuscation, as introns can be easy to spot and ignore. This can greatly speed up understanding
of a parse tree, particularly when large sub-trees (as occur with increased tree depth) can be
ignored.

Results

Simple Functions

We begin by presenting results of GP runs to produce simple functions. The goal here is to study
the method itself and to understand the types of obfuscation produced. To this end, we will show
examples of the three types of obfuscation described above as produced by actual GP runs on a
simple function. For this section we choose the trivial function f(x) = 2x.

We begin with an example of an intron. In Fig. 5 we show a successful run in lil-gp to generate
f(x) = 2x. The code shown evaluates to X + [(X – X) + X], or 2X. The appearance of the intron
(- X X) does little to obfuscate the code here, and it is clear that it can be ignored upon only
cursory examination of the parse tree. It is not surprising that this example is trivial, however,
since it was generated as one of the original random trees in the population, and just happened to
be correct.

The code shown in Fig. 6 in the alternative format is an excellent example of a more complicated
intron that cannot easily be distinguished from important code. This code appeared in generation
10 of the run, and contains 47 nodes with a tree depth of 7. The code is equivalent to the
expression

Figure 5. An example of an intron in a GP-evolved solution for f(x) = 2x.

11

X+X()- (X-X)2 -(X2 -X2)

X-X

X2 +
X

X
4X-

X-X
X

X

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (3)

where it can easily be understood that the third term is identically zero. It is, however, also more
difficult to parse this expression than the trivial one shown in Fig. 5. This code shows how
introns and increased tree depth lead to code bloat.

To give an example of algorithmic obfuscation we move to the slightly more complicated
function f(x) = x3. For this example we show in Fig. 7a and 7b two different results that evolved
to find this solution. In Fig. 7a, the code shown evaluates to [X2 * X – (X – X)(X – X)] – [(X
+ X) – (X + X)] [X2 * X2], which simplifies to X3 + 0. Although this code looks complicated, it
is essentially obfuscation by introns, and is not particularly interesting. The purpose of showing
this code, however, is that while it looks nearly identical to the code shown in Fig. 7b, there are
distinct differences.

The code shown in Fig. 7b is an example of algorithmic obfuscation. Evaluation of the tree leads
to the partially simplified expression (X/X + X2 + X2 – X/X) [X2/2X – (X – X) + (X – X)].
Clearly there are introns in this expression, but after their removal further simplification steps
give (X2 + X2)(X2/2X), then 2X2 * (X/2), and finally X3. The fundamental difference between the
expressions in Fig. 7a and 7b is that in Fig. 7a after removal of the introns, one is left with
simply X3; whereas in Fig. 7b, removal of the introns leaves one with an expression that must be
evaluated to give X3. This, then, is what is meant by algorithmic obfuscation.

Polynomial Functions

Let us now turn our attention to the practical example of the obfuscation of the polynomial, f(x)
= x3+x2+x. While it is clear from the preceding discussion that introns and algorithmic
obfuscation tend to arise naturally during the course of GP optimization, we will further
encourage obfuscation by incorporating not only the accuracy of the output but also the size of

Figure 6. An expression for f(x) = 2x that contains numerous introns. Everything after the first
line equates to 0.

12

the evolved tree in the fitness criterion. Specifically, consider a GP in which the available
terminals are +, -, *, and / and the arguments are functions of X. (This is the same sort of GP
presented above.) In order to evolve a program that computes f(x) = x3+x2+x, it is natural to
choose a fitness function like

F = f (x) − g(x)
trials
∑ (4)

where the summation is performed over some predetermined set of fitness cases or “trials” (i.e.
values of x), and g(x) is the evolved GP that is attempting to evaluate to f(x). Lower values of F
represent a higher fitness. While the optimum fitness value, F = 0, might never be reached (in a
tractable time) for complex target functions, something as simple as f(x) = x3+x2+x is generally
achievable in relatively few generations of the GP.

For example, we ran lil-gp with input values of 5120 trees (i.e. organisms), initial tree depth
between 2 and 8, maximum depth of 32, a 9:1 ratio of crossover to reproduction rates, and 200
randomly-selected trial values for x between –1 and 1. This required only one generation to
evolve the Lisp tree (+ (/ (* X X) (* (/ X X) X)) (* (+ X (* X X)) (+ X (- X X)))).

(a)

(b)

Figure 7. Evolved versions of f(x) = x3 that show a) no evidence and b) clear evidence of
algorithmic obfuscation.

13

Substituting (- X X) = 0, (/ X X) = 1, and (* X X) = X2 yields (+ (/ X2 (* 1 X)) (* (+ X
X2) (+ X 0))), which clearly reduces to (+ X (* (+ X X2) X)) = X + X2 + X3. Thus, the
evolved program contains introns, but is equivalent to the target function f(x) = x3+x2+x. For
comparison, the fitness function in Eq. 4 was used to evolve solutions to both f(x) = x4+x3+x2+x
and f(x) = x5+x4+x3+x2+x, with 10240 trees, initial tree depth between 2 and 10, and maximum
depth of 64. The first accurate solution to the fourth-order polynomial lived in the 33rd generation
and had the form (* X (+ (/ X X) (* (+ (* (+ (* X X) X) X) X) (/ X X)))), which
contains two instances of the intron (/ X X). (The construct, X+1, is common in these examples
for obvious reasons, and the only viable mechanism for generating a 1 is via (/ X X).)
Surprisingly, for the fifth-order polynomial, the eighth generation contained the individual (- (*
(+ (* (* X X) X) X) (+ X (* X X))) (- X (+ X X))), which is a match to the target
function and contains no introns.

In order to see how quickly the GP can arrive at a completely unobfuscated solution, it is useful
to modify the fitness function to discourage bloat, such that

F = N f (x) − g(x) +1⎡⎣ ⎤⎦
trials
∑ , (5)

where N is the number of nodes in the tree. While this is an overly simplified representation of
obfuscation as applied to the fitness function, it is satisfactory for our present purpose. In this
case, using lil-gp with the same input parameters as above, the GP arrived after only two
generations at the solution (+ (* (+ (* X X) X) X) X), which is clearly X3 + X2 + X. For
comparison, the fitness function in Eq. 5 was used as before to evolve solutions to both f(x) =
x4+x3+x2+x and f(x) = x5+x4+x3+x2+x over 256 generations, with 10240 trees, initial tree depth
between 2 and 10, and maximum depth of 64. The best solution to the fourth-order polynomial
lived in the sixth generation and had the form (* (+ (/ X X) X) (+ X (* (* X X) X))),
which again contains the intron (/ X X). The GP could not evolve a match to the fifth-order
polynomial within 256 generations, and ended up with the rather poor solution of X itself with a
fitness of F = 97.6. (The strong bias in Eq. 5 against large trees is partly to blame for this.)

The preceding examples demonstrate that the feasibility of evolving polynomial functions
decreases rapidly with increasing complexity of the target function. However, for the purposes of
the present study, it is useful to consider tractable functions and to examine how the GP evolves
solutions for them when obfuscation is rewarded rather than penalized. To do this, we use the
fitness function

F = f (x) − g(x) +1⎡⎣ ⎤⎦ N
trials
∑ . (6)

and the same input parameters as above, to evolve f(x) = x3+x2+x. The fittest individual lived in
generation 10 and is shown in Fig. 8. The tree in Fig. 8 simplifies to exactly X3 + X2 + X, but
clearly has numerous introns and algorithmic obfuscations. As discussed above, while this tree
can be simplified to reveal its functionality in a relatively short time, a more complex code
containing many similarly obfuscated functions would be much harder to decipher.

However, it is apparent that the evaluation of the tree in Fig. 8 might require substantially more
computer time than the evaluation of X3 + X2 + X itself. To quantify this, we converted the tree
into the C code shown in Fig. 9a, and compared its performance with the code in Fig. 9b. The
codes were compiled using the GNU Compiler Suite’s gcc 3.3.3 on an 800Mhz Intel Pentium III
Xeon processor running Red Hat Fedora Core 2 (kernel 2.6.5 and glibc 2.3.3). The assembler

14

instructions for two main() functions from Fig. 9 are shown in Fig. 10. Each benchmark
represents the average over ten executions of the code. Without any compiler optimizations, the
target code (Fig. 9b) evaluated in 0.4 sec and the evolved code (Fig. 9a) in 18.90 sec. When
compiled with compiler optimization at level 3 (via the –O3 flag), producing the assembler
instructions in Fig. 11, each code completed in 0.15 sec. This is because, as is evident from Fig.
11, the compiler’s optimizations have simplified the assembler instructions of the obfuscated
code (Fig. 9a) so that they are identical to those of the target code (Fig. 9b). In an attempt to
reduce the optimizer’s ability to rearrange the code, we converted all the arithmetic operations
into function calls, as reflected in Fig. 12. While this is in general a bad idea from the perspective
of the code’s performance, it is a useful exercise for the present purpose. Without compiler
optimizations, the compiled codes in Fig. 12b and 12a executed in 4.41 and 54.28 sec,
respectively, compared to 2.48 and 35.85 sec with level 3 optimization. In this case, the
compiler’s optimizer was unable to substantially simplify the code in Fig. 12a, as evidenced by
the assembler instructions in Fig. 13.

Figure 8. A solution to f(x) = x3+x2+x, evolved with a fitness function rewarding large trees.

15

(a)

(b)

Figure 9. C code representations of a) the tree in Fig. 8, and b) the function X3 + X2 + X.

16

(a)

(b)

Figure 10. Assembler instructions for the C codes in Fig. 9, compiled without optimization.

17

(a)

(b)

Figure 11. Assembler instructions for the C codes in Fig. 9, compiled with level 3 optimization.
Note that the two sets of assembler instructions are identical.

18

(a)

(b)

Figure 12. C code representations of a) the tree in Fig. 8, and b) the function X3 + X2 + X, using
function calls in place of arithmetic operators.

19

(a)

Figure 13. Assembler instructions for the C codes in Fig. 12 with level 3 optimization.

20

(a) (cont’d)

(b)

Figure 13 (cont’d). Assembler instructions for the C codes in Fig. 12 with level 3 optimization.

21

22

Conclusions

Our results point to a few fundamental shortcoming inherent in GP, when applied to obfuscation
for asset protection.

First, the very nature of evolution by reproduction and mutation makes it unlikely that a random
population will converge to any complex solutions in a tractable time frame. In addition, the
primary mechanism for obfuscation is complexity through introns, and the presence of introns
will by definition increase the number of operations required to evaluate a function, for example.
Therefore, using the tools and approaches detailed herein, it is practical to apply GP only to
relatively simple functions and algorithms, and the natural process of obfuscation by introns
leads to dramatic penalties in performance when compared to an unobfuscated solution, as
evidenced by the benchmarks described above.

Second, introns are potentially very easy to identify, especially in algorithms that use basic
operators like arithmetic. This means not only that a human might quickly simplify smaller
algorithms obfuscated using a GP, but also that a computer can easily simplify the algorithm to
its target form through compiler optimization, for example. While steps can be taken to mitigate
this shortcoming, e.g. by replacing basic operations with function calls, this procedure is
potentially impractical in both its logistical implications and its impact on the performance of the
obfuscated algorithm.

We therefore conclude that GP is not an appropriate mechanism for the obfuscation of code
because complex functions can not be reproduced exactly, and the obfuscation of multiple
smaller functions will lead to unacceptable penalties in performance.

References

[1] John R. Koza, Genetic Programming (MIT Press, 1992).
[2] http://garage.cps.msu.edu/software/software-index.html#lilgp
[3] John R. Koza, Martin A. Keane, and Matthew J. Streeter, Scientific American, Februrary

2003.
[4]Christian Collberg, Clark Thomborson, and Douglas Low, Technical Report 148, Dept. of

Computer Science, University of Auckland (1997).
[5] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,

and Ke Yang, Electronic Colloquium on Computational Complexity, Report No. 57 (2001).
[6] Jostein Gaarder, Sophie’s World (Phoenix House, 1995) p. 256.
[7] Philip L. Campbell, SAN2004-2198 (2004).
[8] S. Luke, Proceedings of GECCO 2000, 228-235 (2000).
[9] Peter W.H. Smith, in Soft Computing and its Techniques, edited by R. John and R.

Birkenhead. pp. 166-171. Physica-Verlag (1999).

23

Distribution

1 MS 0123 Donna L. Chavez (LDRD Office), 01011

1 MS 0455 Hamilton E. Link, 05632

1 MS 0785 Cheryl L. Beaver, 05614

1 MS 0785 Philip L. Campbell, 05616

2 MS 0899 Technical Library, 09616

1 MS 1205 James R. Gosler, 05004

2 MS 1411 Corbett C. Battaile, 01834

10 MS 1411 Michael E. Chandross, 01834

1 MS 1411 H. Eliot Fang, 01834

1 MS 9018 Central Technical Files, 08945-1

	Evolutionary Complexity for Protection of Critical Assets
	Table of Contents
	Abstract
	List of Figures and Tables
	Introduction
	Genetic Algorithms
	Genetic Programming
	Obfuscation

	Results
	Simple Functions
	Polynomial Functions

	Conclusions
	References
	Distribution

