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Disclaimer 
 

“This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, nor any of their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not 
infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views and opin-
ions of authors expressed herein do not necessarily state or reflect those of the United States Government or 
any agency thereof.” 
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Abstract 
 

Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility 
grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and week-
ends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by pre-
cooling the building’s massive structure or the use of active thermal energy storage systems such as ice stor-
age. While these two thermal batteries have been engaged separately in the past, this project investigated 
the merits of harnessing both storage media concurrently in the context of predictive optimal control.  

To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments 
were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, 
two thermal energy storage models were added. Also, a sequential optimization approach to the cost mini-
mization problem using direct search, gradient-based, and dynamic programming methods was incorporated. 
The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate 
either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab 
was developed to allow for comparison and cross-validation with EnergyPlus. 

The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather 
prediction and match between the building model and the actual building counterpart. The analysis showed 
that the combined utilization leads to cost savings that is significantly greater than either storage but less 
than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand 
of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting un-
certainty in the required short-term weather forecasts determined that it takes only very simple short-term 
prediction models to realize almost all of the theoretical potential of this control strategy. 

Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal 
controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain 
dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost 
savings potential. In fact, zoning simplification may improve optimizer performance and save computation 
time. The mass of the internal structure did not show a strong effect on the optimization. Building construc-
tion characteristics were found to impact building passive thermal storage capacity. It is thus advisable to 
make sure the construction material is well modeled. Zone temperature setpoint profiles and TES perform-
ance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. 
Since they are a key factor in determining the building cooling load, efforts should be made to keep the in-
ternal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone tem-
perature setpoints and active TES operation because of the coupling of the base chiller for building precool-
ing and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance 
of operation of the two chillers. The impact of mismatch in this category may be significant. 

Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location 
and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of 
optimal control for active and passive building thermal storage inventory. The key findings are: 

 Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads 
will likely lead to attractive savings resulting from optimal combined thermal storage control.  

 By using economizer to take advantage of the cool fresh air during the night, the building electrical cost 
can be reduced by using less mechanical cooling. 

 Larger base chiller and active thermal storage capacities have the potential of shifting more cooling loads 
to off-peak hours and thus higher savings can be achieved. 

 Optimal combined thermal storage control with a thermal comfort penalty included in the objective func-
tion can improve the thermal comfort levels of building occupants when compared to the non-optimized 
base case. 
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Lab testing conducted in the Larson HVAC Laboratory during Phase 2 showed that the EnergyPlus-based 
simulation was a surprisingly accurate prediction of the experiment. Therefore, actual savings of building en-
ergy costs can be expected by applying optimal controls from simulation results. However, it was also con-
cluded that the Larson HVAC Laboratory has only marginal passive building thermal storage inventory and is 
therefore not representative of a heavy-mass commercial building. 

Field testing (Phase 3) was conducted at two sites: In the Energy Resource Station (ERS) at the Iowa Energy 
Center in Ankeny, Iowa in September of 2003 and in the Energy Plaza facility in Omaha, Nebraska during the 
summer of 2005. 

During the field tests, the novel supervisory controller successfully executed a three-step procedure consisting 
of 1) short-term weather prediction, 2) optimization of control strategy over the next planning horizon using 
a calibrated building model, and 3) post-processing of the optimal strategy to yield a control command for 
the current time step that can be executed in the test facility. 

In the Energy Resource Station tests, the primary and secondary building mechanical systems were effectively 
orchestrated by the model-based predictive optimal controller in real-time while observing comfort and op-
erational constraints. The findings revealed that even when the optimal controller is given imperfect weather 
forecasts and when the building model used for planning control strategies does not match the actual build-
ing perfectly, measured utility costs savings relative to conventional building operation can be substantial. 
This requires that the facility under control lends itself to passive storage utilization and the building model 
includes a realistic plant model. The savings associated with passive building thermal storage inventory proved 
to be small because the ERS facility is of relatively light-weight construction. Also, the facility’s central plant 
revealed the idiosyncratic behavior that the chiller operation in the ice-making mode was more energy effi-
cient than in the chilled-water mode. 

During the second set of field experiments carried out in the Energy Plaza facility in Omaha, Nebraska during 
the summer of 2005 it was intended to 1) further explore the merits of harnessing the active and passive 
thermal storage inventories simultaneously by means of predictive optimal control, 2) validate the previous 
findings in the first (modeling and analysis), second (laboratory testing), and third (field testing in the ERS) 
project phases, and 3) provide experience and guidance for future application in real buildings. Yet, the sec-
ond set of field tests had to be abandoned prematurely because of complications arising due to server failures. 
Though the developed weather predictor and predictive optimal control program had been running smoothly 
during the second field test period, there was a problem in the process of transmitting the optimal results 
into the building automation system (BAS). The limited data confirms that the optimal control values had 
been successfully transmitted into the BAS system provided each program is running, and the analysis of 
cooling load profiles during the test days reveals the effect of load shifting as expected. 

In summary, the concept of predictive optimal control of active and passive building thermal storage inven-
tory was analyzed by developing two separate simulation environments, individually investigating the effects 
of forecasting and modeling accuracy, conducting a parametric analysis of the primary parameters driving the 
controller performance, conducting lab tests to validate the performance predictions of the simulation tools, 
and finally by developing and incorporating a real-time predictive optimal control system in two commercial 
buildings. 
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1 Introduction 

1.1 Overview 
This final report describes the accomplishments achieved in the three phases of a research project aiming to 
develop a software-based supervisory building controller for commercial buildings that utilizes the combined 
capacity of building thermal mass and thermal energy storage systems. This controller is designed to optimize 
cooling and ventilation equipment operation under real-time pricing and conventional electricity rates and by 
cooperating with the building automation system to minimize energy consumption and operating cost while 
ensuring human comfort. Due to the uncertain nature of future climate conditions, thermal loads, non-
cooling electricity consumption and system performance, the whole-building global optimization approach is 
based on predictive optimal control. This load-management technology holds the promise of innovation in 
building automation and represents a novel approach to the control of building thermal storage. 

The project was undertaken as a joint effort lead by the University of Nebraska – Lincoln, with support from 
the University of Colorado and Johnson Controls as the industrial partner.  

The overriding research goal of this project was to transform a novel concept of supervisory building control 
into a load management and optimization system that operates in conjunction with a building’s energy man-
agement and control system to optimize cooling and ventilation operation under dynamic and conventional 
electricity rates. To achieve this goal, these research objectives were pursued: 

 Develop physical models for the building’s energy systems and its dynamic thermal response. 

 Conduct a parametric study to identify the preferred set of conditions under which the merits of the 
new technology is maximized and to isolate the key aspects affecting controller performance. 

 Perform model-based analysis to identify a supervisory optimal control strategy capable of handling 
uncertainty in future variables and models while ensuring safe and comfortable operation. 

 Design, implement, and validate the supervisory controller in a full-scale HVAC laboratory  

 Field-test the optimization system in a suitable location (low humidity with large diurnal temperature 
swings) and equipped with a thermal energy storage system and a building automation system. 

 

1.2 Organization of the Final Report 
Phase 1 (Analysis, Modeling, and Simulation) of this project is covered in Chapters 2 through 0. Chapter 
2 establishes the theoretical maximum performance of this novel control strategy and Chapter 3 explores 
how strongly prediction uncertainty in the required short-term weather forecasts affects the controller’s cost 
saving performance. Chapter 4 investigates the impact of five categories of building modeling mismatch on 
the performance of model-based predictive optimal control of combined thermal storage using perfect pre-
diction. The parametric study is presented in Chapter 0 to assess the effects of building mass, electrical utility 
rates, season and location, economizer operation, central plant size, and thermal comfort. 

Phase 2 (Laboratory Testing) of this project was conducted at the Larson HVAC Laboratory of the Univer-
sity of Colorado and is described in Chapter 0. 

Phase 3 (Field Testing) involved field tests conducted at the Energy Resource Station in Ankeny, Iowa as 
described in Chapter 5 as well as tests conducted at the Energy Plaza facility in Omaha, Nebraska as discussed 
in Chapter 6. 

 

1.3 Content of the Final Report 
This report cannot cover all of the results and insights gained in the context of this four-year project. For that 
reason, we explicitly reference the first two topical reports: 

1. Henze, G.P. and M. Krarti (2002) “U.S. Department of Energy Cooperative Agreement DE-FC-26-
01NT41255 – Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory – Final 
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Report for Phase I: Analysis, Modeling, and Simulation.” Architectural Engineering, Peter Kiewit Institute, 
University of Nebraska, Omaha, Nebraska. 

2. Henze, G.P. and M. Krarti (2003) “U.S. Department of Energy Cooperative Agreement DE-FC-26-
01NT41255 – Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory – Final 
Report for Phase II: Laboratory Testing.” Architectural Engineering, Peter Kiewit Institute, University of 
Nebraska, Omaha, Nebraska. 

This final report intends to offer a unified view of the problem set out to be solved. Because not only one but 
two approaches to solving the problem were developed at the two primary institutions UNL and CUB in the 
course of the project, the PI decided to present mainly one of the approaches here (based on a coupling of 
Matlab and TRNSYS) and refer to references [50], [51] and [53] for further details on the second approach 
(based on EnergyPlus and integrated optimization routines). 
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2 Phase 1: Analysis – Evaluation of Optimal Control 

2.1 Abstract 
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility 
grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and week-
ends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by pre-
cooling the building’s massive structure or by using active thermal energy storage systems such as ice storage. 
While these two thermal batteries have been engaged separately in the past, this chapter investigates the 
merits of harnessing both storage media concurrently in the context of optimal control. The objective func-
tion is the total utility bill including the cost of heating and a time-of-use electricity rate without demand 
charges. The evaluation of the combined optimal control assumes perfect weather prediction and plant mod-
eling, which justifies the application of a so-called consecutive time block optimization that optimizes 24 hour 
horizons sequentially. The analysis shows that the combined utilization leads to cost savings that is signifi-
cantly greater than either storage but less than the sum of the individual savings. The findings reveal that the 
cooling-related on-peak electrical demand of commercial buildings can be drastically reduced and justify the 
development of a predictive optimal controller that accounts for uncertainty in predicted variables and model-
ing mismatch in real time. 

 

2.2 Introduction 
The equipment and systems providing thermal comfort and indoor air quality for commercial buildings con-
sume 42% of the total energy used in buildings [1]. Energy use and utility cost can be reduced significantly by 
increasing the efficiency of this equipment, by distributing thermal energy more efficiently and by more 
closely meeting the needs of building occupants. The energy efficiency of system components for heating, 
ventilating, and air-conditioning (HVAC) has improved considerably over the past 20 years. For example, 
shipment-weighted energy efficiency ratios of unitary air conditioners in the United States have increased by 
54% [2]. The average efficiency of centrifugal chillers improved by 36% and the efficiency of the best chillers 
increased by 50% [3]. With similar improvements in the efficiencies of boilers, motors, fans, and pumps, out-
standing opportunities exist for reducing energy use and cost in commercial sites. Yet, these opportunities 
depend on effective building operations: e.g., a building with coincident heating and cooling due to inferior 
control loop parameters wastes energy regardless of boiler and chiller efficiency. 

In contrast to energy conversion equipment, less improvement has been achieved in thermal energy distribu-
tion, storage and control systems in terms of energy efficiency and peak load reduction potential. Advance-
ments are also needed to improve thermal storage systems, improve control systems and improve systems 
integration from a whole building perspective while meeting occupant comfort and performance require-
ments [4]. In the definition of this project, ‘active’ denotes that thermal storage systems, such as ice storage, 
require an additional fluid loop to charge and discharge the storage tank or to deliver cooling to the existing 
chilled water loop. Building thermal capacitance is ‘passive’ since it requires no additional heat exchange fluid 
in addition to the conditioned air stream. 

Active thermal energy storage (TES) is an electrical load management and building equipment utilization 
strategy which can reduce utility electricity demand and equipment first-costs. Typical applications of TES sys-
tems include medium-size to large office buildings, hotels, and retail stores. TES systems are designed to 
avoid high utility demand charges from cooling during the summer and level a building’s electrical demand 
profile. Electrical demand and time-of-use rates have been tailored to reflect the significance of peak energy 
use periods. TES systems have gained acceptance in reducing peak electrical consumption and installed chiller 
capacity. Active TES is either a chilled-water tank or an ice tank. The basic operating strategy of an active TES 
system is to run electrical chillers during times of low electrical demand and energy prices (off-peak periods) 
to charge the storage medium. During expensive on-peak periods, either ice is melted or a chilled-water tank 
is discharged to provide cooling and reduce the use of mechanical cooling.  

The building structural mass represents a passive building thermal storage inventory which can embody a 
substantial amount of thermal energy that can be harnessed to reduce operating costs. In conventional op-
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eration, building zone conditions are usually controlled to maintain constant temperature and/or humidity 
setpoints that ensure acceptable comfort during occupancy. When unoccupied, the building energy equip-
ment is turned off and the zone temperature is allowed to float; a strategy that is coined nighttime setup 
control. Several simulation and experimental studies have shown that proper precooling and discharge of 
building thermal storage inventory can attain considerable reductions of operating costs in buildings. 

Phase 1 evaluated the merits of combined optimal control of both passive building thermal capacitance and 
active thermal energy storage systems to minimize an objective function of choice including total energy con-
sumption, energy cost, occupant discomfort, or a combination of these.  

Instead of merely satisfying instantaneous building cooling requirements, both active and passive storage in-
ventories can be effectively harnessed in the framework of supervisory control: 
a) To exploit the performance benefits of cooler ambient conditions during nighttime for central chilled wa-

ter plants, allowing for optimal scheduling of chillers, cooling towers, fans and pumps; 
b) To shape the next day’s cooling load profile by precooling the building’s massive structure at night; 
c) To make best possible use of the cost savings potential offered by conventional time-of-use and dynamic 

utility rate structures, including real-time pricing options that are offered by an increasing number of utili-
ties. 

Several investigators have identified promising savings potentials when building operation has been opti-
mized in buildings without storage [5] - [10]. Moreover, recent analyses suggest significant performance mer-
its from either active [11] - [21] or passive [22] - [33] thermal storage inventory under optimal control. 

The combined use of both storage media under optimal control has been investigated for a 24-hour de-
terministic simulation study which revealed that significant operating cost savings (~18%) and electrical de-
mand reduction can be achieved [34]. Optimal building control proved most effective in dry climates with 
large diurnal temperature swings, in the presence of utility rates strongly encouraging load-shifting, and 
when cool storage systems allow more effective load-shifting than building precooling alone. These results 
suggest the investigation of combined optimal storage utilization facilitated by a predictive supervisory con-
troller suitable for implementation in commercial buildings. This first chapter lays the groundwork for such a 
closed-loop model-based predictive optimal controller by investigating an overall solution approach that can 
be employed in real time. 

Two essential assumptions are applied: 

a) Weather, occupancy, non-cooling electrical loads are perfectly predicted. 

b) The building thermal response is perfectly represented by the building model, i.e., there is no mismatch 
between the modeled and actual building behavior. 

Given these assumptions, closed-loop optimal control is not necessary here as updated forecasts do not offer 
superior information and a consecutive time block optimization approach (described further below) is applied 
instead. The evaluation of the potential utility cost savings for a wide range of parameters are documented in 
Chapter 0. 

 

2.3 Description of the Analysis 

2.3.1 Investigated Building 
We investigate a three-story office building as shown in Figure 1 with five thermal zones per floor, i.e., 15 
thermal zones in total. The perimeter zones have an area of 288 m2 each, while the core zone has an area of 
576 m2. Total area per floor is thus 1,728 m2 and the building total is 5,184 m2. Counting the exterior enve-
lope, floor, and ceiling surfaces, the building mass is approximately 770 kg/m2 of floor area, thus can be con-
sidered heavy-weight construction. 
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Figure 1: Plan View (left) and Isometric View (right) of Office Building 

Peak building occupancy is 10 m2/person. Each office worker contributes 132 W of internal gain, where 54% 
are assumed to be sensible and 46% latent. Peak lighting density is 20 W/m2. The occupancy and lighting 
schedules for a weekday are shown in Figure 2, where hour 13 refers to the hour from 12 to 13. On week-
ends and holidays building occupancy is zero and lighting density is 5% of the peak value. 
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Figure 2: Weekday Occupancy and Lighting Schedule 

The office building was first modeled in EnergyPlus [35] and subsequently a TRNSYS [36] model was derived 
and validated. For a series of identical days (July 21 in Phoenix, Arizona from TMY2 weather data), good 
agreement of the zone temperature and cooling load profiles for both dynamic simulation programs was 
achieved. Subsequent annual analysis revealed a building design cooling load of 470 kW. 

The building is equipped with a central chilled water plant with a capacity of CCAPbase = 250 kW including a 
thermal energy storage system with a capacity of SCAP = 2,500 kWh and a second dedicated chiller with a 
capacity of CCAPTES = 250 kW. Thus, the base chiller is downsized by 47% and the active TES tank can meet 
the peak load alone for 5.3 hours. The base chiller has a constant coefficient-of-performance (COP) of 4.5 
and the dedicated TES chiller has constant COP of 3.0. The zones are conditioned using a variable air volume 
(VAV) air-handling unit with hot water reheat at the VAV terminal boxes. Outside air intake is controlled by 
an economizer cycle using return air temperature limit. 

 

2.3.2 Base Case 
We will state cost savings relative to a “base case,” which is a chilled water system that experiences the same 
cooling load and weather profiles and uses the same HVAC systems subject to the same utility rate structure 
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as the corresponding optimized storage system. The active TES system is governed by the chiller-priority con-
trol strategy, i.e., the base chiller is used to serve the building cooling load up to its capacity CCAPbase, while 
the active storage is used to meet the cooling loads exceeding CCAPbase. The passive building thermal storage 
inventory is not utilized: During occupancy, a cooling zone setpoint of 24°C and a heating setpoint of 20°C is 
maintained; during unoccupied times, the HVAC systems are turned off and the temperatures are allowed to 
float. 

The performance metric for all cases is the total utility cost for operating the office building over a selected 
time horizon, which includes electricity and heating costs. The electrical utility rate structures includes time-
of-use differentiated energy charges ($/kWh), while the utility rate for purchased heating is considered con-
stant. 

 

2.3.3 Passive Thermal Storage System Modeling 
The building structure responds to changes in zone temperature setpoints TZ,SP. The zone temperature TZ is 
directly affected only by the net convective heat flux according to the discrete-time energy balance on the 
zone air mass 

 
Δ
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where CZ is the zone thermal capacitance. These convective heat fluxes include contributions from interior 
wall surfaces due to transmission and delayed release of solar gains, HVAC systems, internal gains, as well as 
infiltration. Of those, the current interior wall surfaces fluxes depend on a history of past inside and outside 
air and surface temperatures as well as inside and outside heat fluxes. The transient response of the building 
envelope is typically modeled by transforming the heat diffusion equation  

 α
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∂ ∂
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2
,Z ZT T

t x
 (2) 

(where α is the thermal diffusivity) into a conduction transfer function (CTF), where the inside and outside 
surface heat fluxes are determined with the help of construction-specific CTF coefficients a, b, c, and d. 
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 (3) 

The zone temperature setpoints can be varied between 15 and 30°C during unoccupied periods and be-
tween 20 and 24°C during occupied periods. Building precooling reduces the convective contributions from 
inside surfaces during occupied periods by depressing the average envelope temperature during unoccupied 
periods. 

 

2.3.4 Active Thermal Storage System Modeling 
The defining feature of any storage system is its ability to bridge a temporal gap between supply and de-
mand. In an active thermal energy storage system, the temporal occurrence of electrical cooling-related loads 
can be separated from that of the thermal (cooling) loads. Figure 3 shows that the building cooling load can 
be met by any combination of contributions from the base chiller and the active TES system, while the dedi-
cated chiller only serves to charge the active TES. 
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Figure 3: Central Chilled Water Plant Configuration 

Changes in the state-of-charge x of the active TES system are described in discrete time by 

 + = +1 ,k k kx x u  (4) 

subject to the state constraints 

 = ≤ ≤ =min max0 1,x x x  (5) 

where is uk is the dimensionless TES charge/discharge rate subject to its own nonlinear constraints 

 ≤ ≤min, max, .k k ku u u  (6) 

The charge and discharge capacities depend on the available thermal energy storage inventory and current 
cooling load. The constraints on the control variable u are formulated as 

 
⎧ ⎫Δ⎪ ⎪⎪ ⎪= − −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

�
min, , minmax ,k L k k

t
u Q x x

SCAP
 (7) 

and 

 
⎧ ⎫Δ⎪ ⎪⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

max, maxmin , .k TES k

t
u CCAP x x

SCAP
 (8) 

Thus, no actions can be taken that would lead to states-of-charge outside feasible limits, i.e., full and empty 
storage tank, respectively. Further, no more than the current load can be discharged and the TES chiller ca-
pacity CCAPTES limits the maximum charge rate umax,k. There is no explicit ice or chilled-water tank model and 
heat transfer limitations on the charging and discharging rates are not considered, i.e., we assume an ideal-
ized loss-free thermal battery.  

Depending on the current cooling load, a choice of active TES charging/discharging rate u determines the 
mode of operation of the central chilled water plant as shown in Table 1. 

Table 1: Modes of Operation of Chilled Water Plant 

Mode Mode TES charge/discharge rate Consequence 

PM1 Discharging 0u ≤  
= = = −

Δ
� � � � �; 0;dis ch base L dis

SCAP
Q u Q Q Q Q

t
 

PM2 Charging u > 0 
= = =

Δ
� � � �0; ;dis ch base L

SCAP
Q Q u Q Q

t
 

 

2.3.5 Optimal Control Modeling 

2.3.5.1 Monthly Cost Function 

Optimal control is defined as that control trajectory that minimizes the total monthly utility bill Cm for elec-
tricity and heating: 
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where re,k and rd,k are the energy and demand rates for electricity according to the utility tariff in effect for 
time k, Km is the number of hours in the current month, Pk is the total facility electricity demand, Δth is a time 
increment of one hour, rh is the unit cost of heat delivered, and � ,heat kQ  is the heating demand in hour k. For 

the analysis presented here, load-shifting to off-peak hours is encouraged only through a substantial energy 
rate differential; demand rates are not considered and the cost function simplifies to 

 { }= = +, ,min min .m m energy m heat mJ C C C  (10) 

2.3.5.2 Consecutive Time Block Optimization 

Consecutive time block optimization (CTBO) is employed, i.e., the predictive optimal controller carries out an 
optimization over a predefined planning horizon L and the complete generated optimal strategy is executed. 
At any time k*, the required external variables (such as weather information) are predicted over a planning 
horizon L and the optimal policy that minimizes JL is determined. The complete strategy is executed without 
correcting for improved forecasts available during < < +* * .k k k L  After L time step the process is repeated. 
The planning horizon is L = 24 hours throughout this study. 

The alternative approach is closed-loop optimization (CLO), i.e., the predictive optimal controller carries out 
an optimization over a predefined planning horizon L and of the generated optimal strategy only the first 
action is executed. At the next time step the process is repeated. The final control strategy of this near-
optimal controller over a total simulation horizon of K steps is thus composed of K initial control actions of K 
optimal strategies of horizon L, where L < K. By moving the time window of L time steps forward and updat-
ing the control strategy after each time step, a new forecast is introduced at each time step and yields a pol-
icy which is different from the policy found without taking new forecasts into account. 

In the limiting case of perfect forecasts, both CLO and CTBO can be expected to produce identical results. 
When the future is subject to uncertainty, i.e., in the case of an actual implementation, CLO-based predictive 
optimal control is expected to exhibit superior performance. Since the focal point of this chapter is to identify 
the relative performance of jointly optimizing the active and passive building thermal storage, we assume 
perfect predictions and use CTBO. 

The optimal solution JL found at current time k* is associated with L global temperature setpoints 

{ } +*

*,

k L

Z SP k
T and L active TES charge/discharge rates { } +*

* .k L

k
u  

2.3.5.3 Sequential Optimization and Building Modes 

The cost of electrical energy Cenergy,L is affected by both the active and passive building thermal storage strat-
egy. The choice of zone temperature setpoints will affect the cooling load, which has to be known for the 
active storage to be controlled properly. Therefore, there is a causal relationship from the passive to the active 
storage, which requires us to solve the passive storage first, followed by the optimization of the active ther-
mal storage inventory on the basis of the previously determined optimal building cooling load profile. 

Due to the presence of simple upper and lower zone temperature bounds, the passive thermal storage (build-
ing mass) component of the control problem proved to be solved effectively with the help of a common im-
plementation of the quasi-Newton method, which is described below. The use of a direct search method 
(Nelder-Mead Simplex) led to an excessive number of function evaluations (TRNSYS runs) because of cost 
penalties arising from bound violations. To reduce the numerical complexity of the passive storage optimiza-
tion problem, a simplification is introduced: Instead of optimizing L variables, only one global zone setpoint 
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TZ,SP is determined for each combination of occupancy (occupied, unoccupied) and utility rate periods (on-
peak, off-peak), defined as building mode (BM), occurring over the next L time steps 

• BM1: Unoccupied and off-peak rates 

• BM2: Unoccupied and on-peak rates 

• BM3: Occupied and off-peak rates 

• BM4: Occupied and on-peak rates 

During each building mode, the corresponding control variable is kept constant as shown in Figure 4a. Since 
these few variables describe stepped profiles for each control variable, we denote them as solution parame-
ters SP. For the given occupancy and utility rate periods and assuming hourly time steps, the solution space 
for an L = 24 hour horizon is reduced from 24 dimensions to 5 dimensions. For any horizon L, the number of 
parameters can increase or decrease depending on how many distinct occupancy and rate periods are cov-
ered. Though this simplification causes the solution to become slightly suboptimal compared to the full solu-
tion, the problem now becomes computationally tractable. 

The active storage (TES) optimization problem is characterized by complex and nonlinear constraints as ex-
pressed by Eq. (7) and (8), yet simple state transitions as characterized by Eq. (4). This class of problem is most 
readily solved using dynamic programming, which is described below, and yields L solution variables as 
shown in Figure 4b. 
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Figure 4: a) Simplified Stepped Optimization for Passive Storage and b) Active Storage Optimization 

2.3.5.4 Iterative Sequential Optimization 

Figure 5 illustrates how the least utility cost JL over horizon L is determined. At time zero and starting with 
initial zone temperature setpoints { },Z SP init

T halfway between the upper and lower bounds and no active stor-

age utilization { } = 0,
init

u  the passive storage inventory is optimized to minimize CL. As a result, the optimal 

building cooling load profile is computed and handed over to the active storage optimization, which calcu-
lates an optimal TES charge/discharge strategy. In a second pass, the optimal active storage utilization strat-
egy and the previously found optimal zone temperature setpoint profile are employed to determine the new 
optimal zone temperature setpoint profile and optimal utility cost JL. This cycle is repeated until the optimal 
cost JL converges. Typically, convergence is attained after 2-3 iterations. Previously optimal solutions are 
stored as starting values for subsequent optimizations to reduce execution time. 
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Figure 5: Iterative Sequential Optimization of Utility Cost CL 

2.3.6 Optimization Algorithms 
We investigated two classes of optimization algorithms: a quasi-Newton method, which approximates the 
function gradient through finite differences, and dynamic programming for sequential decision making prob-
lems. Among those methods that utilize gradient information, quasi-Newton methods are the most popular. 
They collect curvature information on the cost function at each iteration to describe a quadratic model prob-
lem 

 
⎧ ⎫⎪ ⎪⎪ ⎪+ +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

1
,min

2
T T

x
x Hx c x b  (11) 

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant vector, and b is a con-
stant. The optimal solution x* occurs when the partial derivatives of x vanish, i.e.,  

 ( ) −∇ = + = ⇒ = − 1* * 0 * .f x Hx c x H c  (12) 

Newton-type methods calculate the Hessian H directly, which is numerically very demanding. Quasi-Newton 
methods avoid the direct computation of the Hessian by extracting curvature information from observed be-
havior f(x) and ( )∇f x and subsequently approximating the Hessian numerically [37]. We employ the popular 

method by Broyden, Fletcher, Goldfarb, and Shanno (BFGS): 

 ( ) ( )+ + += + − = − = ∇ −∇1 1 1,  where  and 
T T T

i i i i i i
i i i i i i i iT T

i i i i i

q q H s s H
H H s x x q f x f x

q s s H s
 (13) 

In the presented case, the gradient information is derived by partial derivatives using numerical differentiation 
via finite differences: Each decision variable x is perturbed and the rate of change in the cost function is de-
termined. Then at each iteration i, a line search is performed in the direction of  

 ( )−= − ⋅∇1
i id H f x  (14) 

The task of minimizing operating cost using active thermal storage inventory is framed as a sequential deci-
sion-making process of decision variable u. The optimization technique dynamic programming commonly 
used for this type of problems was first formally introduced by the mathematician Richard Bellman in 1957. 
Bellman's Principle of Optimality [38] states that: 

“An optimal policy has the property that whatever the initial state and initial decision are, the remaining deci-
sions must constitute an optimal policy with regard to the state resulting from the first decision.” 

In other words, the optimal solution to an L-step process must come from the optimal solution of an L-1-step 
process that is based on the optimal outcome of the first step. The solution of one L-step process will thus be 
found recursively by optimizing L single-step processes in reverse time by starting at the end of time and mov-
ing back to “now”. To apply, the cost function has to be incrementally additive and the dynamic system has 
to be discrete. 
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2.4 Results 
The utility rate is assumed to be $0.20/kWh on-peak and $0.05/kWh off-peak; no demand charge is levied. 
The on-peak period is weekdays from 9 AM to 6 PM, off-peak all remaining hours. The building is occupied 
from 7 AM to 5 PM. 

The viewgraphs in this section are created on the basis of simulations in which July 21 in Phoenix, AZ is re-
peated over and over again until steady-state conditions are attained after about 7 identical days. The out-
door ambient temperature swings from about 16°C early in the morning to over 38°C at 6 PM. Table 2 lists 
the nominal capacities of the base chiller and the active storage and chiller capacities for the five investigated 
cases.  

Case 1 represents the basecase in which cooling loads have to be met without any storage available. Case 2 
makes use of active thermal storage as governed by chiller-priority control, i.e., the downsized base chiller 
meets the cooling loads up to its capacity CCAPbase, thereafter the active storage contributes the remainder. 
The dedicated active storage chiller requires SCAP/CCAPtes = 10 hours to recharge an empty storage tank. 
Case 3 optimizes the passive storage capacity by properly precooling the building structure using a fully sized 
base chiller. In Case 4, the active storage is now optimized instead of governed by a simple rule such as 
chiller-priority. Finally, Case 5 optimizes both active and passive storage media and represents the focus of 
this research. 

Case 5 is solved by optimizing each 24 hour interval sequentially, i.e. as a series of consecutive time blocks 
(CTBO) of 24 hours length each. The CTBO method does not allow for the consideration of newly available 
new information as it becomes available. However, it represents a reference scenario for comparison as we 
assume perfect prediction for this study. 
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Table 2: System Sizing for Investigated Control Strategies 

Case No. Optimization Units Sizing
1 Basecase WITHOUT Active Storage

CCAPbase kW 500
CCAPtes kW 0
SCAP kWh 0

Base chiller fully sized, no active 
storage; night setup.

2 Basecase WITH Active Storage
CCAPbase kW 250
CCAPtes kW 250
SCAP kWh 2,500

Base chiller downsized; chiller-
priority active storage control; night 
setup.

3 Passive Only
CCAPbase kW 500
CCAPtes kW 0
SCAP kWh 0

Base chiller fully sized, no active 
storage; zone setpoints optimized.

4 Active Only
CCAPbase kW 500
CCAPtes kW 250
SCAP kWh 2,500

Base chiller fully sized; optimal 
active storage control; night setup.

5 Active and Passive
CCAPbase kW 500
CCAPtes kW 250
SCAP kWh 2,500

Base chiller fully sized; optimal 
active storage control; zone 
setpoints optimized.  
 

The thick lines in Figure 6 represent the upper and lower temperature bounds for the operation of the office 
building on a weekday. It can be seen how passive only decides on substantial nighttime precooling down to 
about 21°C zone temperature averaged over all 15 zones. When the temperatures are allowed to float, the 
average zone temperature rises beyond 28°C during unoccupied times. The combined utilization of active 
and passive storage leads to less precooling than in the passive only case. All strategies involving passive stor-
age allow for the temperatures to float from the end of occupancy at 5 PM to 6 PM because electricity prices 
are still high (on-peak) during this time. After 6 PM, electricity prices are low and the building is unoccupied.  
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Figure 6: Average Zone Temperature Profiles 

The inventory of state-of-charge of the active storage is shown in Figure 7 from midnight to midnight for 
those strategies involving active storage. For the base case with active storage under chiller-priority control, 
the storage is fully charged during off-peak hours and discharged by about 50% during the day. The active 
only optimization discharges fast as of 8 AM, but slows down during the early afternoon hours to end up 
empty by the end of occupancy. The combined storage utilization approach makes less use of the active stor-
age. 
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Figure 7: Active Storage State-of-Charge Profiles 

Figure 8 illustrates the effect of precooling on the daytime cooling load profile and shows how the building 
cooling load is shifted away from the expensive on-peak period to the off-peak period for all cases involving 
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passive storage utilization. The passive only approach leads to the lowest on-peak cooling loads, next comes 
the CTBO approach to the combined case.  
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Figure 8: Building Cooling Load Profiles 

Reducing on-peak electrical demand is a side effect of shifting expensive on-peak cooling loads to off-peak 
periods for energy only optimizations as can be seen in Figure 9. While the base case with active storage un-
der chiller-priority control already reduces the demand by 20%, the combined optimization cuts the overall 
demand nearly in half. Active only and passive only are both superior to the base case with active storage, 
but inferior to the combined case solved by CTBO. 
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Figure 9: Total Building Electrical Demand Profiles 

For a utility rate without demand charges, we can plot daily profiles of utility cost. The total hourly building 
operating cost including non-cooling cost is shown in Figure 10. The areas under each curve represent the 
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total daily operating cost. It is obvious that on-peak cost savings are traded off against nighttime expenses for 
recharging active and/or passive storage inventories. 
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Figure 10: Total Hourly Building Operating Cost Profiles 

Figure 11 illustrates how the cooling related costs are effectively shifted to nighttime periods. In fact, the 
combined storage cases lead to near-zero cooling costs during the on-peak period. 
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Figure 11: Hourly HVAC Operating Cost Profiles 

Finally, Table 3 provides an overview of the daily cost savings achieved for this prototypical day in Phoenix, 
AZ. Based on total utility cost, savings of about 16% can be achieved for either passive or active only storage, 
and about 26% for the combined case when compared to the base case without storage. Compared to the 
base case with active storage under chiller-priority control, savings of about 8% can be achieved for either 
passive or active only storage and about 18% for the combined case. Based on cooling related utility cost 
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only, savings of about 37% can be achieved for either passive or active only storage, and about 57% for the 
combined case when compared to the base case without storage. Compared to the base case with active 
storage under chiller-priority control, savings of about 20% can be achieved for either passive or active only 
storage and about 46% for the combined case. These results show that given strong load-shifting incentives, 
the benefits of the proposed optimization system may be substantial.  

Table 3: Summary of Daily Operating Costs 

Total Building Hourly Operating Cost
Basecase without TES Basecase with TES Passive Only Active Only Active + Passive CTBO

$347.42 $314.97 $290.46 $289.00 $257.22
Savings BC without TES: 16.4% 16.8% 26.0%

BC with TES: 7.8% 8.2% 18.3%

HVAC Hourly Operating Cost
Basecase without TES Basecase with TES Passive Only Active Only Active + Passive CTBO
$156.65 $124.20 $99.69 $98.23 $66.45
Savings BC without TES: 36.4% 37.3% 57.6%

BC with TES: 19.7% 20.9% 46.5%  
 

2.5 Conclusions and Future Work 
This chapter investigated the potential of building thermal storage inventory, in particular the combined utili-
zation of active and passive inventory, for the reduction of electrical utility cost using common time-of-use 
rate differentials. The findings reveal that when an optimal controller is given perfect weather forecasts and 
when the building model used for predictive control perfectly matches the actual building, utility cost savings 
and on-peak electrical demand reductions are substantial. While this work established the theoretical maxi-
mum performance, the next efforts need to determine how strongly prediction performance and model mis-
match deteriorate the controller performance. Eventually, once an acceptable weather predictor is available 
and system identification routines calibrate the underlying model, lab and field experimentation will need to 
verify these savings figures during actual operation. 
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3 Phase 1: Analysis – Impact of Forecasting Accuracy 

3.1 Abstract 
This chapter evaluates the benefits of combined optimal control of both passive building thermal capacitance 
and active thermal energy storage systems to minimize total utility cost in the presence of forecasting uncer-
tainty in the required short-term weather forecasts. Selected short-term weather forecasting models are in-
troduced and investigated with respect to their forecasting accuracy as measured by root mean square error, 
mean bias error, and the coefficient of variation. The most complex model, a seasonal autoregressive inte-
grated moving average (SARIMA) shows the worst performance, followed by a static predictor model that 
references standard weather archives. The best prediction accuracy is found for bin models that develop a 
characteristic daily profile from observations collected over the past 30 or 60 days. The model that projects 
yesterday’s patterns one day into the future, proved to be a surprisingly poor predictor. We test the predictor 
models in the context of a predictive optimal control task that optimizes building global temperature set-
points and active thermal energy storage charge/discharge rates in a closed-loop mode. For the four locations 
investigated in this parametric study, Chicago, IL, Denver, CO, Omaha, NE, and Phoenix, AZ, it was deter-
mined that the 30-day and 60-day bin predictor models lead to utility cost savings that are only marginally 
inferior compared to a hypothetical perfect predictor that perfectly anticipates the weather during the next 
planning horizon. In summary, the predictive optimal control of active and passive building thermal storage 
inventory using time-of-use electrical utility rates with significant on-peak to off-peak rate differentials and 
demand charges is a highly promising control strategy when perfect weather forecasts are available. The pri-
mary finding of this chapter is that it takes only very simple short-term prediction models to realize almost all 
of the theoretical potential of this technology.  

 

3.2 Introduction 
The combined use of both storage media under optimal control was investigated in the previous chapter for 
the reduction of electrical utility cost using common time-of-use rate differentials. The findings revealed that 
when an optimal controller is given perfect weather forecasts and when the building model used for predic-
tive control perfectly matches the actual building, utility cost savings and on-peak electrical demand reduc-
tions are substantial. While this previous work established the theoretical maximum performance, the current 
chapter determines how strongly prediction performance affects the optimal controller’s closed-loop per-
formance. In this study, we assume that the building thermal response is perfectly represented by the build-
ing model, i.e., there is no mismatch between the modeled and actual building behavior. The next section 
will describe several short-term weather prediction models and investigate their prediction accuracy based on 
standardized statistical performance metrics. Thereafter, selected prediction models will be employed to the 
task of closed-loop predictive optimal control of active and passive building thermal storage. 

 

3.3 Analysis of Short-Term Weather Prediction Models 
The development of prediction models for ambient air temperature follows a 5-step procedure recommended 
in [39]: data collection, data examination (analysis of time series), data evaluation, prediction model construc-
tion, and prediction model evaluation. 
 

3.3.1 Data Collection 
The first step to be taken is the collection of as much relevant data on the prediction task as possible. The 
amount of data should be kept low as determined by relevance, reliability and recentness [39]. The National 
Oceanic and Atmospheric Administration (NOAA) runs an Interactive Weather Information Network, accessi-
ble at http://nndc.noaa.gov, where a considerable amount of historical and current weather data is available. 
Thus, measurements for the most recent years 2000 and 2001 were collected for the following four cities: 
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Chicago, IL; Denver, CO; Omaha, NE; Phoenix, AZ. The available database was reduced to hourly observa-
tions, i.e., 8,760 values per year are available.  

3.3.2 Data Examination 
In order to select an appropriate prediction model, the characteristic of the temperature time series for 
Omaha, Nebraska for the year 2001 was examined with respect to its main features: stationary behavior, 
trend, seasonal component, apparent changes and outlying observations. The investigation tools employed 
are the graph of the time series and the following additional measurements; sample autocorrelation function 
(SACF), sample partial autocorrelation function (SPACF), sample mean μ ( )x t and sample varianceσ 2( )x t .  

Visual inspection of the SACF and SPACF revealed that the time series is non-stationary. A positive trend from 
winter to summer and a negative trend from summer to winter were observed, which of course, is not a 
trend but rather a periodic behavior with an annual cycle. Furthermore, there is a periodic behavior with a 
daily cycle. Few outlying observations were found, which are attributed to abrupt changes within the weather 
development and which are considered rare. 

 

3.3.3 Description of Prediction Models 
As discussed in greater detail in Section 5.3, the predictors are required to provide short-term forecasts of 
ambient weather for the next L = 24 hours starting at the current time k*.  

3.3.3.1 Methods Based on a Reference Day 

The assumption underlying this procedure is that the actual time series will exhibit a behavior similar to a ref-
erence pattern, which is developed by rendering historical data, TMY2 data or bin estimates. In each case 
requiring prediction over the planning horizon L = 24 hours, a forecast is made for the next L hours, and the 
L-hour profile is shifted such that the predicted value for the current hour k* coincides with the actual meas-
ured value. The prediction therefore yields a characteristic L-hour profile which is anchored at the current 
known value. 

(A) TMY2 Predictor  

First, a prediction with a static reference pattern consisting of TMY2 data is considered and explained. The 
TMY2 weather database describes a typical meteorological year for 239 stations derived from the 1961-1990 
National Solar Radiation Data Base (NSRDB) [44]. The TMY2 data files consist of months that were selected 
from individual years and then concatenated to form a complete year. The TMY2 database therefore only 
represents typical conditions. Mathematically, the predictor is expressed by: 

 { } { }= ∈ +* *ˆ , [ , ]t tX Y t k k L  (15) 

where time [ ]∈ −* 1, 8760k L , { } = …1
ˆ ˆ ˆ, ,t tX X X  are the predicted values of the times series of year 2001 and 

{ }tY is the time series of the TMY2 year. 

(B) Same-as-Yesterday Predictor 

This predictor follows a similar concept of prediction by reference; however, the difference is the dynamic 
reference pattern of the time series, i.e., a continuous update of the reference day. Assuming that the 
weather conditions “today” will be similar to “yesterday”, the profile of the previous 24 hours is transferred 
to the current time step according to: 

 { } { }−= ∈ +* *
24

ˆ , [ , ]t tX X t k k L  (16) 

(C) Bin Predictor 

The reference time series consists of bin values, one for every hour h of the day. The methodology presented 
distinguishes between a static and a dynamic reference day. In the static case, a representative reference day, 
which represents all q days of a month, is created from bin values for each month. Thus, there are 12 refer-
ence days per year. In essence, the bin day provides an average daily profile for a particular month. Conse-
quently, the bin time series can be expressed as: 
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Here, ∈ [28,30,31]q  is the number of days in the month M that is used to construct the characteristic daily 
profile, which can either be the previous month or the same month of the previous year. The dynamic type of 
the bin model develops the characteristic profile of the next L hours on the basis of the past d days relative to 
the current time k*. Hence, the bin values are computed from 

 { } −
=

= ∈ +∑ * *
24

1

1ˆ , [ , ]
d

t t n
n

X X t k k L
d

 (18) 

where the cases investigated in this project are d = 1, 7, 30, 60, and 90 days. The case d = 1 leads to the 
same-as-yesterday predictor described in the previous subsection.  

3.3.3.2 Unbiased Random Walk 

This predictor is very simple. If the present temperature is Tk*, then one predicts that the future temperatures 
Tk*+1, Tk*+2, Tk*+3,. . . are all equal to Tk*. It turns out that this prediction is best in the least-squares sense if the 
process generating the sequence of temperatures is an unbiased random walk—that is, if the temperature at 
the next hour is with equal probability either somewhat greater or somewhat less than the present tempera-
ture. This forecasting model is perhaps the simplest interesting model and provides a base case against which 
one can test more sophisticated predictors. This model is mathematically described as: 

 { } { }= ∈ +* *
*

ˆ , [ , ]t kX X t k k L  (19) 

where L is the length of the prediction and planning horizon, here L = 24 hours. 

3.3.3.3 SARIMA 

The seasonal autoregressive and moving average prediction model is a flexible tool with a wide range of ap-
plications that belongs to the family of Box-Jenkins methods. It is mathematically demanding and entails 
time-consuming procedures for model identification, parameter estimation, diagnosis, and prediction for 
every time series. Since the development of a SARIMA model is not within the scope of this project, the re-
sults of these four stages are only summarized briefly and the reader is referred to [41], [42], [43]. Because 
the presented time series is not stationary, it has to be transformed into a stationary time series which is 
achieved by eliminating the trend and the seasonal component. Among the different methods of transforma-
tion (smoothing with a finite moving-average filter, exponential smoothing, polynomial fitting [41]), the so-
called differencing is commonly used. In the studied cases, first regular differencing and first seasonal differ-
encing [43] according to  

 − − −= − − +1 24 25t t t t tz X X X X  (20) 

proved effective in creating a stationary time series with neither trend nor daily or seasonal periodicity. Here, 
the periodicity is the diurnal cycle with a period of 24 hours. Using standard guidelines, the sample autocorre-
lation functions (SACF and SPACF) is determined from the differenced time series to select the proper orders 
p and q of the ARIMA(p,q) model. 

Precise estimates of the model parameters are found using either a nonlinear least-squares (NLS) approach or 
the maximum likelihood (ML) criterion favored by Box and Jenkins, which was applied in this project. The 
equation for the ARIMA model can be expressed as: 

 φ φ φ φ φ φ φ θ− − − − − − − −= + + + + + + − +1 1 2 2 3 3 4 4 5 5 6 6 7 7 1 24t t t t t t t t t tz z z z z z z z a a  (21) 

Since Eq. (21) predicts temperatures, zt has to be transformed back to temperatures using Eq. (20). Finally, 
the forecast equation is: 

 φ φ− − − − − − − − − − −= + − + − − + + + − − +1 24 25 1 1 2 25 26 7 7 8 31 32
ˆ [ ] ... [ ]t t t t t t t t t t t tX X X X X X X X X X X X  (22) 
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Table 4: SARIMA model parameters for four investigated locations 

 
Omaha, NE Chicago, IL Denver, CO Phoenix, AZ

Order of AR p 3 3 2 3
Order of MA q 1 1 1 1

Estimates φ φ1 = 0.3833 φ1 = 0.2200 φ3 = -0.0398 φ1 = -0.0221
φ2 = 0.0735 φ2 = 0.0843 φ5 = -0.0594 φ6 = 0.0704
φ3 = 0.0234 φ3 = 0.0374 φ1 =φ2 = φ4 = φ6 = φ7 = 0 φ7 = -0.0505

φ4 =φ5 = φ6 = φ7 = 0 φ4 =φ5 = φ6 = φ7 = 0 φ2 =φ3 = φ4 = φ5 = 0

Estimates θ θ = 0.2712 θ = -0.1008 θ = 0.0852 θ =-0.9998
 

 

This model is fitted by the parameters φ listed in  

Table 4. Because both the periodicity of the time series and the prediction horizon are 24 hours, parameter 

1θ cancels out of the model and is not used. The accuracy of the final model can be assessed using standard 
procedures as outlined in [43]. 

 

3.3.4 Prediction Model Evaluation 
The selection of an appropriate prediction model for weather forecasting has to be preceded by a detailed 
examination and comparison of the various possible models with respect to their accuracy and reliability. 

3.3.4.1 Standard Metrics for Error Examination 

The accuracy of the prediction model is quantified using standard metrics: mean bias error MBE, root mean 
square error RMSE, and the coefficient of variation of the RMSE, CV-RMSE. A function of observed measure-
ments …1, , nx x  produces an average value equal to 

 
=

= ∑
1

1 n

i
i

x x
n

 (23) 

The mean bias error (MBE) for a time series with the same observed measurements may be expressed by 

 
=

= −∑
1
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n

i i
i

MBE x x
n

 (24) 

where ˆ ix  is the i-th predicted value, xi represents the i-th actual measured data, and n is the total number of 
observations in the sample. The root mean square error of a time series (RMSE) is an average measure of the 
deviation of the data from the model; it is also called the standard error of the estimate. 
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where n is the number of observations defined previously as 8760, and p is the number of degrees of free-
dom in the model. The coefficient of variation of the root mean square error (CV-RMSE) is a normalized (non-
dimensional) measure that is found by dividing the RMSE by the mean value of the observation. 

3.3.4.2 Analysis of Prediction Results 

Table 5 provides an overview of the annual average values for MBE, RMSE and CV-RMSE (8760 prediction 
cycles) as well as the cumulative error for all prediction models applied to Denver and Phoenix. These loca-
tions were chosen since Phoenix is the location with the smallest cumulative and average errors and Denver is 
the location with the highest errors. The differences of the errors between the locations are obvious, espe-
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cially for the same-as-yesterday predictor. Within the prediction models, the bin-month predictor gives the 
smallest errors in any of the listed results. The SARIMA model delivers the highest average and cumulative 
values.  

This trend is reinforced by the plot of the statistical metrics versus time. Figure 12 illustrates the monthly av-
erage RMSE for selected prediction models developed for Phoenix, AZ. The SARIMA, the random walk and 
the TMY2 models predict with lower accuracy as expressed by higher average RMSE. This can be explained by 
the static nature of the model, which is not updated in response to the current weather patterns. The accu-
racy for the SARIMA model tested against year 2002 decreases significantly since the model was built upon 
the time series for 2001. The monthly RMSE values of the other models are similar to each other. Contrary to 
intuition, it turned out that using the previous day’s weather does not yield the best predictor. This may be 
explained by the high volatility of the weather patterns from one day to the next.  

Mean bias errors were found to be very small for all predictor models, indicating that they did not systemati-
cally under- or overestimate future weather patterns. 

Subsequent investigation of the prediction accuracy of the bin predictors for all four locations revealed that 
the dynamic bin procedure as expressed by Eq.(18) provides the best prediction performance, in particular the 
30-day and 60-day bin models as shown by Figure 13, and is recommended for further use.  

 

Table 5: Cumulative RMSE and CV-RMSE error and the annual average value of MBE, RMSE and CV-RMSE for 
Denver and Phoenix 

 
Predictor TMY2 Yesterday Bin-month SARIMA Random Walk

Location Denver Phoenix Denver Phoenix Denver Phoenix Denver Phoenix Denver Phoenix

cum. RMSE 45365 28347 41408 22414 31334 19704 71618 81876 54403 48216

cum.CV-RMSE 160.70 95.78 146.90 75.61 111.00 66.42 252.23 274.99 190.94 161.80

average MBE -0.004 -0.003 -0.006 0.003 0.010 0.007 -0.003 0.004 0.001 -0.002

average RMSE 5.19 3.24 4.74 2.57 3.59 2.26 8.23 9.38 6.23 5.52

average CV-RMSE 0.018 0.011 0.017 0.009 0.013 0.008 0.029 0.032 0.022 0.019
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Figure 12: Monthly average RMSE for selected prediction models for Phoenix, AZ 

 

Figure 14 is a cumulative histogram of the RMS errors for a selection of predictors as applied to Omaha, Ne-
braska. It is apparent that the SARIMA predictor has a large fraction of prediction events (>60%) with high 
RMS errors of 6 K and higher. While the TMY and same-as-yesterday predictors significantly improve upon 
the SARIMA model, the bin models for 7-days, 30-days, and the preceding calendar month far outperform 
these.  
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Figure 13: Monthly average RMSE for bin predictors for Phoenix, AZ 
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Figure 14: Cumulative histogram of RMS errors for selected predictors for Omaha, NE 
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3.4 Application of Prediction Models to Predictive Control Task 
The prediction models investigated in Section 3.3, will now be employed for the purpose of providing short-
term temperature predictions for the next L = 24 hours. 

 

3.4.1 Utility Cost and Energy Consumption 

The results in this section are created on the basis of monthly simulations for the month of July in the follow-
ing four locations: Chicago, IL, Denver, CO, Omaha, NE, and Phoenix, AZ. The utility rate is assumed to be 
$0.20/kWh on-peak and $0.05/kWh off-peak; a demand charge of $10 is levied during the on-peak hours, 
none during the off-peak hours. The on-peak period is weekdays from 9 AM to 6 PM, off-peak all remaining 
hours. The building is occupied from 7 AM to 5 PM. 

Case 1 represents the reference case in which cooling loads have to be met without any storage available. 
Case 2 represents the base case that makes use of active thermal storage as governed by chiller-priority con-
trol, i.e., the downsized base chiller meets the cooling loads up to its capacity CCAPbase, thereafter the active 
storage contributes the remainder. The dedicated active storage chiller requires SCAP/CCAPtes = 10 hours to 
recharge an empty storage tank. Case 3 optimizes both active and passive storage media under closed-loop 
predictive control and represents the focus of this research. 

Table 6: System Sizing for Investigated Locations 

Case No. Optimization Units Chicago, IL Denver, CO Omaha, NE Phoenix, AZ
1 Reference Case Without Any Storage

CCAPbase kW 600 600 600 600
CCAPtes kW 0 0 0 0
SCAP kWh 0 0 0 0

2 Basecase With Active Storage Under Chiller-Priority
CCAPbase kW 250 150 250 250
CCAPtes kW 250 250 250 250
SCAP kWh 2,500 2,500 2,500 2,500

3 Predictive Optimal Control of Active and Passive Building Storage
CCAPbase kW 250 150 250 250
CCAPtes kW 250 250 250 250
SCAP kWh 2,500 2,500 2,500 2,500

Note: Base chiller fully sized, no active storage; night setup.

Note: Base chiller downsized; chiller-priority active storage control; night setup.

Note: Base chiller fully sized; optimal active storage control; zone setpoints optimized.  
 

The following five tables show the monthly operating costs and savings achieved for each of the four geo-
graphic locations in the United States for the three cases described above. Case 3 will be further broken 
down to reflect the influence of short-term weather prediction accuracy by employing selected forecasting 
models discussed in Section 3.3. 

The first two tables describe the location of Phoenix, AZ. Table 7 shows the total utility cost, while Table 8 
illustrates the cost of operating the heating, ventilating, and air-conditioning (HVAC) systems, which is the 
cost portion that is influenced by the investigated predictive optimal control strategy. In the latter table, 
HVAC demand charges are not shown because the HVAC electrical peak may not coincide with the total 
electrical demand and therefore may not contribute to the total demand charge. 

It is important to realize that the predictive controller does not minimize total electrical utility cost, but electri-
cal energy cost subject to a constraint on the electrical demand charge, i.e., the target demand charge. From 
Table 7 it can be seen that in all cases involving thermal energy storage, total electrical utility cost is reduced 
by 11-24% while energy consumption increases by 8-16%. Relative to the reference case without any ther-
mal storage usage, the base case reduces total electrical utility bill by 11% at the expense of 8% higher en-
ergy use. Predictive optimal control of active and passive building thermal storage inventory under perfect 
prediction raises the utility cost savings to 24% while incurring an increase in energy use of 14%. The same-
as-yesterday and 7-day bin predictors suffer a noticeable but acceptable degradation in savings performance 
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relative to the perfect prediction case. The 30-day and 60-day bin predictors are subject to only marginal 
penalties compared to the case of perfect prediction and significantly improve upon the same-as-yesterday 
and 7-day bin predictors. The very crude random walk predictor, simply assuming the current temperature to 
persist over the next L hours, leads to cost savings of 15% and energy increases of 13%, which lies between 
the base case and the perfect prediction case. From these results for Phoenix, AZ it can be concluded that 
simple 30-day or 60-day bin predictors are sufficient to achieve most of the theoretically attainable cost sav-
ings benefits. 

Table 7: Monthly total electrical utility cost comparison for Phoenix, AZ 

Case Units Reference Case Basecase
Predictor None None Perfect Yesterday 7day Bin 30day Bin 60day Bin Random Walk
On-Peak Demand kW 209 159 151 153 156 157 157 171
∆ relative to Reference Case % - -24% -28% -27% -26% -25% -25% -18%
∆ relative to Basecase % 31% - -5% -4% -2% -2% -1% 8%
Off-Peak Demand kW 215 239 310 296 321 374 374 242
∆ relative to Reference Case % - 11% 44% 38% 49% 74% 57% 12%
∆ relative to Basecase % -10% - 30% 24% 35% 57% 21% 1%
On-Peak Energy Consumption MWh 49 41 30 33 32 30 31 36
∆ relative to Reference Case % - -16% -40% -33% -34% -38% -37% -26%
∆ relative to Basecase % 19% - -28% -20% -21% -26% -25% -12%
Off-Peak Energy Consumption MWh 15 28 44 42 42 45 44 37
∆ relative to Reference Case % - 84% 187% 170% 171% 188% 183% 137%
∆ relative to Basecase % -46% - 56% 47% 47% 57% 54% 29%
Total Energy Consumption MWh 65 70 74 75 74 75 75 73
∆ relative to Reference Case % - 8% 14% 15% 15% 16% 16% 13%
∆ relative to Basecase % -7% - 6% 7% 7% 8% 7% 5%
Demand Charge $ $2,094 $1,592 $1,511 $1,531 $1,559 $1,566 $1,572 $1,713
∆ relative to Reference Case % - -24% -28% -27% -26% -25% -25% -18%
∆ relative to Basecase % 31% - -5% -4% -2% -2% -1% 8%
On-Peak Energy Charge $ $9,833 $8,250 $5,909 $6,570 $6,495 $6,082 $6,196 $7,273
∆ relative to Reference Case % - -16% -40% -33% -34% -38% -37% -26%
∆ relative to Basecase % 19% - -28% -20% -21% -26% -25% -12%
Off-Peak Energy Charge $ $774 $1,424 $2,221 $2,091 $2,100 $2,233 $2,193 $1,837
∆ relative to Reference Case % - 84% 187% 170% 171% 188% 183% 137%
∆ relative to Basecase % -46% - 56% 47% 47% 57% 54% 29%
Total Energy Charge $ $10,607 $9,674 $8,129 $8,661 $8,595 $8,315 $8,389 $9,110
∆ relative to Reference Case % - -9% -23% -18% -19% -22% -21% -14%
∆ relative to Basecase % 10% - -16% -10% -11% -14% -13% -6%
Total Cost $ $12,701 $11,266 $9,640 $10,192 $10,154 $9,881 $9,961 $10,822
∆ relative to Reference Case % - -11% -24% -20% -20% -22% -22% -15%
∆ relative to Basecase % 13% - -14% -10% -10% -12% -12% -4%

Predictive Optimal Control of Active and Passive Storage

 
 

Table 8 reveals that in all cases involving thermal energy storage, cooling-related electrical energy charges are 
reduced by 20-53% while energy consumption increases by 18-37%. Relative to the reference case without 
any thermal storage usage, the base case reduces electrical energy charges by 20% at the expense of 18% 
higher energy use. Predictive optimal control of active and passive building thermal storage inventory under 
perfect prediction raises the electrical energy cost savings to 53% while incurring an increase of energy use of 
33%. Again, the same-as-yesterday and 7-day bin predictors suffer a noticeable but tolerable degradation in 
savings performance relative to the perfect prediction case. Again, the 30-day and 60-day bin predictors are 
subject to only marginal penalties compared to the case of perfect prediction and noticeably improve upon 
the same-as-yesterday and 7-day bin predictors. The crude random walk predictor leads to cost savings of 
15% and energy increases of 13%, i.e., between the base case and the perfect prediction case. It is evident 
that by employing both active and passive thermal storage inventories, substantial cost savings can be 
achieved, however, at the cost of increased total electrical energy use. 
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Table 8: Monthly HVAC electrical utility cost comparison for Phoenix, AZ 

Case Units Reference Case Basecase
Predictor None None Perfect Yesterday 7day Bin 30day Bin 60day Bin Random Walk
On-Peak Demand kW 106 56 99 99 99 99 99 99
∆ relative to Reference Case % - -47% -6% -6% -6% -6% -6% -6%
∆ relative to Basecase % 90% - 79% 78% 79% 79% 78% 79%
Off-Peak Demand kW 111 135 304 291 316 369 369 235
∆ relative to Reference Case % - 21% 173% 162% 184% 231% 231% 111%
∆ relative to Basecase % -18% - 125% 115% 134% 173% 173% 74%
On-Peak Energy Consumption MWh 22 14 2 6 5 3 4 9
∆ relative to Reference Case % - -36% -90% -75% -76% -86% -83% -59%
∆ relative to Basecase % 57% - -84% -60% -63% -78% -74% -35%
Off-Peak Energy Consumption MWh 6 19 35 33 33 36 35 28
∆ relative to Reference Case % - 200% 446% 406% 409% 450% 437% 328%
∆ relative to Basecase % -67% - 82% 68% 69% 83% 79% 42%
Total Energy Consumption MWh 28 33 38 38 38 39 39 37
∆ relative to Reference Case % - 18% 33% 35% 35% 37% 36% 30%
∆ relative to Basecase % -15% - 13% 15% 14% 16% 15% 10%
On-Peak Energy Charge $ $4,369 $2,786 $445 $1,106 $1,032 $618 $732 $1,809
∆ relative to Reference Case % - -36% -90% -75% -76% -86% -83% -59%
∆ relative to Basecase % 57% - -84% -60% -63% -78% -74% -35%
Off-Peak Energy Charge $ $324 $974 $1,771 $1,641 $1,650 $1,783 $1,743 $1,387
∆ relative to Reference Case % - 200% 446% 406% 409% 450% 437% 328%
∆ relative to Basecase % -67% - 82% 68% 69% 83% 79% 42%
Total Energy Charge $ $4,693 $3,760 $2,216 $2,747 $2,681 $2,401 $2,475 $3,196
∆ relative to Reference Case % - -20% -53% -41% -43% -49% -47% -32%
∆ relative to Basecase % 25% - -41% -27% -29% -36% -34% -15%

Predictive Optimal Control of Active and Passive Storage

 
 

Similar trends can be identified for Chicago, IL as shown in Table 9. However, in this case all bin predictors 
appear to perform similarly well. Yet, it is the 60-day bin predictor that leads to the lowest violation of the 
target demand charge. For this location, the target demand is 0.95*159 = 151 kW. While the perfect predic-
tor honors that constraint, all other predictors lead to demand charges in excess of 151 kW. Of these, the 
excess demand for the 60-day predictor is only 2 kW. 

 

Table 9: Monthly total electrical utility cost comparison for Chicago, IL 

Case Units Reference Case Basecase
Predictor None None Perfect Yesterday 7day Bin 30day Bin 60day Bin Random Walk
On-Peak Demand kW 237 159 151 156 155 158 153 166
∆ relative to Reference Case % - -33% -36% -34% -35% -33% -35% -30%
∆ relative to Basecase % 49% - -5% -2% -3% -1% -4% 5%
Off-Peak Demand kW 214 238 243 270 334 265 264 333
∆ relative to Reference Case % - 11% 13% 26% 56% 24% 11% 55%
∆ relative to Basecase % -10% - 2% 13% 40% 11% 9% 39%
On-Peak Energy Consumption MWh 43 41 28 32 31 31 31 35
∆ relative to Reference Case % - -5% -34% -26% -28% -27% -28% -18%
∆ relative to Basecase % 6% - -31% -22% -24% -23% -24% -13%
Off-Peak Energy Consumption MWh 13 17 34 29 31 31 31 26
∆ relative to Reference Case % - 31% 163% 125% 138% 138% 139% 96%
∆ relative to Basecase % -23% - 102% 72% 82% 82% 83% 50%
Total Energy Consumption MWh 56 58 63 61 62 62 62 61
∆ relative to Reference Case % - 3% 12% 9% 11% 11% 11% 9%
∆ relative to Basecase % -3% - 9% 6% 8% 8% 8% 6%
Demand Charge $ $2,370 $1,592 $1,511 $1,555 $1,545 $1,580 $1,530 $1,664
∆ relative to Reference Case % - -33% -36% -34% -35% -33% -35% -30%
∆ relative to Basecase % 49% - -5% -2% -3% -1% -4% 5%
On-Peak Energy Charge $ $8,579 $8,116 $5,640 $6,378 $6,205 $6,226 $6,178 $7,047
∆ relative to Reference Case % - -5% -34% -26% -28% -27% -28% -18%
∆ relative to Basecase % 6% - -31% -21% -24% -23% -24% -13%
Off-Peak Energy Charge $ $652 $851 $1,715 $1,467 $1,549 $1,549 $1,560 $1,278
∆ relative to Reference Case % - 31% 163% 125% 138% 138% 139% 96%
∆ relative to Basecase % -23% - 102% 72% 82% 82% 83% 50%
Total Energy Charge $ $9,231 $8,966 $7,356 $7,845 $7,754 $7,775 $7,738 $8,324
∆ relative to Reference Case % - -3% -20% -15% -16% -16% -16% -10%
∆ relative to Basecase % 3% - -18% -13% -14% -13% -14% -7%
Total Cost $ $11,601 $10,559 $8,866 $9,400 $9,299 $9,355 $9,268 $9,989
∆ relative to Reference Case % - -9% -24% -19% -20% -19% -20% -14%
∆ relative to Basecase % 10% - -16% -11% -12% -11% -12% -5%

Predictive Optimal Control of Active and Passive Storage

 
 

It turned out that Denver, CO is a significantly milder location with lower reference case on-peak demands. 
Consequently, the system was downsized to a base chiller of 150 kW instead of 250 kW of cooling capacity 
as shown in Table 6. The active thermal storage capacity and associated chiller were not altered. The savings 
from the investigated control strategy are generally slightly lower, 20% instead of 24% for the perfect pre-
diction case. Again, the 60-day bin predictor most closely observed the target demand limit of 0.95*137 kW 
= 130 kW and led to near-optimal savings performance. 
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Table 10: Monthly total electrical utility cost comparison for Denver, CO 

Case Units Reference Case Basecase
Predictor None None Perfect Yesterday 7day Bin 30day Bin 60day Bin Random Walk
On-Peak Demand kW 177 137 130 138 139 141 138 178
∆ relative to Reference Case % - -23% -27% -22% -21% -20% -22% 0%
∆ relative to Basecase % 29% - -5% 1% 2% 3% 1% 30%
Off-Peak Demand kW 168 181 237 359 384 323 277 297
∆ relative to Reference Case % - 8% 41% 114% 129% 93% 53% 77%
∆ relative to Basecase % -7% - 31% 99% 112% 79% 17% 65%
On-Peak Energy Consumption MWh 41 36 28 29 29 29 28 36
∆ relative to Reference Case % - -13% -31% -28% -29% -30% -30% -12%
∆ relative to Basecase % 15% - -21% -18% -18% -20% -20% 1%
Off-Peak Energy Consumption MWh 11 20 31 30 30 30 30 20
∆ relative to Reference Case % - 72% 168% 161% 163% 164% 162% 79%
∆ relative to Basecase % -42% - 56% 51% 53% 53% 52% 4%
Total Energy Consumption MWh 52 55 59 59 59 59 58 56
∆ relative to Reference Case % - 6% 12% 13% 13% 12% 12% 8%
∆ relative to Basecase % -5% - 6% 7% 7% 6% 6% 2%
Demand Charge $ $1,774 $1,370 $1,302 $1,381 $1,393 $1,412 $1,379 $1,782
∆ relative to Reference Case % - -23% -27% -22% -21% -20% -22% 0%
∆ relative to Basecase % 29% - -5% 1% 2% 3% 1% 30%
On-Peak Energy Charge $ $8,181 $7,117 $5,615 $5,855 $5,826 $5,705 $5,688 $7,167
∆ relative to Reference Case % - -13% -31% -28% -29% -30% -30% -12%
∆ relative to Basecase % 15% - -21% -18% -18% -20% -20% 1%
Off-Peak Energy Charge $ $570 $983 $1,530 $1,486 $1,498 $1,507 $1,496 $1,021
∆ relative to Reference Case % - 72% 168% 161% 163% 164% 162% 79%
∆ relative to Basecase % -42% - 56% 51% 52% 53% 52% 4%
Total Energy Charge $ $8,752 $8,100 $7,144 $7,340 $7,324 $7,212 $7,185 $8,188
∆ relative to Reference Case % - -7% -18% -16% -16% -18% -18% -6%
∆ relative to Basecase % 8% - -12% -9% -10% -11% -11% 1%
Total Cost $ $10,525 $9,470 $8,446 $8,722 $8,717 $8,623 $8,564 $9,970
∆ relative to Reference Case % - -10% -20% -17% -17% -18% -19% -5%
∆ relative to Basecase % 11% - -11% -8% -8% -9% -10% 5%

Predictive Optimal Control of Active and Passive Storage

 
 

Finally, Omaha, Nebraska was found to be associated with theoretical maximum savings of 23% for the per-
fect prediction case, which is similar to Phoenix and Chicago. However, unlike the other locations, the 7-day 
bin predictors best honors the target demand limit of 0.95*159 kW = 151 kW. In fact, the 30-day bin predic-
tor leads to slightly lower total energy charges than the perfect predictor. This is possible because it uses an 
electrical demand margin above the target demand limit that is actually not available for use. Inspection of 
the on-peak electrical demand revealed that the violation is a one-time occurrence in the month of July. 

Table 11: Monthly total electrical utility cost comparison for Omaha, NE 

Case Units Reference Case Basecase
Predictor None None Perfect Yesterday 7day Bin 30day Bin 60day Bin Random Walk
On-Peak Demand kW 224 159 151 161 155 163 171 170
∆ relative to Reference Case % - -29% -33% -28% -31% -27% -24% -24%
∆ relative to Basecase % 41% - -5% 1% -2% 2% 7% 7%
Off-Peak Demand kW 235 243 242 242 246 236 244 309
∆ relative to Reference Case % - 3% 3% 3% 5% 1% 0% 32%
∆ relative to Basecase % -3% - 0% 0% 2% -3% 0% 28%
On-Peak Energy Consumption MWh 44 41 29 29 29 29 29 34
∆ relative to Reference Case % - -8% -35% -34% -35% -35% -35% -23%
∆ relative to Basecase % 9% - -29% -28% -29% -29% -29% -16%
Off-Peak Energy Consumption MWh 14 20 37 38 37 37 37 31
∆ relative to Reference Case % - 47% 166% 171% 171% 170% 171% 125%
∆ relative to Basecase % -32% - 81% 85% 85% 84% 84% 54%
Total Energy Consumption MWh 58 61 66 67 66 66 66 65
∆ relative to Reference Case % - 5% 13% 15% 14% 14% 14% 12%
∆ relative to Basecase % -4% - 8% 10% 9% 8% 9% 7%
Demand Charge $ $2,241 $1,592 $1,511 $1,607 $1,553 $1,629 $1,705 $1,700
∆ relative to Reference Case % - -29% -33% -28% -31% -27% -24% -24%
∆ relative to Basecase % 41% - -5% 1% -2% 2% 7% 7%
On-Peak Energy Charge $ $8,874 $8,129 $5,785 $5,871 $5,774 $5,749 $5,806 $6,839
∆ relative to Reference Case % - -8% -35% -34% -35% -35% -35% -23%
∆ relative to Basecase % 9% - -29% -28% -29% -29% -29% -16%
Off-Peak Energy Charge $ $692 $1,016 $1,839 $1,876 $1,874 $1,869 $1,873 $1,560
∆ relative to Reference Case % - 47% 166% 171% 171% 170% 171% 125%
∆ relative to Basecase % -32% - 81% 85% 85% 84% 84% 54%
Total Energy Charge $ $9,566 $9,145 $7,623 $7,747 $7,649 $7,618 $7,680 $8,399
∆ relative to Reference Case % - -4% -20% -19% -20% -20% -20% -12%
∆ relative to Basecase % 5% - -17% -15% -16% -17% -16% -8%
Total Cost $ $11,807 $10,737 $9,134 $9,354 $9,201 $9,246 $9,385 $10,100
∆ relative to Reference Case % - -9% -23% -21% -22% -22% -21% -14%
∆ relative to Basecase % 10% - -15% -13% -14% -14% -13% -6%

Predictive Optimal Control of Active and Passive Storage

 
 

3.4.2 Description of Control Strategies 

Figure 15 shows the average zone temperature over all 15 zones for July 2 in Denver, Colorado. The thick 
lines represent the upper and lower temperature bounds for the operation of the office building on a week-
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day. It can be seen that under perfect and same-as-yesterday prediction the building is precooled to a rela-
tively constant value of 22-23°C zone temperature averaged over all 15 zones. Using the 30-day bin predic-
tor, precooling before occupancy is not as pronounced as for the perfect case but similar for the evening 
hours following occupancy. The random walk predictor recommends spurious cooling below the cooling set-
point during occupancy and very little precooling during the night before and after occupancy compared to 
the base case and reference cases without passive storage utilization. Obviously, the predictive optimal con-
troller makes very poor control decisions given this exceedingly crude predictor. 
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Figure 15: Average Zone Temperature Profiles for Denver, CO 

The inventory of state-of-charge of the active storage is shown in Figure 16 from midnight to midnight on 
July 2 for those strategies involving active storage, i.e., not the reference case. For the base case with active 
storage under chiller-priority control, the storage is fully charged during off-peak hours and discharged to 
about 63% during the day. Under perfect prediction, the storage remains empty until 4 AM. Thereafter, the 
storage is charged for five hours to about 45% state-of-charge. Both, same-as-yesterday and 30-day bin pre-
dictors begin recharging earlier and to higher terminal states-of-charge at the beginning of the on-peak pe-
riod. In all cases, the entire active storage is used over the extent of the on-peak period and the active storage 
tanks are depleted at the end of the on-peak period. Even under random walk weather prediction, the same 
conclusions hold, except that the TES system is not charged as much (42%) as for the other cases and re-
charging occurs in the early evening hours already. The conclusion we can draw from this is that the predic-
tive controller makes robust decisions even when furnished with highly inferior weather forecasts. 
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Figure 16: Active Storage State-of-Charge Profiles for Denver, CO 

Finally, reducing on-peak electrical demand is a highly desirable side effect and often the dominant reason for 
shifting expensive on-peak cooling loads to off-peak periods as can be seen in Figure 17. While the base case 
with active storage under chiller-priority control already reduces the demand by 15% relative to the reference 
case without storage for this particular day, the combined optimization lowers the overall demand by about 
36%. Of course, the demand reduction during any one day has little bearing on the demand reduction dur-
ing the peak day of the billing period. Predictive optimal control using a random walk predictor proves to be 
less effective in terms of shifting on-peak loads to off-peak periods. 
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Figure 17: Total Building Electrical Demand Profiles for Denver, CO 

3.5 Conclusions and Future Work 
In this chapter we evaluated the benefits of combined optimal control of both passive building thermal ca-
pacitance and active thermal energy storage systems to minimize total utility cost in the presence of forecast-
ing uncertainty in the required short-term weather forecasts. 

Selected short-term weather forecasting models were introduced and investigated with respect to their fore-
casting accuracy as measured by RMS error, mean bias error, and the coefficient of variation. The most com-
plex model, a seasonal autoregressive integrated moving average (SARIMA) exhibited the worst performance, 
followed by a static predictor model that references standard weather archives (TMY). The best prediction 
accuracy was computed for the bin models that develop a characteristic daily profile from observations col-
lected over the past 30 or 60 days, followed by those that look back only 7 days. The model that projects 
yesterday’s patterns one day into the future, proved to be a surprisingly poor predictor. 

Next, we tested the predictor models in the context of the predictive optimal control task that optimizes 
building global temperature setpoints and active thermal energy storage charge/discharge rates in a closed-
loop mode. For the four locations investigated in this parametric study, Chicago, IL, Denver, CO, Omaha, NE, 
and Phoenix, AZ, it was determined that the 30-day and 60-day bin predictor models lead to utility cost sav-
ings that are only marginally inferior compared to a hypothetical perfect predictor that perfectly anticipates 
the weather during the next planning horizon. Both same-as-yesterday and 7-day bin forecasting models per-
formed significantly worse. The random walk predictor, assuming the current weather to remain constant 
over the extent of the planning horizon, served as a benchmark for the other predictors. Interestingly, in 
three out of four locations the random walk predictor led to utility cost savings that were higher than the 
base case of a building with thermal storage controlled by chiller-priority control. 

In summary, the predictive optimal control of active and passive building thermal storage inventory using 
time-of-use electrical utility rates with significant on-peak to off-peak rate differentials and demand charges, 
appears to be a promising building control strategy when perfect weather forecasts are available. The good 
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news is that it takes only very simple short-term prediction models to realize almost all of the potential of this 
technology. The next chapter will assess the impact of modeling accuracy, i.e., to find out how accurately the 
building under predictive control has to be represented in the building model. Upon the completion of this 
next chapter, lab and field experimentation will be described to support the simulation results. 
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4 Phase 1: Analysis – Impact of Modeling Accuracy 

4.1 Abstract 
This chapter evaluates the impact of modeling accuracy on the model-based closed-loop predictive optimal 
control of both passive building thermal capacitance and active thermal energy storage systems to minimize 
utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial 
building, the deviation of building geometry and zoning from the reference building only marginally affects 
the optimal control strategy; reasonable simplifications are acceptable without loss of cost savings potential. 
Building construction characteristics determine the building passive thermal storage capacity. Zone tempera-
ture setpoints are affected more than TES operation by this construction mismatch, and a loss of cost savings 
potential is found in some cases. It is advisable to make sure the construction material is well modeled. Zone 
temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat 
gains, especially when they are underestimated. Since they are a key factor determining the building cooling 
load, efforts should be invested to keep the internal gain mismatch as small as possible. Efficiencies of the 
building energy systems have no direct impact on building cooling load, but they affect both zone tempera-
ture setpoints and active TES operation because of the coupling of the base chiller and the TES chiller. Rela-
tive efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. Mis-
match in this category may be significant. To avoid critical modeling mismatch, system identification tech-
niques may be useful in improving the modeling process.  

 

4.2 Introduction 
This chapter evaluates the impact of modeling accuracy on the predictive optimal control of both passive 
building thermal capacitance and active thermal energy storage systems to minimize an objective function of 
choice including total energy consumption, energy cost, occupant discomfort, or a combination thereof.  

The accuracy of the building model used for the model-based optimal control relative to the actual building 
behavior is of great importance to the quality of the optimal strategy. The modeling process entails the truth-
ful representation of the actual characteristics of a specific building. Modeling accuracy may be increased by 
either improving the simulation program itself or by accurately collecting data and information on the build-
ing to be modeled. However, it is impossible and impractical to collect complete, accurate information for 
modeling purposes. Some degree of mismatch is unavoidable with respect to building geometry, construction 
material properties, internal heat gain, and performance characteristics of the building energy systems. There-
fore, it is important to quantify the impact of various modeling mismatches on predictive optimal control. 
Investigations have been carried out in five different categories of modeling mismatch that are likely to occur 
in the modeling process. This chapter summarizes and analyzes the results and provides a comprehensive 
assessment and guidelines for modeling. 

 

4.3 Assumption and Restrictions 
There are two categories of factors affecting the model-based optimal control of the active and passive build-
ing thermal storage inventory. The building independent category includes climate, location and utility rate 
structure. These are factors that cannot be changed or manipulated. They cannot be mismatched in the op-
timization simulation. The building dependent category includes all aspects related to building modeling. In 
the simulation environment, the building model is generated by the user in the form of an input file where 
mismatches occur. It is important to know what happens if a mismatched model is employed in the context 
of real-time control and its “optimal” result is applied to the real building. In this chapter, model-related fac-
tors are summarized into the following five categories of parameters:  

1. Geometry  

2. Zoning 

3. Construction materials including external and internal construction 
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4. Internal heat gains including light, equipment and occupancy 

5. Characteristics of the plant including the base chiller and TES system 

In order to focus on these factors only, all building independent factors (e.g., climate, location and utility rate) 
are kept the same in all simulation cases. Table 12 lists the building independent factors. 

Table 12: Summary of building independent factors in the simulation cases 

Location Phoenix, AZ 

Weather Phoenix, AZ, TMY2 file used in the simulation 

Utility rate structure 

On-peak period: 9 a.m. – 6 p.m. 

On-peak energy rate: 0.20 $/kWh 

Off-peak energy rate: 0.05 $/kWh 

On-peak demand rate: 10.00 $/kW 

Off-peak demand rate: 0.00 $/kW 

 
To examine the effects of model variation on optimization, the weather data file has been modified. Ten 
identical days are generated by repeating the weather patterns of July 21 ten times from July 21 to 30, thus 
eliminating the effects of weather variation on the optimization. Another consideration is the thermal history 
of the building. Zhou et al. (2003) [50] pointed out that different assumptions of the thermal history could 
generate widely different results during the early part of the simulation. To eliminate the start-up effects on 
the optimization mentioned above, all simulations in this analysis are conducted from July 21 to 30, but re-
sults from the beginning will not be considered and presented in the following discussion. 

 

4.4 Definition of Terms 
Before implementing the predictive optimal controller in a field or lab application, simulation studies were 
carried out to analyze the impact of the five categories of modeling variations listed above. Two simulation 
environments were set up: the first one was used to carry out the optimization for all simulation cases using 
the mismatched models. After the optimal solution was generated by the first simulation environment, the 
optimal strategy in the form of hourly zone temperature setpoints (passive storage) and TES charge/discharge 
rates (active storage) was applied in the second simulation environment. Here, a reference building model 
carried out the simulation (without optimization) and the associated results including cost and energy con-
sumption were calculated. This second environment was meant to represent the application of the controller 
in a real building.  

 

4.4.1 Execution Model 
The execution model (EM) represents the real building and is intended to execute the optimal strategy previ-
ously found by the optimizer to calculate the energy cost and other related simulation results. In this analysis, 
the EM represents a one-story office building with five thermal zones. The building is occupied from 8:00 
a.m. to 5:00 p.m. with 0.1 person/m2 and 45 W/m2 of internal heat gain. 

 

4.4.2 Planning Model 
The planning model (PM) refers to the mismatched building model used in the optimization simulation envi-
ronment. Figure 18 gives an overview of the planning models for the five categories of mismatch. 
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Figure 18: Overview of the execution model and planning models 

For a specific building, model accuracy decreases with the number of parameter categories that vary from the 
execution model. In the perfect match case, the planning model is identical to the execution model. Although 
optimization results calculated using this model are considered as a theoretical benchmark, the existence of 
local minima means the results are not necessarily the best of all the planning models. All other optimization 
results of mismatch planning models will be compared with the perfect match case, and the deviations will 
be identified.  

 

4.4.3 Cost Savings Ratio 
Since the analysis in this chapter is based on the comparison of daily optimal results of different planning 
models, daily energy cost is selected as the objective function in the optimizations; demand cost is not in-
cluded in this analysis. The saving potential of each planning model is discussed in terms of a cost savings 
ratio (CSR). The optimal control strategy generated by each planning model will be applied to the execution 
model; cost savings are calculated by comparing the cost with those of conventional nighttime setback con-
trol. Cost savings achieved by optimization of the perfect match model are considered as the benchmark 
value. The cost savings ratio (CSR) of each planning model is defined as the ratio of cost savings achieved by 
the planning model compared to the benchmark value.  

Before investigating the mismatched planning models, simulations of conventional nighttime setback control 
and optimization of the perfect match planning model were carried out. Table 13 gives the summary of en-
ergy consumption and cost savings of these two cases. 

 

Table 13: Summary of cost and energy consumption of night setback control and optimization of perfect 
match case 

Case Nighttime setback 
control 

Optimization of perfect 
match PM 

Daily energy consumption [kJ] (average) 5,048,878 5,154,819 

Daily energy cost [$] (average) 231.62 183.80 

Cost saving - 20.6% 

CSR - 100% 
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4.5 Analysis and Discussion 

4.5.1 Geometry 
One of the biggest improvements in building simulation software is the capability of visualizing the building 
model. Users can now generate a building model which closely mirrors the actual building. However, it is still 
impossible to accurately model every aspect of the building’s behavior. In addition, there is always a trade-off 
between the increased realism and cost of modeling efforts. As far as the optimal controller is concerned, we 
need to identify how much “realism” is required when setting up a building model and applying it to our 
optimization environment, and what kind of consequences result from a particular mismatch. 

In the analysis of the geometry category, the execution model (EM) is set up as a cross-shaped building with 
five zones. Mismatched planning models (PMs) vary in shape and area of fenestration. Figure 19 offers a 
schematic of the geometry of both EM and PM. 

 

 

Figure 19: Geometries of the original building and the simplified building model 

From Figure 19 we can see that in the geometry mismatched PM, the building shape is modeled as a simple 
box, which is the simplest representation of a building. Two simplification approaches were investigated. One 
approach was to keep the total external surface area the same as the original (referred to as PM-A in Figure 
20 and Figure 21), and the other approach was to keep the total volume constant (referred to as PM-V in 
Figure 20 and Figure 21). Figure 20 and Figure 21 compare the optimization results for three consecutive 
days between the perfect matched model and the mismatched PMs. 
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Figure 20: Optimization zone temperature setpoint profiles for the perfect match model case and two ge-
ometry simplification PMs 
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Figure 21: Optimization TES charging/discharging profiles for the perfect match model case and two geome-
try simplification PMs 

From Figure 19 and Figure 20 we can see that the simplifications of the building geometry result in a limited 
variation of the optimal results for the zone temperature setpoints and thermal energy storage (TES) opera-
tion. For TES optimization, variation of the geometry appears to be irrelevant because the optimal profiles of 
the three cases are nearly identical. The differences in zone temperature setpoints between the perfect match 
model and the two geometry simplification PMs primarily occur during the precooling period. In terms of the 
profile of the perfect match model, geometry simplification with constant total external surface area appears 
to provide greater “similarity”. Another noticeable effect is the instability in the profile of the PMs. Over a 
ten-day period of identical simulations, the optimizer usually finds a consistent pattern for the optimization 
after several days. However, as shown in the results of the PMs above, the optimal zone temperature setpoint 
profiles differ from day to day. This also happens in several other cases, but the magnitude of the daily varia-
tion is limited. Table 15 gives the summary of energy consumption and CSR of these two PMs. 

 

Table 14: Summary of cost and energy consumption of geometry mismatched PMs  

Case PM-A PM-V 

Daily energy consumption [kJ] 5,193,731 5,233,801 

Daily energy cost [$] 184.43 185.58 

Cost saving 20.38% 19.88% 

CSR 98.68% 96.26% 
 

The area of fenestration is a key factor in determining the cooling load caused by direct solar radiation intro-
duced through the fenestration. Two planning models representing overestimated and underestimated total 
fenestration area by 50% were investigated. The optimization results do not show significant differences 
compared to the perfect match model. Our investigations of the building geometry variation yield the follow-
ing two conclusions: 

• Geometry mismatch in the building model leads to only minor deviations in the solution of predictive 
optimal control. 

• Deviations caused by geometry mismatch have a greater effect on zone temperature setpoints than 
on TES operation. 
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4.5.2 Zoning 
A building zone is normally defined as a space controlled by an individual thermostat. In most applications, 
the zoning of the building mirrors the layout of the building construction. For a typical office building, which 
is the application that the predictive optimal controller aims at, most spaces are designed for the same pur-
pose and the required indoor air conditions are similar. When applying predictive optimal control, the ther-
mostat setpoints of all building zones are controlled by a single optimal controller. In this case, a straightfor-
ward simplification of the building model is to combine all the physical zones of the building into a single 
thermal zone.  

In this section, two possible simplifications of building zoning are investigated. The first approach simply 
combines all of the spaces in the building into one zone without considering the internal structure and fur-
nishing. The other approach is based on the first one, but an artificial internal structural object has been 
added into the space to represent the internal structure and furnishing of the real building. Figure 22 illus-
trates these two approaches.  

 

Figure 22: Schematics of zoning simplifications 
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Figure 23: Optimal zone temperature setpoint profiles for perfect match model case and two zoning simplifi-
cation PMs 
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Figure 24: Optimal thermal energy storage charge/discharge profiles for perfect match model case and two 
zoning simplification PMs 

Figure 23 and Figure 24 compare the optimal results of two zoning simplified planning models and the per-
fect match model. From the figures above, we can see that simplification of building zoning affects both the 
optimization of zone temperature setpoints and TES operation. Both simple zone planning models result in 
lower zone temperature setpoints during the precooling period. Instability also occurs in the simple zone 
planning model with internal structure, which generates a discharging strategy that is different compared 
with the planning model without the internal structure. Adding internal structure changes the cooling load 
profile by providing more thermal capacitance, which delays the occurrence of the peak cooling load.  

In this analysis, the execution model has limited internal structure; thus the addition of internal structure does 
not allow the zoning simplified model to match the load profile of the execution model. Consequently, false 
information is given to the controller, leading to improper operation of the active storage (TES) system. Most 
office buildings have significant internal structure. This affects their cooling load profile, especially with re-
spect to the peak cooling load. When system identification techniques are applied to properly estimate the 
internal structure, better modeling can be expected.  

Table 15: Summary of cost and energy consumption of zoning mismatched PMs 

Case PM without internal structure PM with internal structure 

Daily energy consumption [kJ] 5,142,997 5,250,857 

Daily energy cost [$] 182.29 185.47 

Cost saving 21.30% 19.92% 

CSR 103.16% 96.49% 

 

Table 15 provides a summary of the energy consumption and CSR of the zoning simplification models. It is 
interesting to see that the first planning model achieves even higher savings than the perfect model. The re-
sults for the simplified planning model imply that decreasing complexity of the building model simplifies the 
optimization task and reduces the chance of being caught in a local minimum. Computation time in the first 
planning model is also reduced by an average of one third compared with the perfect match model. 
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4.5.3 Construction Material 
Prior research has demonstrated that the thermal storage potential of buildings depends on building con-
struction characteristics. The heavier the weight, the more thermal storage can be achieved. In this section, 
the impact of external and internal construction materials on energy optimization potential is investigated. 
External and internal construction materials are divided into three classes based on mass: heavy, medium, and 
light. Section 4.8 lists details of the construction material of the building model. The execution model uses 
medium level construction materials. By combining different mass level of external and internal constructions, 
eight planning models have been set up to cover all possibilities of mismatch in the building construction 
category. Table 16 lists the mismatched PMs and the simulation results. 

Table 16: Summary of construction mismatched PMs  

PMs PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 

External construction Light Heavy Normal Normal Light Heavy Light Heavy 

Internal construct Normal Normal Light Heavy Light Heavy Heavy Light 

Average precooling  
temperature 

17.64 19.03 18.48 19.08 17.89 20.85 18.16 19.55 

Average daily energy  
cost 

183.73 185.9 184.17 184.65 184.44 186.86 184.40 187.60 

Cost savings 20.68% 19.74% 20.49% 20.28% 20.37% 19.33% 20.39% 19.01% 

CSR 100.15% 95.61% 99.23% 98.21% 98.65% 93.59% 98.74% 92.04% 

 
The simulation results show that mass level variation has an effect on optimization results. All planning model 
optimal temperature setpoint profiles have the same pattern as the perfect match model. Zone temperature 
setpoints are affected mostly during the precooling period. Table 16 lists the average precooling tempera-
tures of each planning model during the ten-day simulation. The results show that the precooling tempera-
ture varies according to the mass level; the lighter the weight of construction, the lower the setpoint needed. 
Because more thermal capacitance is available with heavy construction, the building does not need to be 
cooled down as much to shift the on-peak cooling load to off-peak time periods. The zone temperature set-
point optimization appears to be more sensitive to the mass level of the external construction because the 
external structure dominates in our analysis.  

Active storage charging profiles are not affected, however, discharging rate profiles change with variations in 
cooling load profiles caused by variations in construction weight. As shown in Appendix 1, all construction 
mass levels have nearly identical thermal resistance. Different mass levels only shift the occurrence of the 
peak cooling load; correspondingly, the optimizer shifts the discharging strategy to level the cooling load.  
When the optimal strategy of the planning models is applied to the execution model, most cases show lower 
cost savings than the perfect match model. The optimizer incorporates erroneous information about the mass 
level of the building and subsequently develops erroneous precooling and discharging strategies. However, 
PM1 achieves even higher savings than the perfect match model. By underestimating the mass level of the 
internal structure, the optimizer further lowers the precooling zone temperature setpoint, then shifts more 
load away from the on-peak time period. This is a unique phenomenon which cannot be extrapolated to 
other cases. If the setpoint is lowered even further, cost penalties will be incurred because more energy is 
consumed for precooling. Consequently, more costs are incurred than are saved by on-peak load reduction. 
In summary, a mismatch of construction material in the building model affects the optimal results of the set-
point and TES performance. The potential for cost savings decreases in most cases. 
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4.5.4 Internal Heat Gain 
In this section, the effect of building internal heat gain on the optimization results is investigated. Two plan-
ning models are devised, representing models with either overestimated or underestimated internal heat 
gains compared with the execution model. Table 17 lists the internal heat gain for these two planning models 
and the perfect match model. 

Table 17: Internal heat gains for investigated planning models 

PM Underestimated PM Perfect Match PM Overestimated PM 

Number of people [1/m2] 0.05 0.10 0.15 

Lighting power density [W/m2] 23 45 68 

 
Figure 25 and Figure 26 show the optimal results of these two planning models and the perfect match 
model.  
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Figure 25: Optimal zone temperature setpoint profiles for perfect match model and internal heat gain mis-
matched PMs 
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Figure 26: Optimal TES charging/discharging profiles for perfect match model and internal heat gain mis-
matched PMs 

Figure 25 and Figure 26 show that mismatch in internal heat gains strongly affects the optimal results. For 
the planning model with underestimated heat gains, the optimizer allows the zone temperatures to float up 
during most of the unoccupied time period and precools only slightly before the onset of occupancy. At the 
same time, the active storage is not fully charged because of underestimated cooling loads. On the other 
hand, in the overestimated scenario, the optimizer further lowers the zone temperature setpoints, fully 
charges the TES tank, and discharges faster than the perfect match model. Figure 27 shows the state-of-
charge of the TES tank in each case. 
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Figure 27: Optimization TES state of charge profiles in perfect-match model and internal heat gain mis-
matched PMs 

Table 18 provides an overview of cost savings and energy consumption of the internal heat gain mismatched 
planning models and the perfect match model. Obviously, the false information on internal gains leads to 
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significant cost penalties in the planning model with underestimated internal gains. The potential of building 
active and passive thermal storage cannot be fully utilized, even the total energy consumption is decreased 
compared with the perfect match case, but a cost penalty occurs because more energy is consumed during 
the on-peak time period. On the other hand, overestimating the internal heat gains encourages the building 
to be substantially precooled, fully utilizing the potential of TES and leading to higher cost savings in this 
case. It should also be noted that the energy consumption is slightly lower than in the perfect match case. 

Table 18: Summary of cost and energy consumption of internal heat gain mismatched PMs  

Case PM with underestimated 
internal heat gain 

PM with overestimated 
internal heat gain 

Daily energy con-
sumption [kJ] 

5,010,903 4,988,260 

Daily energy cost [$] 198.91 183.18 

Cost saving 14.13% 20.92% 

CSR 68.41% 101.30% 
 

4.5.5 Coefficient-of-Performance (COP) of the Plant 
Up to this point in our analysis, the mismatches we have investigated affect the optimal solution by changing 
the cooling load profile of the building. In this section, a mismatch in the energy system is investigated. This 
mismatch has no direct impact on the building cooling load, but is crucial for the optimizer to determine how 
to best utilize both active and passive building thermal storage potentials. The coefficients-of-performance 
(COP) of the plant, including the base chiller and the dedicated TES chiller, are selected to quantify the effi-
ciency of the entire central chilled water system. For each chiller, three COP values are established to repre-
sent high, medium and low efficiencies. The execution model is assumed to be equipped with two medium 
efficiency chillers representing the normal plant setting. Eight combinations of base chillers and TES chillers 
with varying efficiency levels have been set up to cover a wide range of mismatches (base chiller COP: high: 
5, medium: 4, low: 3; TES chiller COP: high: 3.5, medium: 3, low: 2.5). 

Table 19: List of planning models in energy system efficiency mismatch 

Planning 
Model 

PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 

COP of 

Base Chiller 

Low High Medium Medium Low High Low High 

COP of 

TES Chiller 

Medium Medium Low High Low High High Low 

 
The results show that efficiency mismatch of the energy system affects both the optimization of the zone 
temperature setpoints and the TES performance, and accurate modeling of the base chiller appears to be 
more important than that of the TES chiller. Figure 28 and Figure 29 show the optimal results of PM1 and 
PM2. 
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Figure 28: Optimal setpoint profiles for perfect match model and COP mismatched PMs 
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Figure 29: Optimal TES charging/discharging profiles in perfect match model and COP mismatched PMs 

In PM1 and PM2, the efficiency of the base chiller varies from low to high while the TES chiller COP remains 
constant. From Figure 28 and Figure 29 we can see that with improved base chiller efficiency (PM2), the 
optimizer lowers the precooling zone temperature setpoint because the optimizer assumes the building can 
store more cooling without an energy penalty. Because PM1 has a poor base chiller COP, zone temperature 
setpoints are usually higher from 1 a.m. to 7 a.m. than in the perfect match model. They do not rise as much 
as in the perfect match model and PM2 during the evening hours; instead, the optimizer chooses to keep 
down the zone temperature setpoints. As a result, the cooling load of PM2 during occupied times is usually 
lower than the perfect match case and PM1. With respect to the operation of the TES, all planning models 
charge the tank from 1 a.m. until the beginning of occupancy, the TES discharge strategies depend on the 
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planning models. For PM2, the TES performance does not change much compared with the perfect match 
model. But for PM1, the TES system operates from 7 p.m. until midnight, while it is dormant in both PM1 
and in the perfect match case. 

The same features were found in PM4 to PM8 where a mismatch in the base chiller efficiency exists. For PM3 
and PM4, not much difference was found compared with the solution of the perfect match case. This is be-
cause the precooling load is typically met by the base chiller; zone temperature setpoint profiles determine 
the cooling load profile of the building. Given a cooling load profile, the TES operates according to on-peak 
and off-peak time periods and charges and discharges as much as it can. Table 20 summarizes fractions of 
cooling load demand for the base chiller and TES chiller in each PM, where: 

=

=

Cooling demand for base chiller
Total cooling demand

Cooling demand for TES chiller
Total cooling demand

main

TES

F

F
 

Table 20: Summary of results of efficiency mismatched PMs 

PM 
Daily energy con-

sumption [kJ] 
Fmain FTES 

Daily energy 

cost [$] 
Cost saving CSR 

Perfect 

match 

model 

5,154,819 56.1% 43.9% 183.80 20.6% 100% 

PM1 5,452,680 55.8% 44.2% 186.2 19.6% 94.9% 

PM2 5,313,072 57.2% 42.8% 186.86 19.33% 93.6% 

PM3 5,144,993 56.7% 43.3% 186.07 19.67% 95.25% 

PM4 5,169,963 55.3% 44.7% 183.47 20.79% 100.68% 

PM5 5,257,110 57.3% 42.7% 185.50 19.92% 96.45% 

PM6 5,313,072 57.2% 42.8% 186.86 19.33% 93.60% 

PM7 5,634,867 52.8% 47.2% 187.82 18.91% 91.58% 

PM8 5,300,435 56.6% 43.4% 186.47 19.49% 94.41% 

      
From Table 20, it can be clearly seen that chiller efficiency affects the fraction of duty of each chiller in the 
optimizations. Cost penalties are induced by excessive precooling and/or improper operation of the TES. The 
highest cost savings lost occur in PM7 when the base chiller efficiency is underestimated and that of the TES 
chiller is overestimated. It is also found that the total energy consumption increases when the efficiency is 
mismatched, especially in the case of the base chiller. 

 

4.6 Conclusions 
This chapter investigated the impact of five categories of building modeling mismatch on the performance of 
model-based closed-loop predictive optimal control of active and passive building thermal storage. Based on 
the simulation results, the following conclusions are reached: 

For an internal heat gain dominated commercial building, the deviation of building geometry and zoning 
from the reference building only marginally affects the optimal control strategy. These factors should be con-
sidered secondary elements in the building modeling process; reasonable simplifications are acceptable with-
out loss of cost savings potential. In fact, zoning simplification may be an efficient way to improve the opti-
mizer performance and save computation time. The mass of the internal structure did not show a strong ef-
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fect on the optimization in our simulation analysis; however, it did change the building cooling load profile, 
which in turn will affect the operation of the active storage system. 

Building construction characteristics were found to impact building passive thermal storage capacity. Zone 
temperature setpoints are affected more than TES operation by the construction mismatch, and a loss of cost 
savings potential was found in some cases. It is advisable to make sure the construction material is well mod-
eled. 

Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat 
gains, especially when they are underestimated. Since they are a key factor in determining the building cool-
ing load, efforts should be made to keep the internal gain mismatch as small as possible. 

Efficiencies of the building energy systems have no direct impact on building cooling load, but they affect 
both zone temperature setpoints and active TES operation because of the coupling of the base chiller and the 
TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the 
two chillers. Mismatch in this category may be significant. 

 Field experimentation is needed to validate the conclusions derived in this simulation analysis. To avoid criti-
cal mismatch, system identification techniques may be useful in improving the modeling process.  

4.7 References 
[50] Zhou, G., P. Ihm, M. Krarti, S. Liu, and G.P. Henze (2003) “Integration of Optimization Routines 

Within EnergyPlus”, Proceedings of the Eighth International IPBSA Conference Building Simulation 
2003, pp. 1475-1482, Eindhoven, Netherlands. 

 

4.8 Appendix: Material Properties 
Table 21: Construction Material Summary 

External wall     

  Heavy Medium Light 

Thickness [mm] 320.00 270.00 270.00 

Thermal conductivity [W/(m*K)] 0.10 0.09 0.08 

Density [kg/m3] 1348.09 1176.63 562.11 

Specific heat [kJ/(kg*K)] 0.84 0.84 0.84 

Thermal resistance [(m2*K)/W] 3.08 3.06 3.26 

Mass [kg/m2] 431.39 317.69 151.77 

Roof     

  Heavy Medium Light 

Thickness [mm] 273.00 173.00 173.00 

Thermal conductivity [W/(m*K)] 0.20 0.13 0.12 

Density [kg/m3] 1767.88 1472.49 513.41 

Specific heat [kJ/(kg*K)] 0.88 0.91 1.05 

Thermal resistance [(m2*K)/W] 1.35 1.29 1.50 

Mass [kg/m2] 482.63 254.74 88.82 

Partition wall     

  Heavy Medium Light 

Thickness [mm] 240.00 140.00 140.00 

Thermal conductivity [W/(m*K)] 1.42 1.26 0.44 

Density [kg/m3] 2155.29 2067.00 881.86 

Specific heat [kJ/(kg*K)] 0.84 0.84 0.84 

Thermal resistance [(m2*K)/W] 0.17 0.11 0.32 

Mass [kg/m2] 517.27 289.38 123.46 
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Phase 1: Analysis – Parametric Study 

4.9 Abstract 
A parametric study is presented in this chapter and documented in [51] utilizing an EnergyPlus-based simula-
tion environment to assess the effects of building mass, electrical utility rates, season and location, econo-
mizer operation, central plant size, and thermal comfort. The findings reveal that the cooling-related on-peak 
electrical demand and utility cost of commercial buildings can be substantially reduced by harnessing both 
thermal storage inventories using optimal control for a wide range of conditions. 

 

4.10 Introduction 
This chapter systematically evaluates the merits of combined optimal control of both passive building thermal 
capacitance and active thermal energy storage systems to minimize an objective function of choice including 
total energy consumption, energy cost, occupant discomfort, or a combination of these. The evaluation is 
conducted by means of a parametric analysis utilizing a simulation environment developed using the state-of-
the-art simulation program EnergyPlus. In the analysis, the effects of building mass, electrical utility rates, 
building location and climate, chiller and tank capacities, and economizer operation on the cost and energy 
performance of a commercial building are assessed. 

Control of both active and passive thermal storage systems describes the process of shaping and shifting the 
cooling load from daytime to nighttime hours by charging and discharging the two available thermal storage 
batteries. Knowledge of the active TES system performance, the passive storage behavior, and building en-
ergy system characteristics is crucial to ensure the successful design, installation, and operation of this load-
shifting technology. Therefore, this chapter studies the impact of selected parameters on the energy and cost 
saving performance of a prototypical commercial building under utility cost minimizing optimal control mod-
eled using the building simulation program EnergyPlus. 

 

4.11 Description of the Analysis 

4.11.1 Building Energy Simulation Environment 
The simulation environment used for this investigation is based on EnergyPlus. In particular, the simulation 
environment consists of a detailed TES model and optimization routines internally integrated into EnergyPlus. 
EnergyPlus is built on the most popular features and capabilities of BLAST and DOE-2 while including many 
innovative simulation capabilities such as time steps of less than an hour, modular systems and plant inte-
grated with heat balance-based zone simulation, multi-zone air flow, thermal comfort, and photovoltaic sys-
tems. It is a valuable tool to simulate building energy flows and study the controls of building mechanical 
systems to save both building energy consumption and costs [51]. The implementation of the active building 
thermal storage system within EnergyPlus is documented in [53], while the overall optimization approach 
used by the simulation environment is documented in [50]. 

 

4.11.2 Investigated Building 
Throughout the analysis presented in this chapter, we consider a three-story office building as shown in 
Figure 1 with five thermal zones per floor, i.e., 15 thermal zones in total. The perimeter zones have an area of 
288 m2 each, while the core zone has an area of 576 m2. Total area per floor is thus 1,728 m2 and the build-
ing total is 5,184 m2. Peak building occupancy is 12 m2/person. Each office worker contributes 132 W of in-
ternal gain, where 54% are assumed to be sensible and 46% latent. Peak lighting density is 20 W/m2, 
equipment power density is 21.7 W/m2, i.e., the total electrical power density is 41.7 W/m2. The occupancy 
and lighting schedules for a weekday are shown in Figure 2, where hour 13 refers to the hour from 12 to 13. 
On weekends and holidays building occupancy is zero and lighting density is 5% of the peak value. 
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Counting the exterior envelope, floor, and ceiling surfaces, the building mass is approximately 1,000 kg/m2 of 
floor area, and thus can be considered heavy-weight construction. Table 22 shows the wall construction of 
the exterior walls, interior partitions, ceilings and floors for this heavy-mass case. 

Table 22: Construction of heavy-mass building 

Construction Name Layers (from outside to inside)

Exterior Wall ASHRAE Wall Type #28: 25mm stucco, 100mm insulation, 
300mm heavy weight concrete, 20mm plaster

Roof
ASHREA Roof Type #25: 12 mm slag/stone, 10 mm felt and 
mambrane, 100mm insulation, 150mm heavy weight concrete, 
air space and acoustic tile

Floor 300mm earth, 200mm heavy weight concrete

Ceiling 20mm plaster or gyp.board, 200mm heavy weight concrete, 
20mm plaster or gyp. board

Internal Wall 20mm plaster, 100mm heavy weight concrete, 20mm plaster
 

 

Three electrical utility rate structures are considered: strong-incentive rate, normal-incentive rate, and weak-
incentive rate. In the strong incentive rate, the energy cost is 0.05 $/kWh during off-peak periods and 0.20 
$/kWh during on-peak periods; the demand cost is 10 $/kW during on-peak periods and zero during off-peak 
periods. In the normal-incentive rate, the energy cost is 0.10 $/kWh during off-peak periods and 0.20 $/kWh 
during on-peak periods; the demand cost is 10 $/kW during on-peak periods and 5 $/kW during off-peak 
periods. Finally, in the weak-incentive rate, the energy cost is 0.20 $/kWh throughout the day and demand 
cost is same as in the normal incentive rate. The on-peak period is 9:00-18:00; the off-peak period is the rest 
of the day. 

A variable air volume HVAC system with terminal reheat is used to meet the cooling load. Zone temperatures 
are controlled by a dual setpoint with dead band controller. For conventional nighttime setback control, the 
system is off during the unoccupied hours and the indoor temperature is floating; the system is on during 
occupied hours (8:00-19:00) and keeps the indoor temperature at the higher limit of cooling setpoints of 
24°C.  

The outdoor air flow rate is controlled by a return air temperature based economizer that adjusts the outdoor 
air fraction from 0% to 100% by comparing the temperature of return air and outdoor air. At the same time, 
the outdoor air fraction must meet the schedule of minimal outdoor air fraction of 15% during occupied pe-
riods. 

The central plant is made up of one large base chiller and an ice-based active TES system. The base chiller is 
modeled as a constant-COP electrical chiller and meets all the cooling loads alone during nighttime setback 
controls. Its nominal capacity is 500 kW and COP is 4.5. The ice-based TES system is configured in parallel 
with the chiller. It is made up of a 1,500 kWh ice tank, a dedicated small chiller with a capacity of 250 kW 
and COP of 3.0 and its own dedicated cooling tower. In nighttime setback controls, the active thermal stor-
age system is dormant. Under optimal control, the active storage is controlled to be charged during off-peak 
hours and discharged during on-peak hours; the cooling load is met jointly by the base chiller and the active 
thermal energy storage. 

Three seasons of three locations are studied in this parametric study. These are winter (January 17), spring 
(April 2), and summer (July 20) in Phoenix, Arizona, Minneapolis, Minnesota, and Boulder, Colorado. The up-
dated typical meteorological year (TMY2) weather data is used. Table 23 summarizes the outdoor dry bulb 
temperature of these locations to give a brief summary of the weather. 
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Table 23: Dry-bulb temperatures during spring, summer and winter in Phoenix, Minneapolis and Boulder 

Min (C) Max (C) Average (C) Swing (C)
Phoenix 27.8 41.1 34.3 13.3
Minneapolis 16.7 26.7 22.7 10.0
Boulder 16.1 26.7 20.0 10.6
Phoenix 14.4 32.8 23.9 18.4
Minneapolis 15.0 24.4 19.8 9.4
Boulder -0.6 13.3 7.2 13.9
Phoenix 8.9 19.4 12.3 10.5
Minneapolis -7.8 1.1 -4.3 8.9
Boulder -7.2 -2.9 -4.8 4.3

Summer

Spring

Winter

 
 

4.11.3 Base Case Scenarios  
Before studying optimal combined thermal storage control, it is necessary to establish a reference case for 
comparison. This reference or base case is defined by the operation of the commercial building under night-
time setback control, i.e., no passive storage utilization, and non-optimized conventional active storage (TES) 
control. Conventional TES control includes storage-priority control or chiller-priority control. In storage-priority 
control, the ice tank is charged to 100% during the nighttime off-peak hours; during the on-peak hours, the 
building cooling load is met first by melting ice, and then, if the ice melting cannot providing enough cooling 
to meet the load, the base chiller is started to meet the remainder of the cooling load. Here, a 1,500 kWh ice 
tank and a 500 kW primary chiller are simulated. In chiller-priority control, during off-peak time, the ice tank 
is charged to 100% state-of-charge; during the on-peak hours, the building cooling load is first met by oper-
ating the primary chiller (the chiller can therefore be downsized); when the chiller cannot meet all of the cool-
ing load, the ice is melted to make up for the rest of the load. Here, a 1500 kWh ice tank and a downsized 
300 kW chiller are simulated. 

From the above description, it can be concluded that several important factors need to be determined for 
conventional TES controls to achieve cost savings. First, it has to be determined how much ice has to be 
charged during off-peak time or how large the ice tank should be. If the ice tank is too small, it may not be 
able to meet the load; if the ice tank is too large, energy and costs incurred to charge the tank are going to 
be wasted. Secondly, it has to be determined how much should the chiller be downsized. An inappropriately 
downsized chiller will either be too big and recover the initial investment or be too small to meet the cooling 
load. Without optimization, the TES system may actually result in more energy use and costs than a system 
without TES. This can be clearly seen in Table 24. 

Table 24 shows the comparison among nighttime setback control without TES, storage-priority controlled 
TES, and chiller-priority controlled TES. Different building mass levels, i.e., H (heavy: 1,000 kg/m2), M (me-
dium: 350 kg/m2) and L (light: 200 kg/m2) and different electrical utility rate structure, i.e., 1 (normal incen-
tive) and 2 (strong incentive), are compared. 
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Table 24: Cost comparison [US$] of non-optimized storage-priority control, chiller-priority control with ice 
tank dormant nighttime setback control 

Winter Spring Summer Winter Spring Summer
No TES 655.11 808.27 907.67 589.48 732.28 815.60
Storage-Priority 661.75 780.80 891.00 568.97 679.81 815.60
Savings 1.0% -3.4% -1.8% -3.5% -7.2% 0.0%
Chiller-Priority 705.11 853.58 887.75 614.48 752.59 815.60
Savings 7.6% 5.6% -2.2% 4.2% 2.8% 0.0%

Winter Spring Summer Winter Spring Summer
No TES 658.46 812.07 912.31 592.87 735.87 819.22
Storage-Priority 663.92 784.60 895.64 571.18 683.40 777.55
Savings 0.8% -3.4% -1.8% -3.7% -7.1% -5.1%
Chiller-Priority 708.46 855.87 888.95 617.87 754.67 777.26
Savings 7.6% 5.4% -2.6% 4.2% 2.6% -5.1%

Winter Spring Summer Winter Spring Summer
No TES 661.08 813.16 913.22 595.56 736.96 819.88
Storage-Priority 665.44 785.69 896.55 572.78 684.50 778.21
Savings 0.7% -3.4% -1.8% -3.8% -7.1% -5.1%
Chiller-Priority 711.08 856.19 889.07 620.56 755.00 777.35
Savings 7.6% 5.3% -2.6% 4.2% 2.4% -5.2%

H-1 H-2

L-1 L-2

M-1 M-2

 
 

From Table 24, it can be observed that without optimal control, the chiller-priority control or storage- priority 
control can only save about 5% of the costs in some cases; in several cases, they may actually incur higher 
costs than a system without TES.  

 

4.12 Parametric Study  
Factors that will affect the performance of building thermal storage inventory are numerous. Building mass 
determines the thermal capacity of the building passive storage. A strong-incentive time-of-use (TOU) utility 
rate structure allows increased energy consumption to be traded off by the cost savings. In this chapter we 
investigate the effect of a total of six parameters on the performance of a model-predictive controller har-
nessing the active and passive building thermal storage inventory. 
 

4.12.1 Effect of Building Mass  
The amount of heat that can be stored in the passive building storage inventory is determined by the build-
ing’s total thermal capacity to which the supply air stream is coupled. Since the specific heat of most of the 
building construction material is within a narrow band of 0.8-2.5 kJ/kg°C, the thermal capacity of the build-
ing is mainly determined by the mass of the construction. Without a change to the architectural design and 
construction of the building model, the building mass can be altered by varying either the thickness of the 
wall material or the density of the material. Table 25 summarizes the results of optimizing the passive build-
ing thermal storage inventory for three building mass levels under three utility rate structures and seasons. 
The operating cost shown in the following tables is broken down into chiller operating cost only, total pri-
mary and secondary HVAC system operating cost for cooling and total building cost including non-cooling 
electricity cost. The non-cooling related cost portion can be determined by subtracting the cooling electricity 
cost from the total cost. 
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Table 25: Comparison of optimal control of passive TES with different mass levels 

Heavy Medium Light Heavy Medium Light Heavy Medium Light
Chiller Elec. ($) 226 229 230 249 253 254 263 269 270
Cooling Elec. ($) 309 313 313 341 345 346 362 367 368
Non-Cooling ($) 507 507 507 567 567 567 616 616 616
Total Cost ($) 816 819 820 908 912 913 978 983 984
Chiller Elec. ($) 154 161 168 204 212 217 262 268 269
Cooling Elec. ($) 227 236 245 287 297 302 361 367 368
Non-Cooling ($) 507 507 507 567 567 567 616 616 616
Total Cost ($) 734 743 751 854 864 869 976 983 984
Chiller Saving -31.9% -29.6% -26.7% -18.1% -16.1% -14.6% -0.5% -0.4% -0.1%
Cooling Saving -26.6% -24.4% -21.9% -15.7% -14.0% -12.7% -0.4% -0.1% -0.1%
Total Saving -10.1% -9.3% -8.4% -5.9% -5.3% -4.8% -0.2% 0.0% 0.0%

Weak TOU

Base Case

Opt. Case

Savings

Effect of Mass Strong TOU Normal TOU

 
 

As can be observed in Table 25, by using optimal control of passive thermal storage inventory only, the total 
electrical cost of the building can be reduced by up to 10% and the cooling electrical cost can be reduced by 
up to 26%. Building constructed with higher mass has larger saving potentials than building with light mass. 
However, even with a light mass, 8.4% of total electrical cost and 21.9% of cooling electrical cost can be 
saved under optimized control. 

Figure 30 shows the indoor air temperature and cooling energy use of optimal controlled passive storage of a 
light mass building and a heavy mass building. 
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Figure 30: Temperature and electricity consumption profile of a light mass and a heavy mass building 

It can be observed from Figure 30 that the chiller of both the heavy-mass building and light-mass building 
consumes about the same amount of the electricity with a peak value of 98-99 kW under nighttime setback 
control (base case). The optimal control of the heavy mass building precools the building mass during the 
night and early morning to about 18.7°C; the light building precools the mass to about 18.0°C. Since the 
thermal capacity of the heavy-mass building is much larger than that of the light-mass building, chiller elec-
tricity use of the heavy mass building is higher during nighttime than that of the light-mass building. During 



Final Report for Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 54 

the day, the precooled heavy-mass building absorbs more heat than the light-mass building so that the peak 
electrical demand during the occupied hours is reduced to 62.2 kW, lower than that of the light mass build-
ing, 75.2 kW. 

There are thermal losses associated with the storage of cooling energy. In passive building thermal storage 
inventory, the cooling energy is lost by radiation and convection of building mass to the higher environmental 
temperature; in active TES systems, the cooling energy is lost from heat transmission through the exterior 
tank surface and the potential efficiency degradation of the dedicated chiller in the icemaking mode. There-
fore, if the efficiency of the dedicated TES chiller working under a cool nighttime environment is not signifi-
cantly higher than under a hotter daytime environment, using active TES is bound to be energy expensive. 
Moreover, when the outdoor air temperature cools down only marginally during the night and the building 
mass cannot be fully cooled by ventilation only; passive building storage utilization will likely consume more 
energy as well. Therefore, the reason that TES can actually save electrical cost lies in the time-of-use (TOU) 
electrical rate structure. 

Three electrical rate structures are considered in this study, i.e. weak-incentive, normal-incentive and strong-
incentive. Table 26 summarizes the savings of optimal control of both passive and active building thermal 
storage inventory under different TOU rate structures. 

Table 26: Comparison of optimal combined thermal storage control performance for different utility rates 

Strong Normal Weak Strong Normal Weak Strong Normal Weak
Chiller Elec. ($) 226 249 249 229 253 269 230 254 270
Cooling Elec. ($) 309 341 362 313 345 367 313 346 368
Non-Cooling ($) 507 567 616 507 567 616 507 567 616
Total Cost ($) 816 908 978 819 912 983 820 913 984
Chiller Elec. ($) 76 124 262 85 134 268 87 138 269
Cooling Elec. ($) 173 257 361 183 265 367 187 269 368
Non-Cooling ($) 505 567 616 502 567 616 505 567 616
Total Cost ($) 678 824 976 685 832 983 692 836 984
Chiller Saving -66.3% -50.3% 5.0% -63.1% -47.0% -0.4% -62.0% -45.6% -0.1%
Cooling Saving -44.0% -24.7% -0.4% -41.5% -23.4% -0.1% -40.3% -22.4% -0.1%
Total Saving -16.9% -9.3% -0.2% -16.4% -8.9% 0.0% -15.6% -8.5% 0.0%

Effect of TOU rate Heavy Mass Medium Mass Light Mass

Base Case

Opt. Case

Savings
 

 

Figure 31(a) and (b) show indoor air temperature, active storage state-of-charge, and total cooling energy 
consumption of optimal combined thermal storage control under strong and normal incentive rate as well as 
base case. 
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Figure 31: a) Temperature, state-of-charge, and b) electricity use profile of optimal combined thermal storage 
control under strong and normal incentive rates 

It can be observed from Figure 31 that under strong electrical rate incentives, both passive and active thermal 
storage inventories are made fully use of. Before the building is occupied at 8:00, the building is precooled to 
18-20°C during the night and the active TES tank is charged full. When building begins to be occupied and 
the electrical utility rate switches to on-peak, zone air temperature is kept at the highest allowable setpoints 
of 24°C. The ice tank is not discharged immediately but is discharged during the entire on-peak period. 
Therefore, a large portion of on-peak energy is shifted to off-peak periods and the on-peak electrical demand 



Final Report for Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 56 

is reduced significantly. Under the normal-incentive electrical rate, the building is not precooled significantly 
compared with the strong-incentive rate. 

Table 26 summarizes the results of optimizing both the passive and active thermal inventory for different 
electrical utility rate structures. Comparing the optimally controlled building with a system under nighttime 
setback control, it can be observed that the higher the incentive in the rate structure, the more savings can 
be obtained by shifting on-peak load to off-peak period by using both passive and active thermal inventories. 
Comparing the optimally controlled building with either of the two conventional controls in Table 24, it can 
also be observed that optimal combined thermal storage control saves more than chiller-priority control does. 
For the chiller-priority control, there are numerous instances where it incurred higher costs than without an 
active TES system. However, using optimal combined thermal storage control can always achieve some sav-
ings or at least will never cost more than an active thermal storage system. 
 

4.12.2 Effect of Building Location and Seasons 
Three seasons are considered, i.e. summer, spring, winter; three locations are compared, i.e. Phoenix, AZ, 
Minneapolis, MN, and Boulder, CO. 

Table 27: Summary of optimal combined thermal storage control savings for various locations and seasons 

Winter Spring Summer Winter Spring Summer Winter Spring Summer
Chiller Elec. ($) 24 156 229 0 120 187 0 2 141
Cooling Elec. ($) 86 229 313 15 176 254 16 42 213
Total Cost ($) 593 736 819 522 683 761 522 549 720
Chiller Elec. ($) 0 29 85 0 14 36 0 1 18
Cooling Elec. ($) 51 123 183 15 78 125 15 36 108
Total Cost ($) 558 629 685 521 584 631 522 543 615
Chiller Saving -99.5% -81.3% -63.1% 0.0% -88.1% -80.9% 0.0% -66.8% -87.2%
Cooling Saving -40.8% -46.5% -41.5% -4.2% -55.9% -50.9% -3.5% -14.6% -49.1%
Total Saving -5.9% -14.6% -16.4% -0.1% -14.4% -17.0% -0.1% -1.1% -14.5%

Effect of Season & Location Phoenix Minneapolis Boulder

Base Case

Opt. Case

Savings
 

 

It can be observed from Table 27 that the total electricity cost savings achieved by optimal combined thermal 
storage control varies from 0.1% to 17.0%, and cooling electricity cost savings varies from 3.5% to 55.9%, 
from season to season and from location to location.  

In the winter, the savings that can be achieved are lower than those during the spring or summer for all three 
locations. This is because the cooling electrical load in the winter is very low, about 10% of the total electrical 
load, while in spring and summer the cooling electrical load is higher, about 40-45% of the total electrical 
load. When the ratio of cooling load in the total load is low, the potential of savings derived from shifting 
cooling loads is low. For example, this occurs in spring in Boulder, Colorado. Because the weather of April 2 
in Boulder is still very cool and the cooling load under nighttime setback is nearly zero, there is not much that 
can be saved.  

Generally, it can be observed that locations with higher cooling loads have a larger potential for savings. The 
savings achieved in Phoenix and Minneapolis are larger than those in Boulder. Also, savings in Phoenix are 
larger than those in Minneapolis, except during the summer. Figure 32 shows the temperature and electricity 
profiles of optimal combined thermal storage control in summer in Phoenix and Minneapolis. 
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Figure 32: Temperature and electricity use profile of optimal combined thermal storage control in Phoenix 
and Minneapolis 

It can be observed from Figure 32 that under nighttime setback control, indoor temperature in Phoenix is 
about 25°C, which is 1°C higher than the setpoint 24°C (not shown in the figure), while the indoor tempera-
ture in Minneapolis is within 24°C. This indicates that the system capacity is not large enough for Phoenix. 
Therefore, the base case electrical cost in Phoenix should be higher if the system capacity is large enough to 
meet the setpoint. This means that the savings in Phoenix will be higher if the system capacity is large enough 
to meet the setpoint in the base case. Second, looking at inspecting the base case electrical cost for Minnea-
polis, the demand cost has a higher fraction of the total cost due to the peak at 14:00. Therefore, the opti-
mal control in Minneapolis achieved higher savings by decreasing the demand peak in the base case. These 
two reasons combine to let the optimal combined thermal storage control achieve higher savings in Minnea-
polis than in Phoenix. 

This analysis shows that the effects of season and location on optimal control savings are hard to predict. 
However, the trend can be observed that higher cost savings can be achieved when there are higher cooling 
loads that can be shifted to off-peak hours. 

 

4.12.3 Effect of Thermal Comfort  
Based on previous analysis, it was observed that without considering thermal comfort in the optimization, the 
optimal control of passive building thermal storage inventory tends to maintain the indoor air temperature at 
the higher limit of the cooling setpoint, 24°C, in this study, in order to reduce the cooling load. In most of the 
cases, this causes the zone to be less comfortable. As recommended by ASHRAE [54], the predicted mean 
vote (PMV) of the zone should be within the limits of ±0.5. In this section, the impact of maintaining zone 
thermal comfort on the optimal control performance is studied. 

The impact of thermal comfort is realized by adding a thermal comfort penalty into the cost function. There-
fore, the cost function of the optimization routine becomes: 

 
= ×

+(1 )

CostFunctionValue TotalElectricalCost

ThermalComfortPenalty
 (26) 
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There are many ways of calculating thermal comfort as well as considering thermal comfort penalties. In this 
study, Fanger’s thermal comfort model as implemented in EnergyPlus is chosen and the penalty is calculated 
as follows: At hour t, the Fanger PMV value of the building is the PMV value of the most uncomfortable 
zone, i.e. 

= max( )t jPMV PMV  for j = 1, … K number of zones  

 

The hourly thermal comfort penalty coefficient at hour t is 

 

⎧⎪⎪⎪ ≤⎪⎪⎪⎪⎪⎪⎪= >⎨⎪⎪⎪⎪⎪ −⎪⎪ < ≤⎪⎪ −⎪⎩

2

0 if 0.5 or if the building is unoccupied

1 if 2.0 or if the building is occupied

( 0.5)
if 0.5 2.0 and if the building is occupied

2.0 0.5

t

t t

t
t

PMV

R PMV

PMV
PMV

  

The total thermal comfort penalty coefficient is the sum of the hourly thermal comfort penalty coefficients 
over the optimization horizon, i.e. 

=∑ t
t

ThermalComfortPenalty PMV  

This method of penalty calculation considers all PMV in excess of 2.0 to be equally uncomfortable and unac-
ceptable; the penalty for PMV larger than 2.0 is considered 100% which doubles the electrical costs. Within 
0.5, it is considered equally comfortable and thus no penalty is added. Between 0.5 and 2.0, the penalty is 
calculated using a parabola which increases the gradient of the penalty as the PMV approaches 2.0. 

 Figure 33 a) and b) show the temperature profiles and the PMV of each of the 15 zones of the heavy-mass 
building after optimizing TES without or with thermal comfort penalty. 
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b. Optimal control WITH comfort penalty
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 Figure 33: Zone PMV and temperature profiles a) without and b) with comfort penalty optimal control 

It can be seen from the above figures that without thermal comfort penalty, indoor temperature during the 
occupied period (8:00-19:00) is kept at 24.0°C. After 10:00 most of the zones are too warm with PMV > 0.5. 
The thermal comfort penalty coefficient is 0.414. With the thermal comfort penalty, the indoor temperature 
during occupied period is kept at 22.4°C. Almost all of the zones are in the comfort area (-0.5 < PMV < 0.5). 
The thermal comfort penalty coefficient is reduced to 0.0089. Table 28 summarizes the comparison of opti-
mal combined thermal storage control with and without thermal comfort penalty. 

Table 28: Summary of savings of optimal control with and without thermal comfort penalty 

Total Cost 
($)

Comfort 
Penalty

Total Cost 
($)

Comfort 
Penalty Savings Total Cost 

($)
Comfort 
Penalty Savings

Heavy Mass, Strong 
Incentive, Summer 816 3.24 678 0.414 -16.9% 711 0.0089 -12.8%

Heavy Mass, Normal 
Incentive, Summer 908 3.24 824 0.699 -9.3% 859 0.0081 -5.3%

Heavy Mass, Strong 
Incentive, Spring 732 1.64 601 0.151 -17.9% 640 0.00124 -12.6%

Medium Mass, Strong 
Incentive, Summer 819 3.52 685 0.579 -16.4% 742 0.0346 -9.4%

Medium Mass, Normal 
Incentive, Summer 912 3.52 832 0.837 -8.9% 892 0.0374 -2.3%

Medium Mass, Strong 
Incentive, Spring 736 1.69 629 0.29 -14.6% 655 0.0112 -11.0%

Light Mass, Strong 
Incentive, Summer 820 3.63 692 0.765 -15.6% 758 0.0936 -7.6%

Light Mass, Normal 
Incentive, Summer 913 3.63 836 0.98 -8.5% 909 0.0952 -0.5%

Light Mass, Strong 
Incentive, Spring 737 1.75 632 0.54 -14.2% 676 0.0431 -8.3%

Base Optimal w/o Comfort Penalty Optimizing w/ Comfort Penalty
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Without thermal comfort penalty, total electrical costs of optimal control are lower than with thermal com-
fort penalty. Thermal comfort penalty coefficients are high in the cases of nighttime setback control.  

Inspecting the thermal comfort penalty coefficient in Table 28, it can be found that when conducting optimi-
zation without thermal comfort penalty, the light mass building has a higher penalty than the heavy mass 
building when both indoor air temperatures are about 24°C. This is because the mean radiant temperature of 
the heavy mass building is lower than that of the light mass building. Therefore, when thermal comfort pen-
alty is introduced in optimization, the light-mass building tends to lose more savings than the heavy-mass 
building does. 
 

4.12.4 Effect of Central Plant Capacities  
Figure 34 shows the indoor air temperature, active storage inventory level, and the total electrical energy use 
of two central plants of different sizes. Plant 1 has base chiller capacity of 500 kW and an active TES tank size 
of 800 kWh. Plant 2 has base chiller capacity of 300 kW and an active TES tank size of 800 kWh. A summary 
of results from different plant sizes is included in Table 29. 
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0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

Te
m

pe
ra

tu
re

 (C
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

St
at

e-
of

-C
ha

rg
e 

(Ic
e 

Le
ve

l)

Plant-1 Temperature

Plant-2 Temperature

Plant-1 Ice level

Plant-2 Ice level

 



Final Report for Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 61 

b. Electricity Use
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Figure 34: a) Control variables and b) electricity use profiles of optimal combined thermal storage for two 
central plant sizes 

Table 29: Summary of optimal control savings for different central plant sizes 

Central Plant Capacity Cost Savings
Nighttime Setback Control 500 kW 1500 kWh 777
500 kW 1500 kWh Optimal Control 647 -16.7%
500 kW 800 kWh Optimal Control 671 -13.6%
300 kW 1500 kWh Optimal Control 733 -5.6%
300 kW 800 kWh Optimal Control 755 -2.7%  

 

It can be observed that as the base chiller is downsized, the system has less capability to achieve effective 
precooling, i.e. to make use of the passive building thermal storage inventory. As the ice tank capacity is re-
duced, savings from active thermal storage inventory utilization is reduced. 

 

4.12.5 Effect of Air-Side Economizer  
Due to the existence of a temperature economizer, which adjusts fresh air flow rate by comparing the out-
door air temperature and return air temperature, nighttime ventilation can be used to increase the effect of 
passive thermal storage. Figure 35 a) and b) show the outdoor air flow rate compared with the total air flow 
rate and the chiller electrical consumptions under optimal control with and without economizer in the spring 
in Phoenix, AZ.  
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b. Chiller electricity use (J)
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Figure 35: a) Air flow rate and b) electricity use profile of optimal combined thermal storage control with and 
without economizer 

From Figure 35, it can be observed that in spring, since the night outdoor dry bulb temperature is lower than 
the returned air temperature, the economizer can take advantage of the cool ambient air to facilitate part of 
the precooling. Chiller cooling electricity use is saved. Table 30 summarizes the comparison of optimal com-
bined thermal storage control with or without economizer. 
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Table 30: Summary of total costs of optimal combined thermal storage control with and without economizer 
for Phoenix, AZ 

Base
Total Cost  ($) Total Cost ($) Savings Total Cost ($) Savings

Heavy Mass, Strong Incentive, 
Summer, Phoenix 815.6 677.93 -16.9% 678.09 -16.9%

Heavy Mass, Strong Incentive, 
Spring, Phoenix 732.28 601.14 -17.9% 623.52 -14.9%

Light Mass, Strong Incentive, 
Summer, Phoenix 819.88 692.14 -15.6% 692.14 -15.6%

Light Mass, Strong Incentive, 
Spring, Phoenix 736.96 631.99 -14.2% 639.79 -13.2%

Economizer Optimization with Economizer Optmization without Economizer

 
From Table 30, it can be observed that in the summer, since the night outdoor dry bulb temperature is still 
high in Phoenix, the existence of economizer has no effect on reducing cooling costs; in spring, the night 
outdoor dry bulb temperature is lower than return air temperature, and optimal combined thermal storage 
control that takes advantage of cool nighttime air can therefore achieve higher savings. 

 

4.13 Conclusions  
A parametric analysis was conducted to assess the effects of building mass, utility rate, building location and 
season, thermal comfort, central plant capacities, and economizer on the cost saving performance of optimal 
control for active and passive building thermal storage inventory. The key findings are: 

 Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads 
will likely lead to attractive savings resulting from optimal combined thermal storage control.  

 By using an economizer to take advantage of the cool fresh air during the night, the building electrical 
cost can be reduced by using less mechanical cooling. 

 Larger base chiller and active thermal storage capacities have the potential of shifting more cooling loads 
to off-peak hours and thus higher savings can be achieved. 

 Optimal combined thermal storage control with a thermal comfort penalty included in the objective func-
tion can improve the thermal comfort levels of building occupants when compared to the non-optimized 
base case. 

Field experimentation confirmed the influence of building mass on the passive storage performance and the 
benefits of using an air-side economizer as documented in Chapter 5. Future work is required to validate the 
findings with respect to thermal comfort. 
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Phase 2: Laboratory Testing at the Larson HVAC Lab 

4.15 Description of the Larson HVAC Laboratory 
The Larson Building System Laboratory at the University of Colorado at Boulder shown in Figure 36 is a 
unique facility in the HVAC industry in that it permits the study of entire HVAC systems in a controlled dy-
namic environment, providing repeatable test conditions that have been heretofore unavailable. It is used for 
educational and research purposes and is designed for dynamic testing of complete and full-scale commercial 
HVAC and building systems. The facility consists of a full-size commercial HVAC system, four representative 
commercial building zones, a system for producing repeatable and controllable loads on the HVAC system, 
and sophisticated data acquisition and control systems. Activities at the laboratory include evaluation and 
testing of control algorithms and hardware for HVAC components and systems, interactions between multi-
ple control functions of HVAC systems, the dynamic interactions between building thermal response and 
HVAC system controls, ventilation control for indoor air quality, and HVAC system diagnostics. 

 

Figure 36: Isometric View of Larson Laboratory at the University of Colorado 

The laboratory has been designed for maximum flexibility to encourage a wide variety of research and testing 
programs. In particular, both the HVAC and control systems in the laboratory are re-configurable in that 
components, subsystems or entire systems can be readily installed, tested, and modified. 

The main HVAC system of the laboratory consists of a 12,000 cfm air-handling unit that is connected to four 
building zones by variable-air-volume (VAV) fan powered mixing boxes. To provide cooling to the four zones, 
a chiller, rated at 265 kW (75 tons) cooling capacity comprised of two screw-type compressors, is available 
within the lab. Continuous capacity control is provided down to 10% of rated capacity. This chiller, a 2.2 kW 
(3 hp) constant-volume pump, and a 668 kWh (190 ton-hour) ice storage tank are incorporated into a pri-
mary loop. A separate constant-volume 2.2 kW (3 hp) pump circulates water through a secondary loop to the 
zone simulators and the two air-handling units. The chilled water loop contains 25% glycol brine and allows 
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the primary loop to operate at temperatures as low as -5°C. The ice storage tank will be used to provide 
chilled water to the air-handling unit.  

The entire lab is controlled using programmable direct digital control (DDC). The DDC system uses electronic 
actuators for damper and valve control, all of which accept standard analog control signals. The system em-
ploys laboratory-grade instrumentation for accurate control. All the control strategies to be tested in this pro-
ject can be easily programmed using this DDC system. The data acquisition can accommodate up to 300 data 
channels. Data collected include temperature, humidity, pressure, flow rate, fan speed, and electric power 
consumption. The accuracy measurements meet or exceed all relevant ASHRAE/ASTM standards. 

 

4.16 Description of the Experiments 
The experiments focus on lab validation of optimal control of active and passive building thermal storage in-
ventory in a light-mass building as represented by the Larson HVAC Laboratory at the University of Colorado 
at Boulder. 

Experiments on passive-only, active-only and combined building thermal storage control were carried out and 
the results analyzed. Two electrical utility rates are studied: a strong incentive rate and a weak incentive rate. 
For the strong incentive rate, on-peak and off-peak energy charges are 0.20 $/kWh and 0.05 $/kWh respec-
tively and demand charges are 20 $/kW and 5 $/kW respectively. In the weak incentive rate, on-peak and off-
peak energy charges are 0.10 $/kWh and 0.05 $/kWh respectively and demand charges are 10 $/kW and 5 
$/kW respectively. The results from experiment and simulation are discussed below. 

 

4.17 Base Case 
The building is occupied from 8:00-19:00, the on-peak period is 10:00-18:00 and the rest of the day is off-
peak period. The two zone simulators (ZSIM1, ZSIM2) are conditioned to 75°F for 24 hours with internal 
loads schedules of 19 kW and 20 kW for 24 hours respectively. The two full size zones (FSZW, FSZE) are con-
ditioned to 75°F during occupied period and allowed to float up to 105°F during unoccupied period. The 
peak internal loads of the two full size zones are 6 kW each zone. The internal loads are 30% peak load dur-
ing 8:00-9:00, 12:00-13:00 and 18:00-19:00 and 50% peak load during 9:00-12:00 and 13:00-18:00. Simu-
lated weather file of summer design day in Phoenix, AZ are successfully incorporated in the outside air condi-
tioning station (OACS) as illustrated by Figure 37. 
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Figure 37: Simulation and measured outdoor air dry-bulb temperature profiles 
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Figure 38 shows the indoor air temperatures, and chiller power consumption profile comparison between 
experiment and simulation results. Excellent agreement between model and laboratory performance can be 
noted. The average error of simulation on chiller power consumption is 0.6%. 
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Figure 38: Simulated and measured zone air temperature and chiller power consumption profiles under base 
case control 
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4.18 Strong Incentive Utility Rate 

4.18.1 Passive-Only (Nighttime Precooling) 
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Figure 39: Simulated and measured zone air temperature and chiller power consumption profiles in passive-
only optimal control under strong incentive utility rate 

The optimal passive building thermal storage control suggests precooling the full-size zones to 18.3°C for 3 
hours before occupancy then maintaining zone setpoint of 24°C. In the experiment and as expected, it is 
found that the zone temperature of the full-size zones does not drop to 18.3°C immediately. It takes about 2 
hours to cool the zone to desired precooling temperature. Also, after precooling, the zone temperature rise 
more slowly than the simulation results. In general, the difference in chiller power consumption between ex-
periment and simulation are within an acceptable range. The chiller consumes more power during 5:00-8:00 
due to precooling and cooling energy costs are slightly lower than the base case. 
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4.18.2 Active-Only (Ice Storage) 
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Figure 40: Simulated and measured zone air temperature and TES state-of-charge profiles of active-only op-
timal control under strong incentive utility rate. 
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Figure 41: Simulated and measured chiller power consumption profiles in active-only optimal control under 
strong incentive utility rate 
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From Figure 40 and Figure 41, it can be observed that the simulated and measured TES state-of-charge pro-
files and chiller power consumption profiles display differences. This is due to the difficulty of controlling the 
TES charging process as accurately as the simulation because of the existence of constant speed pump and 
PID controlled valve as well as the nonlinear heat transfer characteristics of the active storage itself. In the 
experiment, only the initial and final ice level during charging and discharging process is controlled. Although 
the profiles reveal differences, the error of total power consumption and energy cost are 3% and 8%, re-
spectively, and deemed as acceptable. 

  

4.18.3 Combined Active and Passive Building Thermal Storage  
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Figure 42: Simulated and measured zone air temperature and TES state-of-charge profiles in combined active 
and passive optimal control under strong incentive utility rate 
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Figure 43: Simulated and measured chiller power consumption profiles in combined active and passive opti-
mal control under strong incentive utility rate 

The passive building thermal storage inventory is precooled to 18°C for 3 hours before occupancy and the ice 
tank is charged to from 1” to 3.4” inches of ice before the beginning of the on-peak period and discharged 
to 0.53” during the on-peak time and after that recharged to 1”. The error of total chiller power consump-
tion and energy costs are 1% and 3%, respectively. 

 

4.19 Weak Incentive Utility Rate 

4.19.1  Passive-Only (Nighttime Precooling) 
The optimal control of passive building thermal storage under weak rate ratio is the same as that of intensive 
rate ratio in our case. Only the percentage of savings achieved is reduced. The error of total power consump-
tion and energy costs are within 1%. 
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Figure 44: Simulated and measured zone air temperature profiles and chiller power consumption in passive-
only optimal control under weak incentive utility rate 

 

4.19.2 Active-Only (Ice Storage) 
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Figure 45: Simulated and measured zone air temperature and TES state-of-charge profiles in active-only op-
timal control under weak incentive utility rate 
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Figure 46: Simulated and measured chiller power consumption profiles in active-only optimal control under 
weak incentive utility rate 

The ice tank is charged from 1” to 3.39” of ice level before occupancy and discharged to 0.5” of ice level 
during on-peak time and recharged to 1” in the night. The error of cost savings is within 1%. 

 

4.19.3 Combined Active and Passive Building Thermal Storage  

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0:
00

~1
:0

0

1:
00

~2
:0

0

2:
00

~3
:0

0

3:
00

~4
:0

0

4:
00

~5
:0

0

5:
00

~6
:0

0

6:
00

~7
:0

0

7:
00

~8
:0

0

8:
00

~9
:0

0

9:
00

~1
0:

00

10
:0

0~
11

:0
0

11
:0

0~
12

:0
0

12
:0

0~
13

:0
0

13
:0

0~
14

:0
0

14
:0

0~
15

:0
0

15
:0

0~
16

:0
0

16
:0

0~
17

:0
0

17
:0

0~
18

:0
0

18
:0

0~
19

:0
0

19
:0

0~
20

:0
0

20
:0

0~
21

:0
0

21
:0

0~
22

:0
0

22
:0

0~
23

:0
0

23
:0

0~
24

:0
0

Time

Te
m

pe
ra

tu
re

 (d
eg

re
e 

C
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Ic
e 

Le
ve

l (
in

ch
)FSZW-LAB

FSZE-LAB
ZSIM1-LAB
ZSIM2-LAB
FSZW-E+
FSZE-E+
ZSIM1-E+
ZSIM2-E+
ICE LEVEL-LAB
ICE LEVEL-E+

 

Figure 47: Simulated and measured zone air temperature and TES state-of-charge profiles in combined-TES 
optimal control under weak incentive utility rate 
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Figure 48: Simulated and measured chiller power consumption profiles in combined active and passive build-
ing thermal storage optimal control under weak incentive utility rate 

 

4.20 Effect of night floating temperature 
As can be seen from the previous figures, in some of the experiment, the nighttime floating temperature of 
the full size zones is different from that from simulation. This is mainly due to the fact that in some of the 
experiment, the lights in the full size zones are kept on during the night. In the morning, different zone tem-
perature will affect the results of optimization.  

Therefore, simulations were conducted to study the impact of nighttime zone floating temperature on opti-
mization results. Figure 49 shows the zone temperature profiles and chiller power consumptions in two opti-
mal controls with different initial zone temperatures. Table 31 shows the comparison of cost savings achieve 
under high and low initial temperatures. 
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Figure 49: Zone temperature and chiller power consumption profiles under different nighttime floating tem-
peratures for light mass with strong incentive utility rates. 

Table 31: Comparison of Cost Saving Achieved by Optimal Control of Passive TES under High and Low Float-
ing Temperature 

Hight Floating Temperature Low Floating Temperature
Power Consumption (KWH) 442.79 433.33

Cooling Costs ($) 144.34 141.15
Power Consumption (KWH) 445.59 434.48

Cooling Costs ($) 143.85 140.91
Cost Savings -0.34% -0.17%

Base Case

Optimal Passive TES Control
 

 

From Figure 49, it can be seen that, by leaving the lights in the full size zones on, the floating temperature in 
the morning before occupancy can be 5°F higher than leaving the lights off. With higher starting temperature 
in the morning, more cooling power is consumed in order to keep the zone at a comfort level. But since the 
building mass is very light, the impact of morning zone floating temperature does not affect the optimal con-
trol. In both cases, the optimal control of passive TES suggests to cool the zone to 18°C for 3 hours before 
occupancy. In terms of cost savings, both cases save within 0.5% due to the light mass. 

 

4.21 Summary 
The power consumption and cooling cost savings are summarized below. 
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Table 32: Comparison of Simulation and Measured Results 

Lab E+ Lab E+
Cooling Energy Use (KWH) 436.41 433.33 436.41 433.33
Cooling Cost ($) 64.01 62.98 40.47 39.89
Cooling Energy Use (KWH) 437.08 434.48 436.53 434.48
Cooling Cost ($) 63.18 62.59 39.94 39.79
Savings -1.31% -0.62% -1.29% -0.25%
Cooling Energy Use (KWH) 483.07 469.41 475.33 468.82
Cooling Cost ($) 34.00 31.44 31.85 31.41
Savings -46.88% -50.08% -21.28% -21.27%
Cooling Energy Use (KWH) 471.97 478.89 471.97 481.33
Cooling Cost ($) 32.61 31.55 31.69 31.68
Savings -49.05% -49.91% -21.70% -20.58%

Active Only

Combined

Rate Ratio 2:1Rate Ratio 4:1

Base Case

Passive Only

 
 

From Table 32 it can be observed that the EnergyPlus simulation is a surprisingly accurate prediction of the 
experiment. Therefore, actual savings of building energy costs can be expected by applying optimal controls 
from simulation results. However, it can also be concluded that the Larson HVAC Laboratory has only mar-
ginal passive building thermal storage inventory and is therefore not representative of a heavy-mass commer-
cial building. 

 

4.22 Uncertainty Analysis 
An uncertainty analysis is performed for the active storage (ice-based TES) charging/discharging heat transfer 
rate. It is a function of the measured independent parameters, i.e. ice tank inlet/out let temperature and ice 
tank flow rate. 

ρ= −� � ( )p outlet inletQ A VC T T  

where, 

A is a conversion factor, A=6.667e-4 (ft3/gal)(min/hr)(ton-hr/Btu), 

ρbrine is the density of the brine, ρbrine= 65 lbm/ft3, 

Cp is the specific heat of the brine, Cp,brine=0.85 Btu/lbm/°F, 

V� is the volumetric flow rate of the brine, V� =105 gal/min, 

Tinlet is the ice tank inlet temperature, Tinlet = 25°F, 

Toutlet is the ice tank outlet temperature, Toutlet = 30°F. 

Measurement errors for the density and specific heat properties of the brine are neglected. 

The ice tank flow rate measurement has an absolute precision of 0.3 gal/min and an absolute bias of 0.9 
gal/min. The temperature measurements have absolute precisions of 0.2°F and absolute biases of 0.3°F. 

Since, 
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The absolute bias, relative bias, absolute precision and relative precision of heat transfer rate can now be cal-
culated. 

The uncertainty is obtained by combining the absolute precision index and the absolute bias limit, using the 
additive (ADD) or the root-sum-square (RSS) models for 99% and 95% of coverage respectively. 

= + ×� �( )ADD Q Q
U B st S  

= + ×� �
2 2 1/ 2[ ( ) ]RSS Q Q

U B st S  

The student factor, st, is used calculate the precision uncertainty and is based on the number of observations 
per sample, also known as the degrees of freedom. For this case, the number of observation was obtained by 
dividing average time interval (5 minutes) by the time-step of the readings (10 seconds). The degree of free-
dom is calculated by: 

⎛ ⎞⎟⎜= × − =⎟⎜ ⎟⎜⎝ ⎠
5min

60sec/ min 1 29
10sec

v  

Therefore, the measured reading is 19.98 ton ±1.7 ton with 95% coverage, with a 8.3% of relative uncer-
tainty. 
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5 Phase 3: Field Testing at the ERS in Ankeny, IA 

5.1 Review of Past Work 
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility 
grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and week-
ends. Buildings can respond to these pricing signals by shifting cooling-related electrical loads either by pre-
cooling the building’s massive structure, by the use of an active energy storage system only, or by a combina-
tion of both thermal reservoirs. Henze et al. (1997) [58] developed a predictive optimal controller for active 
thermal energy storage (TES) systems and investigated the potential benefits of optimal control for ice storage 
systems under real-time pricing in order to minimize the cost of operating a central cooling plant. It was 
found that in the presence of complex rate structures, i.e., real-time pricing rates that change on an hourly 
basis, the proposed optimal controller has a significant performance advantage over conventional control 
strategies while requiring only simple predictors. 

Braun (2003) [57] surveyed research on passive building thermal storage utilization, i.e., the precooling of a 
building’s thermal mass during nighttime in order to shift and reduce peak cooling loads in commercial build-
ings. He identified considerable saving potential for operational costs, even through the total zone loads may 
increase. Opportunities for reducing operating expenses are due to four effects: reduction in demand costs, 
use of low cost off-peak electrical energy, reduced mechanical cooling resulting from the use of cool night-
time air for ventilation precooling, and improved mechanical cooling efficiency due to increased operation at 
more favorable part-load and ambient conditions. However, these benefits must be balanced with the in-
crease in the total cooling requirement that occurs with the precooling of the thermal mass. Therefore, the 
savings associated with load shifting and demand reduction are very sensitive to utility rates, building and 
plant characteristics, weather conditions, occupancy schedules, operation condition, the method of control, 
and the specific application. In general, better opportunities for effective precooling exist for higher ratios of 
on-peak to off-peak rates, longer on-peak periods, heavy-mass building construction with a small ratio of the 
external area to the thermal mass, and for cooling plants that have a good part-load characteristics for which 
the best performance occurs at about 30% of the design load. 

The combined usage of both active and passive building thermal storage inventory under optimal control has 
recently been investigated by Henze et al. (2004a) [59] and documented in Chapter 2 for the reduction of 
electrical utility cost in the context of common time-of-use rate differentials. The objective function used in 
the optimization is the total utility bill including the cost of heating and a time-of-use electricity rate without 
demand charges. The analysis showed that when an optimal controller for combined utilization is given per-
fect weather forecasts and when the building model used in the model-based predictive control perfectly 
matches the actual building, the utility cost savings are significantly greater than either storage, but less than 
the sum of the individual savings and the cooling-on-peak electrical demand can be drastically reduced. 

While Chapter 2 established the theoretical maximum performance of this novel control strategy, subsequent 
research by Henze et al. (2004b) [60] as documented in Chapter 3 explored how strongly prediction uncer-
tainty in the required short-term weather forecasts affects the controller’s cost saving performance. The best 
prediction accuracy was found for a bin model that develops a characteristic daily profile from observations 
collected over the past 30 or 60 days. Assuming that the building thermal response is perfectly represented 
by the building model, i.e., there is no mismatch between the modeled and actual building behavior, the 
predictive optimal control of active and passive building thermal storage inventory involving weather predic-
tions lead to utility cost savings that are only marginally inferior compared to a hypothetical perfect predictor 
that exactly anticipates the weather during the next planning horizon. The primary finding is that it takes only 
very simple short-term prediction models to realize almost all of the theoretical potential of this storage con-
trol technology.  

Liu and Henze (2004) [61] as documented in Chapter 4 investigated the impact of five categories of building 
modeling mismatch on the performance of model-based predictive optimal control of combined thermal 
storage using perfect prediction. It was found that for an internal heat gain dominated commercial building, 
the deviation of building geometry and zoning from the reference building only marginally affects the opti-
mal control strategy; reasonable simplifications are acceptable without loss of cost saving potential. In fact, 
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zoning simplification may be an efficient way to improve the optimizer performance and save computation 
time. The mass of the internal structure did not strongly affect the optimal results; however, it did change the 
building cooling load profile, which in turn will affect the operation of the active storage (TES) system. Exte-
rior building construction characteristics were found to impact building passive thermal storage capacity. 
Thus, it is recommended to make sure the construction material is well modeled. Furthermore, zone tempera-
ture setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, thus 
efforts should be made to keep the internal gain mismatch as small as possible. Efficiency of the building en-
ergy system has no direct impact on the building cooling load, but it affects both, zone temperature setpoints 
and active TES operation because of the coupling to the cooling equipment. Mismatch in this category may 
be significant. 

On the background of these findings, a predictive optimal controller for the combined usage of active and 
passive thermal storage that accounts for uncertainty in predictive variables and model mismatch was devel-
oped and verified in the context of the presented work. Once the supervisory controller was implemented in 
the laboratory setting, the test facility was controlled by the optimizer in real-time, which to the authors’ 
knowledge has not been done before. This topical report describes the implementation of the real-time con-
trol strategy and evaluates its benefits with respect to HVAC energy consumption and cost reduction. In addi-
tion, model accuracy and constraint compliance will be examined. The report concludes with a recreation of 
the experiment in a simulation environment during which previously experienced problems such as the inter-
ruption of the communication to the building automation system were avoided. 

 

5.2 Description of Test Facility 

5.2.1 General Background on the ERS 
The building used in this study to investigate the potential of the optimal controller is the Energy Resource 
Station (ERS); operated by the Iowa Energy Center (IEC). The ERS is a unique demonstration and test facility 
wherein laboratory-testing capabilities are combined with real building characteristics. The ERS is capable of 
simultaneously testing two full-scale commercial building systems side-by-side with identical thermal loading. 
Located on the campus of the Des Moines Area Community College (DMACC) in Ankeny, Iowa; it has a lati-
tude of 41.7° North, a longitude of 93.6° West, and an elevation of 286 m above sea level. The facility is ori-
entated for a true north/south solar alignment and no surrounding objects and no trees block solar radiation 
on the ERS, except for the north side of the building that has a fenced in mechanical yard with a concrete 
floor.  

The ERS building, a single story structure with a concrete slab-on-grade, has a height of 4.6 m and a total 
floor area of 855 m2, divided into a general area (office space, service rooms, media center, two classrooms, 
etc.), and two sets of identical test rooms, labeled ‘A’ and ‘B’; adjacent to the general area. The eight test 
rooms are organized in pairs with three sets of zones having one exterior wall (east, south, and west) and one 
set that is internal. Figure 50 presents a layout or the ERS including the four sets of identical test rooms used 
for the experiment.  

The opaque exterior envelope of the ERS is composed of several layers of construction materials with a ther-
mal mass outside of the insulation. The percentage of the window area to exterior wall area is 15% on the 
east side, 16% on the west side, 32% on the south, and no windows on the north (Price and Smith, 2000) 
[63]. 
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Figure 50: Layout of the test facility, the Energy Resource Station (ERS), Ankeny Iowa. 

5.2.2 Primary and Secondary HVAC Systems 
The ERS is equipped with a central heating plant consisting of a natural gas-fired boiler and a cooling plant 
comprising three nominal 35 kW air-cooled chillers for both chilled-water and ice-making modes. The chilled-
water loop is filled with 22% propylene glycol water solution. In addition, the building includes a 440 kWh 
internal melt ice-on-tube thermal energy storage tank as well as pumps and auxiliary equipment needed to 
provide cooling. District cooling can be provided by the DMACC campus chilled water plant but was not used 
in this experiment. Hence, several modes of operation between these sources of cooling are possible in order 
to supply chilled water to the air handling units (AHU). The chilled water loop is a primary-secondary flow 
arrangement with dedicated constant-volume chiller pumps and secondary variable-flow distribution pumps 
in the AHU loop under VFD control. 

The secondary HVAC system consists of three AHUs that condition the building: Test rooms A and B are 
served by two similar single-duct VAV with reheat AHU systems A and B, and the general area is served by a 
similar but larger AHU-1. An overhead air distribution system utilizing pressure-independent VAV boxes sup-
plies air to each test room using hydronic or 3-stage electrical resistance reheat.  

Finally, there is an on-site weather station with measurements of outdoor air dry-bulb temperature, relative 
humidity, wind speed and direction, atmospheric pressure, total normal incidence solar flux, and global hori-
zontal solar flux. 

 

5.2.3 Investigated Test Rooms 
The experiment was executed in the test rooms A and B, each with a net floor area of 24.8 m2 and carpeted 
floor. The ceiling height is 2.6 m and there is a plenum above the suspended ceiling with a height of 1.7 m. 
Having the same geometry and construction specifications, but being thermally isolated from each other; the 
identical pairs A and B experience the same heating and cooling load. The window area of the exterior zones 
consists of double-pane 6.4 mm clear insulating glass and measures 6.9 m2. During the test, these windows 
were covered with fully open external blinds. Furthermore, to reduce thermal coupling to the general area, 
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the interior windows between the test rooms and the general area were covered with 12.7 mm dry wall pa-
per. Following the suggestion of Braun et al. (2002) at the ERS, additional mass was added to the interior test 
rooms A and B in the form of two rows of standard concrete cinder block, 3.05 m long and each stacked 
three layers high. The walls were located near the middle of each interior room.  

The rooms are unoccupied; however, false internal heat gains can be introduced using baseboard heaters and 
lights to simulate the occupancy schedule of a typical building. Test rooms A are equipped with 2-stage light-
ing whereas test rooms B are fitted with dimming electronic ballasts, both with a maximum wattage of 585 
W. The baseboard heater at each zone can operate at two stages with a maximum output of 1.8 kW (900 W 
per stage).  

A comfort sensor measuring the air temperature, humidity, and wind speed was placed in the middle of the 
rooms. Conditioned air at a temperature of 13°C was supplied to the test rooms by two ceiling mounted dif-
fusers in order to maintain the room temperature within a range of 20°C and 24°C during time of occu-
pancy. The interior flow rate throughout the occupied period was characterized by a minimum flow of 94 L/s 
and a maximum flow of 189 L/s. Finally, all test rooms were kept locked throughout the period of the ex-
periment in order to avoid disturbance and interruptions. These conditions were applied to all eight test 
rooms.  

The ERS is not a particular good candidate for the use of building thermal mass as documented by Braun 
(2003) due to two reasons: (i) it is a light-weight single-story structure with a high exterior surface area to 
volume ratio and (ii) significant thermal coupling with the ground, the ambient and the zones adjacent to the 
test rooms is present. Furthermore, the test zones are not equipped with a representative amount of furniture 
and the floor is carpeted, which reduces thermal coupling to the massive structure. 

 

5.2.4 Assumptions for Predictive Optimal Control 
The simulated occupied period extends from 8 a.m. to 5 p.m. each day including weekends. During this time, 
baseboard heaters are applied at one stage (0.9 W) and they are turned off during the remaining hours. Fur-
thermore, one stage of lighting (360 W) is employed from 7 a.m. to 6 p.m. The applied utility rate structure 
assumes an on-peak electricity rate of $0.20/kWh from 9 a.m. to 7 p.m. and an off-peak electricity rate of 
$0.05/kWh the remaining hours. Demand charges are not levied.  

Of the available equipment, the HVAC system during the test consists of two chillers, namely a main and a 
dedicated precooling chiller, and the ice-based TES system. The main chiller that is responsible for charging 
the TES tank and meeting on-peak cooling loads operates in the chilled-water mode with a coefficient-of-
performance (COP) of 2.1 and in the ice-making mode (charging the TES) with a COP of 2.4. The COPs were 
validated through repeated tests at the ERS. Consequently, meeting cooling loads through the usage of ice 
storage is more attractive from an energy consumption perspective than standard chilled-water operation. 

Initial tests investigating conventional control strategies revealed that charging of the TES system takes no-
ticeably more time than estimated by the controller, which was traced back to a significantly reduced chiller 
capacity to only 50% in the ice-making mode. Further, it was determined that the ice storage system behaves 
very nonlinearly below 20% and above 90% state-of-charge (SOC). Since the model employed in the predic-
tive optimal control assumes a linear change in SOC with the charging and discharging rates, the SOC was 
limited to an available range of 25% to 75%, effectively cutting the storage capacity in half to 220 kWh. 

The dedicated precooling chiller with a measured COP of 3.4 is assigned to flush the building with cool air 
during nighttime and, consequently, to precool the building’s massive structure and furniture. Both chillers 
cannot simultaneously supply chilled water to the AHU.  

The outdoor air ventilation is governed by a return air temperature economizer that allows for free cooling 
when the ambient air conditions are favorable. The minimum outdoor intake damper is restricted to a posi-
tion of 45% open for AHU A and 37.5% open for AHU B to ensure 20% of ventilation air at design air flow 
conditions. 

Simulations and experiments in the same facility conducted by Braun et al. (2002) revealed that there exists 
significant thermal coupling between the test rooms and the adjacent general area. As a result, there would 
be significant energy transfer between zones when utilizing different zone temperature strategies. Therefore, 
the decision was made to control the entire facility with a uniform schedule for occupancy and a similar con-
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trol strategy. As a result, the evaluation of optimal and conventional control strategies is accomplished by 
comparing measured results under optimal control and simulated results using conventional control and not 
by comparing measured results from test rooms A under optimal and test rooms B under conventional con-
trol. 

The general area was conditioned with 13°C supply air from 7 a.m. to 5 p.m. with a zone temperature set-
point of 22°C. During unoccupied periods, temperatures were allowed to flow. Outside air intake was con-
trolled by an economizer, restricting the minimum damper position to 10%.  

It was verified by ERS personnel that all sensors were sufficiently calibrated and over 750 monitoring points at 
minute-by-minute intervals were recorded during the experiments. 

 

5.3 Description of Implemented Predictive Control Strategy 

5.3.1 Overview 
In this study we employed a sequential approach to model-based control: 1) short-term forecasting, 2) opti-
mization, and 3) post-processing and control command implementation as shown in Figure 51. A real-time 
weather station provides the current weather data to the short-term weather predictor. This predictor pro-
vides an improved forecast for the next planning horizon to the optimal controller, which adjusts the control 
variables in the model according to Figure 53 until convergence is reached. The optimal solution is passed to 
a post-processor that interprets the optimal results and turns them into commands understood by the build-
ing automation system of the facility under control. The building is modeled in TRNSYS (2003) [64], while the 
general purpose technical computing environment Matlab (2000) [62] including the optimization toolbox was 
used to interface with the building simulation program. 
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Matlab with Toolboxes
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Matlab with Toolboxes
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Figure 51: Real-time predictive optimal control schematic. 

5.3.2 Prediction  
A 30-day bin predictor model was found to provide the most accurate weather forecasts for a range of mod-
els tested in Chapter 3. The predicted variables include ambient air dry-bulb temperature, relative humidity, 
global solar radiation, and direct normal solar radiation. The assumption underlying the prediction procedure 
is that the actual time series will exhibit a behavior similar to a reference pattern, developed by rendering bin 
estimates. For a planning horizon of L = 24 hours, the bin model develops the characteristic profile on the 
basis of observations collected over the past 30 days. The forecast is made by shifting the L-hour profile such 
that the predicted value for the current hour k* coincides with the actual measured value by the weather 
station at the ERS. Hence, the forecast bin values are computed from 
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where d is the number of past days used to compute the bins, and Xt is the observed variable. The 24-hour 
forecast is handed over to the optimal controller that uses these values among others to estimate the building 
cooling load profile for the next L hours.  

 

5.3.3 Real-Time Model-Based Predictive Optimal Control 
The optimal controller governing the two sources of thermal energy storage can minimize an objective func-
tion of choice including total energy consumption, energy cost, occupant discomfort, or a combination of 
these. In this study, the real-time controller was charged to minimize operating cost for time-of-use differen-
tiated electricity and fixed-cost natural gas by adjusting global zone temperature setpoints TZ,SP for the passive 
storage and a dimensionless charge/discharge rate u for the active storage. 

Optimal control is defined as that control trajectory that minimizes the total monthly utility bill Cm for elec-
tricity and heating: 

 
{ }

= =

= = +

= Δ = Δ∑ ∑ �

, ,

, , , ,
1 1

min min ,  where

;
m m

m m elec m heat m

K K

elec m e k k h heat m h heat k h
k k

J C C C

C r P t C r Q t
 (28) 

where re,k is the energy rate for electricity according to the utility tariff in effect for time k, Km is the number 
of hours in the current month, Δth is a time increment of one hour, rh is the unit cost of heat delivered, and 
�

,heat kQ  is the heating demand from zone reheat in hour k. 

To apply fixed-horizon optimal control to an infinite-horizon problem such as the given real-time control (it 
could go on indefinitely), closed-loop optimization (CLO) is employed, i.e., the predictive optimal controller 
carries out an optimization over a predefined planning horizon L and of the generated optimal strategy only 
the first action is executed. At the next time step the process is repeated. The final control strategy of this 
near-optimal controller over a total horizon of K steps is thus composed of K initial control actions of K opti-
mal strategies of horizon L, where L < K. Figure 52 illustrates the procedure involved in determining the pre-
dictive optimal control policy. By moving the time window of L time steps forward and updating the control 
strategy after each time step, a new forecast is introduced at each time step and yields a policy (thick dotted 
line), which is different from the policy found without taking new forecasts into account (thin dashed line). 
Since we optimize over a planning horizon of L hours, we can only minimize an approximate cost function CL, 
which allows for the determination of a near-optimal strategy, whose cumulative utility cost approaches the 
desired Jm at the end of the billing period. 
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Figure 52: Closed-Loop Predictive Optimal Control 

Figure 53 illustrates how the minimal utility cost JL over time horizon L is determined. At time zero and start-
ing with initial zone temperature setpoints { },Z SP init

T halfway between the upper and lower bounds and no 

active storage utilization { } = 0,
init

u  the passive storage inventory is optimized to minimize CL. As a result, 

the optimal building cooling load profile is computed and handed over to the active storage optimization, 
which calculates an optimal TES charge/discharge strategy. In a second pass, the optimal active storage utili-
zation strategy and the previously found optimal zone temperature setpoint profile are employed to deter-
mine the new optimal zone temperature setpoint profile and optimal utility cost JL. This cycle is repeated until 
the optimal cost JL converges. Typically, convergence is attained after 2 to 3 iterations. Previously optimal so-
lutions are stored as starting values for subsequent optimizations to reduce execution time. We refer to 
Henze et al. (2004a) for a detailed description of the model-based predictive optimal controller for building 
thermal storage inventory. 
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Figure 53: Iterative sequential optimization of utility cost CL 

At each time step k*, the model-based controller derives the following four operational parameters for the 
active TES system from the optimal charge/discharge rate uk*: charging load for the main chiller (Qcharge), dis-
charging load for the active TES system (Qdischarge), remaining cooling load for the main chiller (Qmain), and cool-
ing load met by the precooling chiller (Qprecool). Rules incorporated in the building model ensure that a) charg-
ing and discharging cannot occur simultaneously; b) when the main chiller charges the active TES tank, any 
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building cooling load has to be met by the precooling chiller; and c) when the TES system is discharged, any 
remaining building cooling load has to be met by the main chiller. 

5.3.4 Post-Processing 
A post-processing computer program was developed for the ERS test facility to translate the optimal results 
produced by the model-based controller into commands, which can be understood by the building automa-
tion system and executed by the ERS HVAC system. The post-processing program sketched in Figure 54 se-
quentially executes the following operations every hour: (a) setup of a communication channel between the 
optimal controller environment and the BAS using a proprietary general-purpose communication software, 
(b) reading the optimal results from the optimal control and the required values from the BAS, (c) conversion 
of optimal results into control commands, and (d) sending the new control commands to the BAS. 

The following post-processing procedure is executed: First, the room air temperature setpoint is sent directly 
to the BAS. Next, the cooling discharge rate of the TES is accomplished by sending the TES leaving water 
temperature as a setpoint for the TES mixing valve local loop control. The leaving water temperature TLW,TES is 
calculated from ( )= −� �

discharge , ,p EW TES LW TESQ mc T T , where flow rate ( �m ) and entering water temperature 

( ,EW TEST ) are read from the BAS.  

During occupancy, the cooling output of the main chiller, operating with a constant cooling output in one of 
two stages, is accomplished by pulse width modulation (PWM). The PWM algorithm translates the optimal 
control result Qmain into a chiller stage and minutes of operating time during the next hour. The PWM time 
period was 20 min. Thus, the total chiller operating time is distributed over three PWM periods per hour. Op-
erational constraints have also been taken into account. For example, there are at least five minutes between 
two periods of chiller operation in order to avoid the chiller cycling too frequently. Moreover, if the calculated 
main chiller load results in an operating time less than 5 minutes, than the chiller will operate 5 min. The pre-
cooling chiller is operated by the existing on-off control algorithm without PWM to maintain the global zone 
temperature setpoint TZ,SP in the building. 
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Figure 54: Post-processing program flow chart. 
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5.3.5 Control Command Execution 
The building automation system requires five plant modes, which had previously been defined for the ERS 
test facility and had been modified to accommodate the predictive optimal control. A plant mode has to be 
selected before a command from the post-processing program can be sent to the HVAC system. The three of 
the available plant modes used in the context of our experiment were: TESMAKE plant mode which repre-
sents charging of the active TES system, TESACC plant mode in which the test rooms are conditioned by the 
main chiller and/or the active TES system, and TESACCOFF where the entire HVAC system is turned off. In 
addition, the BAS enables the air-handling unit fans based on the existence of a cooling load on the AHU 
cooling coils. In summary, the post-processing program obtains the optimal results from the controller, con-
verts the values into comprehensible commands, selects a plant mode and forwards the commands using the 
communication channel to the BAS. 

 

5.4 Description of Conventional Control Strategies 
Before the real-time control experiments were conducted, two additional tests, a reference case and a base 
case test, were carried out. Both tests were required to calibrate the simulation model with respect to the 
building thermal response, the mechanical systems, and the operational schedules. Figure 55 shows the sys-
tem configuration for the reference case and the base case. The active TES system is bypassed in the refer-
ence case.  

 

5.4.1 Reference Case 
The reference case represents the standard case of a cooling system with one sufficiently sized chiller (35 kW) 
which serves the air-handling units (AHU) A and B during occupancy, with nighttime setback during unoccu-
pied periods and with neither active nor passive building thermal storage utilization. The test was run under 
the same schedule of occupancy and temperature setpoints: During occupied hours the zone temperature 
cooling setpoint was 24°C and the heating setpoint was 20°C, while the space temperature was allowed to 
float within the range of 15-30°C during unoccupied periods. 

 

5.4.2 Base Case 
In the base case test, the zone temperature setpoints were identical to the reference case test, however, the 
main chiller is downsized to only 25% of its nominal capacity (8.8 kW). During those periods when the cool-
ing load exceeds the reduced chiller capacity, the remaining cooling is taken from the active TES system. At 
night the active TES system is recharged with full capacity of 35 kW to the upper inventory level of 75% 
state-of-charge. As in the reference case, the passive building thermal storage inventory is not utilized. 
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Figure 55: System schematic of ERS HVAC equipment  

 

5.5 Results 

5.5.1 Modeling Accuracy 
The real-time optimal control experiment was executed over a period of 5 days (128 hours) from midnight on 
September 13 until 8 a.m. on September 18. In order to verify the experimental results, the accuracy of the 
building model must be evaluated. Minute-by-minute measurements taken at the test facility from September 
14 to September 17, 2003 (subscript ERS) are compared to the optimal results determined by the controller 
during the real-time control experiment (subscript ActPredOpt, actual predictive optimal results). Preliminary 
tests conducted during June and July of 2003 facilitated the calibration the simulation model. As supported 
by evidence provided below, the accuracy of the building model was sufficiently high. Moreover, the post-
processing program correctly translated and transferred the optimal control results and the HVAC systems 
and components were successfully orchestrated. 

The experiment experienced two interruptions due to server crashes that made the communication channel 
to the building automation system unavailable on September 16 at 18:00 and on September 17 at 12:00 
noon. During these interruptions the BAS returned zero values for all properties and deviations between 
model and measured data necessarily occurred. 

Figure 56 compares the total simulated and measured AHU cooling loads of system B. It can be seen that the 
measured and modeled values are in good agreement. However, there are some peak cooling loads which 
are not represented well by the model-based controller. The AHU loads are due to internal heat gains from 



Final Report for Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 89 

baseboard heaters and lighting, which were chosen to be constant throughout the test days, solar gains, and 
the required intake of ventilation air. 
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Figure 56: Measured and modeled total AHU cooling loads as well as measured internal heat gains [kW].  

Figure 57 illustrates the measured and modeled charging and discharging performance of the active TES sys-
tem for the September 15. It can be observed that the charging performance is accurately modeled; however, 
the discharge performance is modeled less precisely. Still, the discharge trend is captured well by the model 
used in the predictive optimal controller. While the charge/discharge performance appears to be adequately 
modeled, the profiles of the state-of-charge do not match well. Differences of up to 12% of active inventory 
can be observed and are attributed to a) the compounded differences in the charge/discharge performance 
and b) the poor accuracy of the inventory sensor (claimed to be ±5%). To eliminate the discrepancy between 
the simulated and measured values of state-of-charge, the SOC was measured throughout the testing period 
and updated seven times in the simulation environment. This procedure implies that the SOC sensor reads 
inventory levels accurately, which is not the case. Thus, the compounded effect of modeling mismatch in the 
charge/discharge process is eliminated, yet at the time the low SOC sensor accuracy is introduced to the op-
timization environment.  
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Figure 57: Measured and simulated charging and discharging load [kW] and state-of-charge [%]. 

Figure 58 illustrates the measured and simulated performance of the precooling chiller. Compared to the 
main chiller cooling profiles (not shown), the modeling accuracy for the precooling chiller is inferior. Unlike 
the active TES system and the main chiller, the precooling chiller was not controlled to maintain a particular 
value of Qprecool, but to maintain a global zone temperature setpoint TZ,SP.  
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Figure 58: Measured and simulated precooling chiller cooling load [kW]. 

Does the model-based predictive optimal control comply with the operational constraints imposed in the 
model? Figure 59 shows the ambient air temperature, the average room air temperature, and the upper and 
lower temperature bounds selected for the operation of the ERS, represented by thick lines. During the real-
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time control experiment, the optimal controller decided on substantial nighttime precooling down to 20°C 
averaged over all test rooms. Had the controller decided to precool the building even lower, a need for heat-
ing would have occurred at the onset of the occupied period. When the temperatures were allowed to float 
as in the reference and base cases, the average test room temperature rises above 26°C during unoccupied 
periods. During occupied periods, the room temperature stayed within the required comfort range for all 
three control strategies investigated in this study. 
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Figure 59: Average test room air temperature and ambient air temperature [°C]. 

The investigation of the active TES system state-of-charge data revealed that the simulated values remained 
consistently within the lower and upper bounds of 25% and 75%, respectively, while the measured TES in-
ventory falls below the 25% mark due to a nonlinear discharging performance.  

The average COPs of the main and precooling chillers were recalculated based on the data collected during 
the real-time control test in September of 2003. It was confirmed that the measured COPs deviated from the 
values in the building model by no more than ±0.1. 

The schedules for occupancy and the HVAC system as implemented in the building model and the building 
automation system proved to match identically.  

 

5.5.2 Energy and Cost Savings Performance 
As mentioned above, changes in energy consumption and utility cost will be expressed relative to a simulated 
reference case or base case using the same building model and the same weather data as occurred during 
the real-time control tests. The performance metric for all cases is the utility cost for operating the entire 
HVAC system over a selected time horizon of four days from September 14-17, 2003. The data for Septem-
ber 13 were not considered to account for the transition from the uncontrolled to the controlled condition. 

5.5.2.1 Energy and Cost Savings Performance based on Raw Data  

The electrical utility rate structure includes a time-of-use differentiated energy charges ($/kWh) of $0.20/kWh 
on-peak and $0.05/kWh off-peak; no demand charge is levied. The on-peak period is daily from 9 a.m. to 6 
p.m. with off-peak encompassing all remaining hours. The building is occupied from 8 a.m. to 5 p.m. While 
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the optimizer accounted reheat energy, no reheat was required in any of the test periods. The discussion 
therefore focuses on electrical energy consumption and costs. 

The viewgraphs in this section are shown measurements at the ERS during the real-time-control test and 
simulation results for the reference and base cases for four days. In this time period, the outdoor air tempera-
ture ranges from 10°C early in the morning to 27°C at 6 p.m. Figure 59 reveals the increasing trend of daily 
average ambient air temperature over the course of the real-time control experiment. 

In order to evaluate the results of the optimal control strategy with respect to cost and energy changes, the 
following tables and figures provide measured and calculated data for the following cases: a) reference case 
under nighttime setback, b) base case under chiller-priority control (labeled Base Case 87%), c) the data 
measured at the facility (labeled ERS), and d) the simulated data calculated during real-time control (labeled 
ActPredOpt). Both cases utilizing the active TES system, i.e., base and real-time control cases, started with an 
initial TES state-of-charge of 30%. 

The original building model assumed a perfect, i.e., loss-free active TES system. This implies that 100% of the 
charging cooling load, Qcharge, is deposited in the storage tank. From measurements it was concluded that 
only about 87% of the cooling produced by the main chiller during the charging process contributes to 
changes of the active inventory storage, 13% are lost due to heat gains in the chilled-water distribution sys-
tem and thermal transmission through the tank skin. For each charging period (5-7 hours per night) during 
the experiment, the change of the ice storage inventory was divided by the cumulative charging load that 
occurred over the same time period. The efficiency value of η = 87% was arrived at by averaging these five 
ratios.  
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where p denotes the charging period and Hp is the number of hours in charging period p. While the building 
model used for the ActPredOpt case assumed a perfect charging efficiency, the effect of heat gains and 
transmission losses on the state-of-charge was accounted for by periodically updating the SOC used in the 
simulation with measured SOC values at the test facility. 

For an electrical utility rate structure without demand charges, we can plot daily profiles of HVAC utility costs 
for the main chiller, the precooling chiller, and chilled water pumps. The HVAC electrical energy consumption 
for September 17 is shown in Figure 60. The area under each curve represents the total daily operating con-
sumption. It can be seen that the reference case incurs the highest on-peak demand, but as a result of night-
time setback does not consume any energy during the unoccupied period. The base case created the second 
highest energy demand during the on-peak period. Although the on-peak energy consumption for the base 
case is significantly less than that for the reference case, the on-peak consumption is greater than that under 
optimal control. During the day shown in Figure 60, the building cooling load was moderate and only a small 
contribution from the active TES system was required in the base case. Consequently only four hours of re-
charging were needed. 

The model-based predictive optimal controller successfully shifted building cooling loads to off-peak periods 
and an excellent match between calculated (ActPredOpt) and measured (ERS) cooling load data can be ob-
served. 

The simultaneous utilization of active and passive building thermal storage inventory led to near-zero cooling-
related electrical energy consumption during the on-peak period. The remaining energy consumption during 
the on-peak period is caused by the chilled water pump operating continuously. During the off-peak period 
high values of energy consumption can be observed which are due to precooling of the building structure 
(passive) and charging of the active TES system. It is obvious that on-peak energy consumption is reduced at 
the expense of increased off-peak energy consumption driven by the energy rate ratio of 4:1. Reducing on-
peak electrical demand is a side effect of shifting expensive on-peak cooling loads to off-peak periods for an 
optimal controller minimizing electrical energy cost without a demand charge. 

Although the building model was extensively calibrated, the seemingly small differences between measured 
and modeled hourly HVAC electrical energy consumption compounded to significant differences on a daily 
basis. 
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Figure 60: HVAC electrical energy consumption [kWh]. 

Table 33 provides the daily utility cost savings achieved during the experimental period. Relative to the refer-
ence case, measured savings of about 5% in total HVAC utility costs were achieved in the ERS, and about 
10% of modeled savings (ActPredOpt). Compared to the base case with 87% charging efficiency, cost in-
creases of about 7% and 1.4% were achieved for the ERS and the simulation, respectively. As shown, there 
are significant variations in the cost changes from one day to another relative to the reference and the base 
cases. This inconsistent pattern was caused by a number of reasons discussed in the next section. 

Table 33: Changes of daily HVAC electrical utility cost of the optimal control strategy compared to the Refer-
ence Case and the Base Case 87% [%]. 

14-Sep 15-Sep 16-Sep 17-Sep Cumulative

Cost changes relative to Reference Case [%]

ERS -19.7 +11.5 +9.1 -21.2 -5.0
ActPredOpt -32.2 +20.4 +7.1 -34.4 -9.9

Cost changes relative to Base Case 87% [%]

ERS -30.3 +17.3 +32.1 +1.3 +7.0
ActPredOpt -41.1 +26.6 +29.7 -15.6 +1.4  

 

5.5.2.2 Corrected Energy and Cost Saving Performance 

Motivation for Correcting the Measured Results – Previous research (Henze et al., 2004a and 2004b) 
revealed that given strong load-shifting incentives, the benefits of the investigated predictive optimal control 
may be substantial. Therefore, we expected moderate daily savings, less fluctuation from day to day, and 
substantial cumulative savings. The promising potential of the optimal control strategy revealed in previous 
simulations may be obtained by the removal of erroneous data that occurred during the experiment. The cor-
rected data discussed will be denoted by ‘ERScor’ and ‘ActPredOptcor’. 
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Description of Experimental Problems – There were two experimental problems encountered during the 
tests: First, invalid data were produced by the building model during two hours of the experiment caused by 
the interruptions of the communication channel. These erroneous data were eliminated by interpolating be-
tween the valid adjacent data points. 
Second, during three hours suboptimal solutions were found by the optimizer. As a result, main and precool-
ing chiller activity occurred for three hours during the on-peak period of September 16 and drastically in-
creased the electrical energy costs for that day. The precooling chiller activity can be observed for September 
16 at 12 noon and 2 p.m. in Figure 58. The controller requested the main chiller to charge the TES with a 
very small charging load (not shown). As a result, the precooling chiller had to meet the daytime AHU cooling 
loads. Why did this happen? At any point in time, meeting a cooling load is least expensive by discharging 
the active TES system (only pump energy is incurred), next by using the precooling chiller (COP = 3.4), and 
finally by using the main chiller in chilled-water mode (COP = 2.1). Since both chillers cannot operate at the 
same time, the optimizer decided to charge an insignificant amount in order to be able to use the precooling 
chiller to meet the on-peak cooling loads. We believe that the optimal controller was caught in a local mini-
mum during these hours, thus it selected a suboptimal control strategy. These experimental defects affected 
both the measured and the simulated raw cost data as shown in Table 33.  

Elimination of Experimental Defects – In order to fairly assess the potential of the model-based predictive 
optimal controller, we manually modified the measured and simulated raw data to account for the interrup-
tions and spurious precooling chiller activity. In addition, we repeated the experiment in a simulation envi-
ronment using the same building model, weather data, and initial state-of-charge (labeled RecPredOpt), and 
compared it with the manually modified simulated data (labeled ActPredOptcor). The expectation was that 
after removing the experimental defects from the raw data and repeating the simulation without the problem 
of local minima, the results should match closely. Indeed, a repeated simulation run did not produce the 
same idiosyncrasies with respect to the precooling chiller operation as can be seen in Figure 62. 
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Figure 61: Simulated precooling chiller load as determined during the real-time experiment (ActPredOpt) and 
during recreated experiment (RecPredOpt) [kW]. 

The recreated experiment determines the cost savings we may have had obtained without interruptions and 
local minima. Interestingly, there are minor differences between the results collected for the real-time optimi-
zation ActPredOptcor and the recreated optimization RecPredOpt. Obviously, the controller does not find 
exactly the same optimal solutions, which can be attributed to the convergence criterion of the optimizer. 
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Cost Comparison using the Modified Measured Results and the Recreated Simulation – Table 34 
compares the daily savings of the corrected measurements at the ERS and of the corrected real-time simula-
tion with the reference and base cases. It can be seen that the values for September 16 and 17 differ greatly 
from the cost calculation involving the raw data as shown in Table 33. After the removal of the erroneous 
data we obtain cost savings of 13% for the ERS data compared to the reference case and savings of 2% rela-
tive to the base case. The corrected real-time optimal results reveal higher cost savings as well. Cumulative 
savings of 18% are obtained when compared to the reference case and 7% are obtained relative to the base 
case. When comparing the recreated optimal results without local minima complications against the refer-
ence case, we obtain the same 18% savings as for corrected simulation results. 

The recreated simulation did not require any updates of the SOC values since it did not occur in real-time and 
actual SOC data was not available. In order for the comparison of the recreated optimal and simulated base 
case to be valid, both have to use the same active TES model. We decided to assume a perfectly efficient 
charging process in the TES system for this comparison. The comparison yielded cost savings of about 7%. 

Table 34: Changes of daily corrected HVAC electrical utility cost of the optimal control strategy compared to 
the Reference Case and the Base Case [%]. 

14-Sep 15-Sep 16-Sep 17-Sep Cumulative

Cost changes relative to Reference Case [%]
ERScor -19.7 +11.6 -19.0 -22.4 -13.6
ActPredOptcor -32.8 +19.8 -19.6 -34.3 -18.0
RecPredOpt -35.3 +13.2 -18.2 -30.5 -18.2

Cost changes relative to Base Case 87% [%]
ERScor -30.2 +17.4 -1.9 +1.2 -2.2
ActPredOptcor -41.7 +26.0 -2.6 -14.2 -7.2

Cost changes relative to Base Case 100% [%]
RecPredOpt -42.9 +19.0 0 -8.3 -6.6  

 

5.5.2.3 Consideration of AHU Fan Power Consumption 

Motivation for Neglecting AHU Fan Operation – Preliminary tests had revealed that the global optimiza-
tion of both active and passive building thermal storage inventory led to prohibitively long calculation times 
and inferior, i.e., often suboptimal solutions. In response, we adopted the iterative sequential optimization 
approach depicted in Figure 53. This decision required the plant models of the passive and active optimiza-
tion steps are identical. To allow for easy plant model calibration, we decided to include a simplified HVAC 
plant model characterized by constant COPs in each mode of operation excluding the operation and energy 
consumption of the fans. 

The measured data revealed that the fan energy consumption cannot be neglected and that fan operation 
has a significant impact on the decisions of the model-based predictive optimal controller. Therefore, the dis-
cussion of energy consumption and cost performance is now extended to take into account the fan power 
consumption and to highlight the differences in the optimal control decisions with and without fans. 

Results with AHU Fan Power Consumption – On the basis of measured data, we approximated the supply 
and return fan electrical power consumption for AHU A and B with second-order polynomials and integrated 
those in the building model. The simulated results, shown in Figure 62 below, present the hourly HVAC elec-
trical demand on September 17 for the reference case, the base case, the corrected measured data ERScor, 
and the repeated optimal results RecPredOpt. The energy required by the reference case and the base case 
increased by the energy consumption of the fans during the occupied period.  

Using the new plant model, the optimizer in a recreated experiment decides to make less use of the passive 
building thermal storage inventory, i.e., less precooling during the night and as a result saves an impressive 
27% and 17% of electrical utility costs relative to the reference and base cases, respectively.  



Final Report for Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 96 

The actual experiment was conducted governed by a model-based predictive optimal controller that did not 
account for AHU fan power consumption. If we compare the measured total HVAC electrical energy con-
sumption ERScor with the fan consumption added to the reference and base cases using the modified plant 
model, the savings are reduced from 13.6% to 5.6% for the reference case and from 2.2% savings to cost 
increases of 8.3%. This investigation emphasizes that the inclusion of fan power consumption is mandatory 
for a successful implementation of passive thermal storage utilization. The optimal active TES system control 
strategy was not materially affected by the inclusion of the AHU fans in the plant model.  
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Figure 62: HVAC electrical demand including fan operation [kW].  

 

Table 35: Changes of daily corrected HVAC electrical utility cost of the optimal control strategy compared to 
the Reference Case and the Base Case including the fan power consumption [%]. 

14-Sep 15-Sep 16-Sep 17-Sep Cumulative

Cost changes compared to the Reference Case [%]
ERScor -7.9 +13.5 -11.4 -13.2 -5.6
RecPredOpt -30.0 -13.9 -26.4 -36.4 -27.3

Cost changes compared to Base Case 87% [%]
ERScor -11.6 +25.4 +7.5 +9.6 +8.3

Cost changes compared to Base Case 100% [%]
RecPredOpt -32.9 -4.9 -10.7 -19.8 -16.7  

 

5.6 Conclusions and Future Work  
This topical report investigates the demonstration of model-based predictive optimal control for active and 
passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated elec-
tricity prices without demand charges. The novel supervisory controller successfully executed a three-step 
procedure consisting of 1) short-term weather prediction, 2) optimization of control strategy over the next 
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planning horizon using a calibrated building model, and 3) post-processing of the optimal strategy to yield a 
control command for the current time step that can be executed in the test facility.  

The primary and secondary building mechanical systems consisting of two air cooled chillers, an ice-based 
thermal energy storage system, two identical air handling units and auxiliary equipment were effectively or-
chestrated by the model-based predictive optimal controller in real-time while observing comfort and opera-
tional constraints. The authors believe that this has not been accomplished before.  

The findings reveal that even when the optimal controller is given imperfect weather forecasts and when the 
building model used for planning control strategies does not match the actual building perfectly, measured 
utility costs savings relative to conventional building operation can be substantial. This requires that the facil-
ity under control lends itself to passive storage utilization and the building model includes a realistic plant 
model. 

The savings associated with passive building thermal storage inventory proved to be small because the test 
facility is not an ideal candidate for the investigated control technology: The building structure is of light-
weight construction, the test rooms are unfurnished, and significant thermal coupling exists between con-
trolled test rooms and an uncontrolled adjacent area. Moreover, the facility’s central plant revealed the idio-
syncratic behavior that the chiller operation in the ice-making mode was more energy efficient (COP=2.4) 
than in the chilled-water mode (COP=2.1). 

To aid model calibration, the model used for real-time control employed a constant COP approach for each 
chiller and mode of operation and ignored VAV fan operation. The measured results show that the plant 
model must include AHU fan operation and should include part-load performance and correction for off-
design conditions. 

Field experimentation is now required in a suitable commercial building with sufficient thermal mass, an ac-
tive TES system, and a climate conducive to passive storage utilization over a longer testing period to support 
the laboratory findings presented in this study.  

Currently underway is research that attempts to create an optimal controller for the same control application 
that does not rely on a model description but learns to carry out the best control decisions based on rein-
forcement it received in response to past actions.  
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5.8 Nomenclature 
AHU   Air handling unit 

ActPredOpt  Raw actual predictive optimal results during real-time simulation 

ActPredOptcor  Corrected predictive optimal results during real-time simulation 

BAS   Building automation system 

Base Case 87%  Base case under chiller priority with 87% charging efficiency 

Base Case 100% Base case under chiller priority with 100% charging efficiency 

CHWP   Chilled water pump 

CLO   Closed-loop optimization 

COP   Coefficient-of-performance 

ERS   Energy Resource Station; raw measured data at ERS 

ERScor   Corrected measured data at ERS 

IEC   Iowa Energy Center 

HVAC   Heating, ventilating, and air-conditioning 

PWM   Pulse width modulation 

RecPredOpt  Repeated predictive optimal results 

SOC   State-of-charge for the inventory in the active thermal storage system [%] 

TES   Active thermal energy storage system 

TESACC   Plant mode: Condition the test rooms 

TESACCOFF  Plant mode: Turn off HVAC system 

TESMAKE  Plant mode: Charge active TES system 

VFD   Variable-flow distribution 

CL   Cost function for horizon L [$] 

Cm   Total monthly utility bill [$] 

Hp   Number of hours in charging period p [-] 

Jm   Optimal total monthly utility bill [$] 

JL   Optimal utility cost for horizon L [$] 

Km   Number of hours in current month [-] 

L   Planning horizon for optimal control [h] 

Qcharge   Charging load for the main chiller [kW] 

Qdischarge   Discharging load for TES system [kW] 

Qheat   Heating demand from zone reheat [kW] 

Qmain   Cooling load for main chiller [kW] 

Qprecool   Cooling load for precooling chiller [kW] 

,EW TEST    Entering water temperature of TES [°C] 

,LW TEST    Leaving water temperature of TES [°C] 
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Tz,SP   Global zone temperature setpoint [°C] 

{ }ˆ
tX    Forecasted time series 

{ }tX    Observed time series 

cp   Specific heat capacitance [kJ/kgK] 

d   Number of days [-] 

k*   Current hour [-] 
�m    Mass flow rate [kg/s] 

n   Day index [-] 

re,k   Energy rate for electricity [$/kWh] 

rh   Cost of heat delivered [$/kWh] 

t   Time [-] 

u   Charge/Discharge rate [-] 

Δ ht    Time increment for one hour [-] 

η    Efficiency value for charging TES [%] 
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6 Phase 3: Field Testing at the Energy Plaza in Omaha, NE 

6.1 Abstract 
As the third and final phase of the project on predictive optimal control of active and passive building thermal 
storage inventory, field experimentation has been carried out in Omaha, NE during the summer of 2005. This 
chapter summarizes the efforts that had been made to implement a model-based predictive optimal control-
ler in a commercial building in order to 1) explore the merits of harnessing the active and passive thermal 
storage inventories simultaneously by means of predictive optimal control, 2) validate the previous findings in 
the first (modeling and analysis) and second (laboratory testing) phases, and 3) provide the experience and 
guidance for future application in real buildings. This chapter will first describe the tested commercial building 
and its facilities. The methodology of implementation of model-based predictive optimal controller will then 
be introduced, followed by data analysis.  

 

6.2 Description of Experiment Facility 

6.2.1 General Background on Energy Plaza 
The target building is selected as Energy Plaza, which is a commercial office building located at the 16th Street 
of Omaha, Nebraska. This building premise consists of the separate office blocks East, West, and Garage. The 
exterior atrium connects these blocks and has glazing roof-construction to illuminate the space area with the 
daylight. In this field experimentation, only the east office block will be under the control of predictive opti-
mal controller. The total conditioned area is about 14,000 square meter including the basement, arcade, inte-
rior atrium, open space offices (2nd to 10th floor), and mechanical floor. The estimated occupancy is about 
480.  

The following photographs capture the main features of the Energy Plaza building. 
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6.2.2 Primary and Secondary HVAC Systems 
There are five air-handling units (AHU-1, 2, 3, 4 and 5) serving the east office block of Energy Plaza. AHU-1, 2, 
3 and 4 are single-duct VAV systems that serve office areas, and AHU-5 is a single-zone unit that serves the 
atrium. Two AHUs, AHU-1 and 2, are located at the basement and the other three are located at the pent-
house. The main AHUs (AHU-1, 2, 3 and 4) are interconnected as a single duct ladder loop as shown in 
Figure 63.  

AHU1

AHU3

TO
ARTIUM

VAV BOX

RETURN AIR DUCT

SUPPLY AIR DUCT

AHU2

AHU5AHU4

 

Figure 63: Air distribution for the entire building 

The chilled water system consists of three chillers (CH-1, CH-1A and CH-1B), three ice storages (TSU-1A, 1B 
and 1C), a heat exchanger between ice water loop and chilled water loop, two brine pumps (P-1A and 1B), 
two ice water pumps (P-2A and 2B) and three brine pumps (P-3A, 3B and 3C). Figure 64 shows the detailed 
schematic of chilled water, ice water and brine loops. 

Until the summer of 2004, the plant was running under storage-priority control; this was changed to chiller-
priority control as one of the outcomes of the continuous commissioning activities. The existing two chillers 
charge the ice storage units during unoccupied hours (initiation time: midnight). The high temperature (new) 
chiller operates on demand while the existing chiller is operating. During occupied hours, the ice storages are 
discharged to provide cooling for peak demand and no chiller shall operate. If the load exceeds the ice stor-
age capacity during the discharging period, the high temperature chiller shall operate to support the ice stor-
age system. One of the ice water pumps and one of the chilled water pumps can be modulated by variable 
frequency drives. The ice water pump is modulated to maintain the chilled water supply temperature at 38ºF. 
The chilled water pump is modulated to maintain the pressure differential at the remote loop. There are two-
way valves for the cooling coils in AHUs. 
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Figure 64: Schematic of the chilled water system 
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Figure 65: Schematic of the hot water system 

Figure 65 shows schematic of the hot water system. The hot water pump operates at constant speed. The 
returning hot water can be heated in the condensers of ice making chiller while the chillers are operating. 
Otherwise, a steam-hot water heat exchanger heats up hot water. The capacity of the main chiller (labeled as 
New Chiller in Figure 64) is 200 Ton (703.4kW). The system has its primary constant speed pump and con-
structs a primary-secondary chilled water system with the secondary chilled water pumps. The capacity of 
each ice-making heat pump is 160 Ton (562.7kW). The total capacity of the ice-storage system is 2850 ton-
hours (9975kWh). 
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6.3 Development of the Building Model for Energy Plaza 

6.3.1 Modeling Assumptions 
In the study, we only consider the office spaces including the arcade and interior atrium level, which are 
served by the four single duct air handling units (AHU) (described in Section 6.2.2). The arcade level and the 
interior atrium level are connected by the opening stairs and the air floats freely, therefore, we assume the 
two levels have the same zone air temperature and consider them as one zone. Furthermore, from the 2nd 
floor on, there are open space offices in the core and small offices at the exterior walls. Since the air move-
ment between them is unlimited and they are controlled by the same sensors, we model each floor as one 
thermal zone. The building model is developed in TRNSYS [36].  

 

6.3.2 Modeling of Interior Gains 
From site visits, we assume that the time of use or occupancy, respectively, is daily 6 AM to 7 PM and from 
Monday to Friday for all offices except the first and the tenth floor, which have to be served (conditioned) 
around the clock. Otherwise, the offices are unoccupied. The interior gains of the occupants as well as of the 
lighting during the occupied periods are modeled as shown in Figure 66.  

 

                   

Figure 66: Internal gain schedule for Energy Plaza 

6.3.3 Calibration of Building Model 
The Energy Plaza building has undergone a retrofit of lighting fixtures starting last winter, which requires our 
building model to be updated accordingly. Figure 67 compares the hourly electricity load of a typical office 
floor before and after the change of lighting fixture.  
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Figure 67: Comparison of electrical load before and after retrofit 

Based on measurements, the building model has been changed correspondingly.  

 

Another important parameter is the utility rate structure for the program. Energy Plaza is subject to a special 
utility rate, which does not include a time-of-use (TOU) feature as our program expected. An investigation 
has been carried out in order to create an artificial time-of-use rate that has a suitable structure with our pro-
gram and that approximates the actual electricity bill of the building as close as possible. It is assumed that 
the on-peak period as 10:00 AM – 18:00 PM, and the rest is the off-peak hours. By comparing different rate 
structures, it was decided that using off peak rate as $0.03/kWh and on-peak $0.09/kWh can provide a total 
deviation of only 2.4% for the months of June – September and strong load-shifting incentive ratio of 3:1. 
Figure 68 provides the comparison of electricity bill of June – September of 2004 between the actual value 
and the projected ones using the artificial utility rate structure. 
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Figure 68: Actual and projected values of monthly electricity bill for the Energy Plaza 
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6.4 Implementation of predictive optimal controller 
The implementation of model-based predictive optimal control program was carried out by sequentially exe-
cuting the following three programs at each time step: 1) short-term weather prediction, 2) optimization of 
control strategy over the next planning horizon using a calibrated building model, and 3) post-processing of 
the optimal strategy to yield a control command for the current time step that can be executed in the test 
facility. This structure had proved successful in the laboratory experimentation.  

 

6.4.1 Implementation of Weather Predictor 
A 30-day bin predictor model was implemented to cooperate with the predictive optimal controller. The pre-
dicted variables included ambient air dry-bulb temperature, relative humidity, global solar radiation, and di-
rect normal solar radiation. The implementation of the weather predictor required two sets of data available: 

6.4.1.1 Last 30 day’s bin data. 

During the laboratory experimentation in the ERS 2003, a weather station provided all the data we needed. 
Since there was no weather station available in Energy Plaza, we had to find historical weather data for 
Omaha, NE to build up the bin data. Unfortunately, even though there are many weather stations available 
locally and nationally, and the temperature and relative humidity are easy to get, solar radiation data, espe-
cially historical solar data is almost unavailable. Because of this fact, instead of using monitored data in 
Omaha of 2004, TMY2 weather data is used to build up the initial weather bin data. It is worth pointing out 
that the bin data will be updated every hour. During the experiment, the real-time weather data was used to 
update this bin data. As the dry-run tests proceeded, the bin data became more and more realistic. 

6.4.1.2 Real-time weather data 

As mentioned earlier, without the local weather station, the real-time actual ambient condition was hard to 
acquire directly. Installation of a weather station and setting up the corresponding communication system is a 
straight forward solution, but it also could be very time consuming. Meanwhile, there are many local weather 
stations in Omaha, which provide sufficiently accurate information to meet our requirement. Since all these 
information is available on the internet, a program was developed to acquire this information remotely. The 
following three weather stations were inquired hourly to provide the following specific weather information: 

 Creighton University weather station provided the ambient air dry-bulb temperature and relative humid-
ity. 

 Gretna weather station provided the hourly global solar radiation data 
 Omaha.com weather prediction provided the current sky condition, which will be used to estimate the 

direct normal solar radiation. 
 
 

6.4.2 Implementation of Post-processing Program  
A post-processing computer program was developed for the Energy Plaza facility to translate the optimal re-
sults produced by the model-based controller into commands, which can be understood by the building 
automation system and executed by the HVAC system.  
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Figure 69: Flowchart of the post-processing program 

Figure 69 shows the flowchart of the post-processing program. As shown above, based on the optimal result 
from the predictive optimal controller, the post-processing program will generate a set of commands hourly, 
which mainly include: 

1) Turn on/off chillers, including base load chiller and ice-making chiller. 
2) Reset the cooling temperature setpoint for all of the terminal boxes universally. 
3) Setting the leaving water temperature setpoint when the plant is in the discharging mode. 
4) Setting the charging limit when the plant is in the charging mode. 
 

6.4.3 Communication with the BAS of Energy Plaza  
During the laboratory experimentation described in Chapter 0, communication between predictive optimal 
controller and the BAS of the building was not a very difficult problem. By using the NDDE (Network Dynamic 
Data Exchange) application programs, which are built-in functions in Matlab, the commands interpreted by 
the post-processing program can be immediately executed by the BAS. We attempted to use the same meth-
odology in the Energy Plaza facility, but it turned out that the NDDE is reliable when it is working in the con-
text of a virtual private network (VPN). The final solution was to let the DDE work locally on our computer, in 
which the predictive optimal control program resides, and the data between the program and the BAS of the 
EnergyPlaza is exchanged through a shared Excel file, which is opened in the control server of Energy Plaza. 
The Excel file works as an interface between our computer and the control server in Energy Plaza.  
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Figure 70: Communication architecture of the programs 

 

Figure 70 depicts the communications of the programs with each other. Another computer has to be set up 
to run the weather prediction program because once the computer that carries out the predictive optimal 
control program logs on the Virtual Private Network of the Energy Plaza, it will lose connectivity with internet, 
which will be needed to make weather prediction. 

 

6.5 Data Analysis 
This final report presents an analysis based on the available data. Although such a short period including a 
couple of interruptions cannot provide a full evaluation of the predictive optimal control program as we ex-
pected, it still provides an opportunity to analyze the performance of the optimal controller. Table 36 pre-
sents a brief test log during the test period, which is helpful to interpret the results in the following discussion. 
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Table 36: Test period log 

 

Case Date Note 

June 22 0:00 to July 16 9:00 Normal operation 

July 16 9:00 to July 20 15:00 Normal operation, flow meter down Base Case 

July 20 15:00 to July 25 10:00 Normal operation 

July 25 10:00 to July 28 7:00 
Optimal operation, server crash at 
7:15AM, but program is continued 

July 28 8:00 to July 29 13:00 
Optimal operation, server crash at 

7:45AM, but program is terminated in-
cluding main Matlab run file at 13:00 

July 29 13:00 to Aug 1 8:00 
Normal operation (optimal test sus-

pended) 

Aug 1 8:00 to Aug 3 12:00 Optimal operation 

Optimal Case 

Aug 3 12:00  Server crash, and test is terminated 

 

The two cases mentioned in Table 36 stand for two different operating schemes described in the following 
data analysis. The base case refers to the normal operation without using the predictive optimal control pro-
gram, which is chiller-priority TES control with constant zone air temperature setpoint during occupancy and 
nighttime setup. Optimal case is the test period when our predictive optimal control program is applied. The 
normal operation has been monitored since the middle of June of 2005. Data from July 11 to 17 are selected 
to represent the base case, which is one week before the optimal case started. It should be noted that the 
flow meter had malfunctioned for about 5 days since July 16. Another finding is that the state-of-charge SOC 
sensor is not reliable; sometimes the data indicates that the SOC could jump from an empty to 80% inven-
tory in one hour, which of course is not possible. 

 

6.5.1 Base case 

July of 2005 was the hottest month for Omaha this year, especially the last two weeks of July. As earlier men-
tioned, the plant has been modified from storage-priority to chiller-priority control as a result of the continu-
ous commissioning efforts. The selected data are supposed to represent the normal plant operation. Figure 
71 and Figure 72 presents the weather data and room temperature of the Energy Plaza building from July 11 
to July 17. 
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Figure 71: Ambient condition from July 11 to July 17, 2005 
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Figure 72: Room temperature of Energy Plaza from July 11 to July 17, 2005 

The room air temperature is approximated by the return air temperature of air handling units (AHU). It can be 
seen from Figure 72 that the zone temperature has been maintained around 22-23°C except for AHU 5, 
which serves the atrium. It is not surprising to see that AHU 1-4 have almost constant return air temperature 
because there are two AHUs running during the unoccupied period to maintain the same setpoint of building 
as the occupied period. 
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Figure 73: Cooling load profiles from July 11 to July 17, 2005 

 

0

10

20

30

40

50

60

70

80

90

100

7/11/05 0:00 7/12/05 0:00 7/13/05 0:00 7/14/05 0:00 7/15/05 0:00 7/16/05 0:00 7/17/05 0:00 7/18/05 0:00

Time

S
O

C
 [%

]

ICE_TANK A

ICE_TANK B

ICE_TANK C

Average

 

Figure 74: SOC profiles of TES tanks from July 11 to July 17, 2005 

Figure 73 presents the cooling load profiles from July 11 to July 17. Since the flow meter mounted at main 
chilled water piping system was down from July 16, the cooling load of July 17 and 18 cannot be calculated. 
It can be seen that the majority of the cooling loads were met by the main chiller, and the TES has been util-
ized to assist the main chiller to meet the building cooling load. State-of-charge SOC profiles of the TES sys-
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tem in Figure 74 also reveal that all of the TES tanks have been cyclically charged and discharged in the inves-
tigated week. There are some points that had been identified as unreliable data because it is impossible that 
the inventory of TES varies from 30 to 50 percent or more in one hour.  

 

6.5.2 Optimal Control Case  

As mentioned earlier, the real-time optimal control started on July 25, and lasted until August 3, but there 
has been two of interruptions due to the server crash and loss of communication between the building 
automation server and the server running the predictive optimal control program. By interpreting the data, 
three days data are identified to represent the optimal control case, and one particular day has found load 
shifting effect as we expected. Figure 75 shows the weather condition from July 25 to August 3. There was a 
severe thunder storm from July 25 to 26, which dramatically cooled down the temperature. 
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Figure 75: Ambient conditions from July 11 to July 17, 2005 
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Figure 76: Room temperature of Energy Plaza from July 11 to July 17, 2005 

 

Figure 76 shows the global cooling setpoint selected by the optimal control program and the actual room 
temperature of the building. As can be seen from the figure above, the global setpoint has the similar pattern 
in the selected three days. The setpoint from midnight to 5:00 AM is usually set to 15°C in order to precool 
the building. Then, the setpoint was increased to 21°C from 6:00 AM to 9:00 AM because the earliest occu-
pancy started at 6:00 AM, and on-peak rate began at 10:00 AM. For the thermal comfort of occupants, the 
lower bound of cooling setpoint was set as 21°C. The optimal controller still decided to cool down the build-
ing as much as possible to shift the coming cooling load from the on-peak period. For the on-peak period, 
the setpoint usually was chosen as the upper bound of the thermal comfort region, i.e. 24°C. From the end 
of occupancy to the midnight, the controller tended to let the temperature of the building float by setting a 
high value for the cooling setpoint, i.e. 30°C. However, the actual room temperature did not follow the set-
point very closely. Comparing with the base case shown in Figure 72, the room temperature is only slightly 
reduced. One of reasons might be that the capacity of the system is insufficient to cool the building down 
any further. 
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Figure 77: Cooling load profiles from July 25 to July 28, 2005 
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Figure 78: SOC profiles of TES tanks from July 25 to July 28, 2005 

Figure 77 depicts the cooling load profiles during the optimal control test, and Figure 78 depicts the SOC 
profiles of the plant. It is difficult to detect the load shifting effect from the chart above at first sight. The 
global setpoint started to be handed over to the BAS from 8:00 AM of July 25, which is a very hot and humid 
day before the thunder storm coming. As we can see from the figure above, the cooling load during night of 
July 25 to 26 is still high because the setpoint of the building had been lowered to 15°C. The cooling load 
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during the occupied period of July 26 is lower than the normal value (1100 – 1200 kW) shown in Figure 73, 
but it might also be caused by the ambient temperature decrease. Low ambient temperatures on July 27 led 
to the lowest cooling loads from midnight because of the availability of free cooling by using the economizer. 
Cooling loads of July 27 were also low due to the combination of cool weather and the effect of precooling, 
and most cooling loads were met by the TES, thus the main chiller had only been running for several hours. It 
is surprising to see that the cooling load of July 28 is still relatively high even though there had been a pre-
cooling period from midnight of July 27 to 28. The SOC profiles also show that the TES had been utilized as 
expected. 

 

6.6 Energy and Cost Analysis 
An energy and cost analysis has been carried out based on the hourly cooling load profiles. The measured 
data from Energy Plaza only had very limited information on the energy consumption. There is no power con-
sumption measurement for the fans and pumps, and the power consumption data of the plant could not 
provide a meaningful interpretation due to limited availability of “good quality” data. Therefore, the analysis 
below focuses on the energy consumption of the cooling plant only, and is calculated based on constant COP 
(coefficient-of-performance) value of the chillers, which were obtained during the previous calibration. The 
COP of the main chiller was determined to be 4.5 and the COP of the icemaking chiller was identified as 2.1. 

Table 37: Hourly energy consumption and cost for base case 

Date Hour $/kWh $ Date Hour $/kWh $ Date Hour $/kWh $
Main Chiller Icemaking Total Main Chiller Icemaking Total Main Chiller Icemaking Total

11-Jul 0:00 88.06 268.69 356.75 0.03 10.70 13-Jul 0:00 101.11 48.15 149.26 0.03 4.48 15-Jul 0:00 64.56 239.40 303.96 0.03 9.12
1:00 85.70 0.00 85.70 0.03 2.57 1:00 85.09 40.52 125.61 0.03 3.77 1:00 54.45 233.86 288.31 0.03 8.65
2:00 85.04 0.00 85.04 0.03 2.55 2:00 75.84 36.11 111.95 0.03 3.36 2:00 53.04 237.03 290.07 0.03 8.70
3:00 78.90 0.00 78.90 0.03 2.37 3:00 75.03 35.73 110.75 0.03 3.32 3:00 48.45 68.56 117.01 0.03 3.51
4:00 84.13 0.00 84.13 0.03 2.52 4:00 72.12 34.34 106.46 0.03 3.19 4:00 46.78 0.00 46.78 0.03 1.40
5:00 158.71 0.00 158.71 0.03 4.76 5:00 128.13 61.01 189.14 0.03 5.67 5:00 88.75 0.00 88.75 0.03 2.66
6:00 252.29 0.00 252.29 0.03 7.57 6:00 188.71 89.86 278.58 0.03 8.36 6:00 132.33 0.00 132.33 0.03 3.97
7:00 253.18 0.00 253.18 0.03 7.60 7:00 188.32 89.68 278.00 0.03 8.34 7:00 125.76 0.00 125.76 0.03 3.77
8:00 255.51 0.00 255.51 0.03 7.67 8:00 196.79 93.71 290.50 0.03 8.71 8:00 126.54 0.00 126.54 0.03 3.80
9:00 267.98 0.00 267.98 0.03 8.04 9:00 191.45 91.17 282.62 0.03 8.48 9:00 125.83 0.00 125.83 0.03 3.77

10:00 260.18 0.00 260.18 0.09 23.42 10:00 197.07 93.84 290.91 0.09 26.18 10:00 123.64 0.00 123.64 0.09 11.13
11:00 259.80 0.00 259.80 0.09 23.38 11:00 197.04 93.83 290.87 0.09 26.18 11:00 127.24 0.00 127.24 0.09 11.45
12:00 245.89 0.00 245.89 0.09 22.13 12:00 189.36 90.17 279.53 0.09 25.16 12:00 139.84 0.00 139.84 0.09 12.59
13:00 259.89 0.00 259.89 0.09 23.39 13:00 192.29 91.57 283.86 0.09 25.55 13:00 148.40 0.00 148.40 0.09 13.36
14:00 260.47 0.00 260.47 0.09 23.44 14:00 190.36 90.65 281.01 0.09 25.29 14:00 148.68 0.00 148.68 0.09 13.38
15:00 277.33 0.00 277.33 0.09 24.96 15:00 188.27 89.65 277.93 0.09 25.01 15:00 139.14 0.00 139.14 0.09 12.52
16:00 271.98 0.00 271.98 0.09 24.48 16:00 183.19 87.23 270.42 0.09 24.34 16:00 129.50 0.00 129.50 0.09 11.66
17:00 269.49 0.00 269.49 0.09 24.25 17:00 189.19 90.09 279.28 0.09 25.13 17:00 90.09 0.00 90.09 0.09 8.11
18:00 250.78 0.00 250.78 0.09 22.57 18:00 168.60 80.29 248.89 0.09 22.40 18:00 118.69 0.00 118.69 0.09 10.68
19:00 261.31 0.00 261.31 0.03 7.84 19:00 172.04 81.93 253.97 0.03 7.62 19:00 75.01 0.00 75.01 0.03 2.25
20:00 253.67 0.00 253.67 0.03 7.61 20:00 115.23 54.87 170.10 0.03 5.10 20:00 106.27 81.70 187.97 0.03 5.64
21:00 213.30 137.12 350.42 0.03 10.51 21:00 98.69 46.99 145.68 0.03 4.37 21:00 84.56 245.89 330.46 0.03 9.91
22:00 166.39 273.60 439.99 0.03 13.20 22:00 0.00 0.00 0.00 0.03 0.00 22:00 78.36 242.88 321.24 0.03 9.64
23:00 133.83 267.27 401.10 0.03 12.03 23:00 81.55 38.83 120.38 0.03 3.61 23:00 47.24 232.12 279.35 0.03 8.38
Total 5940.47 319.56 Total 5115.69 303.63 Total 4004.60 190.05

12-Jul 0:00 117.34 264.42 381.76 0.03 11.45 14-Jul 0:00 66.45 246.05 312.50 0.03 9.38
1:00 106.27 270.12 376.39 0.03 11.29 1:00 67.17 247.63 314.81 0.03 9.44
2:00 98.30 261.09 359.39 0.03 10.78 2:00 62.85 244.94 307.80 0.03 9.23
3:00 88.37 0.00 88.37 0.03 2.65 3:00 61.85 71.88 133.74 0.03 4.01
4:00 86.20 0.00 86.20 0.03 2.59 4:00 58.60 0.00 58.60 0.03 1.76
5:00 167.40 0.00 167.40 0.03 5.02 5:00 112.06 0.00 112.06 0.03 3.36
6:00 265.00 0.00 265.00 0.03 7.95 6:00 175.53 0.00 175.53 0.03 5.27
7:00 261.07 0.00 261.07 0.03 7.83 7:00 176.73 0.00 176.73 0.03 5.30
8:00 256.93 0.00 256.93 0.03 7.71 8:00 161.60 0.00 161.60 0.03 4.85
9:00 256.33 0.00 256.33 0.03 7.69 9:00 176.28 0.00 176.28 0.03 5.29

10:00 248.24 0.00 248.24 0.09 22.34 10:00 175.19 0.00 175.19 0.09 15.77
11:00 259.96 0.00 259.96 0.09 23.40 11:00 178.12 0.00 178.12 0.09 16.03
12:00 230.58 0.00 230.58 0.09 20.75 12:00 174.46 0.00 174.46 0.09 15.70
13:00 222.64 0.00 222.64 0.09 20.04 13:00 173.72 0.00 173.72 0.09 15.63
14:00 221.48 0.00 221.48 0.09 19.93 14:00 169.12 0.00 169.12 0.09 15.22
15:00 224.69 0.00 224.69 0.09 20.22 15:00 169.72 0.00 169.72 0.09 15.28
16:00 218.60 0.00 218.60 0.09 19.67 16:00 169.18 0.00 169.18 0.09 15.23
17:00 219.20 48.87 268.08 0.09 24.13 17:00 169.70 0.00 169.70 0.09 15.27
18:00 202.83 0.00 202.83 0.09 18.25 18:00 154.60 0.00 154.60 0.09 13.91
19:00 195.82 0.00 195.82 0.03 5.87 19:00 154.07 0.00 154.07 0.03 4.62
20:00 198.69 0.00 198.69 0.03 5.96 20:00 159.27 0.00 159.27 0.03 4.78
21:00 198.61 59.37 257.99 0.03 7.74 21:00 112.93 0.00 112.93 0.03 3.39
22:00 164.50 259.51 424.01 0.03 12.72 22:00 84.59 100.54 185.13 0.03 5.55
23:00 132.68 235.28 367.97 0.03 11.04 23:00 70.92 246.05 316.97 0.03 9.51
Total 6040.42 307.04 Total 4391.83 223.78

Electricity Consumption [kWh] Electricity Consumption [kWh] Electricity Consumption [kWh]
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Table 38: Hourly energy consumption and cost of optimal case 

Date Hour $/kWh $ Date Hour $/kWh $
Main Chiller Icemaking Total Main Chiller Icemaking Total

25-Jul 0:00 232.07 0.00 232.07 0.03 6.96 27-Jul 0:00 25.38 260.30 285.68 0.03 8.57
1:00 229.96 122.55 352.51 0.03 10.58 1:00 24.91 265.05 289.96 0.03 8.70
2:00 231.47 0.00 231.47 0.03 6.94 2:00 22.78 268.37 291.16 0.03 8.73
3:00 231.80 0.00 231.80 0.03 6.95 3:00 21.64 277.88 299.52 0.03 8.99
4:00 234.47 0.00 234.47 0.03 7.03 4:00 23.15 269.32 292.48 0.03 8.77
5:00 242.42 0.00 242.42 0.03 7.27 5:00 22.37 268.85 291.22 0.03 8.74
6:00 243.40 0.00 243.40 0.03 7.30 6:00 21.42 274.55 295.97 0.03 8.88
7:00 241.47 0.48 241.94 0.03 7.26 7:00 21.34 262.68 284.02 0.03 8.52
8:00 252.51 0.00 252.51 0.03 7.58 8:00 25.28 273.13 298.40 0.03 8.95
9:00 236.67 0.00 236.67 0.03 7.10 9:00 79.50 267.43 346.93 0.03 10.41

10:00 207.69 0.00 207.69 0.09 18.69 10:00 146.44 246.05 392.49 0.09 35.32
11:00 219.51 0.00 219.51 0.09 19.76 11:00 139.54 0.00 139.54 0.09 12.56
12:00 226.67 0.00 226.67 0.09 20.40 12:00 139.83 0.00 139.83 0.09 12.58
13:00 224.80 0.00 224.80 0.09 20.23 13:00 106.18 0.00 106.18 0.09 9.56
14:00 217.61 0.00 217.61 0.09 19.59 14:00 75.53 0.00 75.53 0.09 6.80
15:00 218.39 0.00 218.39 0.09 19.65 15:00 54.60 0.00 54.60 0.09 4.91
16:00 216.53 0.00 216.53 0.09 19.49 16:00 0.00 0.00 0.00 0.09 0.00
17:00 215.73 0.00 215.73 0.09 19.42 17:00 89.84 0.00 89.84 0.09 8.09
18:00 211.83 0.00 211.83 0.09 19.06 18:00 112.19 0.00 112.19 0.09 10.10
19:00 211.93 1.43 213.35 0.03 6.40 19:00 170.02 0.00 170.02 0.03 5.10
20:00 211.11 0.00 211.11 0.03 6.33 20:00 168.04 0.00 168.04 0.03 5.04
21:00 207.55 0.48 208.02 0.03 6.24 21:00 165.88 0.00 165.88 0.03 4.98
22:00 208.84 0.00 208.84 0.03 6.27 22:00 167.74 0.00 167.74 0.03 5.03
23:00 208.68 0.00 208.68 0.03 6.26 23:00 165.66 0.00 165.66 0.03 4.97
Total 5508.02 282.77 Total 4922.87 214.30

26-Jul 0:00 202.03 0.48 202.50 0.03 6.08 28-Jul 0:00 165.38 0.00 165.38 0.03 4.96
1:00 196.83 0.48 197.30 0.03 5.92 1:00 164.55 0.00 164.55 0.03 4.94
2:00 193.98 67.93 261.91 0.03 7.86 2:00 165.38 0.00 165.38 0.03 4.96
3:00 199.64 76.00 275.64 0.03 8.27 3:00 166.21 0.00 166.21 0.03 4.99
4:00 184.74 77.42 262.17 0.03 7.87 4:00 166.21 0.00 166.21 0.03 4.99
5:00 194.74 71.73 266.47 0.03 7.99 5:00 163.71 0.00 163.71 0.03 4.91
6:00 198.52 64.12 262.64 0.03 7.88 6:00 163.16 0.00 163.16 0.03 4.89
7:00 136.11 63.17 199.29 0.03 5.98 7:00 162.33 0.00 162.33 0.03 4.87
8:00 133.39 64.13 197.51 0.03 5.93 8:00 160.66 0.00 160.66 0.03 4.82
9:00 142.60 199.98 342.58 0.03 10.28 9:00 159.71 0.00 159.71 0.03 4.79

10:00 146.57 35.15 181.72 0.09 16.35 10:00 160.82 1.43 162.24 0.09 14.60
11:00 160.17 0.00 160.17 0.09 14.42 11:00 163.94 0.48 164.42 0.09 14.80
12:00 143.01 6.17 149.18 0.09 13.43 12:00 162.68 0.00 162.68 0.09 14.64
13:00 139.43 53.20 192.63 0.09 17.34 13:00 159.29 1.90 161.19 0.09 14.51
14:00 115.80 22.80 138.60 0.09 12.47 14:00 153.51 0.00 153.51 0.09 13.82
15:00 103.78 0.00 103.78 0.09 9.34 15:00 155.10 0.95 156.05 0.09 14.04
16:00 118.98 0.00 118.98 0.09 10.71 16:00 152.69 0.00 152.69 0.09 13.74
17:00 116.03 0.00 116.03 0.09 10.44 17:00 129.04 0.00 129.04 0.09 11.61
18:00 94.70 0.00 94.70 0.09 8.52 18:00 144.46 0.00 144.46 0.09 13.00
19:00 59.22 0.00 59.22 0.03 1.78 19:00 151.98 0.00 151.98 0.03 4.56
20:00 58.69 0.00 58.69 0.03 1.76 20:00 157.05 0.48 157.53 0.03 4.73
21:00 42.70 0.00 42.70 0.03 1.28 21:00 154.50 0.48 154.97 0.03 4.65
22:00 38.19 0.00 38.19 0.03 1.15 22:00 164.65 0.00 164.65 0.03 4.94
23:00 34.47 39.43 73.89 0.03 2.22 23:00 168.07 0.00 168.07 0.03 5.04
Total 3996.50 195.24 Total 3820.78 197.80

Electricity Consumption [kWh] Electricity Consumption [kWh]

 

 

Table 37 and Table 38 present an hourly analysis of the energy consumption and operating cost of the cool-
ing plant for the base case and optimal case scenarios. The comparison of daily average value is summarized 
in Table 39. 

Table 39: Comparison of the average value of base case and optimal case 

Scenario Date Energy Consumption [kWh] Cost [$]
Base Case 7/11/2005 5940.47 319.56

7/12/2005 6040.42 307.04
7/13/2005 5115.69 303.63
7/14/2005 4391.83 223.78
7/15/2005 4004.60 190.05
Average 5098.60 268.81

Optimal Case 7/25/2005 5508.02 282.77
7/26/2005 3996.50 195.24
7/27/2005 4922.87 214.30
7/28/2005 3820.78 197.80
Average 4562.04 222.53
Savings 10.5% 17.2%  
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It can be seen from Table 39 that the optimal control case provides savings in energy consumption of about 
10%, and about 17% savings in operating costs based on the average daily value. These savings figures are 
very encouraging but should be treated with caution for the following reasons: There is only limited data 
available for analysis, fan and pump power consumption have not been included, variation in weather and 
building use have not been accounted for. Nevertheless, the available experimental data support the further 
development and refinement of the control strategy. 

 

6.7 Summary 
This final chapter presents an analysis of the measured data of the real-time optimal control test conducted at 
the Energy Plaza facility in Omaha, Nebraska for a very short time period. Energy consumption was reduced 
by about 10% and costs were reduced by about 17% for the test period. The developed weather predictor 
and predictive control program had been running smoothly during the test period, but there was a problem 
in the process of transmitting the optimal results into the BAS system. As mentioned earlier, our server that is 
in charge of the optimal control program was not allowed to be connected directly with the local network of 
the building, but could only read and write the information by using a virtual private network (VPN) connec-
tion. Another reason for the instable operation is that the BAS server itself in the investigated building is rela-
tively old, and not capable of handling many processes at the same time. After observing the server crash for 
several times, our program was viewed as being the last piece pushing the stone off the edge. The limited 
data confirms that our optimal value had been successfully transmitted into the BAS system provided each 
program is running, and the analysis of cooling load profiles during the test days in Figure 77 reveals the ef-
fect of load shifting as expected, but it is not sufficient data for us to draw meaningful conclusions about the 
performance of the program. Regardless of the poor condition of the existing BAS server, which is believed to 
be the major reason causing the failure of field implementation, will need to find a new way to implement 
the optimal results into the BAS system. DDE had been very effective, but it is not very reliable, especially the 
NDDE (Network DDE) implementation. Future efforts to bring this novel idea into reality should focus on de-
veloping a methodology including hardware and software to transmit the optimal results into conventional 
and possibly aged BAS systems. 


