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DISCLAIMER 

 
 

This report was prepared as an account of the work sponsored by an agency of the United 
States Government.  Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights.  Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof.  The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 
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ABSTRACT 
 

A non-agglomerated and nanocrystalline-sized powder was successfully produced using 
ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well 
dispersed and nano sized particles about 100 – 200 nm. The density of LSFT sintered at 1300oC 
was about 90% of the theoretical density at which is 100oC less than that of the previous LSFT 
which was sintered at 1400oC. The sample sintered at 1400oC exhibited the evidence of a liquid 
phase at the grain boundaries and 2nd phase formation which probably caused low mechanical 
stability. The electrical conductivity and Seebeck coefficient were measured as a function of 
temperature. 
 

The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation 
of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the 
LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 µm/ min were chosen for 
this study. It is observed from the results that with increasing cross head speed the membrane 
takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000°C in 
N2.  
 

Two different routes were investigated to synthesis GDC using either formate or 
carbonate precursors.  The precursor and CGO particle morphologies were examined by scanning 
electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO)3 and 
Ce(Gd)(CO3)(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3˚C/min in 
air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen 
adsorption isotherms were measured.  Conductivity measurements were made by AC impedance 
spectroscopy on sintered disks in air using platinum electrodes.  
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INTRODUCTION 
 
Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters 

the 21
st
 Century. Technically robust and economically viable processes are needed to capture the 

value of the vast reserves of natural gas on Alaska’s North Slope, and wean the Nation from 

dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are 

all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a 

fundamental building block from which chemicals and fuels can be derived. Lower cost syngas 

translates directly into more cost-competitive fuels and chemicals. 

The currently practiced commercial technology for making syngas is either steam methane 

reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by 

natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always 

produce syngas at a cost that makes its derivatives competitive with current petroleum-based 

fuels and chemicals. 

In the mid 80’s BP invented a radically new technology concept that will have a major economic 

and energy efficiency impact on the conversion of natural gas to liquid fuels, hydrogen, and 

chemicals.1 This technology, called Electropox, integrates oxygen separation with the oxidation 

and steam reforming of natural gas into a single process to produce syngas with an economic 

advantage of 30 to 50 percent over conventional technologies.2 

The Electropox process uses novel and proprietary solid metal oxide ceramic oxygen transport 

membranes [OTMs], which selectively conduct both oxide ions and electrons through their lattice 

structure at elevated temperatures.3 Under the influence of an oxygen partial pressure gradient, 

oxygen ions move through the dense, nonporous membrane lattice at high rates with 100 percent 

selectivity. Transported oxygen reacts with natural gas on the fuel side of the ceramic membrane 

in the presence of a catalyst to produce syngas.  

In 1997 BP entered into an OTM Alliance with Praxair, Amoco, Statoil and Sasol to advance the 

Electropox technology in an industrially sponsored development program. These five companies 

                                                 
1Mazanec, T. J.; Cable, T. L.; Frye, J. G., Jr.; US 4,793,904, 27 Dec 1988, assigned to The Standard Oil Company (now BP America), 
Mazanec, T. J.; Cable, T. L.; US 4,802,958, 7 Feb 1989, assigned to the Standard Oil Co. (now BP America), Cable, T. L.; Mazanec, 
T. J.; Frye, J. G., Jr.; European Patent Application 0399833, 24 May 1990, published 28 November 1990. 
 
2Bredesen, R.; Sogge, J.; "A Technical and Economic Assessment of Membrane Reactors for Hydrogen and Syngas Production" 
presented at Seminar on the Ecol. Applic. of Innovative Membrane Technology in the Chemical Industry", Cetraro, Calabria, Italy, 1-
4 May 1996. 
 
3 Mazanec, T.J., Interface, 1996; Mazanec, T.J., Solid State Ionics, 70/71, 1994 11-19; "Electropox: BP's Novel Oxidation 
Technology", T.J. Mazanec, pp 212-225, in "The Role of Oxygen in Improving Chemical Processes", M. Fetizon and W.J. Thomas, 
eds, Royal Society of Chemistry, London, 1993; "Electropox: BP's Novel Oxidation Technology", T.J. Mazanec, pp 85-96, in "The 
Activation of Dioxygen and Homogeneous Catalytic Oxidation", D.H.R. Barton, A. E. Martell, D.T. Sawyer, eds, Plenum Press, New 
York, 1993; "Electrocatalytic Cells for Chemical Reaction", T.J. Mazanec, T.L. Cable, J.G. Frye, Jr.; Prep Petrol Div ACS, San Fran, 
1992 37, 135-146; T.J. Mazanec, T.L. Cable, J.G. Frye, Jr.; Solid State Ionics, 1992, 53-56, 111-118. 
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have been joined by Phillips Petroleum and now are carrying out a multi-year $40+ million 

program to develop and commercialize the technology. The program targets materials, 

manufacturing and engineering development issues and culminates in the operation of semi-

works and demonstration scale prototype units. 

The Electropox process represents a truly revolutionary technology for conversion of natural gas 

to synthesis gas not only because it combines the three separate unit operations of oxygen 

separation, methane oxidation and methane steam reforming into a single step, but also because it 

employs a chemically active ceramic material in a fundamentally new way. On numerous fronts 

the commercialization of Electropox demands solutions to problems that have never before been 

accomplished. Basic problems in materials and catalysts, membrane fabrication, model 

development, and reactor engineering all need solutions to achieve commercial success. Six 

important issues have been selected as needing understanding on a fundamental level at which the 

applied Alliance program cannot achieve the breadth and depth of understanding needed for rapid 

advancement. These issues include: 

1. Oxygen diffusion kinetics (University of Houston);  
2. Phase stability and stress development (University of Missouri - Rolla);  
3. Mechanical property evaluation in thermal and chemical stress fields (University of 

Alaska Fairbanks) 

Statement of Work 
Task 1 Evaluate phase stability and thermal expansion of candidate perovskite 

membranes and develop techniques to support these materials on porous metal 
structures. 

 
Task 2 Determine materials mechanical properties under conditions of high 

temperatures and reactive atmospheres. 
 
Task 3 Measure kinetics of oxygen uptake and transport in ceramic membrane materials 

under commercially relevant conditions using isotope labeling techniques. 
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EXECUTIVE SUMMARY 

 

The LSFT powder prepared using ethylene glycol nitrate method exhibits well 
dispersed and nano sized particles about 100 – 200 nm. The density of LSFT sintered at 
1300oC was about 90% of the theoretical density at which is 100oC less than that of the 
previous LSFT which was sintered at 1400oC. The sample sintered at 1400oC exhibited 
the evidence of a liquid phase at the grain boundaries and 2nd phase formation which 
probably caused low mechanical stability. The electrical conductivity and Seebeck 
coefficient were measured as a function of temperature. 
 

The effect of strain rate on the flexural strength of the LSFT-CGO test specimens 
was studied. It is observed from the results that with increasing cross head speed the 
membrane takes higher loads to fail. A reduction in the strength of the membrane was 
observed at 1000°C in N2. It was identified from the bend strength experiments that the 
geometry plays an important role in achieving proper fracture of the sample. 
 

GDC was prepared using either formate or carbonate precursors. The precursor 
and CGO particle morphologies were examined by scanning electron microscopy. The 
thermal decomposition behaviors of Ce(Gd)(HCOO)3 and Ce(Gd)(CO3)(OH) were 
determined by thermogravimetric analysis. The XRD patterns of the precursor and CGO 
were collected and nitrogen adsorption isotherms were measured.  Conductivity 
measurements were made by AC impedance spectroscopy on sintered disks in air using 
platinum electrodes.  
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Task 1:  Preparation and Characterization of Dense Ceramic oxygen 
Permeable Membranes 

 
Yong-Wook Sin and H. U. Anderson 

Materials Research Center, University of Missouri-Rolla, Rolla, MO 65401 
 

Conductivity and Seebeck coefficient of La0.2Sr0.8Fe0.55Ti0.45O3-δ (LSFT) as a function of 

temperature 

 

UMR has recently developed an improved method for preparation of multi- 

component powder systems.  The method was used to prepare LSFT 

(La0.2Sr0.8Fe0.55Ti0.45O3-δ) nanocrystalline powder.   Several water based solution 

processes were tested to prepare well dispersed and nano sized LSFT powder.  Among 

them, the method using ethylene glycol and nitrates produced the best nanocrystalline 

LSFT powder.  The new LSFT sample was prepared using this new LSFT powder and 

was characterized by using XRD, optical microscope, and SEM.  The electrical 

conductivity and Seebeck coefficient as a function of temperature were also measured in 

air. 

Results and Discussion 

 Several different, water based chemical preparation methods using glycine, 

sucrose and ethylene glycol were used to prepare LSFT powders.  A non-agglomerated 

and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate 

methods.  The density of LSFT sintered at 1300oC was about 90% of the theoretical 

density at which is 100oC less than that of the previous LSFT which was sintered at 

1400oC.  Figure 1 shows optical photomicrographs of the powder previously prepared 
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using the glycine nitrate process and the currently prepared LSFT powders using the 

ethylene glycol nitrate method. 

 

(a) Previously prepared LSFT powder using glycine nitrate method 

 

(b) Newly prepared LSFT powder using ethylene glycol nitrate method 

Figure 1. Optical micrographs of the LSFT powder was prepared using (a) glycine-
nitrate method and (b) ethylene glycol nitrate method 
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As can be seen in these figures, the LSFT powder prepared using glycine nitrate 

method shows agglomerated large particle size of about 10 – 20 µm.  On the other hand, 

the LSFT powder prepared using ethylene glycol nitrate method exhibits well dispersed 

and nano sized particles about 100 – 200 nm.  Figure 1 (b) appeared to have large 

agglomerates of LSFT particles even though the particles were actually well dispersed.  

This is due to the drying process of alcohol during the powder sample preparation for 

optical microscopy.  The LSFT powder was agglomerated on the cover glass during the 

drying process of alcohol.  The prepared LSFT nano powder was pressed using uni-axial 

press with about 200 MPa followed by sintering at 1200, 1300 and 1400oC to investigate 

the optimum sintering temperature.   

Figure 2 shows the SEM micrographs of the new LSFT samples from the 

different sintering temperatures.  As can be seen in the figures, LSFT sample sintered at 

1200oC exhibited large pores all over the sample surface.  Due to the low sinterability, 

the mechanical strength of this sample was low and could be broken by hand.  However, 

the LSFT sample sintered at 1300oC showed no visible pores on the surface of the sample 

and had 90% of the theoretical density and no evidence of the 2nd phase formation.  On 

the other hand, the LSFT sample sintered at 1400oC exhibited the evidence of a liquid 

phase at the grain boundaries and 2nd phase formation which probably caused low 

mechanical stability.  Actually, the 1400oC sample shattered during  the sintering process. 

(1400oC was the optimum sintering temperature for the previous LSFT sample)  The 

mechanical instability of the sample sintered at 1400oC probably is due to the mismatch 

of thermal expansion coefficients between the different phases formed during the 

sintering process.  Corresponding X-ray results were shown in Figure 3.  However, 
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according to the X-ray results, there was no evidence of the 2nd phase formation at 

1400oC.  Actually there was no difference between XRD results from the samples 

sintered from 1200, 1300 and some minor peaks disappeared at 1400oC.  However, 

1400oC was too high because a liquid was formed at that temperature.  Therefore, the 

optimum sintering temperature should have been somewhere between 1300 and 1400oC.  

The chemical analysis will be carried out on the samples to investigate the discrepancy of 

results between SEM and XRD.   

 

          

 

(d) LSFT sintered at 1400°C in air   
but different scale (c) LSFT sintered at 1400oC in air 

(a) LSFT sintered at 1200oC in air (b) LSFT sintered at 1300oC in air 

Figure 2. SEM micrograph of LSFT at different sintering temperature in air 
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Figure 3.  XRD profiles of LSFT annealed at 600, 1200, 1300, and 1400oC 
 

 

The electrical conductivity and thermoelectric power were  measured in air on the 

LSFT sample sintered at 1300oC.   As can be seen in Figure 4, the conductivity  increased 

with temperature up to 800oC and then  became essentially constant up to the temperature 

of 1200oC.  If the mobility dominated the conductivity process, the conductivity should 

have steadily increased with increasing temperature. Obviously this is not the case. It 

appears from the Seebeck coefficient data which are also shown in Figure 4, the carrier 

concentration increases with increasing temperature which suggests that the acceptor 

concentration increased. This may be due to changes in the  valence states of Ti and Fe as 

temperature  increased.  Above 700oC, the Seebeck Coefficient decreased to the point 

that the sensitivity  of voltmeter being used for the thermoelectric voltage measurement 
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was exceeded, so any data above that temperature are suspect. However, it is apparent 

that the Seebeck Coefficients became essentially constant with further increases of 

temperature. This suggests that the carrier concentration became constant which could be 

an explanation of the behavior of the conductivity. That is; i) at low temperatures, the 

carrier concentration increased thereby accelerating an increase in the conductivity 

beyond that due to the mobility term and ii) at temperatures above 700oC the carrier 

concentration tended to be constant which caused increases in conductivity to be smaller.   

However, more investigation needs be performed on this new LSFT material to explain 

more about these behaviors. 
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Figure 4.  The electrical conductivity and Seebeck coefficient were measured as a 
function of temperature 
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Future Work 

 

1. The powder preparation process should be optimized. 

2. More measurements of electrical conductivity and Seebeck coefficient will be 

carried out as a function of temperature and oxygen activity 

3. The chemical analysis on the LSFT sample will be carried out. 

4. Carrier concentration, mobility of charge carrier, and net acceptor dopant 

concentration will be estimated which will allow explanation of the behavior of 

the electrical conductivity. 
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Determine material mechanical properties under conditions of high temperature 

and reactive atmosphere 

 

Prof. S. Bandopadhyay and Dr. T. Nithyanantham 

University of Alaska Fairbanks, AK 99775 

 Experimental: 
 

The LSFT-CGO specimens were cut from the as sintered bars and used for the 

evaluation of Mechanical Properties after polishing. The sample preparation methods 

were discussed in the previous report (OTM, Quarterly report. Page 4, Jan-March 2006). 

The figure 5 shows the photograph of the as-sintered and test specimen.  

 
Figure 5. Photographs of as-sintered and test specimens.  

 

The effect of strain rate on the flexural strength of the LSFT-CGO test specimens 

was studied. Three strain rates 6, 60 and 600 µm/ min were chosen for this study.  The 

samples were mounted in 4-point bend test fixture and the load was applied with the 

strain rate mentioned until the specimen fractures.  The load-deflection data was plotted 

and analyzed. The fracture surfaces after the test was secured for further analysis using 

SEM, XRD and thermal analysis.  

 

High density alumina test specimens with the same dimensions were also 

prepared with a notch in the middle of the bars and used for calibration purposes. 

 

As-sintered  LSFT-CGO 

LSFT-CGO Test specimen 
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The flexural strength was calculated using the simple beam formula, 

 

Fracture strength σf, MPa =    

 

Where P = Fracture Load (N) 

  L= Outer Span ( here 3.81 cm) 

  B= thickness and 

  W= width of the beam respectively. 

 

Results and Discussion: 

 

 Figure 6 shows the LSFT-CGO flexural strength, tested at the strain rate of 6 

µm/min  at RT in air. It is observed that there is monotonic increase in the load till the 

specimen fails at the maximum load.   

 

Figure 6. LSFT-CGO Flexural strength tested at the strain rate of 6 µm/min. at RT 

in air. 

 

The maximum strength values that ware calculated for the two LSFT-CGO bars 

fractured at 6µm/min were 82.3 and 53.2 MPa respectively. The scattering in the values 

or the difference between these two values are relatively higher. This may be due to the 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90 LSFT-CGO in RT 6µm/min

Max. Strength = 82.33 MPa
Max. Load = 157 N

Displacement (cm)

Fl
ex

ur
al

 S
tre

ng
th

 (M
Pa

)

0

20

40

60

80

100

120

140

160

Load (N
)

0.00 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50

60

LSFT-CGO in RT 6µm/min

Max. Strength = 53.2 MPa
Max. Load = 133 N

Displacement (cm)

Fl
ex

ur
al

 S
tre

ng
th

 (M
P

a)

0

20

40

60

80

100

120

140

Load (N
)

3PL 
4BW2 --- (2.1)



 13

size of critical flaw or experimental problems.  In order to understand the effect of strain 

rate on the LSFT-CGO samples, next strain rate (60µm/min) was employed. The Figure 7 

shows the LSFT-CGO Flexural strength tested at the strain rate of 60 µm/min at RT in air.  

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

80

90

100

110
LSFT-CGO in RT (60µm/min) 
Sample code (322B)

Max. Strength = 104.8 MPa
Max. Load = 182 N

Displacement (cm)

Fl
ex

ur
al

 S
tre

ng
th

 (M
Pa

)

0

20

40

60

80

100

120

140

160

180

200

Load (N
)

 
Figure 7. LSFT-CGO Flexural strength tested at the strain rate of 60 µm/min. at 

RT in air. 

 

In the Figure 7 the maximum strength value was calculated as 104.8 MPa and the 

fracture load was found to be 182 N.  It is observed that the fracture load at 60µm/min is 

higher than at 6µm/min. The flexural strength tests at the strain rate of 600 µm/ min were 

carried out and the results were plotted in Figure 8.  As observed in the previous 

experiments with slower strain rates, the increasing load leads to failure at 201 and 219 N. 

The flexural strength values calculated from the loads were 94.1 MPa and 90.8 MPa 

respectively. 

 

 The flexural strength results are summarized in the Table 1 and load-displacement 

curves of three selected specimens were shown in Figure 9.  It is observed from the 

results that with increasing cross head speed the membrane takes higher loads to fail. 

This kind of fracture behavior is quite normal in the flaw containing brittle materials.    
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Figure 8. LSFT-CGO Flexural strength tested at the strain rate of 600 µm/min. at RT in 

air. 

 

Table 1. LSFT-CGO Flexural strength tests at RT and at 1000°C in N2 atmosphere.  
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Maximum Load 
(N) 

Maximum 
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RT, Air 
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6 µm/min 
 
60 µm/min 
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60 µm/min 
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133  
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219 
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104.8 
 
90.8 
 
94.1 
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Figure 9. Effect of strain rate on the fracture load. 
 

 

The presence of a flaw such as a crack, pore, or inclusion in a ceramic material 

results in stress concentration.  Griffth proposed an equation for the form 

 

σf  = A  

 

for relating the fracture stress to the material properties and the flaw size, where σf  is the 

fracture stress, E the elastic modulus, γ the fracture energy, c the flaw size, and A a 

constant that depends on the specimen and flaw geometries. In the slower strain rate the 

crack growth is relatively easier by linking up with the grain boundaries and neighboring 

flaws which eventually increase the size of the critical flaw and reduce the fracture stress. 

In the slower strain rate the slow crack growth facilitates the fracture at the lower applied 

stress itself.  In the rapid loading, materials fail at higher fracture stress due to the 

absence of slow crack growth.  Hence, the stress needed to fracture the LSFT-CGO at 

600 µm/min is 25% higher than to fracture the membrane at 6 µm/min. 

 

 

 

 

E γ 
c 

--- (2.2)
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Bend strength in N2 atmosphere at elevated temperatures: 

 The LSFT-CGO test specimen was loaded in the 4-point bend fixture and the N2 

was purged during heating of the autoclave. The temperature was maintained at 1000°C 

for 60min prior to apply any load. The specimen was loaded with a rate of 60 µm/min. 

The furnace power was switched off after the fracture of the sample. The load 

displacement curve is shown in Figure 10. 
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Figure 10.  Bend strength of LSFT-CGO is at 1000°C in N2 atmosphere. 
 
 

The load increased monotonically with increasing displacement till the specimen 

failed at 120 N.  The bend strength calculated was 51.2 MPa. LSFT-CGO had a higher 

bend strength at RT in air. Figure 7 shows the load-displacement plot for the bend 

strength test with the same loading rate. The reduction in the strength may be due to the 

development of new flaws or crack growth from the already existing flaws. The 

formation of oxygen deficiencies at high temperature can also cause the strength 

degradation. A detailed characterization of the fractured samples using XRD, SEM and 

TGDTA is planned. The bend strength tests at 1000°C in air also planned in the next 

quarter to understand the effect of temperature on LDFT-CGO.  

 

 It was identified from the bend strength experiments that the geometry 

plays an important role in achieving proper fracture of the sample. In some of the 

experiments the specimens failed closer to the 4-point bend ZrO2 rollers (top). The 
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photographs of the fractured specimens are shown in Figure 11. The reason for such 

failures was identified as the improper alignment or geometry of the specimen. Hence, 

some of the test will be repeated to get the proper fracture.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Fractured LSFT-CGO in RT in air. (a)  Perfect failure at the center of 
the sample (b) Specimen failed at the ZrO2 rollers due to uneven specimen 
geometry. 

 
 
 
 
Plans for the next quarter: 
 
 

1. Complete thermal analysis of the LSFT-CGO 
2. Bend strength tests at 1000°C in air  
3. Characterization of the fractured samples using XRD and SEM. 

 
 

(a) (b) 
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Measurement of Surface Activation/Reaction Rates in Ion Transport Membranes using 

Isotope Tracer and Transient Kinetic Techniques 

A. J. Jacobson, University of Houston, C.A. Mims, University of Toronto 
 
 

EXPERIMENTAL   

We have investigated two different synthesis routes to GDC using either formate 

or carbonate precursors. Several procedures were investigated in order to obtain both the 

maximum yield of precursor and to produce homogeneous and small-sized crystals. The 

carbonate route used the approach of Fujihara et al who reported both the synthesis of 

cerium carbonate and samarium-doped cerium carbonate.[ i ] In their report, 

Ce(NO3)3·6H2O and urea were dissolved in deionized water and the solution was heated 

at 80 °C for 24 h. Ce2O(CO3)2·H2O was precipitated in the form of rod-shaped particles 

(approximately 5 x 2 µm) were obtained as a result of fast crystal growth in the solution. 

When CeCl3·6H2O was used instead of nitrate, triangular prism-shaped particles 

(approximately 20 – 30 µm in height and 5 – 10 µm in thickness) were precipitated.  

The formate precursor Ce(Gd)(HCOO)3 was synthesized from the nitrates by 

hydrolysis of dimethylformamide. All reactants were reagent-grade and were used as 

purchased without further purification. Cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O; 

99%, Aldrich), gadolinium (III) nitrate hexahydrate (Gd(NO3)3·6H2O; 99.9 %, Aldrich). 

In typical syntheses Ce(NO3)3·6H2O and Gd(NO3)3·6H2O were dissolved in either 

DMF/EtOH/H2O or DMF/HCOOH/H2O and this solution was refluxed at 100 °C for 12 h 

to give needle-shaped white crystals of the formate. This method gave a high yield, c.a. 

97%, with crystal size of ~15 µm long (Figure 12a). The formate was heat-treated at 350 

~ 400 °C for 12 h to give yellow CGO powder. 

The carbonate precursor (Ce,Gd)(CO3)(OH) was prepared via a modification of 

the precipitation method used by Fujihara et al. Cerium nitrate and gadolinium nitrate 

were dissolved in deionized water in the ratio of Ce/Gd = 9/1. Urea (99+ %, Aldrich) was 

added to this solution. The reaction vessel was placed in a silicone oil bath and the 

solution was refluxed at 105 ˚C for 12 h with vigorous stirring. The product, a white 
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powder was filtered and washed with water and ethanol. Finally, the carbonate was heat-

treated at 350 ~ 400 °C for 12 h to give yellow CGO powder.  

Characterization.  

The precursor and CGO particle morphologies were examined by scanning 

electron microscopy (SEM-JEOL 8300). The thermal decomposition behaviors of 

Ce(Gd)(HCOO)3 and Ce(Gd)(CO3)(OH) were determined by thermogravimetric analysis 

(TGA) at a rate of 3˚C/min in air using a V5.1A Du Pont 2100 instrument. The X-ray 

powder diffraction patterns of the precursor and CGO were collected on a Scintag XDS 

2000 diffractometer with CuKα radiation. Nitrogen adsorption isotherms were measured 

using COULTER OMISORP 100 automated gas sorption analyzer. Conductivity 

measurements were made by AC impedance spectroscopy on sintered disks in air using 

platinum electrodes. 

 

RESULTS AND DISCUSSION 

 

Formate precursor:  

The large crystal size of the formate precursor does not lead to a powder that is 

easy to densify (see below). Consequently, the reaction conditions were modified in order 

to maintain a high yield but of smaller crystals. Reactions with a mixture of 

Ce(NO3)3·6H2O or CeCl3·6H2O and Gd(OAc)3·xH2O in DMF/EtOH/H2O with and 

without formic acid was heated at 80 – 100 °C for 12 – 24 h. The yield of formate was 

less than 45 % with crystal sizes approximately 2 – 10 µm except when cerium chloride 

was used with formic acid at 100 °C, the yield was doubled than that from nitrate. When 

the reaction was carried out in a static reaction vessel such as a stainless bomb or sealed 

tube, the average crystal size was about 500 µm at 100 °C and 50 – 200 µm at 80 °C 

(Figure 12b). Attempts to make the particle size of CGO small by rapid heating the 

formate to 400 °C, quenching the heated sample, or using a surfactant (TritonX-100) in 

the initial synthesis, were unsuccessful.  
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Fig. 12. Crystals of (Ce,Gd)(HCOO)3 a) under reflux conditions, b) in static conditions. 

Carbonate precursor: 

Following the procedure described above with the concentration of metal ions and 

urea adjusted to 0.2 and 0.5M, reaction in either a stainless steel reactor with a Teflon 

liner or in a flask with a reflux condenser at 80 to 105 °C for 12 to 24 h gave a low yield 

of carbonate (~40 %) at ≥ 100 °C and a lower yield at lower temperatures. The use of 

cerium chloride instead of cerium nitrate under the same conditions did not improve the 

yield although the crystal size was ~ 2 – 3 µm compared to the larger formate crystals 

formed under similar conditions. (Figure 13a). 
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Fig. 13 Crystals of (Ce,Gd)(CO3)(OH) a) initial synthesis b) optimized (after 
decomposition). 

In order to optimize the reaction conditions, the effects of varying the amount of 

urea and the temperature were examined systematically. The molar ratio of metal ions to 

urea was varied from 1:1 to 1:6 and the reaction mixture was heated at 80, 90, 95, 100, or 

105 °C. When the ratio was 1:1 or 1:2, the yield was about 50 % regardless of the 

reaction temperature. When the ratio was more than 1:3 the yield increased to ~95 % with 

temperature until 95 °C. At the reaction temperature over 100 °C, the ratio of 1:3 gave a 

maximum yield of 99.9 %. The resulting carbonate crystals were small square blocks 

with dimensions of 1 x 1 x 0.5 µm (Fig. 13b). 

Thermal decomposition:  

The thermal decomposition behaviors of two precursors were examined by TGA 

(Fig. 14). The formate shows a one-step decomposition to CGO starting at 270 ºC and 

complete at 315 ºC (obs. 35.87 %, calcd. 37.22 %), while the decomposition of the 

carbonate starts at 230 ºC and is complete at 280 ºC (obs. 20.21 %, calcd. 20.25 %). The 

decomposition of these precursors to CGO is pseudomorphic (Fig. 15) in the sense that 

after the decomposition the gross morphology of the crystals is preserved.  

A similar pseudomorphic decomposition of cerium hydroxycarbonate has been 

reported previously.[ii]  It has also been noted that the morphology of the precursor can 

be changed; when the 9 – 14 µm carbonate was quenched from 500 or 800 °C, the 

particle size was reduced to 1.5 – 3 µm or 0.8 – 2 µm, respectively.[iii]  
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Fig. 14. TGA curves of the formate (solid line) and carbonate (dotted line) powders.  

 

The pseudomorphic transformation of the precursors presents a problem for 

further powder processing when the initial crystals are large. As an example, an SEM 

micrograph of a formate crystal after decomposition is shown in Fig. 15. The overall 

shape of the crystal is little changed but numerous crack and fissures have appeared as a 

result of the gas evolution during conversion to CGO. Considerable additional efforts are 

required to convert the powder into a suitable form for densification and hence our efforts 

to reduce the crystal size o that shown in Fig. 13b.  

 

The pseudomorphic transformation is also accompanied by the formation of a 

sample with significant surface area and relatively narrow pore size distribution as shown 

by the nitrogen adsorption isotherm in Fig. 15 obtained from sample of CGO obtained 

from the decomposition of formate after dehydration under vacuum at 250º C overnight. 

The total volume adsorbed is ca. 36 ml/g and the calculated BET surface area is 123 

m2/g.  

 



 23

     

 

Fig. 15 a) SEM of CGO after heat treatment of a formate crystal at 350 °C for 12h, b) 
N2 gas sorption isotherm at 77 K for CGO. 

 
CGO conductivity:  

The conductivity of the CGO electrolyte was measured by AC impedance 

spectroscopy. As shown in Fig. 16a, at 318 °C and at relatively high frequency (> 2 kHz), 

two distinctive semicircles with some distortion are observed and are associated with the 

grain and grain boundary response of the CGO electrolyte. As the operating temperature 

is increased (>400 °C), the two semi circles merge together and the grain and grain 

boundary processes cannot be completely separated.  
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Fig. 16 a) Impedance spectrum CGO at 318 oC in air, b) comparison of the electrical 
conductivity vs. temperature for CGO10 with literature data.  

 
The temperature dependence of the electrical conductivities of CGO prepared by 

the carbonate precursor route is shown in Fig 16b. The measured data are in good 

agreement with the data of CGO10 by other groups [iv] though the conductivity data 

measured by Steele et al. v are slightly higher at lower temperature. Furthermore, Steele 

[vi] reported that the conductivity shows a small change in slope around 400 °C which is 

associated with ( '''
OCe VGd − ) complexes. Above 400 oC, the ( '''

OCe VGd − ) complexes are 

dissociated, which gives rise to a lower activation energy of 0.64 eV than the activation 

energy of 0.79 eV at temperatures less than 400 oC (see Fig. 16b). 

 

Plans for the Next Quarter. 
 

In the next quarter we will continue densification studies of both La2NiO4 and 

PrBaCo2O5 composites with CGO. The initial compositions will use 25 and 50 % CGO to 

cover the range above and below the CGO percolation threshold. We will measure the 

thermal expansion coefficients of the composite materials. Assuming that dense samples 

can be prepared, we will then carry out permeation measurements. A new apparatus for 

this purpose has been constructed and tested during the last quarter. 
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CONCLUSIONS: 
 

A non-agglomerated and nanocrystalline-sized powder was successfully produced 

using ethylene glycol nitrate methods. The LSFT powder prepared using this method 

exhibits well dispersed and nano sized particles about 100 – 200 nm and could be 

densified to 90% of its theoretical density. The LSFT sintered at 1400°C was not 

mechanically rigid and exhibited the evidence of a liquid phase at the grain boundaries. 

The electrical conductivity and Seebeck coefficient were measured as a function of 

temperature. 

 

The effect of strain rate on the flexural strength of the LSFT-CGO test specimens 

was studied. Three strain rates 6, 60 and 600 µm/ min were chosen for this study. In the 

slower strain rate the slow crack growth facilitates the fracture at the lower applied stress 

itself.  In the rapid loading, membrane fails at higher fracture stress due to the absence of 

slow crack growth. A reduction in the strength of the membrane was observed at 1000°C 

in N2.  

 

The GDC was synthesized using either formate or carbonate precursors. The 

formate precursor Ce(Gd)(HCOO)3 was synthesized from the nitrates by hydrolysis of 

dimethylformamide. The carbonate precursor (Ce,Gd)(CO3)(OH) was prepared via a 

modification of the precipitation method. The precursor and CGO particle morphologies 

were examined by SEM and XRD. The thermal decomposition behaviors of 

Ce(Gd)(HCOO)3 and Ce(Gd)(CO3)(OH) were determined by thermogravimetric analysis. 

Conductivity measurements were made by AC impedance spectroscopy on sintered disks 

in air using platinum electrodes. 
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LIST OF ACRONYMS AND ABBREVIATIONS  
 
CGO    Cerium gadolinium oxide 
GDC    Gadolinia doped ceria 
YSZ    Yttria stabilized zirconia 
XRD    X-ray diffraction 
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