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Abstract

We explore stability of Random Boolean Networks as a model of biological interaction
networks. We introduce surface-to-volume ratio as a measure of stability of the network. Sur-
face is defined as the set of states within a basin of attraction that maps outside the basin by
a bit-flip operation. Volume is defined as the total number of states in the basin. We report
development of an object-oriented Boolean network analysis code (Attract) to investigate the
structure of stable vs. unstable networks. We find two distinct types of stable networks. The
first type is the nearly trivial stable network with a few basins of attraction. The second type
contains many basins. We conclude that second type stable networks are extremely rare.
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Stability of Biological Networks as
Represented in Random Boolean Nets

1 Biological Networks
Network formalism is particularly useful for representing relationships in complex systems.
It is not surprising therefore that it has become an integral part of the theoretical investiga-
tions in systems biology. Complex highly-connected problems abound in living organisms:
protein interaction networks, regulatory networks, evolutionary trees, chemical reaction net-
works, predator-prey networks all compose a small subset of biological applications.

Biological high-throughput techniques, such as micro-array experiments and gene knock-
out studies, are generating large amounts of experimental data. Making sense of this informa-
tion requires a better understanding of complex system dynamics.

It has long been believed that key properties of the system dynamics can be associated
with the structure of the interaction network alone, without considering finer details of the
interactions [1, 2]. Network representation is compact and permits rapid simulation. Ability to
simulate long-time dynamics of an entire cell or an ecology may lead to greater understanding
of such complex problems on the scales not otherwise accessible.

2 Random Boolean Networks
Random Boolean Networks (RBNs), also known as N-k network, belong to a class of random
disordered networks proposed by Stuart Kauffman in 1969 as a model for genetic regulatory
networks [1]. The time-dependent state of the system is a set of N binary variables σ(t) =
{σi(t);σi = ±1}, equivalent to an Ising state[3]. The state evolves in discrete time steps by
setting σi(t) according to a Boolean rule f (σ(t − 1)) based on a state of k other variables at
time t − 1. Such rules are randomly picked for each σi. Connections of variables to their k
antecedents can be viewed as edges, in which case the rule set forms a network, where nodes
are the state variables σi. The enumerated space of the possible RBN grows rapidly with N
and k, since one can form

(N
k

)N
graphs, with rule multiplicity of 22k

at each node.
The state space is finite consisting of 2N possible states. The dynamic deterministically

connects a state to its child state. If a dynamic step is viewed as an edge, and states appear as
nodes, the resulting graph is a state evolution diagram (SED). For a given network, a SED is
a tree that is rooted in a cycle. A cycle is composed of states that periodically repeat during
the system evolution. The leaves of the tree (so called Garden-of-Eden states) are states that
have no parent states. Each tree is called a basin of attraction. In fact, the state space is usually
partitioned into several basins of attraction, each built of transients terminating in the common
cycle. Figure 1 shows an example of several such state evolution diagrams.

Previous work investigates relationships between the overall structure of RBNs and some
of their properties. Kauffman’s original paper describes two distinct dynamic behaviors, the
chaotic phase and the frozen phase. In chaotic networks, the number of attractors grows ex-
ponentially with the network size, while the number of attractors tends to stay fixed in frozen
networks. Kauffman also described a transition phase, separating the chaotic and frozen dy-
namics, and observed many properties of the transition phase that parallel biological systems
[1].
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The dynamics of frozen phase networks were analyzed in detail at the level of k = 1 by
Flyvbjerg and Kjær. They developed a set of analytical equations to predict the distribution of
sizes of attraction basins in the infinite network size limit. In doing so, they also introduced the
concept of relevant elements in a network [4]. Derrida and Pomeau then proposed the annealed
approximation for RBNs, a statistical method for analysis of chaotic phase dynamics. Their
methods proved effective for predicting cycle length distributions, number of attractors, and
the values of N and k that cause a network to exhibit the transitional phase behavior [5].

Following this work, Bastolla and Parisi explored the limits of the annealed approximation.
They formalized the definition of relevant elements and introduced some coarse reduction
procedures to enable simulation of much larger networks [6, 7]. Bilke and Sjunnesson later
expanded on the network simplification schemes proposed previously, developing an algorithm
for identification and removal of the stable and non-influential elements of a network [8]. This
development enabled full state space enumeration of networks as large as N = 32. The ability
to fully examine these large networks lead to the discovery that the number of attractors in large
transitional phase networks scales linearly with N, contrary to Kauffman’s original findings,
that the number of attractors grows as

√
N.

3 Stability of RBN
Stability of complex systems remains a subject of heated debate. Early work on RBN models
demonstrated the onset of chaos at a critical connectivity k = 2. However, many biological
systems, including protein interaction networks, exhibit connectivity that is significantly higher
then 2 and yet retain high stability characteristics. We hope to address the subject of stability
in our analysis.

We use and expand a notion of stability, originally proposed by Kauffman [1]. It is based
on an idea that a most common perturbation to the system takes the form of a bit-flip. In such
a case, a basin of attraction that maps into itself via all possible bit-flips for each of its member
states is ultimately stable. Of course, such an extreme case is only possible when the system
has only a single attractor. In fact, systems with very few attractors are almost trivially stable.
Most generally, a basin may have a collection of states that map inside the basin by all bit-flips,
some states that map both inside and out, and some states that map outside the basin only.

A sub-class of this may be defined when we consider all states that uniformly map inside
the basin (through every possible bit-flip of a state) as volume states, while all the states that
can be mapped outside the basin via a bit-flip, as surface states. This implies the hard definition
of a stable state as a state that uniformly maps inside the basin due to any bit-flip. In such a
case, the ratio of the surface states to the volume ones (SVR) can be viewed as a hard stability
measure. A softer stability measure can be derived by redefining a stable state as one that
maps inside the basin through some large fraction f of the available bit-flips. We would like to
locate networks with stable characteristics by sampling, and understand the network properties
associated with stability.

4 Attract: Object-Oriented Software Package for RBN
Generation and Analysis

To conduct the search for stable networks, we have developed a software suite of analytic tools
that investigates network dynamics in the context of RBN. Attract is a modular, object-oriented

8



application written in the C++ programming language that allows generation of random or
custom boolean networks, simulates their time-state evolution, and provides a variety of static
and dynamic analysis tools. Network connections may be generated randomly, with block
diagonal connections, or may be read from a file. Rules may be selected at random, selected
with a weighted probability of selecting a 1 or 0 for a particular rule, or read from a file. In
addition to single network and rule generation, Attract contains various options for connection
and rule sampling and enumeration. Sampling of connections and rules can be either directly
executed over a given number of samples, or until the running averages of the surface-to-
volume ratios of the basins of attraction converge to within a given percentage.

Attract also contains tools for analysis of the various statistics collected throughout the
simulation. Quantities that the application can calculate include the SVR of each basin of
attraction in its entirety, the SVR of the attractor cycles themselves, the percentage of random
bit flips throughout the entire basin of attraction that result in states within the same basin, the
percentage of random bit flips in the attractor cycle alone that result in states within the same
basin [11], and the distribution of the relative sizes of all basins of attraction analyzed. All of
these statistics can be printed to the screen or to a file in the form of a matrix, a list of ratios
(for the surface/volume values), a human readable summary, or the various statistics can be
written to gnuplot [10] format histogram data files. Attract can also print any stable networks
(more than 2 basins of attraction, each with SVR < 1) that are found.

Our application has been developed for both parallel and serial execution. Distribution of
the simulation across a parallel system allows a very large number of connection and rule sam-
ples to be examined, an ability that has proven invaluable given the extremely rapid growth of
the rule space. The speed of simulation scales nearly perfectly with additional processors, as
our initial parallel algorithm is a simple distribution of a network sampling job over all pro-
cessors, and thus requires almost no communication between processors. Several additional
scripts in the Attract package allow rapid and automatic graphing of histograms, network con-
nections, and state progressions in dot, neato [9], and gnuplot [10].

We have tested the accuracy of our software by comparisons with existing literature on
analytical properties of Kauffman networks [4]. For large networks with k = 1, the normalized
basin weights obtained by our simulations satisfactorily approach the values given in the liter-
ature for networks of infinite size. This preliminary verification of Attract is sufficient for our
present purposes.

5 Preliminary Results
We used an extremely weak stability measure for the overall network, requiring at least one
stable state per basin. Nevertheless, we find only a small number of networks stable according
to this very weak definition. We have sampled 1×106 networks (out of a possible 7.49×1044)
of N = 10 at k = 3 for our preliminary analysis. Each sampling includes a complete enumer-
ation of basins with the analysis of SVR. We exclude from consideration those networks in
which the stability occurs due to a small number of basins, nb < 3. For the purposes of this
preliminary study, we have considered a network stable if each of its basins has SV R < 1; that
is, each basin contains at least one state that is not a surface state. Of the networks sampled,
140 stable networks were found according to the hard stability requirement, and 8,186 stable
networks found according to the soft stability requirement, where a non-surface state is defined
as one in which the fraction of the state bit-flips that map outside the basin must be less than
10%.
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Examination of the SVRs obtained from our first samples motivated a subsequent sampling
of N = 10, k = 2 networks. To preclude the possibility that the stability in these networks was
the result of too few basins instead of some inherent structural characteristic, networks with
number of basins nb < 3 were again excluded from consideration. Of the 1× 106 networks
sampled in this case (of a possible 3.74× 1028), 272 stable networks were found using the
hard stability measure. With the soft stability requirement (again with the maximum fraction
of surface-mapping bit-flips at 10%) 9,230 stable networks were found. As expected, the k = 2
sample located more stable networks than the k = 3 sample. This is due to the fact that smaller
values of k drive network dynamics toward the frozen phase, where networks tend to be less
dynamic and have much larger stable cores.

6 Future Directions
Since we have been able to locate a small number of networks that satisfy our stability criterion,
we plan to take a closer look at their properties in an attempt to identify the causes for this
rare condition. We plan to add static analysis tools for the network graph, as well as tools
for functional analysis of the rules. The static analysis toolbox will include graph partition
algorithms, loop identification and counting, and coloring methods. Current scripting interface
will be converted to a graphical user interface to assist in building, running, and analysis of
the networks. We will conduct further verification and testing procedures, and continue the
parallelization effort to permit a distributed processing mode of a single network. This will
lead to analysis of larger networks, which up to now have been prohibitive.

We hope to reach a maturity of understanding that will permit us to apply our analytic
capability to the networks reverse engineered from biological systems via micro-array exper-
iments. Currently, data of this sort is available, and we plan to use it to examine the stability
properties of such networks.
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(a) (b)

Figure 1. State evolution diagrams of an N = 10 network. The
points in these graphs each represent a fixed state of the network.
As each state is evolved one time step, an edge is created from the
original state to the new state. Thus, a tree structure emerges, with
the attractor cycle as the root and various transient states as radial
branches. The state of the system can only travel in one direction
(towards the center cycle of the graph). Each individual tree rep-
resents a single basin of attraction, as the deterministic nature of
RBNs requires that each basin be completely disjoint of all other
basins.
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