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Abstract 
 
The Unique Signal is a key constituent of Enhanced Nuclear Detonation Safety (ENDS).  Although 
the Unique Signal approach is well prescribed and mathematically assured, there are numerous 
unsolved mathematical problems that could help assess the risk of deviations from the ideal approach.  
Some of the mathematics-based results shown in this report are:  
 

1. The risk that two patterns with poor characteristics (easily generated by inadvertent 
processes) could be combined through exclusive-or mixing to generate an actual Unique 
Signal pattern has been investigated and found to be minimal (not significant when compared 
to the incompatibility metric of actual Unique Signal patterns used in nuclear weapons). 

2. The risk of generating actual Unique Signal patterns with linear feedback shift registers is 
minimal, but the patterns in use are not as invulnerable to inadvertent generation by 
dependent processes as previously thought.  

3. New methods of testing pair-wise incompatibility threats have resulted in no significant 
problems found for the set of Unique Signal patterns currently used.  Any new patterns 
introduced would have to be carefully assessed for compatibility with existing patterns, since 
some new patterns under consideration were found to be deficient when associated with other 
patterns in use. 

4. Markov models were shown to correspond to some of the engineered properties of Unique 
Signal sequences.  This gives new support for the original design objectives. 

5. Potential dependence among events (caused by a variety of communication protocols) has 
been studied.  New evidence has been derived of the risk associated with combined 
communication of multiple events, and of the improvement in abnormal-environment safety 
that can be achieved through separate-event communication. 
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Preface 
 
The function of the Unique Signal is to provide an extremely high level of resistance to 
inadvertent pre-arming, even in abnormal environments1, while reliably providing an 
unambiguous enabling stimulus (pre-arm) to a nuclear weapon.  The details of and 
reasons for the UQS methodology are given in SAND91-1269. 
 
There have been a large number of contributors to mathematical assessment of Unique 
Signal performance, including Stan Spray, Bill Stevens, Wally Crammond, Jay Grear, 
Curtis Mueller, and Gene Church.  Since I am the only person still working on Unique 
Signals as a mainstream activity, and since there are a number of important unsolved 
mathematical problems that could assist in Unique Signal assessment, Todd Jones 
proposed a study group that would both provide the opportunity to address significant 
mathematical problems and would create a wider base of Sandia National Laboratories 
Unique Signal expertise. 
 
This report contains five chapters that represent a significant portion of the study group’s 
work that took place during FY03.  The first chapter addresses how difficult it is for 
unintended inputs to be accidentally generated such that they could be combined in an 
exclusive-or operation to inadvertently yield a Unique Signal pattern.  In this work, the 
entire range of possible exclusive-or inputs that could result in the seven 24-event Unique 
Signal patterns currently used in nuclear weapons designs was examined.  The second 
chapter documents an analysis of linear feedback shift register (LFSR) structures that can 
produce Unique Signal patterns, and tests some of the metrics used to guide generation of 
patterns against the properties of the patterns in actual use.  We now know the LFSR 
complexity required for all Unique Signal patterns in use, and we also know how close 
each comes to meeting a significant number of its design goals. The third chapter tests 
pair-wise compatibility for members of the set of patterns currently used, as well as for 
some patterns that have been considered candidates for future use.  This has provided the 
first comprehensive attempt at a pair-wise compatibility test for Unique Signal patterns.  
The fourth chapter utilizes Markov process state analysis to demonstrate how dependent 
correlation reduces with time, a property that is shown to be enhanced through separate-
event communication, and addresses the determination of maximum threat levels for 
Markov processes.  The fifth chapter demonstrates new evidence of dependence threats 
and indicates how threats due to all known classes of dependence can be reduced through 
separate-event communication. 
 

Arlin Cooper 
October 23, 2003 

                                                 
1  Abnormal environments transcend normal operating environments, including all degrees of severity. 
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Chapter 1. Unique Signal Exclusive-Or Mixing Study  

  
Roy Baty and Arlin Cooper 

 
Problem Description and Results Summary 
 
A significant number of nuclear weapon system designs incorporate “exclusive-or” 
mixing of two or more unique signal patterns as operands to obtain a resultant Unique 
Signal pattern that drives a stronglink switch.  There is significant confidence in the 
safety robustness of this approach for many reasons (summarized in the body of this 
chapter).  However, the question of how easily unintended inputs could be accidentally 
generated such that they could be combined in an exclusive-or operation to inadvertently 
yield a Unique Signal pattern has never been addressed for the entire population.  In this 
project, the entire range of possible exclusive-or inputs that could result in the seven 24-
event Unique Signal patterns currently used in nuclear weapons designs was examined 
using trial vulnerability metrics.  No significant safety problems have yet been found. 
 
Background 
 
The modern quantitative parameters for the Unique Signal (24 bi-valued “events”) had 
their genesis in the jointly (DoD, DOE, and Sandia) agreed-on abnormal-environment 
requirement that is part of the “Walske letter”2 of 1968.  The abnormal-environment 
requirement is that “The probability of a premature nuclear detonation … shall not 
exceed 1 in 106 per … exposure or accident.”  This requirement places a very high 
demand on weapons systems, which must respond safely, even given an exposure or 
accident3.   
 
Sandia systems personnel (in consultation with safety personnel) decided that it was 
necessary to use two abnormal-environment safety subsystems in the ENDS (Enhanced 
Nuclear Detonation Safety) approach, with the aim of making each significantly better 
than 10–3 per exposure, and engineering a high degree of independence4 between the two 
subsystems.  This (along with requirements for complete human intent) meant that there 
would be a separate Unique Signal for each abnormal-environment safety subsystem.  
Each Unique Signal was to be applied to its own “stronglink switch.”  The safety burden 
for the two abnormal-environment safety subsystems (significantly better than 10–3 per 
exposure) rests mainly on the information incompatibility of each Unique Signal, because 
the probabilistic isolation/inoperability protection of the exclusion regions and stronglink 
switches is much more difficult to assure.  
 
The SNL goal is to implement two human-initiated Unique Signal event sequences (each 
having a different and unrelated pattern of events), one for each abnormal-environment 

                                                 
2  Carl Walske was then the DoD Military Liaison Chairman and Assistant to the Secretary of Energy. 
3  There is also a normal-environment requirement (one in 109 over weapon lifetime), so a third safety 
subsystem is required, but it does not require a unique signal. 
4  The relation 633 101010 −−− =×  is not defensible unless the two subsystems are independent.   
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safety subsystem (double intent).  Without any human intent, the generation of trajectory 
unique signals is difficult to distinguish from some accident environments.  A Unique 
Signal for human intent for the early trajectory safety subsystems was not available from 
the DoD.  Therefore a constrained strategy was necessary, using the only intent signal 
available from the DoD for both safety subsystems.  This design, called “intent 
enablement,” was first introduced in the B77/B83 development in the late 1970s.  It 
consisted of  using the intent signal both to drive the intent stronglink and to combine 
with a trajectory-generated signal to drive the trajectory stronglink.  Double intent (with 
trajectory enhancement) was the ideal solution to the problem.   
 
The double-intent trajectory-enhanced architecture requires combination of the second 
intent Unique Signal with a trajectory-derived signal.  For example, a human intent 
Unique Signal pattern can be combined with a trajectory-generated unique signal pattern 
in an exclusive-or mixing operation5 to drive a trajectory stronglink, as shown in Fig. 1. 
 
 
 
 
 
 
 
 

Figure 1. Example of Exclusive-Or Mixing 
 

This example is the implementation specified in the Unique Signal System Design Guide 
[Ref. 1].  However, other designs have been produced, so the scope of this project was to 
allow for the possibility that exclusive-or mixing might be implemented for any of the 
currently used 24-event Unique Signal patterns.  All Unique Signal patterns used in this 
manner are carefully engineered for abnormal-environment safety, meaning that they are 
intended to be extremely unlikely to be inadvertently generated by almost all processes.  
For example, they have equal numbers of As and Bs, and the numbers of transition pairs 
(A followed by A, etc.) are as closely balanced as possible.  In addition to a significant 
number of mathematical constraints, human expert engineering judgment is used to 
assure Unique Signal patterns are qualitatively extremely good, and these two factors 
combine to result in only a few acceptable Unique Signal patterns. 
 
A question that has been addressed in various ways, but never comprehensively, is 
whether or not two “bad” patterns could be combined in an exclusive-or operation to 
yield an “extremely good” pattern (i.e., whether inadvertent generation of a pattern like 
the D-Module pattern would be more likely through the exclusive-or inputs, rather than 
directly).  Since for any chosen 24-event Unique Signal pattern, there are 8,388,608 
pattern pairs6 that will combine to give an engineered Unique Signal pattern, it is certain 

                                                 
5  System designers have usually chosen to represent an “A” as logical “one,” and a “B” as logical “0.” 
6  This number can be derived by noting that each resultant event can be generated in 2 ways, giving 224 
ways to generate a 24-event pattern.  However, each pattern appears twice, once as the first operand and 
once as the second operand, yielding 223 = 8,388,608 pairs. 

Intent 2: B,A,A,A,A,B,A,A,B,A,B,B,B,B,A,B,A,A,A,B,B,A,B,B

Trajectory: A,A,B,B,B,A,A,B,A,A,A,A,B,B,A,B,B,A,A,B,B,B,A,B

D-Module: A,B,A,A,A,A,B,A,A,B,A,A,B,B,B,B,A,B,B,B,B,A,A,B

+ D-Module-like
stronglink

Intent 2: B,A,A,A,A,B,A,A,B,A,B,B,B,B,A,B,A,A,A,B,B,A,B,B

Trajectory: A,A,B,B,B,A,A,B,A,A,A,A,B,B,A,B,B,A,A,B,B,B,A,B

D-Module: A,B,A,A,A,A,B,A,A,B,A,A,B,B,B,B,A,B,B,B,B,A,A,B

+ D-Module-like
stronglink
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that not very many of these will have even one extremely good member.  The safety 
concern would be if neither member met even minimal safety criteria.   
Considerable effort has been applied in examination of potential pattern pairs that yield a 
Unique Signal pattern without finding any pairs that were considered safety risks.  There 
is also a mathematical indication that the exclusive-or operation is resistant to input risk, 
and in fact it is the only known mixing operation that is consistent with abnormal-
environment safety [Ref. 2].  In brief summary, consider two inputs, a and b, that are 
exclusive-or mixed to yield an output, c.  If the occurrence of the inputs can be treated 
probabilistically, the probability that c is correct depends on the probabilities that a and b 
are correct, as follows: 
 

)](1[)](1[)()()( bPaPbPaPcP −×−+=                                     (1) 
 
If a and b are represented as deviating from random by an amount α and β, respectively 
(where α and β  are bounded by zero and ± ½) the result becomes: 
 

αββαβα 2
2
1)

2
1()

2
1()

2
1)(

2
1()( +=−×−+++=cP                         (2) 

 
This indicates that the output tends to be at least as “random” (used here to mean equally 
likely and independent) as either input.  For example, if either input is completely random 
(α or β equal to zero), the output is random.  For non-probabilistic inputs, specific 
examination of all possible pairs leading to all possible unique signal patterns is 
apparently required.  However, the population previously examined represents a very 
small portion of the total 8,388,608 pairs.  In this project, all pairs were examined. 
 
Project Description 
 
This project was carried out by Roy Baty with guidance from Arlin Cooper.  The first 
goal was to seek any underlying mathematical structure that would make the quality of 
the results objective rather than subjective.  Contributing to the possibility that such a 
structure could be found was the linear mathematical nature of the exclusive-or function 
(identical to a Galois Field addition of a two-element field).  Working against finding a 
mathematical structure was the qualitative nature of assessing unique signal patterns.  
This latter consideration overwhelmed the former, and no useable structure was 
identified.  Although such a structure may be present, it appears very unlikely based on 
current knowledge, so no further effort on this will be expended as part of the current 
project.   
 
It was recognized that if a quantitative metric for pattern quality were developed, the 
operand space of 8,388,608 could be exhaustively searched.  The second goal was 
therefore to develop a trial metric, recognizing that it would probably evolve with time as 
more is learned about this type of pattern assessment.  Considerable effort was expended 
in development of the metric reported here, but it is not considered “final.” 
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The third goal was to generate a discrete probability density space for the minimum-
metric pattern and for the maximum-metric pattern of each operand pair.  This was done 
by artificially constraining the operand patterns’ likelihoods to be equal.  Since this 
constraint does not meet the spirit of the abnormal-environment Walske safety criterion 
(to be met under the extreme condition resulting from any credible accident), a fourth 
goal was to identify the minimum metric of the maxima for all pairs. 
 
Trial Metric for Unique Signal Pattern Quality  
 
The trial metric used for 24-event unique signal patterns was to equally value four 
attributes, 1) balanced numbers of each event type, 2) balanced transition pairs, 3) “ideal” 
(12) number of “runs” of the same event type, and 4) number of run patterns and 
dissimilarity of run patterns for each event type.  The quantitative construction of the 
metric is specified in Eq. 37: 
 

)]}0()([2|)]3(|1.40)[
26
25{(25.0

)
12

|12|2525(25.0)
1080

25(25.0)
12
2525(25.0)(

121

2

1

24

1

4321

≠=−−−+

−×−++−=

∑∑
= =

jjj
i j

ij randrrnumber
j

r

rttttnUQSM
            (3) 

 
where n is the deviation from 12 of numbers of each event type, t1, t2, t3, and t4 represent 
the numbers of each type of transition pair (e.g., AAs, ABs, BAs, BBs), r represents the 
number of runs, rij represents the runs of length j for event type i, and the numeric count 
is the number of non-zero runs of each length that are equal for each type.  Each of the 
four parts to Eq. 3 can range from about zero to 25; the overall metric can range from 
about 18 to 100 (the “best” score for the metric). 
 
A list of the metrics for a selection of important 24-event Unique Signal patterns8 is given 
in Table 1. 
 

Table 1. Metrics for Seven Unique Signal Patterns 
 

UQS ID C D Intent 2 Trajectory TUQS2 Intent 2* Trajectory* 
Metric 100 96 94 95 94 96 95 

 
[Note: The “*” notation indicates patterns that replaced earlier designs.] 
 
Probability Density Space for Minima and Maxima 
 
The percentage of patterns having a metric score in each range of 0.05 are plotted in Fig. 
2, giving the maxima and the minima of the pairs of exclusive-or operands that generate 

                                                 
7  This metric covers only a very small portion of the considerations that go into selecting unique signal 
patterns, and does not lend itself to a “percentile” score. 
8  These are the C-Module pattern, the D-Module pattern, the original System 2 Intent 2 and trajectory 
patterns, the W76-1 trajectory stronglink pattern, and the current System 2 Intent 2 and trajectory patterns, 
respectively (see Appendix for explicit patterns). 
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the C-Module pattern.  The value of most safety interest is the minimum of the maxima, 
which is 48. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Density Plots for C-Module Metric Minima and Maxima 

 
The percentage of patterns having a metric score in each range of 0.05 are plotted in Figs. 
3−8 for the maximum and the minimum for each pair of exclusive-or operands that 
generate the other six Unique Signal patterns that were examined.  The similarity of the 
plots in Figs. 2−8 hints at an undiscovered mathematical structure.  Although some of the 
functions appear nearly identical on the display scale used for the figures, there was a few 
percent variation in the exact ordinate values.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Density Plots for D-Module Metric Minima and Maxima 
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Figure 4. Density Plots for Intent 2 Metric Minima and Maxima 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Density Plots for Trajectory Metric Minima and Maxima 
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Figure 6. Density Plots for TUQS2 Metric Minima and Maxima 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Density Plots for Intent 2* Metric Minima and Maxima 
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Figure 8. Density Plots for Trajectory* Metric Minima and Maxima 
 

Minimum of the Maxima Operands for 24-Event Unique Signal Patterns 
 
The minimum of the maxima of the potential exclusive-or operands are tabulated in 
Table 2 for a selection of important Unique Signal patterns. 
 
Table 2. Minimum of Maxima Exclusive-Or Operand Metrics for Unique Signal Patterns 
 

UQS ID C D Intent 2 Trajectory TUQS2 Intent 2* Trajectory* 
Metric 48 48 47  46  47  47  47  

 
 
Conclusions 
 
The metrics in Table 2 are not commensurate with ideal Unique Signal patterns, but they 
are well above the range that we know to be associated with safety-deficiency.  In 
addition, it should be noted that although the safety burden is on the “best” input to the 
exclusive or function, both inputs must be compromised in order to obtain the 
inadvertently correct output.  One more informative indicator can be derived from the 
density functions.  Although the Walske criterion implies consideration of extremes 
rather than the range of probabilistic density functions, these plots indicate that scores 
below 60 for the minimum of the maxima are relatively rare.  Based on all of these 
results, there is no obvious safety concern over the use of exclusive-or mixing.  These 
conclusions depend on the robustness of the chosen trial metric, which has not been fully 
validated. 
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Appendix: List of Unique Signal Patterns Examined 
 

(C) C-Module:A,B,B,B,B,A,A,A,B,A,A,A,B,B,A,A,B,B,B,A,B,A,A,B 
(D) D-Module:A,B,A,A,A,A,B,A,A,B,A,A,B,B,B,B,A,B,B,B,B,A,A,B 
Intent 2: A,A,A,A,B,B,B,A,A,B,B,A,B,B,A,B,A,B,A,A,B,A,B,B 
Trajectory: A,B,B,B,A,B,B,A,B,B,B,A,A,A,A,B,B,A,B,A,A,A,B,A 
TUQS2: A,B,B,B,A,B,B,A,A,A,A,B,B,A,B,A,B,A,A,B,B,B,A,A 
Intent 2*: B,A,A,A,A,B,A,A,B,A,B,B,B,B,A,B,A,A,A,B,B,A,B,B 
Trajectory*: B,B,A,A,A,B,B,A,B,B,B,B,A,A,B,A,A,B,B,A,A,A,B,A 
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Chapter 2. Shift-Register Analysis and Enumeration 
of 24-Long Bi-Valued Patterns 
 

Anna M. Johnston 
 

1 The Problem 
 
Unique signals (UQS) are used in nuclear weapons to protect against accidental pre-arming of 
the weapon. A 24-event pattern, where an event comes from a binary set, protects the weapon 
against abnormal-environments, such as natural phenomena, accidents, equipment malfunctions, 
etc., which might otherwise cause the pre-arm signal. Although the chances of a natural or 
accidental event pre-arming the weapon are remote, remote is not good enough for nuclear 
safety. The 24-event pattern protects against this by creating a sequence most unlikely to appear 
inadvertently. 
 
Although the events are not true bits, the sequence will be referred to as a binary stream. This 
simplifies the analysis and facilitates a better understanding of the sequences. 
 

2 The Constraints 
 
The goals placed on the UQS streams are as follows: 

1. 24-long event pattern, represented by A and B in the final sequence but for 
simplicity, as binary elements (0,1) here; 

2. Exactly half 0, half 1's; 
3. As equal as possible number of digraphs (pairs); 
4. At least one each isolated 1 and 0; 
5. No 6 long or greater duplicated or complemented substring; 
6. No 8 long or greater mirror or complemented mirror substring; 
7. No 5 or greater runs; 
8. Pr(1|0) ≈ Pr(0|0) ≈ Pr(1|1) ≈ Pr(0|1) ≈ 0:5. 

  

3 Why not Linear Feedback Shift Registers? 
 
A linear feedback shift register, or LFSR, generates a well behaved, well understood stream of 
bits. The streams appear random and can be created to match many of the requirements above. 
Any binary stream of length n can be  represented by a LFSR of degree less than n. The problem 
with low degree LFSR's, or combinations (exclusive-or) of low degree LFSR's is that they can be 
imitated by nature. For this reason, streams generated by low degree LFSR's should be avoided. 
 
A LFSR uses a driving polynomial of degree n and an initial register fill of n bits. If the polynomial 

is ∑ =

n

i
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i xa
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Linear Feedback Shift Register 
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For example, the polynomial x2
 +x +1 with initial register of 10 generates the pattern: 

 
1 0 1 1 0 1 1 0 . . . 

 
This polynomial is primitive ⎯  that is it generates a 2n −1 long stream (the longest possible) 
before it repeats. With n = 2, the stream repeats every three bits. 
 
A driving polynomial can be either primitive (generating all possible non-zero n-long streams), 
irreducible (i.e., the driving polynomial can not be factored into smaller degree polynomials), or 
composite. If the driving polynomial is primitive it will generate the longest bit stream (2n −1 bits) 
before repeating. If it is irreducible (primitive polynomials are also irreducible) then it cannot be 
factored into smaller degree polynomials. If it is composite, the polynomial can be factored into 
smaller degree polynomials. Streams generated by composite polynomials can also be obtained 
by adding (exclusive-or) streams generated by its polynomial factors. 
 
For these reasons an important portion of the analysis is to determine the driving polynomial and 
its factorization. 
 
4 Mapping a Binary Stream to a Driving Polynomial 
 
Given a d-long binary stream, Sd = s0s1  . . .  sd−1, the lowest degree polynomial generating it can 
be determined with the Berlekamp-Massey algorithm (see [2], page 200). The algorithm begins 
with only a few bits of the stream, finding a polynomial which fits it. It then checks the next bit of 
the stream to see if it fits the current polynomial. If it does, great! No changes are needed (yet). If 
it doesn't fit the current polynomial, then the polynomial is modified, possibly increasing the 
degree, so that it does fit the all bits up to this point. 
 
The Berlekamp-Massey algorithm generates the reciprocal of the driving polynomial. The 

reciprocal of a polynomial ∑ =
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Converting the reciprocal, R(x), back to the polynomial, P(x), follows the exact same process: 
 

)()( 1−= xRxxP n  
 
However, since a0 may be zero and rn = a0, there is a chance that the actual degree of R is less 
than n. Because R represents P, the degree of R will still be considered n even if rn = 0. 
 
Recall that P(x) satisfies the stream St = s0s1  . . .  st−1 if: 
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for all 0 ≤ k < t − n. Letting 
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then R(x)|Sj = P(Sj ). The reciprocal (and thus the polynomial) satisfies the stream St if R(x) | Sj = 0 
for all n < j ≤ t. In Berlekamp-Massey, Ri(x) will be the reciprocal polynomial, of degree ni, which 
satisfies the sub-stream Si. If u < t with Rt(x)|St+1 ≠0 and Ru(x) |Su+1 ≠ 0, then we know that the 
polynomial Rt(x) + xt−uRu(x) has the following properties: 

 
• 
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jj su

ut
st xRxxR  for max(nt, t − u + nu) < j ≤ t. 

 
The polynomial Rt(x)+xt−uRu(x) satisfies the sub-stream St+1 but it may not have minimal degree. 
The degree of this polynomial is max(nt, (t − u) + nu). To insure the minimal degree we need to 
start with a minimal initial nt, nu and only update u when it keeps the degree minimal. 
 
Initial minimal Rt, Ru polynomials can be easily derived by noticing that if si, sj with i < j are the first 
two non-zero bits, then: 
 
1. for Sk with 0 ≤ k ≤ i, the stream is all zeros and the minimal polynomial is Rk(x) = 1 with degree 
nk = 0; 
2. for Sk for i < k ≤  j is Rk(x) = 1 with degree nk = (i+1) (i.e., ignore the first (i + 1) bits). 
3. for Sj+1 the minimal polynomial is Rj+1(x) = 1 + x(j−i)  with degree nj+1 = max(i + 1; j − i). 
 
The value of t will be j + 1 while the value of u will be between zero and j such that u − nu is 
minimal. For 0 ≤ k ≤ i the maximal values are u = i with nu = 0. For i < k ≤ j the maximal values are 
u = j with nu = i + 1. Thus if i − 0 < j − i − 1, which implies i + 1 < j − i, then let u = j, nu = i + 1. 
Otherwise let u = i and nu = 0. Notice that these minimal initial polynomials also have the property 
that nt −1 = u − nu. 
 
With these minimal polynomials to start with, the algorithm next checks to see that Rt |St+1= 0. If it 
is then Rt+1 = Rt and nt+1 = nt and u remains the same. If Rt |St+1 is not zero then Rt+1 is the updated 
polynomial: 
 

Rt+1(x) = Rt(x) + xt−uRu(x). 
 
The u value is changed to t only if t − nt  > u − nu (notice that this occurs if and only if t − u + nu > 
nt, or nt+1 > nt). Furthermore the initial relationship of nt − 1 = u − nu will be retained by this update: 
 

  nt+1 − 1 = (t − u + nu) − 1 
              = (t − nt + 1) − 1 

= t − nt 
 
Since the value of u becomes t, nu becomes nt, and t becomes t + 1, the relationship remains1. 
 

Berlekamp-Massey 
 

1. Initial polynomials: 
 

•  Find the first two non-zero bits, sj , sk with j < k. 
•  If j + 1 < k − j, then let u = k, nu = j + 1; otherwise u = j and nu = 0. 
• Let t = k +1 and Rt(x) = x0 + xk-j  with nk+1 = max(j + 1; k − j). 

2.    While t < n: 

                                                 
1 This relationship is used in [2] to convert the update condition to nt ≤ t/2 
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(a) Compute d = Rt(x) |St+1. 
(b) If d = 1 then Rt does not fit St+1: 

i. Rt+1 = Rt(x) + xt−uRu(x); 
ii. If t + nt  > u + nu, then 

A. nt+1 = t − u + nu 
B. u = t; 
otherwise nt+1 = nt 

(c) If d = 0 then Rt+1 = Rt and nt+1 = nt. 
(d) t = t + 1. 
 

5 Factoring Polynomials 
 
Once we have the driving polynomial we need to determine its factorization. If the driving 
polynomial is composite then the stream is actually constructed from the streams generated by its 
factors. So even if the driving polynomial has a very high degree, its stream may be generated by 
combining several short repeating streams. For this reason it is important to know the 
factorization of the driving polynomial. 
 
Berlekamp has another algorithm for factoring polynomials over small fields. The algorithm first 
reduces the polynomial so that it has no repeated factors (all repeated factors of f(x) are in gcd 
(f(x), f ‘(x)), then factors the remaining polynomial by using the following theorem (contained in [1], 
4.2) : 
 
Theorem 1 Let f(x) be a monic polynomial over the finite field Fq and h ∈ Fq[x] is such that hq ≡ h 
mod f(x) then: 
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For our purposes, we need to find a polynomial over Fq = GF(2) (i.e., whose coefficients are 
modulo 2), h(x), such that h(x)2 ≡ h(x) mod f(x). Let d be the degree of f(x). Any polynomial 
modulo f(x) will be a linear combination of the exponents xk for k = 0, 1,  . . .  d − 1. Because h is a 

polynomial over GF(2), if h(x) = ∑ −
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i xxa  0 mod f(x). We can find such a 

polynomial h by creating a matrix with column j representing the coefficient of xj and row i 
containing x2i

 − xi mod f(x). Solving for this matrix's null-space will give us the coefficients of h(x). 
The size of the null space gives us the number of factors of f. There will be at least one factor, 
more than one if f is composite. 
 
6 A Small Example 
 
 
 
 
 
Analyzing the polynomial structure of this sample stream has three parts: First, find the 
generating polynomial using Berlekamp-Massey. Second, factor the polynomial. Finally, 
determine what streams generated by the factors of the polynomial were used to generate the 
stream. 
  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 11 11 10 1000000
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6.1 Finding the Minimal Polynomial 
 
Using Berlekamp-Massey on this stream begins with an initial polynomial of R2(x) = 1 + x, with 
degree one at step t = 2 and previous polynomial of R0(x) = 1 with degree zero (u = 0). 

 
t nt Rt  u nu Ru  

1
|

+tstR  

2 1 [0,1]  0 0 [0]  1 
3 2 [0,1,2]  2 1 [0,1]  1 
4 2 [0]  2 1 [0,1]  0 
5 2 [0]  2 1 [0,1]  0 
6 2 [0]  2 1 [0,1]  0 
7 2 [0]  2 1 [0,1]  0 
8 2 [0]  2 1 [0,1]  0 
9 2 [0]  2 1 [0,1]  1 
10 8 [0,7,8]  9 2 [0]  1 
11 8 [0,1,7,8]  9 2 [0]  0 
12 8 [0,1,7,8]  9 2 [0]  0 
13 8 [0,1,7,8]  9 2 [0]  0 
14 8 [0,1,7,8]  9 2 [0]  0 
15 8 [0,1,7,8]  9 2 [0]  0 

 
871

16 1)( xxxxR +++=                      8711)( xxxxP +++=  
The reciprocal polynomial obtained from the Berlekamp-Massey algorithm in this case is the 
same as the actual polynomial. 
 
6.2 Factoring P(x) 
 
The next step in analyzing the stream is to factor P(x). Factoring polynomials over GF(2) is a two 
step process. The first step is to compute the greatest common divisor of P(x) with its derivative: 
 

gcd (1 + x + x7
 + x8, 1 + x6) = (1 + x2): 

 
The greatest common divisor of P(x) is g(x) = (1+x)2 and P(x)/g(x) has no repeated factors. Let 
P1(x) = P(x)/g(x) = x6+x5+x4+x3+x2+x+1, and finish the factoring by finding r(x) mod P1(x) such 
that r(x)2 ≡ r(x) mod P1(x), and compute gcd (P1(x), r(x)), gcd (P1(x), r(x) + 1). 
 

Compute r(x) by letting r(x) = ∑ =
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Solving the following system produces r(x): 
 
 
 
 
 
 
 
The null space has dimension two (two factors) and is defined by  
 
             . 
 

The non-trivial polynomial r(x) is r(x) = x1
 +x2+x4. Computing the greatest common divisors: 

 
gcd (1 + x + x2 + x3

 + x4
 + x5

 + x6; x1 + x2
 + x4)  =  1 + x + x3

 
gcd (1 + x + x2

 + x3 + x4
 + x5

 + x6; 1 + x1
 + x2

 + x4)  =  1 + x2
 + x3

 
 

gives the factorization. 
 
6.3 Substream Formation 
 
The initial stream: 
 
 
 
 
 
can be broken into several parts, determined by its generating polynomial's factorization, all 
exclusive-or'ed together. This is done by solving a simple system of linear equations based on 
the stream and the generating polynomials. 
 
Let ...0

1
0
0

0 ssS =   be the stream generated by (1 + x)2, ...1
1

1
0

1 ssS =  be the stream generated by 1 

+ x2
 + x4, ...2

1
2
0

2 ssS =  be the stream generated by 1 + x + x3, and 

))(( 2
1

1
1

0
1

2
0

1
0

0
0 ssssssS ⊕⊕⊕⊕=  be the full stream. S0 is uniquely determined by ,, 0

1
0
0 ss  S1

 is 

uniquely determined by 1
2

1
1

1
0 ,, sss , S2

 is uniquely determined by 2
2

2
1

2
0 ,, sss , and S = 

1100000001111111 is known. This gives the following set of equations: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solving this system gives: 

[ 0
0s   0

1s   1
0s   1

1s   1
2s   2

0s   2
1s   2

2s ] = [1   0   1   0   1   1   1   0] 

0   0   0   1   0   0      a0 0
0   1   0   1   1   0      a1 0
0   1   1   1   0   0      a2 0
0   0   0   0   0   1      a3 0
0   0   1   1   1   0      a4 0
0   0   0   1   0   1      a5 0

=

0   1   1   0   1   0 1   0   0   0   0   0,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 11 11 10 1000000

1   0   1   0   0   1   0   0      1
0   1   0   1   0   0   1   0                 1
1   0   0   0   1   0   0   1      0
0   1   1   0   1   1   1   0      0
1   0   1   1   1   0   1   1      0
0   1   1   1   0   1   1   1      0
1   0   0   1   1   1   0   1      0
0   1   1   0   0   1   0   0      0

=

0
0s
0
1s
1
0s
1
1s
1
2s
2
0s
2
1s
2
2s
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which generates the streams: 
 
 
 

 
 
 
 
 
 
Other forms of inadvertent generation will be investigated in the near future. 
 

7 Partial Enumeration 
 
The 8 conditions required for the streams create a complex enumeration problem. Hard formulas 
which took in the length of the stream and parameters of the constraints (such as the maximum 
duplicate sub-stream allowable) may be possible but will be very difficult to find. However, 
formulas for upper bounds based on one or more of the constraints can be found. 
 
For example, the condition that all the bits are evenly distributed between events gives an upper 

bound of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2/n

n
. This is the number of n-long streams that have equal numbers of both types of 

events. 
 
Other insights which may tighten bounds: 
 

• All the conditions are independent of event. So if a stream passes all the conditions then 
so does its complement, its mirror, and its mirror complement. 

 
• An alternative representation (but not an allowed mode of generation!) for the streams is 

a run listing. For example, the stream 100010100111 could be represented as 1311123. 
Some of the conditions, such as even bit and digraph counts, are easier to count with this 
representation. The sum of alternating digits must be the same to have the same number 
of zeros and ones. In the example above 1 + 1 + 1 + 3 = 3 + 1 + 2. Digraph counts are 
also easy to compute or create with this format. If there are k digits in the run-count 
representation there are (k −1) transition digraphs (i.e., 01 or 10) and (k −1)/2 each of 01 
and 10 (minor adjustments need to be made if k is even): for the example k = 7 so there 
are (7 −1)/2 = 3 each of 01 and 10. For the 00 and 11 digraphs is again the sum of 
alternating digits, but this time subtracting one from each digit: for the example (1−1) + 
(1−1) + (1−1) + (3−1) = 2 of the first type and (3 − 1) + (1 − 1) + (2 − 1) = 3 of the second 
type. 

 

8 Enumeration By Exhaustion 
 
Even though a formula has not yet been derived, the relatively short length of the streams means 
exhaustion is possible. I wrote code10 which allows the user to input the various conditions on the 
streams then intelligently exhausts, outputting the passing streams and statistics on the 
generating polynomials for these streams. 
  
The code ran with the following restrictions on the streams: 
  

1. 24-long streams; 

                                                 
10  A similar VAX program was written by Curtis Mueller about 15 years ago. 

2)1( x+
31 xx ++

321 xx ++

1   0   1 0   1 0 1 0   1   0 1   0 1   0 1 0

1   0   1 1   1 0 0   1   0   1   1   1   0   0 1 0

1   1   0   1   0   0 1 1   1   0 1   0 0   1   1 1

1   1   0   0   0   0 0   0   0   1   1   1   1   1   1 1



 28

 
2. Equal number of ones and zeros; 
 
3. As evenly as possible split of the digraphs (00,11,01,10); 

 
4. The maximum duplicated or duplicated complement substream has length less than 6; 
 
5. The maximum mirror duplicated or mirror complement substream has length less than  

8; 
 
6. The maximum run (i.e., adjacent zeros or adjacent ones) length less than 5. 

 
With these restrictions the total number of streams was 356. The degrees of the largest factor of 
the generating polynomials for these streams were distributed as follows: Total polynomial count: 
 

degree # of polys. 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

3 
28 
47 
46 
27 
36 
41 
40 
83 
5 

 
Below are a few of the streams generated by the exhaustion. These streams where chosen for 
examples because they had the highest degree generating polynomials (degree 13). 
 

010010111001101111000100 
111000100101000110111100 
110111100010010100011001 
110101100111000010001011 
110100110001001010001111 

 

9 Reports for some chosen streams 
 
Below are some of the UQS streams of some interest: 

 
number name stream 

1 
2 
3 
4 
5 
6 
7 

C-Module 
D-Module 
Intent-2 

Trajectory 
TUQS2 
Intent 2* 

Trajectory* 

100001110111001100010110 
101111011011000010000110 
111100011001001010110100 
100010010001111001011101 
100010011110010101100011 
011110110100001011100100 
001110010000110110011101 

 
None of these streams passed all the initial conditions. The following chart describes which 
stream passes which test: 

 
test C-mod D-mod Int Traj TUQS 

bit count      
equal digraphs   X   

isolated 0/1      
Substring Equivalent Tests 

Max. < 6  X(6)    
Max. comp < 6 X(7) X(8) X(7) X(6) X(7) 
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Max. mirror < 8 X(11) X(15) X(8) X(11) X(12) 
Max. mirror comp. < 8 X(14) X(8) X(12)  X(14) 

Max. run length < 5      
Max. degree poly. factor 12 8 6 10 9 

 
 
9.1 A Few Other Examples 
 
A few other streams which needed to be analyzed are below. These were chosen as examples of 
bad sequences. Analysis of four of the bad sequences follow: 

 
Stream # stream 

1 
2 
3 
4 

111011011010110110111011
100101010010000101010010
110101101101101111011011
100101001001010010100010

 
None passed the bit count, digraph, or equivalent substring tests, but all passed the isolated 0/1 
test, the maximum run length test and the maximum equivalent mirror complement test. 
 

test 1 2 3 4 
bit count 

0/1 
X 

7/17 
X 

15/9 
X 

7/17 
X 

15/9 
equal digraphs 

00/01/10/11 
X 

0/7/7/9 
X 

6/8/9/0 
X 

0/7/7/9 
X 

6/8/9/0 
Isolated 0/1     

Substring Equivalent Tests 
Max. < 6 X(9) X(11) X(10) X(10) 

Max. comp. < 6  X(6)   
Max. mirror < 8 X(20) X(10) X(16) X(16) 

Max. mirror comp. < 8     
Max. run length < 5     

Max. degree poly factor 6 8 11 12 
 

10 Summary 
 
Unique Signal event streams are used to prevent natural or accident events from inadvertently 
pre-arming a weapon. Requirements for the streams were designed to minimize this risk. This 
analysis was done by a mathematician who does not fully understand all the reasons behind the 
goals. The analysis done on the given streams did not meet all the goals, which means that either 
better event sequences exist or that the goals may be improved. 
 
Several programs were written to perform the analysis. An exhaustive search program enables a 
user to input the length of the stream (less than 32 events) and which of the requirements to 
place on the stream. The output will be all the streams which pass the requirements, the count of 
the passing streams, and a statistical summary of the maximal degrees of the factors of the 
generating polynomials. 
 
Another program generates individual reports for a given stream or checks the chosen 
requirements. The information in a streams report is: 
 

• the ones and zeros counts; 
• the digraph counts; 
• the trigraph counts; 
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• the length of the maximum equivalent substream, equivalent complement, equivalent 
mirror and equivalent complement mirror substreams; 

• the maximum run length (of either ones and zeros); 
• it there was an isolated 0/1 event; 
• the minimal generating polynomial and its factorization. 

 
The final two pieces of code do the individual tasks of reading in a stream and finding its 
generating polynomial (and factoring), or reads in a polynomial and finds its factors. This code is 
available upon request. 
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Chapter 3. Investigating the Incompatibility between Unique Signal Patterns 
Elizabeth Hart 

 
Project Description 
 
Because nuclear weapons systems employ two stronglinks and therefore two unique 
signals (UQS), there is a concern for assuring that delivery of one UQS does not affect 
the probability that another UQS could be inadvertently generated. While some work has 
been done looking at pairs of patterns, there has been no extensive evaluation specific to 
this question. Under direction from Arlin Cooper, my goal was to write a program that 
looks for certain similarities between patterns and calculates a “grade” for each pattern 
from the results of these metrics that might help in judging a pattern’s uniqueness in 
respect to other patterns. 
 
Constraints 
 
This study was limited to an analysis of patterns specified for this study. These are the 
seven currently used patterns and five additional patterns proposed by Anna Johnston that 
might be considered for future use.  Other patterns that were previously identified as 
possible candidates were omitted from this study due to lack of time. 
 

The Metrics 
 
Nine metrics were used in evaluating each possible pair of patterns. These metrics are 
measures of similarities between patterns that ought to be kept to a minimum.  
 
The first metric (M1) looks at how many relative positions in the two patterns contain the 
same event type and how many contain complement event types. We want this to be a 
balanced ratio of 12/12 and so for our purposes, 10/14 is the same as 14/10 and so all 
ratios are expressed with the higher number first. The greatest difference goal is 15/9.  
 
The rest of the metrics are looking for the length of the longest string contained in both 
patterns of a pair. Four metrics (M1, M2, M6, M7) are looking for strings that are in the 
same relative position in both patterns. The other four metrics (M3, M4, M8, M9) are 
looking for strings that are contained anywhere along the length of the patterns. To find 
this, one pattern is slid along the length of the other and the substrings that line up are 
examined. Although it is not initially obvious, I discovered that both patterns must slide 
(or the initial alignment must be offset) in order to locate the longest string. The diagram 
below is an example that demonstrates this by highlighting the longest similar string 
found by sliding each pattern. 
 

     C: ABBBBAAABAAABBAABBBABAAB 
          D: ABAAAABAABAABBBBABBBBAAB→ 

                   6 
versus 

 
                                               C: ABBBBAAABAAABBAABBBABAAB→ 
 D: ABAAAABAABAABBBBABBBBAAB 

                 7 
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The desired maximum for the length of aligned strings is 5 and the goal for maximum 
length of common strings is 9. There are four types of strings that are looked for: similar 
strings, as seen above; complement strings, such as ABBA and BAAB; mirrored similar 
strings (ABBB and BBBA); and mirrored complement strings (BABB and AABA).  
 
Scoring 
 
The problem with combining the results of the metrics into one grade is that we are 
decided to minimize the result of each individual metric, but maximize the final grade. In 
order to solve this problem, an inverse relationship based on the smallest possible result 
for each metric was established. For each metric, the result is turned into a score between 
1 and 0, 1 being the best. The general equation used to curve the results is  
 

1
24

)( +
−
−−=

c
cxscore  

 
where x is the result for the current pair and c is the “ideal” result for the metric.  
 
The ideal for M1 as stated earlier is a balance of 12/12. The reason behind the ideal of 
12/12 is the same as the reason behind the balancing of 12 of each event type. For scoring 
purposes, the largest number in the ratio is used. For example, a pair that has a ratio of 
14/10 event types would be scored off of the 14.  
 
The ideals for the rest of the metrics are based off of the observed results. Metrics were 
grouped by whether they found aligned sub-strings or any common sub-strings as well as 
by whether the string was mirrored or not. Looking at the results from all 66 pairs derived 
from the current selection of 12 patterns, the ideal for each metric group was set at one 
less than the lowest result found for that group. Specifically, the smallest common string 
found is of length 5, so c for M4 (similar string) and M5 (inverse string) is set at 4. M8 
and M9 use 5, M2 and M3 use 0, and M6 and M7 use 2 as ideals. There is room here for 
more research in what is truly possible. 
 
Grade 
 
The score from each metric is added to a corresponding subtotal for the patterns in the 
pair. After all the pairs have been evaluated by all the metrics, the 9 subtotals for each 
pattern are averaged, weighted and added together to get the “grade” of the pattern. The 
weights were given to me by Arlin Cooper and are being used on a trial basis. The 
general formula for this calculation is  
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where p

ns  is the subtotal of pattern P for metric n. All grades are between 0 and 1.  
 



 33

Sample Calculations 
 
These are some sample calculations for pattern L. 
 

74 =KLM      85.01
424

)47( =+
−
−−=score  

85.04 =+Ks         85.04 =+Ls   

8322.002.*
112

26.902.*
112

36.904.*
112

31.904.*
112

63.908.*
112

00.908.*
112

05.916.*
112

08.916.*
112

70.84.*
112

33.9 =
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Graphs 
 
A graph for each metric is created that displays the results for all pairs. These are useful 
both as a quick overview of the typical result for a metric as well as a place to look up the 
results of a specific pair. The graphs indicate the desired maximum by a horizontal line 
and the results of each pair in a vertical line with the labels of the patterns in the pair 
underneath.  Below are two examples. 
 
M2 
Determines the length of the longest identical string in the same 
relative 
position in the two patterns. 
 
 
                                 Length 
10                                                                    10 
 9                            |                                       9 
 8                  |         |           |                           8 
 7                  |         |    |      |            |              7 
 6 _________________|_________|____|______||__||____|__|____________| 6 
 5                  ||    |   |    |   || ||||||   ||  | |          | 5 
 4 || |||  |   | | |||| |||   || | |   |||||||||  |||  | |      ||||| 4 
 3 ||||||| || |||| ||||||||   || ||||||||||||||||||||| ||| |  ||||||| 3 
 2 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 2 
 1 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 1 
 0 ------------------------------------------------------------------ 0 
   CCCCCCCCCCCDDDDDDDDDDJJJJJJJJJKKKKKKKKLLLLLLLGGGGGGHHHHHMMMMNNNPPQ 
   DJKLGHMNPQRJKLGHMNPQRKLGHMNPQRLGHMNPQRGHMNPQRHMNPQRMNPQRNPQRPQRQRR 
 

Figure 1. Graph of the M2 Metric
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M4 
Determines the length of the longest identical string in the two 
patterns. 
 

   Length 
19                                                                    19 
18                                                             |      18 
17                                                             |      17 
16                                                             | | |  16 
15                                                             | | |  15 
14                                                             | | |  14 
13                                   |                      |  | | |  13 
12                                   |                      |  | | |  12 
11       | |                 |      ||  | |      |         ||  | | |  11 
10 ______|_|__||_____________|______||__|||______|_________||__|_|_|_ 10 
 9       |||| ||   |||  |   ||| |   ||| |||      |       | ||  | | |  9 
 8  |    |||||||   |||||| |||||||   ||| |||   |  |       | || || | |  8 
 7 ||||  ||||||||  |||||||||||||||||||| ||| | ||||||||||||||| || | |  7 
 6 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 6 
 5 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 5 
 4 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4 
 3 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 3 
 2 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 2 
 1 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 1 
 0 ------------------------------------------------------------------ 0 
   CCCCCCCCCCCDDDDDDDDDDJJJJJJJJJKKKKKKKKLLLLLLLGGGGGGHHHHHMMMMNNNPPQ 
   DJKLGHMNPQRJKLGHMNPQRKLGHMNPQRLGHMNPQRGHMNPQRHMNPQRMNPQRNPQRPQRQRR 
 

Figure 2. Graph of the M4 Metric 
 
Results 
 
Below are the grades for notable subsets of the population of patterns included in this 
study. They have been sorted by grade to illustrate the impact that the set has on each 
pattern’s grade. 
 

In Use    

D 0.878703  
All Studied 
Patterns 

L 0.865251  C 0.854725
J 0.861097  D 0.845871
C 0.835089  H 0.843968
K 0.829426  K 0.841289
   M 0.836621
In Use and Designed N 0.835738
C 0.859314  L 0.832256
D 0.85928  P 0.829104
H 0.85417  J 0.82869
J 0.844392  R 0.816278
L 0.844208  G 0.814262
G 0.839806  Q 0.796092
K 0.827209    

 
In addition to the grades, it is enlightening to look at the results of all the pairs. Only 9 
pairs did not violate at least one desired maximum set for the metrics. They are CL, CN, 
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DR, JQ, JR, LQ, GM, NP and NQ. All these pairs include at least one pattern that was 
discovered by Anna Johnston.  
 
Summary and Future Work  
 
The program allows the user to input the number of patterns desired to be read in from a 
file and creates a file that lists the patterns evaluated, their corresponding grades and also 
includes graphs of results for all nine metrics. The code can be requested from Arlin 
Cooper.  
 
This project is a complement to other work done on UQS patterns. It looked for trends 
similar to the trends found in individual patterns. The next step in the process of 
evaluating unique signal patterns is to find a way of combining the many different studies 
done to grade patterns into a single quantitative analysis. 
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Patterns Used in Study 
 

C (C-Module): A,B,B,B,B,A,A,A,B,A,A,A,B,B,A,A,B,B,B,A,B,A,A,B 
D (D-Module): A,B,A,A,A,A,B,A,A,B,A,A,B,B,B,B,A,B,B,B,B,A,A,B  
G (Intent 2): A,A,A,A,B,B,B,A,A,B,B,A,B,B,A,B,A,B,A,A,B,A,B,B 
H (Trajectory): A,B,B,B,A,B,B,A,B,B,B,A,A,A,A,B,B,A,B,A,A,A,B,A 
J (Intent 2*): B,A,A,A,A,B,A,A,B,A,B,B,B,B,A,B,A,A,A,B,B,A,B,B 
K (Trajectory*): B,B,A,A,A,B,B,A,B,B,B,B,A,A,B,A,A,B,B,A,A,A,B,A 
L (TUQS2): A,B,B,B,A,B,B,A,A,A,A,B,B,A,B,A,B,A,A,B,B,B,A,A 
M: A,B,A,A,B,A,B,B,B,A,A,B,B,A,B,B,B,B,A,A,A,B,A,A 
N: B,B,B,A,A,A,B,A,A,B,A,B,A,A,A,B,B,A,B,B,B,B,A,A 
P: B,B,A,B,B,B,B,A,A,A,B,A,A,B,A,B,A,A,A,B,B,A,A,B 
Q: B,B,A,B,A,B,B,A,A,B,B,B,A,A,A,A,B,A,A,A,B,A,B,B 
R: B,B,A,B,A,A,B,B,A,A,A,B,A,A,B,A,B,A,A,A,B,B,B,B 
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Chapter 4. Toward a Theory of Secure1 Communications in a Non-Random 
Environment 

 
Allan L. White, NASA Langley, Hampton, Virginia 

 
Keywords: secure communication, nonrandom noise, Markov models 

 
Abstract 
 
An open problem is to quantify the probability of receiving a given signal from a noisy 
environment when little is known about the environment’s signal generating properties.  
The signals may have a mix of random, correlated, and deterministic elements.  Because 
of the engineered design of unique signal patterns, inadvertent generation of the patterns 
requires complex unlikely generators.  This paper considers a class of models that can 
reproduce a mix of random, correlated, and deterministic signals depending on the value 
of the model’s parameters.  The approach is to find the parameters that yield the 
maximum probability of generating a given signal.  This maximum probability, because it 
uses the optimum parameters, is larger than the probability of generating the signal from 
most noisy environments. 
 
Introduction 
 
At the 20th International System Safety Conference, a representative from Sandia 
National Laboratories posed a problem (ref. 1) in secure1 communication in the presence 
of noise that is neither random nor deterministic (ref. 2).  The problem is to devise a 
signal that is unlikely to be generated by an “accident-induced-structure” when the signal 
generating properties of the “accident-induced-structure” are ill-defined.  Subsequent 
conversations revealed that the “accident-induced structure” and the signal it generates 
are likely to have the properties that are listed in a section that describes the noise 
environment.  
 
This paper discusses the problem from the point of view of discrete Markov models.  It is 
shown that discrete Markov models can generate signals that are “random”, that are 
“deterministic”, and that are neither.  The memory properties of these models are 
presented, and an example is given of correlation decreasing with time.  After these 
introductory topics, the paper formulates the general problem in terms of Markov models: 
for a given signal, find the transition probabilities that maximize the probability of 
generating the signal. 
 
The combinatorial and probability parts of this problem have been solved, and the matter 
reduced to an exercise in numerical methods.  Unfortunately, it is a difficult problem in 
numerical methods.  It is a search for the maximum value of a function in a very high 
dimensional space where there are constraints on the domain.  For this reason another 
approach is presented.  It attempts to design a signal that forces the optimum jump 
probabilities to assume certain values. 
 
1 Editorial note: The author uses “secure” in this material to denote “assured;” there is no security implication. 
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This work is in an early stage, and it is still contending with the large model problem. 
 
Disclaimer 
 
This work was inspired by and it is hoped it is a contribution to a problem presented by 
Sandia National Laboratories, but that does not imply that Sandia National Laboratories 
agrees with or endorses any of the ideas or results in this paper.   
 
 
Description of the Noise Environment 
 
Signals (arising from noise) are often considered “deterministic” or “random” where 
“random” implies the outcome is equally likely and is independent of previous outcomes.  
Given these definitions, we assume the following properties about signals, where a signal 
is a sequence of  A’s  and  B’s. 
 

1.  The more complicated the system needed to produce the signal with a high 
probability, the less likely the signal. 
 
2.  The signals can be a mix of random and deterministic elements. 
 
3. The system can have some memory (which is seen as correlation in the generated 
signal). 
 
4. Correlation in the signal tends to decrease with time.  This is relevant if the signal 
is high frequency noise, and the detector samples at a low rate.  In this case, noise will 
appear more random. 

 
The original version of property 2 was 
 

2b.  Deterministic signals are likely.  Deterministic signals with a little 
perturbation are likely.  Random signals are likely.  Random signals with a little 
determinism are likely.  Signals with an equal mix of determinism and 
randomness are unlikely. 

 
As shown below, Markov models can handle all five of the conditions mentioned in 
property 2b by adjusting the jump probabilities.  Since our approach to the problem lets 
the jump probabilities take on arbitrary values, there is no need to distinguish between 
what is likely and unlikely.  It is necessary, however, to demonstrate first that Markov 
models can handle all of the five conditions, and this is done in the section below. 
 
The Noise Environment and Markov Models 
 
We’ll illustrate modeling the four properties above with discrete Markov chains, which 
are general random models.  “Random” here does not mean equally likely and 
independent of previous outcomes.  In fact, from this point of view, deterministic 
functions are random variables (with zero variance). 
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Property 1:  The simplest system of interest is a two state model. 
 

            

         1 – p                                                               1 - q

                                                 p
                          A                                                    B

                       1                               q                  2

 
 

Figure 1 – A Two State, Noise Generating, Markov Model 
 
 
The states are labeled  “1”  and  “2”. 
 

The probability of going from  1  to  2  is  p 
The probability of going from  1  to  1  is  1-p 
The probability of going from  2  to  1  is  q 
The probability of going from  2  to  2  is  1-q 
 

 
When the system makes a jump into state  1  (even if the jump is from state  1), the 
system emits the signal  A.  When the system makes a jump into state  2, the system 
emits the signal  B. 
 
Property 2:  We show that Markov models can handle all the conditions in property 2b.  
The system in Figure 1 is “deterministic” (for that model) if both  p  and  q  are equal to 
zero or one.  The four cases are 
 

p=1; q=1 
p=1; q=0 
p=0; q=1; 
p=0; q=0 

 
The system is “deterministic with a little perturbation” if  p  and  q  are close to zero or 
one. 
 
The system is “random” if  p = q = ½.  The signal is “random with a little determinism” if 
p  and  q  are close to ½. 
 
The signal has “an equal mix of randomness and determinism” if p = ½  and  q = 0 or 1 
(or vice versa). 
 
Property 3:  An important property is the amount of memory a system has.  An example 
of a “system” with zero-step memory is flipping a coin.  The appearance of H or T does 
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not depend on the outcome of the last (or any) previous flip.  A discrete Markov model 
has one-step memory.  The probabilities of the next outcome depend on the current state.   
 
It’s possible to embed multi-step memory into a Markov model.  Suppose the system 
always emits precisely BBB, never just a  B  or  BB  and never more than three B’s in a 
row.  Two methods of accomplishing this are 
 

                                          

        1-p

                               p
              A                       BBB

                              1

        1-p

                                p
                   A                           B

                                              1

                               1

                                                 B

                                             1

                                                 B

 
 

Figure 2 – Two Models That Generate  BBB 
 
Property 4:  Arrange the transitions in Figure 1 as a matrix.  Let  s i (k)  be the probability 
of being in state  s i  at time  k. 
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If  p = q = 0.1, the system is highly correlated—the system will tend to remain in its 
current state.  Note, however, 
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That is, if the signal is sampled once every twenty times, it will appear nearly “random.” 
 
Probability and Model Size:  Given a sufficiently large Markov model, any signal can be 
generated with probability one.  Suppose the signal is  Q 1 Q 2 ... Q n .  Consider the model 
in Figure 3.    

          

                     1             Q 1      1          Q 2   1            1         Q n

         0                     1                      2              . . .             n

 
 

Figure 3 – A Model to Generate a Given Signal with Probability One 
 
Statement of the Problem 
 
The previous section has shown that Markov models can depict all the characteristics 
listed in the section about the properties of the noise environment.  Hence, they are a 
natural domain for this investigation.  Since a sufficiently large model can generate any 
given signal with probability one, a restriction on size is necessary for there to be any 
problem at all.  By setting transitions equal to zero, a model includes all smaller models  
 
With the above in mind the general problem becomes 
 

Suppose noise is generated by a Markov model with less than or equal 
to  N  states.  Suppose the transition probabilities can be any value 
(between and including zero and one).  Find a signal whose probability 
of being generated is less than some given quantity. 

 
A disadvantage of this formulation is that there can be no correlation between the size of 
the physical system producing the noise and the size of the Markov model needed to 
generate the noise with high probability. 
 
The Class of Symmetric Models 
 
We work with a class of symmetric models.  They have an even number of states where 
half of them emit an  A  when entered and half emit a  B  when entered.  A four state 
example is given in Figure 4.  To avoid clutter, the jumps between states are not labeled. 
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                  A                                       B
              2                                       3

                   A                                     B
              1                                        4

 
Figure 4 – A Four State Symmetric Model 

 
 
The notation for jump probabilities is as follows.  If the system is in state i at time  n  then 
the probability of being in state  j  at time  n+1  is  p i j .   
 
We need a method for writing the probability of a string of  A’s  and  B’s.  To this end, 
let 
BK(i,j) = probability of  K  B’s  given the system begins in state  i  and ends in state  j.  
Similarly for  AK(i,j). 
 
As an example, for the four state model in Figure 4, 
 

B3(2,4) = p 2 3 p 3 3 p 3 4 +  p 2 3 p 3 4 p 4 4   +  p 2 4 p 4 3 p 3 4  +  p 2 4 p 4 4 p 4 4                    (3) 
 
Given the system begins in state  1, the probability of the string  AAABBB  is 
 

A3(1,1)B3(1,3) + A3(1,1)B3(1,4) + A3(1,2)B3(2,3) + A3(1,2)B3(2,4)                    (4) 
 
Computing the Maximum Probability of Generating a Signal 
 
The method currently being used to find the maximum probability of generating a signal 
is as follows:  
 

Given a symmetric model and an initial state,  
write the probability of generating the expression.   
(For instance, equations (3) and (4) above.) 
 
Search for the transition probabilities that maximize the probability. 

 
The search has the constraint that the transitions out of any state must sum to one. 
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As an example, consider the signal  AAABBB  and the four state symmetric model with 
the initial state being state 1.  The search found the maximum probability  
 

P =  0.23                                                               (5) 
 
with the transition values given by the matrix 
 

      
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0.950.4500
0.050.550.50

000.50.5
0000.5

                                                          (6) 

 
The general problem is a search for the maximum value of a function in a very high 
dimensional space.  For larger models there appear to be plateaus and numerous local 
maxima. 
 
The Equi-Probable Transition Approach 
 
Finding the optimum parameters for an arbitrary signal becomes arduous for large 
models.  This approach attempts constructing a signal that has a convenient set of 
optimum transition probabilities.  Perhaps the most convenient set is where all transitions 
have the same probability.  An example follows.  
 
Consider the two state model in Figure 1.  Suppose the system begins in state 1 and 
consider the sequence 
 

AB BA AB BA AB BA 
 
We will show that for any values for p  and  q  there is less than one chance in a thousand 
of this model generating the sequence.   This is done by showing that the values that 
maximize the probability of getting this sequence are  p = q = ½.  
 
If the system is in state  1, the probability of getting an  AB  is  p(1-p).  After generating  
AB  the system is in state  2.  If the system is in state  2, the probability of getting a  BA  
is  (1-q)q.  After generating  BA  the system is in state  1. etc. 
 
Using the derivative to find the value for  p  that maximizes this probability of  AB yields  
p = ½.. A similar argument gives  q = ½. 
 
This method has not been generalized to larger models. 
 
Summary 
 
A proposed test for signals intended to be generated as “noise” where the noise can be a 
mix of random, correlated, and deterministic elements was sought.  It was shown that 
discrete Markov models were a productive area for study, because they can generate 
signals with all of these characteristics.  It was also shown that a sufficiently large 
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Markov model can generate a given signal with probability one, but this property is true 
of many generator models.  Hence, the problem becomes: given a restriction on the size 
of the Markov model test existing signal patterns and/or produce new signal patterns that 
can be generated with only a small probability.  Two approaches are being considered.  
The first is based on numerical methods and searches for the jump probabilities that give 
the maximum probability of generating a specified signal.  The second approach attempts 
to design a signal that forces the optimum jump probabilities to assume certain values.  
This work is in an initial stage.  To date both approaches have been applied to only small 
models. 
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Chapter 5. Dependence Threats and Protective Measures 
Arlin Cooper 

 
Introduction 
 
The ideal “incompatibility” inherent in the Unique Signal approach assures that 
inadvertent generation of a Unique Signal is as unlikely as it can be made for a particular 
number of events and that the assurance can be supported by analysis, since the 
likelihood can be made to approach that of random inputs [Ref. 1].  This analytically 
supported incompatibility requires separate-event communication of a carefully 
engineered pattern.  If either the pattern used or the communication technique is 
compromised, the assurance possible is also compromised.  The main reasons for this are 
that any dependence that is allowed to appear in the pattern or in the communication 
technique can make the pattern easier to inadvertently generate, and at the same time, 
weaken the analytical support of the incompatibility metric.  
 
This concept and its importance to abnormal-environment safety has proven difficult to 
persuasively portray.  Part of the reason is that high consequence safety forces attention 
on the extremes of how bad things can get and part is because scenarios that are 
constructed to demonstrate the problems cannot be comprehensively general.  The 
protection against “extremes” rather than (or in addition to) “averages” is considered 
good safety practice.  The scenario sensitivity is especially pronounced for abnormal 
environments, which is the reason that dependence on scenarios has never been part of 
the Unique Signal concept. 
 
This chapter addresses the relation of dependence to ease of inadvertent generation, and 
the contribution of separate-event communication to independence and the resultant 
protection afforded. 
 
Making Unique Signal Patterns Difficult to Inadvertently Generate 
 
The engineered design features in Unique Signal patterns are to introduce “uncertainty” 
about what next event in a sequence of events might be required to match the pattern.  
This is analogous to assuring that prescribed generators (that might be designed into a 
system or inadvertently caused by an abnormal environment) are unable to easily produce 
the correct sequence, which is otherwise unavailable to the system.  For example, 
oscillations are minimized in Unique Signal patterns, because sources of oscillation are 
expected to be present in systems or generated in accidents.  Linear feedback shift 
register (LFSR) characteristics are also minimized, because LFSRs are commonly used 
and relatively easy to generate accidentally.  The LFSR property was tested by Anna 
Johnston’s work described in Chapter 2.  The ability to produce combinations of patterns 
that result in a Unique Signal pattern is also minimized.  Roy Baty’s work described in 
Chapter 1 was a test of this property.  Elizabeth Hart’s work described in Chapter 3 also 
demonstrated constraints that are necessary for groups of patterns in a set.  The “ease of 
generation” property does not correspond comprehensively to mathematical tests, 
although first-order dependence effects are mathematically precluded by balancing the 
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appearance of pairs.  This type of dependence was a key to the Markov state models 
described by Allan White in Chapter 4.  He also clearly demonstrated how dependence 
effects can be suppressed as communication time increases.  This is a key to the 
protective effects of separate-event communication described later in this chapter.  Ease 
of generation can be further associated with the “dependence” property, as addressed in 
the next section. 
 
Effects of Dependence in the Absence of Separate-Event Communication 
 
Dependence effects can be a threat to safety, and the threat is especially pronounced 
where separate-event communication is not implemented.  One of the most fundamental 
illustrations of the effect of dependence is to consider complete pair-wise dependence 
(duplication) compared to an independent reference condition (e.g., a number of equally 
likely bi-valued events (n), chosen from a binomial distribution).  The choices from a 
binomial distribution are independent.  Because of the importance of extremes, the 
following example emphasizes threats in the vicinity of an inadvertent pattern match.  For 
the binomial distribution, the probability of inadvertently duplicating any particular 

pattern would be n2
1 .  The probability of matching all or all but one position would be 

n
n
2

1+ .  The probability of matching all or all but one or all but two positions would 

be 1

2

2
2

+

++
n
nn , etc. 

 
Consider introducing a dependence of disjoint pairs of events, such as specified below in 
Eq. 1, where e(n) signifies event n. 
 

e(n + 1) = e(n) for odd n                                                 (1) 
 
Here, there are only 12 unconstrained choices, so there are 2n/2 possible patterns that 
could be inadvertently generated.  If the “unique signal” pattern were one of these, the 

probability of inadvertently generating it would be 2/2
1
n .  The probability of matching all 

or all but one position would also be 2/2
1
n .  The probability of matching all or all but one 

or all but two positions would be 2/2

1
2

n

n +
, etc.  These results are graphed in Fig. 1 for n = 

24.  The abscissa is plotted logarithmically because the differences are quite large. 
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Figure 1.  Effect of Pair-Wise Dependence 
 

Although this form of dependence is avoidable through pattern design, it is possible to 
construct similar examples for any pattern no matter how carefully engineered.  As an 
example, the “D-module” Unique Signal pattern can be generated by a combination of 
three oscillatory patterns [Ref. 2].  This is described in Eq. 2, below.   
 

)
8

1.1sin(26.0)
9

7254.0sin(855.0)
11

28.2sin( Π−+Π−+Π−= xxxy                    (2) 

 
where samples are taken at x = 0, 1, 2, … and A results from y < 0 and B results from y ≥  
0. 
 
It is also possible to prescribe a dependence relation (shown in Eq. 3) that reduces the 
designed effectiveness of the D-module pattern. 
 

e(3n +3) = e(3n)         [n odd]                                     (3) 
 
This relation generates four events in a recursion corresponding to the D-module pattern.  
Therefore, under this type of dependence, only 20 inadvertent events have to be 
generated independently in order to generate the 24-event D-module pattern.  In 
summary, engineered pattern design is necessary, but not sufficient, unless separate-event 
communication is implemented. 
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Another revealing example is the “random coin-engraving” problem.  Consider a coin 
that is to be engraved with a random choice of “heads” or “tails” on one side and another 
random choice on the other side.  Perhaps counter-intuitively, the probability of particular 
patterns of r outcomes from r random coin throws is not 2−r.  For example, the probability 
of two heads from two random tosses is 3/8.  Figure 2 depicts the re-selection of such 
coins after r tosses until 24 tosses are achieved.  The chosen r were those that divide 24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Population Density for Random Coin-Engraving Problem 
 

The results show that “re-setting” the process infrequently (e.g., r large) causes distinctly 
non-random results due to dependence.  Frequent re-setting (e.g., r small) causes the 
results to approach random.  Separate-Event Communication is intended to cause re-
setting between each event (r = 1). 
 
Another informative dependence model is to consider a cube with three As and three Bs, 
such that there is only a single boundary shared between each of the events of each type.  
The structure is diagrammed in Fig. 3.  Topology-wise, there are two arrangements that 
are possible, but the above definition assures that there is a pair of Bs on opposite sides of 
the cube and a pair of As on opposite sides of the cube. 
 
 
 
 
 
 
 
 

Figure 3. A Cube with Three As and Three Bs 
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The example event generation is to give the cube a random throw for a starting position, 
and then to turn it one position in a randomly chosen direction.  The probability of an A 
followed by a B is 1/3, which demonstrates the non-random nature of the dependence. 
 
Now consider turning two positions in randomly chosen directions prior to “reading.”  
The probability of an A followed by a B is 5/24.  For three random turns before reading, 
the probability of an A followed by a B is 13/48, etc.  The actual general result is: 
 

1

11

212
)1(23),( −

−−

×
−+×= s

ss

BAP                                            (4) 

 
The result approaches the random expected value (1/4) asymptotically as the number of 
turns is increased.  In other words, the enforcement of letting communication periods 
pass in between reads has a randomizing effect. 
 
The Effect of Separate-Event Communication on Dependence 
 
The type of dependence illustrated in Eq. 1 can be rendered harmless by a 
communication capability that could only receive every other event (or only odd events 
or only even events).  This advantage would not be obtained for receiving, for example, 
every (n + 1)th event.  From a more practical viewpoint, communication at separate and 
unrelated times would be sufficient to assure that the dependent pairs of events specified 
in Eqs. 1-4 would be statistically independent.  This is actually true of all types of 
dependence that have been identified.  However, statistically independent time intervals 
are not easily assured.  Adding to this consideration, in the spirit of the Walske 
requirement, engineered pattern design is also necessary.  
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Prognosis 
 

Although there have been a large number of results obtained by the Unique Signal 
Mathematics Study Group, a number of interesting challenges remain for assessing 
deviation from Unique Signal principles.  For example, stronglink switches that can have 
multi-position responses to single event inputs combined with certain environments are 
known to be capable of producing what appear to be correct unique signal responses with 
greater than random probability.  Exactly how bad the effects are requires solving for the 
maximum value or values on a multidimensional hyper-surface.  There has been 
considerable work done on this problem without a satisfactory solution.  A similar 
surface maximum problem was cited by Allan White in Chapter 4, in association with the 
maximum probability of achieving a particular response by a symmetric Markov state 
model.  As another example, Anna Johnston produced an elegant solution for the 
difficulty of LFSRs producing Unique Signal patterns, but little work has been done on 
nonlinear generators.  One other problem was made more apparent by Elizabeth Hart’s 
work.  The assessment of which Unique Signal patterns work well with other patterns 
obviously depends on the set chosen.  The definition of the set of interest is elusive, 
which makes specification of any potential new patterns difficult.  In addition to the set 
definition problem, the metric determination for rating unique signal patterns as 
standalone entities and as members of a set is still in an incomplete stage.   
 
Work on these mathematically challenging problems should assure an interesting future. 
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