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DISCLAIMER 
 
This report was prepared as an account of work sponsored by an agency of the United States 

Government.  Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility 

for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 

disclosed, or represents that its use would not infringe privately owned rights.  Reference herein to 

any specific commercial product, process, or service by trade name, trademark, manufacturer, or 

otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by 

the United States Government or any agency thereof.  The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any agency 

thereof. 

 



 

ABSTRACT 

 The mineral processing industry has commonly utilized hydraulic separators throughout 

history for classification and gravity concentration of various minerals.  More commonly 

referred to as hindered-bed or fluidized-bed separators, these units make use of differential 

particle settling rates to segregate particles according to shape, size, and/or density.  As with any 

equipment, there are inefficiencies associated with its operation, which prompted an industry 

driven research program to further evaluate two novel high-efficiency hindered bed separators. 

These units, which are commercially called the CrossFlow separator and HydroFloat separator, 

have the potential to improve performance (separation efficiency and throughput) and reduce 

operating costs (power consumption, water and reagent usage).  

 This report describes the results of Phase I activities (laboratory and pilot-scale tests) 

conducted with the CrossFlow and HydroFloat separators at several locations in the minerals and 

coal industries. Details of the testing programs (equipment setup, shakedown testing and detailed 

testing) associated with four coal plants and two phosphate plants are summarized in this work. 

In most of these applications, the high-efficiency units proved to provide a higher quality product 

at reduced costs when compared against the performance of conventional separators.   

 Based on promising results obtained from Phase I, full-scale prototypes will be purchased 

by several mining companies for use in Phase II of this project. Two of the prototype units, 

which will be constructed by Eriez Manufacturing, are expected to be installed by a major U.S. 

phosphate producer and a large eastern U.S. coal company. Negotiations are also underway to 

purchase and install additional prototype units by a mineral sands producer and a second 

phosphate producer. The data obtained from the full-scale evaluations will be used to further 

promote commercialization and industrial applications of these innovative technologies.      
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IN-PLANT TESTING OF CROSSFLOW IN THE COAL INDUSTRY 

 

1.1 Introduction 

1.1.1 General 

 The mineral processing industry has commonly utilized hydraulic separators throughout 

history for classification and gravity concentration of various minerals.  More commonly 

referred to as hindered-bed or fluidized-bed separators, these units make use of differential 

particle settling rates to segregate particles according to shape, size, and/or density.  

 Conventional hindered-bed separators are inherently inefficient due to wide variations in 

the solids content and size distribution of the feed, which have an adverse effect of plant 

performance and operating costs.  The traditional design consists of an open top vessel into 

which elutriation water is introduced through a series of distribution pipes evenly spaced across 

the base of the device.  During operation, feed solids are injected into the upper section of the 

separator and are permitted to settle.  The upward flow of elutriation water creates a fluidized 

bed of suspended particles within the separator that is automatically controlled through the use of 

a simple PID control loop.  The control loop includes a pressure sensor mounted on the side of 

the separator to measure the relative bed pressure.  To maintain a constant bed pressure, a single 

loop PID controller and a pneumatic pinch valve to control the underflow discharge are used.   

 The small interstices within the bed create high interstitial velocities that resist the 

penetration of the slow settling particles.  As a result, small particles accumulate in the upper 

section of the separator and are eventually carried over the top of the device into a collection 

launder.  Large particles, which settle at a rate faster than the upward current of rising water, 
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eventually pass through the fluidized bed and are discharged out one or more restricted ports 

through the bottom of the separator.     

 As with any processing equipment, there are inherent inefficiencies associated with this 

design.  The key operating variables that were identified as problematic with traditional 

hydraulic separators included: (i) turbulent feed distribution which can result in unwanted 

misplaced particles, (ii) limited throughput capacity due to the detrimental impact of feed water 

on separator performance, (iii) introduction of dead zones within the  fluidization chamber caused 

by frequent blockage/plugging of the lateral pipes located in the base of the separation zone 

containing the elutriation water and (iv) maintenance of the blocked elutriation water pipes.  To 

overcome these problems, an industry driven research program was initiated to develop a new 

family of innovative high-efficiency hydraulic separators that can be readily implemented in the 

commercial sector, called the CrossFlow Separator and HydroFloat Separator.   

 

1.1.2 Advantages of the  CrossFlow Separator  

 Figure 1.1 is a schematic drawing comparing a traditional hydraulic separator with the 

new CrossFlow separator. Existing hydraulic separators utilize a feed injection system which 

discharges through a downcomer approximately one-third of the way into the main separation 

chamber.  The pipe discharge is usually equipped with a dispersion plate to laterally deflect the 

feed slurry, but this approach creates turbulence within the separator that is detrimental to both 

the quiescent flow of the unit and the overall separation process.  The additional water added to 

the system at the injection point causes a secondary interface of fluidized solids to form within 

the separator.  The CrossFlow separator minimizes this discontinuity by introducing the feed 
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stream across the top of the separator.  A transition box and a baffle plate are used to reduce the 

feed velocity and optimize the tangential feed introduction into the top of the separator.   

 Another problem with the traditional design is that the water introduced with the feed 

solids must also report to the overflow launder.  As a result, the rise velocity of the water is 

substantially increased at the feed injection point.   The throughput capacity of existing hydraulic 

separators is limited by this introduction of water through the feed distribution pipe in the 

separation chamber and the excessive elutriation water added to the system.  As previously 

mentioned, part of this problem was alleviated through the tangential feed distribution designed 

for the CrossFlow separator.  A redesign of the elutriation water distribution, through use of a 

slotted plate at the base of the separation chamber, has minimized the amount of water used by 

allowing the water to better disperse through the separator.  Larger diameter holes spread farther 
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Figure 1.1 Traditional Hydraulic Separator (Left) Versus Crossflow Separator (Right). 
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apart (6 inches versus 0.5 inches) allows for the water to be introduced into the chamber, and the 

baffle plate disperses the water throughout the chamber.  This ultimately reduces the amount of 

overall elutriation water required, and increases the throughput capacity of the separator.   

 The improved distribution of elutriation water also minimizes dead zones within the 

separation chamber that were often caused by plugging of the small diameter holes in the lateral 

pipes at the bottom of the separation chamber.  By increasing the diameter of the holes and 

adding the baffle plate to fully distribute the water, separation efficiency has increased due to full 

utilization of the separation chamber.  The increase in separation efficiency and throughput 

capacity reduces the operating demands in terms of power, water and maintenance when reported 

on a per ton of concentrate basis when compared to traditional hydraulic separators.        

 

1.1.3 Inefficiencies of the CrossFlow Separator 

 While the CrossFlow separator is a significant improvement over conventional hydraulic 

separators, the unit does have a few limitations.  One of the significant limitations is that the unit 

requires a narrow particle size distribution for effective separation.  Previous testing has proven 

that efficient concentration can only be achieved if the particles are in the size range of 200 mesh 

to several millimeters.  The particle size ratio typically needs to be less than about 6:1 (top size 

to bottom size).   

 The other limitation of the CrossFlow separator is it requires a moderately large 

difference in particle densities.  The separator often accumulates low density coarse particles at 

the top of the teeter bed, which are too light to penetrate the bed, but at the same time, too heavy 

to be carried by the rising water into the overflow.  As a result, misplacement of low-density, 

coarse particles to the high-density underflow can occur.  This inefficiency can be partially 



 14 

corrected by increasing the elutriation water, to try to carry the low density coarse particles into 

the overflow; however this can sometimes cause the fine, high-density particles to also report to 

the overflow instead of penetrating the teeter bed.     

 The shortcomings of the CrossFlow separator were recognized by the design team and 

have been overcome with the design of the HydroFloat separator, which will be discussed in 

detail in Chapter 2. 

 

1.1.5 Project Justification 

 While improvements in technology have assisted the U.S. mining industry in reducing its 

overall energy consumption, the industry still struggles to be as efficient as possible due to the 

current economic climate.  It is difficult for mining companies to justify huge capital investment 

in energy efficient technology.  However, the incentive still exists to development equipment 

that will not only reduce costs, but  improve efficiencies as well.  This is due to the fact that each 

ton of saleable ore or coal that is recovered through an improvement in plant efficiency adds the 

full market price of that ton of material to the company revenue.  Otherwise, the full market 

value is lost to waste.  For a typical coal preparation plant, a one percentage point improvement 

in plant efficiency is roughly equivalent to a 20 percent improvement in profitability for the 

overall mine.  As a result, the adoption of new technologies that improve efficiency is very 

attractive for industry representatives.   

 The implementation of the CrossFlow hydraulic separator will significantly reduce 

energy consumption and improve efficiency in the coal industry.  When compared to 

conventional technology, the CrossFlow separator processing more material (as high as 40% 

solids) and operates at lower pressures (atmospheric versus 20 psig) for sizing the fine coal 
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streams.  These differences reduce the pumping requirements and minimize wear.  For a typical 

unit, the overall savings is estimated to be 5.8 BTU per year per unit based on 3.5 million tons 

per year of raw coal feed to a typical preparation plant.  In addition to reduction in pumping 

costs, the reduction in water consumption and reagent dosage associated with the higher percent 

solids will continue to reduce costs when compared to conventional units.  Overall maintenance 

costs per ton of product will also be reduced.     

 The improved efficiency of the CrossFlow unit yields a sharper cut point, which 

ultimately produces additional clean coal for the same amount of raw coal processed by 

minimizing (i) the amount of coarse low density coal that is lost to fines and (ii) the amount of 

high density slimes that report to the clean coal product.  As a result, coal reserves will be better 

utilized, productivity will be increased, and waste requirements will be reduced.  These factors 

will allow operations to be more profitable and more competitive in domestic and international 

markets.   

 The technology is also expected to have a significant impact on the heavy mineral sands 

industry.  The mineral sands industry currently suffers from the use of low-efficiency operations 

that require many stages of recleaning to achieve the required market grade.  The process is 

considered to be very energy intensive with high operating costs.  Fortunately, through the 

development of the CrossFlow separator, it is projected the industry can improve metallurgical 

efficiency tremendously during the pre-concentration step, which in turn would substantially 

lower the tonnage of ore that must  be reprocessed in subsequent polishing stages.  This would 

ultimately make the process more profitable by increasing performance and reducing operating 

costs (i.e., electrical power, diesel fuel, process water, etc.). 
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1.2 Literature Review 

1.2.1 Hydraulic Classifiers  

 There are three main characteristics that distinguish a hydraulic classifier from other 

classifiers.  First, discharge of the oversize material from the device depends upon its 

gravitational flow properties and not mechanical means such as a screw or rake.  Coarse particles 

settle at a rate faster than the upward current of the elutriation water, and exit the unit through a 

valve or spigot at the base of the unit.  The second distinctive characteristic of a hydraulic 

classifier is the unit is not fed under pressure; the primary source of classification is based on 

differential particle settling rates to segregate particles according to shape, size, and/or density.  

And finally, hydraulic classifiers utilize at least one, and sometimes both, of the following two 

mechanisms (NC State, 1992): 

 

(i) Hindered Settling - An oversized particle settles against upward flowing fluid; the greater 

the density of the fluid, the larger the particle that will remain suspended (or teetered) in 

the fluid.  Hindered settling is a function of particle size, density and concentration, liquid 

density and viscosity as well as the charge density.   

(ii) Elutriation - An undersize particle is lifted by an upward flowing stream of water; the 

greater the upward velocity, the larger the particle that will be lifted.  

 

 Hydraulic classifiers are frequently used in the minerals processing industry to classify 

fine particles according to size. When the feed size distribution is within acceptable limits, these 

units can also be used for the concentration of particles based on differences in density.  Over the 

years, various units have been developed and can be primarily categorized by the method in 
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which the coarse material is discharged from the separation zone of the unit (Heiskanen, 1993).  

The two main operational categories are: (i) classifiers that operate with free and/or hindered 

settling that have virtually no control of the underflow (or coarse fraction) discharge and (ii) 

classifiers that do attempt to control the underflow discharge causing the formation of a teeter 

bed.  Classifiers that do not attempt to control the underflow discharge can be further subdivided 

into mechanical and non-mechanical categories.   

 

1.2.1.1 Mechanical Hydraulic Classifiers  

 The Hukki Cone Classifier is a mechanical classifier invented by R.T. Hukki in 1967 and 

consists of a cylindrical tank where feed is introduced into the tank on a slowly rotating 

distribution disk, which causes a slight centrifugal action to it.  The bottom of the tank is conical 

shape where water sprays are used as elutriation water.  Coarse material is discharged through a 

pinch valve in the bottom of the cone.  The key to this unit is in the conical section; where a ring 

of vertical, radial vanes are located to allow the pulp to rise upwards in a laminar fashion.  The 

unit was originally designed to treat low quality sands, but is not used in practice today. 

 The Sogreah Lavodune Classifier is another mechanical classifier that consists of a 

cylindrical tank and a cone.  Lower density counter-current classification is enhanced by laminar 

flow in this unit.  A downcomer introduces feed material into the unit approximately one third of 

the distance from the top of the unit.  The volume of the unit is restricted in the cone section 

where classification takes place in high suspension densities.  The fine material rises and is 

discharged over the overflow lip of the unit.  A plunger in the base of the unit is used to regulate 

the discharge rate through the bottom of the unit.  As with the Hukki cone, this unit is not used in 

industry today.   
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1.2.1.2 Non-Mechanical Hydraulic Classifiers  

 Linatex classifiers have been in the industry for several years in a variety of applications.  

The Linatex S Classifier is the company’s version of a non-mechanical dense flow hydraulic 

classifier.  The pulp is fed by a downcomer into the column where it comes in contact with a 

deflector plate that causes the flow to turn radially outwards and upwards.  The ratio of water 

between underflow and feed streams controls the upward current at the deflector plate and thus 

the cut size (Heiskanen, 1993).  The unit is very inefficient for sharp separations as it inherently 

bypasses a large volume of material.  It is best utilized for slimes removal.    

 The Krebs C-H Whirlsizer is another type of non-mechanical dense flow hydraulic 

classifier.  It uses a controlled water addition to a gently swirling pulp to clean the coarse fraction 

from fines (Heiskanen, 1993).  The upper part of the unit is cylindrical in shape, with the lower 

unit forming a cone as in many of the other units described thus far.  The lowermost section of 

the cylinder contains an internal cone that forces coarse particles into the narrow gap between the 

wall and the cone.  Elutriation water is added below this from small holes, moving the pulp in a 

swirling action.  While no teeter bed is formed, classification takes place by means of hindered 

settling, allowing the coarse material to settle past the internal cone and the fines to overflow 

through the top of the unit.  It is designed for sand classification and targets the non-spherical 

materials such as vermiculite, mica and kyanite (Heiskanen, 1993).     

   

1.2.1.3 Fluidized Bed Hydraulic Classifiers  

 A simplified diagram of a fluidized bed hydraulic classifier is shown in Figure 1.2.  The 

traditional design of a fluidized bed hydraulic classifier consists of an open top vessel into which 

elutriation water is introduced through a series of distribution pipes evenly spaced across the 
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base of the device.  During operation, feed solids are injected into the upper section of the 

separator and are permitted to settle.  The elutriation fluid in a fluidized bed supports the weight 

of the particles within the bed by flowing between the particles.  The small interstices within the 

bed create high interstitial liquid velocities that resist the penetration of the slow settling 

particles.  As a result, small particles accumulate in the upper section of the separator and are 

eventually carried over the top of the device into a collection launder.  Large particles, which 

settle at a rate faster than the upward current of rising water, eventually pass through the 

fluidized bed and are discharged out one or more restricted ports through the bottom of the 

separator.   

 

 
 

Figure 1.2. Schematic Diagram of a Traditional Hindered Bed Separator. 
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 One of the first hydraulic classifiers to utilize a teeter bed was the Stokes unit which was 

developed to sort the feed to gravity concentrators.  Each teeter chamber is provided at its bottom 

with a supply of water under constant head which is used for maintaining a teetering condition in 

the solids that find their way down against the interstitial rising flow of water (Wills, 1992).  

Each chamber is fitted with its own pressure sensor that monitors the conditions in the chamber 

and automatically adjusts the discharge to maintain a balanced pressure caused by the teeter bed.  

A valve at the base of each compartment can be hydraulically or electrically operated to adjust 

the height of the teeter-bed.  As the bed level increases, the pressure will also increase and the 

valve will open. Likewise, as the bed lowers, the pressure decreases and the valve will close. 

This action maintains a constant level and , therefore, constant density within the separator.   

 A more recent hydraulic classifier utilizing the teeter bed is the Linatex Hydrosizer.  The 

Linatex Hydrosizer is a non-mechanical, hindered-settling classifier that maintains a fluidized 

teeter bed, but does not have the same elutriation water distribution or feed distribution as the 

CrossFlow separator.  The pulp is fed into a central feed column where it comes in contact with a 

deflector plate that causes the flow to turn radially outwards and upwards.  Extensive testing of a 

pilot-scale unit at a North Carolina phosphate plant was conducted in the early 1990’s to attrition 

scrub and deslime flotation feed with promising results. Additional testing has been conducted at 

other mineral industries including mineral sands and aggregates.  The Linatex Hydrosizer was 

marketed for sizing applications range from 28-mesh to 100-mesh, with some preliminary testing 

on finer material (NC State, 1992). 

 Phoenix Process Equipment has developed another type of fluidized bed hydraulic 

classifier called the Hydrosort.  This separator and classifier is currently utilized in the aggregate 

industry, as well as some others, for separating light, harmful contaminants, such as lignite and 
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wood, in sand washing, and for fractional sand classifications  (Phoenix Process Equipment, 

2003).  The Hydrosort incorporates a fluidized bed created by an upward current of water flow to 

classify product or separate impurities in the same fashion as the Linatex Hydrosizer.  A feature 

emphasized by Phoenix Equipment is the clog-free classifier bottom, which distributes the 

upward water flow equally over the separating area.  Unlike in the CrossFlow where feed enters 

the unit tangentially, both the Phoenix Hydrosort and the Linatex Hydrosizer have a feed 

distribution pipe that entered the top of the unit and discharges feed into the separation chamber.  

 The Floatex fluidized-bed classifier (or Floatex Density Separator) is the most recent 

hydraulic separator designed. Like the other units, this separator utilizes a teeter bed which is 

formed by solids settling against an upward current of elutriation water.  Coarse material settles 

through the teeter-bed, while finer particles report to the overflow of the unit.  A differential 

pressure cell and discharge valve controls the bed level in the unit.  This efficient unit sees very 

little fines bypassed to the underflow and as a result, the unit produces a relatively clean 

underflow.  Prior to the development of the CrossFlow separator, the Floatex separator was 

considered to be the most advanced commercial separator for hydraulic particle classification for 

material whose size was between what would be considered optimal for either screens (coarse) or 

hydrocyclones (fine). 

 

1.2.2 Hindered Settling 

 Hindered settling is an important phenomenon in all of the aforementioned hydraulic 

classifiers.  Hindered settling considers the interaction of other particles in classification systems 

either on a particle-particle level or from the behavior of the particle assemblies.  The 

interactions between two particles may be due to particles settling close to each other or to the 
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wake effect of a larger particle on the settling of a smaller particle (Heiskanen, 1993).  According 

to Littler (1986), the hindered settling phenomenon begins to take place at approximately 20% 

solids by mass.  The cohesive force between two particles settling very close to one another is 

great enough for the particles to fall together and be treated as a single particle of greater size and 

lower density.  A wake effect is caused when a larger particle captures a smaller particle in its 

wake as it is settling and as a result, the smaller particle falls at a velocity much higher than its 

free settling velocity.  In a teeter bed, however, the high solids concentration increases the 

likelihood of particle collision, and these particles lose some of their settling velocity in these 

collisions.  The fine particles, therefore, have a higher likelihood of being driven to the overflow 

launder by the upward current of elutriation water.  And as a result, hindered settling is more 

efficient than free settling classification due to the decrease in fines entrained in the underflow.   

 An analysis of the behavior of particle assemblies can be categorized into two parts.  

Particle assemblies settling may occupy the whole fluid or they may be considered as clusters of 

particles which only fill a fractional volume of the fluid (Heiskanen, 1993).  When the 

assemblies occupy the entire fluid they may be treated as a uniform pulp where the interactions 

are between the individual particles.  As clusters, the particles are analyzed as large particles of 

reduced density and rigidity.  The probability of this occurring increases with narrower particle 

size ranges, and is magnified in gravitational classification where high solids contents are 

present.   

 From an analysis standpoint, hydraulic classifiers are characterized by two factors: (i) the 

size separation and (ii) the sharpness of the separation.  For theoretical analyses it is convenient 

to define separation size as that of particles which settle just fast enough on the average, to be 

totally collected in the underflow (Weiss, 1985).  Slight variations in settling rates will occur 
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between particles of the same size and density due to differences in shape and turbulence in the 

separator.  The sharpness of the separation defines how the particles segregate into the product 

and the tails streams.           

 Under ideal conditions, a classifier should partition particles coarser than the cut size d50 

into the coarse stream and finer particles into the overflow (Heiskanen, 1993).  The efficiency of 

this cut is based on the amount of misplaced particles in both streams.     

 

1.2.3 Spirals 

 The first spirals were first utilized in the 1940’s for concentrating such metals as gold, 

silver, tin and mineral sands by Humphreys Minerals Industries.  The first use of spirals for 

washing coal occurred in 1947 when the Hudson Coal Company installed 48 Humphrey starts to 

wash anthracite fines in Eastern Pennsylvania (Denin et al., 1948).  Their success can be 

attributed to the fact that they are perceived as environmentally friendly, rugged, compact, and 

cost effective (Kapur et al., 1998).  Spirals weren’t readily adapted into the industry until the 

1980’s when interest in recovering coal fines grew along with the introduction of fiberglass and 

polyurethane lined units.  These units were more cost effective and efficient.  Prior to that, poor 

performance, low capacity per unit of floor space and high capital costs kept the original cast 

iron or concrete units out of production.  Today’s spirals are able to treat material that is too fine 

for dense media separators but too coarse for flotation.     

 Some advantages of spirals include: a lightweight and simple installation process; they 

require no drives as they are simply pump fed, and have very low operating and maintenance 

costs.  Their capacity and efficiency has increased over the years as twin and triple start units 
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have been developed along with studies on the optimal number of turns to achieve the required 

separation.     

 Centrifugal forces immediately act upon the coal slurry as it is fed at between 14-15% 

solids into the trough of the spiral and allowed to flow downward.  Lighter particles attain higher 

tangential velocities than the nonsuspended particles, causing them to move to the highwall of 

the spiral.  The heavier and coarser particles will work their way towards the interior of the 

spiral.  Any middlings present in the material will tend to report to the center of the spiral.  In 

addition to centrifugal and gravitational forces, differential particle settling rates and interstitial 

trickling are all working on the particles as they work their way down the spiral trough.   

 Spiral performance depends largely on the characteristics of the feed coal.  The most 

important operating parameters include feed rate, solids concentration and size and splitter 

positioning.  The volumetric feedrate is the most important operating parameter influencing 

performance.  As volumetric feed rate is increased, an increasing amount of entrained material 

will report to the outer wall and effectively reduce efficiency.  Nominal dry feed rates are 

typically 2-4 tph per start.  The feeds solids concentration has only a small impact on spiral 

performance compared to the other factors.  Spiral can handle up to 45% solids and as little as 

20% solids, but 30-35% is considered normal.  Spirals have become a common method for 

concentration of 0.1 m to 3 mm coal, however, Leonard (1991) believes the optimum 

performance occurs when the top size of the feed is finer than 14 mesh (1.2 mm) and the bottom 

size is coarser than about 100 mesh (0.15 mm).  Cutpoints generally range between 1.70 and 2.00 

SG.  The splitter positions and solids feed rate largely determine the SG cutpoint and the ash 

content of the final product. 
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1.3 Field Testing at Coal Plant A 

 Initial field testing of the pilot-scale CrossFlow separator was conducted at Coal Plant A. 

This work involved (i) equipment setup, (ii) shakedown testing, and (iii) detailed testing.  The 

goal of this effort was to determine the anticipated product yield and grade, combustible 

recovery, and feed capacity of the unit in order to predict the expected performance of a full-

scale unit.  Approximately 3 months of effort were allocated for field-testing.  Individuals from 

Eriez Magnetics and Virginia Tech participated in the testing at Coal Plant A with cooperation 

from key personnel at the processing plant.  

 

1.3.1 Equipment Setup 

 The separator was transported from Eriez Magnetics Central Research Lab in Erie, PA to 

the preparation plant.  With cooperation from the operators and mechanics at the plant, a 9x16 

inch pilot-scale CrossFlow separator was installed at the Coal Plant A.  A splitter-box, fabricated 

at Eriez Magnetics shop in Pennsylvania, was installed to collect the underflow of a classifying 

cyclone.  The cyclones classify the raw feed with the overflow reporting to the froth flotation 

circuit and the underflow reporting to the water-only cyclones circuit.  This splitter was fully 

adjustable and allowed for the easy regulation of feed rates. The feed sample was conveyed by 

gravity through a 2 inch line to the CrossFlow separator that was positioned one level below the 

classifying cyclone.  Underflow and overflow material from the separator was discharged to 

sizing screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system.  The separator was automatically controlled through the use of a 
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simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level).  Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 

1.3.2 Shakedown Testing 

 After completing the installation of the test unit, preliminary shakedown testing was 

conducted to resolve any unexpected operational problems that could arise.  These tests are 

normally necessary to resolve any problems that may have been overlooked in the initial 

engineering and to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, 

etc., are adequate.  In addition, these tests provided an opportunity to establish approximate 

settings for the various process variables required to provide good separation performance based 

on visual inspections of the product streams. 

 

1.3.3 Detailed Testing 

 Two series of detailed test programs were conducted using the pilot-scale CrossFlow.  

The first series of tests were performed to investigate the effects of the key design variables on 

separator performance.  Important test variables included: feed injection depth and distributor 

design.  In addition to determining the optimum operating variables, the first series of test 

simultaneously defined the overall grade and recovery curve for the process. The subsequent 

round of testing was used to investigate the effects of key operating parameters.  The variables 

examined included: (i) fluidization water rate, (ii) solids mass feed rate, (iii) volumetric slurry 
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feed rate, and (iv) teeter bed depth.  A minimum of three settings were examined for each of the 

listed test parameters.  For each test, samples were taken from the feed, overflow, and underflow 

streams after conditions were stabilized.  Each sample was analyzed for ash and sulfur (in many 

cases on a size-by-size basis ).   

 Due to the low amount of rock present in this feed, a higher feed rate was determined to 

be acceptable for this application and was utilized in much of the testing.  Feed rates ranged from 

a low of 1 tph/ft2 to a high of 5 tph/ft2. The feed percent solids was reasonably constant at 40%-

50% throughout the test period. A significant difference in the feed for each series of testing 

must be noted as the average ash content for the first series was nearly 14.0% while the average 

ash content for the second series was only 10.5%.   

 

1.3.4 Process Evaluation 

 To ensure the test data was reliable and self-consistent, all test data was analyzed and 

adjusted using mass balance software.  Experimental values that were deemed by the mass 

balance routines to be unreliable were removed from the data set.  The participating mining 

company used the compiled data to establish the metallurgical improvement, operating savings 

and economic payback that may be realized by implementing the proposed high-efficiency 

technologies.   

 The as-tested coal slurry was found to have a mean particle size of 0.631 mm during the 

first series of testing and 0.572 mm during the second series of testing.  The solids specific 

gravity was measured to be 1.55 with a solids content of 50%.  The feed size distribution is 
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summarized in Table 1.1.  Table 1.2 provides a summary of the operating parameters that were 

investigated during both rounds of testing. 

 
 

Table 1.1. Feed Size Distribution of Coal Plant A. 
Size Class Round 1 Round 2 

(Mesh) (% in Class) (% Ash) (% in Class) (% Ash) 
+10 

10x14 
14x28 
28x60 
60x100 

-100 
Overall 

2.38 
8.48 
38.89 
26.53 
11.49 
12.23 
100.00 

14.02 
10.94 
11.77 
11.45 
12.99 
28.28 
13.83 

1.21 
6.92 
34.89 
29.56 
10.38 
17.04 
100.00 

6.67 
7.09 
7.27 
8.60 
9.69 
21.89 
10.39 

 

 

Table 1.2.  Operating Parameters for On-Site Pilot-Scale Testing at Coal Plant A. 
Test T-Water Level Comment
No. (gpm) (SG) (% Solids) (tph/sqft) (gpm) No.
1 10.0 1.170 40.9 1.2 6.0 64 Round 1
2 10.0 1.170 40.9 1.2 6.0 64
3 9.2 1.180 43.0 1.2 6.0 99 Sensor Reset
4 9.7 1.165 39.9 1.1 6.0 97
5 9.8 1.170 40.9 1.2 6.0 95
6 9.8 1.160 38.9 1.1 6.0 96
7 12.6 1.165 39.9 1.5 6.0 96
8 12.7 1.180 43.0 1.6 6.0 92
9 30.0 1.210 48.9 4.4 7.0 94 Round 2
10 35.3 1.200 47.0 5.0 7.0 92
11 33.3 1.197 46.4 4.6 7.0 93
12 28.6 1.200 47.0 4.0 7.0 94
13 28.6 1.200 47.0 4.0 7.0 94
14 20.0 1.185 44.0 2.6 7.0 90

Feed

 
 

 The results from the on-site CrossFlow separator investigation are shown graphically in 

Figures 1.3 through 1.5. The results are summarized as: “As-Tested” and “x 100 Mesh” with the 

passing 100-mesh material mathematically removed from the data. This approach is acceptable 
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as it is expected that the clean coal product will be deslimed at approximately 0.150 mm. The 

material finer than 100 mesh will be upgraded by flotation at this particular plant. 

 As presented in Figure 1.3, this pilot-scale test work was able to define the expected 

grade and recovery curve for this particular coal. Specifically, the CrossFlow separator is capable 

of providing a clean product ranging between 6% and 8% ash at a combustible recovery of 

greater than 95% (when deslimed at 100 mesh).  At maximum separation efficiency, the 

combustible recovery, for this application, approached 98%. The data presented in Figure 1.4 

indicates that the sulfur content of the corresponding product will be approximately 1.75%.  

 Figure 1.5 is included to demonstrate the ability of the CrossFlow separator to provide 

high combustible recoveries even when operated at elevated throughput rates. During the second 

series of testing, the feed rate was increased to a very high value of 5 tph/ft2. During this time, 

the combustible recovery remained unaffected. It must also be noted that the feed ash during this 

second series of testing was significantly lower than the first series of testing, resulting in 

product yields greater than 96%. Simply stated, there was not a significant amount of rock 

present in the feed stream. Regardless, the CrossFlow separator was able to produce a tailings 

stream with an ash content averaging 76.5% and a corresponding sulfur content averaging 

12.20% for this particular feed coal. 
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Figure 1.3. Combustible Recovery vs. Product Ash Content. 
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Figure 1.4  Mass Yield vs. Product Sulfur Content. 
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Figure 1.5 Combustible Recovery vs. Feed Tonnage. 
 

 The material balance presented in Figure 1.6 is included as a summary of the test work 

conducted at the Coal Plant A. This material balance includes all expected metallurgical results, 

ancillary requirements, and volumetric flows for a full-scale installation with the capacity to treat 

150 tph of feed at approximately 50% solids (by weight). 

 For this duty, a 7x7-ft CrossFlow separator has been recommended for the operation, 

offering 49 ft2 of cross-sectional area which results in a normalized feed rate of 3 tph/ft2. The 

current test work has demonstrated the ability of the CrossFlow separator to handle this entire 

flow in a single stage circuit. 
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Figure 1.6 Expected Material Balance for a Crossflow Separator Treating 150 tph. 
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1.3.5 Sample Analysis 

 Detailed analysis was conducted on each of the samples collected during the testing 

program.  The analyses were performed in accordance with ASTM procedures currently applied 

at Coal Plant A.  Representative samples were collected around the pilot-scale unit.  Slurry flow 

rates for the feed, underflow and overflow streams were directly measured using a stopwatch and 

a calibrated container.  The mass and liquid flow rates were then calculated from the measured 

slurry flow rates and the sample assays using the two-product formula.  

 

1.3.6 Future Work 

 A final report was presented to the management of Coal Plant A.  The project is currently 

waiting for management’s approval before further testing is performed or a full scale unit is 

installed.   
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1.4 In-Plant Testing at Coal Plant B 

 The next set of field-tests with the pilot scale CrossFlow separator were carried out at a 

second coal plant (Plant B). As before, this work involved (i) equipment setup, (ii) shakedown 

testing, and (iii) detailed testing.  In this particular case, the goal of this effort was to determine 

the anticipated product yield and grade, combustible recovery, and feed capacity of the unit for 

comparison against the existing spiral circuit.  Approximately 3 months of effort were allocated 

for field-testing.  Individuals from Eriez Magnetics and Virginia Tech participated in the testing 

at Coal Plant B with cooperation from key personnel at the processing plant.    

 

1.4.1 Equipment Setup 

 The separator was transported from the Coal and Minerals Research Lab at Virginia Tech 

in Blacksburg, Virginia to the preparation plant.  The 9x16 inch pilot-scale CrossFlow separator 

was installed at the Coal Plant B as shown in Figure 1.7.  Feed was supplied to the CrossFlow 

separator through a 2 inch line connected to existing coal spiral slurry feed distributor.  A slurry 

splitter fabricated from PVC pipe with a tee and valves was used to regulate the feed to the unit, 

with the remaining slurry reporting to the spiral circuit.  Underflow and overflow material was 

discharged to sizing screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system.  The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 
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Figure 1.7. The 9x16 Inch Pilot-Scale Crossflow Test Circuit at Coal Plant B. 

to control the underflow discharge to maintain a constant bed pressure (level).  Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 

1.4.2 Shakedown Testing 

 After completing the installation of the test unit, preliminary shakedown testing was 

conducted to resolve any unexpected operational problems that could arise.  These tests are 

necessary to resolve any problems that may have been overlooked in the initial engineering and 

to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, etc., are 

adequate.   
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1.4.3 Detailed Testing 

 Two series of detailed test programs were conducted using the pilot-scale test unit.  The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was performed to investigate the effects of key operating parameters.  

Tests were conducted primarily as a function of teeter bed pressure and fluidization water rate.  

The coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) 

for each steady-state test.  Fluidization water was adjusted to fine tune the separation.   Other 

variables considered were solids mass feed rate and volumetric slurry feed rate.  For each test, 

samples were taken from the feed, overflow, and underflow streams after conditions were 

stabilized.  The samples were analyzed for ash and sulfur (by-size).   

 Six test runs were completed during the on-site test work.  Additionally, a set of samples 

was taken with regard to the existing coal spirals.  The spiral samples were collected during the 

same time frame as tests #3, #4, and #5 of the CrossFlow separator evaluation. 

 

1.4.4 Process Evaluation 

 To ensure the test data was reliable and self-consistent, all as-received results were 

analyzed and adjusted using mass balance software.   Experimental values that were deemed by 

the mass balance routines to be unreliable were removed from the data set.  The participating 

mining company used the compiled data to establish the metallurgical improvement, operating 

savings and economic payback that may be realized by implementing the proposed high-

efficiency technologies.   
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 The particles in the feed slurry were found to have a mean diameter of 0.406 mm.  The 

solids specific gravity was measured to be 1.55.  Feed percent solids ranged between 35% and 

40% and the feed rate varied from 2.0-2.8 tph/ft2.  The feed size distribut ion is summarized in 

Table 1.3.  Table 1.4 is a summary of the array of operating parameters that were investigated 

during testing. 

 

Table 1.3. Feed Size Distribution of Coal Plant B. 
Stream   Size   Weight Ash 

Description Passing Retained Mean (%) (%) 
Plus 16 M *** 1.000 1.000 6.24 9.94 
16x32 M 1.000 0.500 0.707 23.87 11.23 
32x60 M 0.500 0.250 0.354 29.38 12.53 
60x100 M 0.250 0.150 0.194 22.54 13.75 

Minus 100 M 0.150 *** 0.150 17.97 39.17 
Composite     0.406 100.00 17.12 

 
 

 

Table 1.4.  Operating Parameters for On-Site Pilot Scale Testing at Coal Plant B. 

 

  

Unit Test Feed Level Water 
Operation Number % Solids tph gpm inches gpm 

              
CrossFlow XF1 35.5 2.01 21.90 6.0 4.76 
CrossFlow XF2 36.3 2.38 23.35 12.0 4.76 
CrossFlow XF3 38.5 2.83 26.06 8.0 3.61 
CrossFlow XF4 37.2 2.56 24.79 8.0 4.72 
CrossFlow XF5 35.8 2.49 25.02 8.0 5.51 
CrossFlow XF6 38.1 2.48 24.37 8.0 4.44 

Spiral* 7 38.0 3.50 32.70 n/a n/a 
              

 * Samples taken during tests 3, 4 and 5  
 * Multiple starts, 3 product screen feed, 1 reject screen feed 
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 The as-received results, as analyzed and adjusted using a mass balance program, are 

reported in Table 1.5. The products were sized at 100 mesh so that each fraction could be 

evaluated separately. As expected, the minus 100 mesh product had a higher ash content than the 

plus 100 mesh fraction.  This is expected as fine material, especially passing 150 mesh, tends to 

report to the separator overflow due to its relatively small mass.  In essence, the teeter water 

overcomes the settling velocity of these particles and flushes them out of the separator.  As such, 

the results in this report are compared on a plus 100 mesh basis. This is acceptable as the existing 

circuit incorporates dewatering screens for each of the product streams. 

 The results from the pilot-scale CrossFlow separator investigation are shown graphically 

in Figure 1.8 for the +100 mesh material.  The results of the CrossFlow separator are comparable 

to the existing coal spirals.  Upon close examination (Figure 1.8 inset), when compared to the 

coal spirals, the CrossFlow separator provides a marginally better clean coal yield at 96% vs. 

92%. However, the higher product yield also generates a product with slightly higher ash content 

at 9.25-10.00% vs. 8.8%.  Lower product ash values are possible using the CrossFlow separator 

and can be achieved through lower fluidization rates and/or bed pressures. 
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Table 1.5. In-Plant Test Results for Coal Plant B. 
    Mass Ash Sulfur Comb Sulfur Ash Sulfur 

Size Test Yield Assay Assay Rec Rec Rej Rej 
Fraction Number (%) (%) (%) (%) (%) (%) (%) 

                  
Plus 100 XF1 96.04 10.06 4.07 98.80 92.60 23.19 7.40 

Composite XF1 96.54 15.80 5.16 98.91 94.54 14.38 5.46 
Feed XF1 100.00 17.81 5.27 100.00 100.00 0.00 0.00 

                  
Plus 100 XF2 96.22 9.25 3.97 98.50 93.46 21.56 6.54 

Composite XF2 96.80 15.00 4.99 98.67 95.18 12.59 4.82 
Feed XF2 100.00 16.61 5.08 100.00 100.00 0.00 0.00 

                  
Plus 100 XF3 94.09 10.03 4.04 97.94 89.91 30.48 10.09 

Composite XF3 94.87 15.48 5.16 98.14 92.40 19.72 7.60 
Feed XF3 100.00 18.30 5.30 100.00 100.00 0.00 0.00 

                  
Plus 100 XF4 96.16 9.76 4.04 98.75 92.73 22.61 7.27 

Composite XF4 96.76 14.75 5.17 98.90 94.82 13.98 5.18 
Feed XF4 100.00 16.60 5.28 100.00 100.00 0.00 0.00 

                  
Plus 100 XF5 96.70 10.12 4.05 99.17 94.39 20.78 5.61 

Composite XF5 97.21 16.18 5.33 99.25 96.07 12.14 3.93 
Feed XF5 100.00 17.90 5.39 100.00 100.00 0.00 0.00 

                  
Plus 100 XF6 97.03 10.11 4.06 99.26 94.30 19.16 5.70 

Composite XF6 97.47 15.19 5.35 99.34 96.04 11.79 3.96 
Feed XF6 100.00 16.78 5.43 100.00 100.00 0.00 0.00 

                  
Plus 100 Spiral 92.32 8.82 4.08 97.10 87.91 38.82 12.09 

Composite Spiral 90.56 13.75 5.00 96.19 81.84 33.77 18.16 
Feed Spiral 100.00 18.80 5.53 100.00 100.00 0.00 0.00 
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Figure 1.8 Yield vs. Clean Coal Ash for +100-Mesh Size Fraction. 

 

 

 Data in Figures 1.9 and 1.10 shows the size-by-size results from Table 1.5 graphed by 

size class.  In these charts, the left most (i.e., lowest ash and sulfur) data points correspond to the 

plus 100 mesh size fraction.  The data points in the middle position represents the composite 

(100 mesh x 0) size fraction.  The right-most data points (shown at 100% yield) correspond to 

the feed grade. 

 The data demonstrate that for any given product ash content or sulfur content, the 

CrossFlow separator can produce a higher clean coal yield when compared to the existing coal 

spirals.  Essentially, at 10% product ash content, the CrossFlow separator operates with a clean 

coal yield ranging between 96% and 97%, while the spirals produce a yield of approximately 

92%.  It should be noted that a 4% difference in clean coal yield for a 200 tph circuit can 



 41 

represent a $1,400,000 per year (i.e., 200 tph x 7000 hr/yr x $25/ton x (YieldCF - YieldS)).  A 

similar trend is also shown when examining the sulfur data (Figure 1.10). 

 Results indicate that the performance of the CrossFlow separator was equal or superior to 

the performance of the existing spiral circuit for this preparation plant.  The material balance 

presented in Figure 1.11 is included as a summary of the test work conducted at the Coal Plant B. 

The material balance includes all expected metallurgical results, ancillary requirements, and 

volumetric flows for a full-scale installation capable of treating the required 200 tph flow with 

one 7x7-ft CrossFlow separator. 
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Figure 1.9. Performance for +100 Mesh and Composite Samples. 
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Figure 1.10. Performance for +100 Mesh and Composite Samples. 
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Figure 1.11. Material Balance for Two 7x7 ft CrossFlow Separators . 
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1.4.5 Sample Analysis 

 Detailed analysis was conducted on each of the samples collected during the testing 

program.  The analyses were performed in accordance with ASTM procedures at Tra-Det Inc. 

laboratory in Tridelphia, West Virginia.  Representative samples were collected around the pilot-

scale unit.  Slurry flow rates for the feed, underflow and overflow streams were directly 

measured using a stopwatch and a calibrated container.  The mass and liquid flow rates were 

then calculated from the measured slurry flow rates and the sample assays using the two-product 

formula.  

 

1.4.6 Future Work 

 While the results look promising, the management will not be installing a unit at this 

particular plant.  However, these data were used by the company to justify moving ahead with 

the installation of this technology at another plant owned by the company.   
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1.5 In-Plant Testing of Coal Plant C 

 Additional field testing of the CrossFlow separator was performed for Coal Plant C. This 

work involved equipment setup, shakedown and detailed testing.  The goal of this particular 

effort was to determine the anticipated produc t yield and grade, combustible recovery, and feed 

capacity of the unit.  In this case, the CrossFlow separator was to be evaluated as a potential 

replacement for an existing single-stage spiral circuit.  Approximately 3 months of effort were 

allocated for field-testing at this site.  Individuals from Virginia Tech and University of 

Kentucky participated in the testing at Coal Plant C with cooperation from key personnel at the 

processing plant.    

 

1.5.1 Equipment Setup 

 The CrossFlow separator was transported from the University of Kentucky in Lexington, 

Kentucky, to the preparation plant.  With cooperation from the operators and mechanics at the 

plant, the 12- inch diameter pilot-scale CrossFlow separator was installed at the Coal Plant C (see 

Figure 1.12).  Feed was supplied to the CrossFlow separator through a 2- inch line by connecting 

to an existing coal slurry spiral feed distributor.  A slurry splitter fabricated from PVC pipe with 

a tee and valves was used to regulate the feed to the unit, with the remaining slurry reporting to 

the spiral circuit.  Underflow and overflow material was discharged to the spiral underflow 

launders. 

 As with the other test sites, plant compressed air and 115 volt electrical power were 

connected to the separator for the automated control system.  The separator was automatically 

controlled through the use of a simple PID control loop which includes a pressure sensor 
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mounted on the side of the separator to measure the relative pressure (level), a single loop PID 

controller, and a pneumatic pinch valve to control the underflow discharge to maintain a constant 

bed pressure (level).  Clarified water was connected to the separator to create the fluidized teeter 

bed of solids. 

 

 

Figure 1.12. The12-inch Diameter Pilot-Scale CrossFlow Separator Test Circuit at Plant C. 
 

1.5.2 Shakedown Testing 

 After installation was complete, preliminary shakedown testing of the unit was conducted 

to resolve any unexpected operational problems that could arise.  These tests are designed to 
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resolve any problems that may have been overlooked in the initial engineering and to confirm 

that feed capabilities, pipe sizes, electrical supplies, control systems, etc., are adequate.   

 

1.5.3 Detailed Testing 

 Two series of detailed test programs were conducted using the pilot-scale test unit.  The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was used to investigate the effects of key operating parameters.  

Tests were conducted primarily as a function of teeter bed pressure and fluidization water rate.  

The coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) 

for each steady-state test.  Other variables that were considered were solids mass feed rate and 

volumetric slurry feed rate.  For each test, samples were taken from the feed, overflow, and 

underflow streams after conditions were stabilized.  Each sample was sized and analyzed for ash 

and sulfur contents.   

 Nine test runs were completed during the on-site test work conducted at Coal Plant C.  

Table 1.6 is a summary of the operating parameters that were investigated during testing.  The 

set point transition between tests #4 and #5 is due to recalibration of the control system. The 

difference in the set point when treating the Seam A and Seam B is due to the particle size 

distribution difference and the desire to maintain a constant bed height. Additionally, samples 

were collected from the process streams of the existing coal spirals when treating the Seam A 

and Seam B fine coal. 
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Table 1.6. Operating Parameters for On-Site Pilot Scale Testing at Coal Plant C. 
Feed 

Rate Test Seam 
 

Set 
Point 

Solid 
Density 

(%) 

Pulp 
Density 

(gm/cm3) 

Percent 
Solids 
(%) gpm tph tph/ft2 

1 B 46 1.6 1.088 21.57 12 0.7 0.4 
2 A 46 1.6 1.13 30.68 14 1.21 0.69 
3 A 46 1.6 1.09 22.02 11.65 0.7 0.4 
4 A 45 1.6 1.09 22.02 12.32 0.74 0.42 
5 B 78 1.6 1.1 24.24 9.83 0.66 0.37 
6 B 79 1.6 1.13 30.68 9.49 0.82 0.47 
7 A 87 1.6 1.125 29.63 19.47 1.62 0.92 
8 A 88 1.6 1.1 24.24 16.22 1.08 0.61 
9 B 80 1.6 1.13 30.68 10.5 0.91 0.52 

 

 

1.5.4 Process Evaluation 

 To ensure the test data was reliable and self-consistent, all as-received results were 

analyzed and adjusted using mass balance software.   Experimental values that were deemed by 

the mass balance routines to be unreliable were removed from the data set.  The participating 

mining company used the compiled data to establish the metallurgical improvement, operating 

savings and economic payback that may be realized by implementing the proposed high-

efficiency technologies.   

 The Coal Plant C treats coal from both the coal seams separately.  As such, the teeter-bed 

unit was evaluated for the cleaning potential of the nominal 16 x 100 mesh fractions of both 

coals.  Feed percent solids ranged between 22% and 30% during the test program, with 

variations in the mass feed rate to the unit varying from 0.37-0.92 tph/ft2.  Samples of the feed to 

the teeter-bed unit were taken and subjected to washability and particle size analysis.  The 

washability data indicates that both coals can be classified as ‘easy-to-clean’ based on their 
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relatively low contents of middling material, their cumulative float ash contents of less than 5%, 

and combustible recovery greater than 95%. The difference in the two coals is that the Seam B 

coal produces a one percentage point lower float ash content. 

 The particle size distribution of Seam B feed coal was significantly finer than the Seam A 

coal as shown in Table 1.7.  The minus 100 mesh fraction was removed from the particle size 

analysis since the concentration on cleaning potential was isolated on the plus 100 mesh 

material. Both coals only had 1% to 2% by weight of plus 16 mesh material in the feed.  

However, the Seam B material had nearly 12 percentage points less of the coarsest plus 28 mesh 

size fraction. This finding explained the need to operate at this particular site at lower bed 

pressure settings in order to maintain the same fluidized particle bed height.  The distributions of 

the ash-bearing material in both coals are nearly equivalent. 

 

Table 1.7. Feed Size Distribution for Coal Plant C. 
Seam B Seam A Particle Size 

(Mesh) Weight (%) Ash (%) Weight (%) Ash (%) 
+28 16.98 15.63 29.20 17.28 

28 x 48 35.98 18.38 31.56 19.30 
48 x 100 47.04 19.51 39.24 19.20 

Total 100.00 18.44 100.00 18.67 
 

 

 The teeter-bed unit achieved excellent separation performances for both feed coals as 

shown in Table 1.8 and Figure 1.13.  For the Seam B coal, the ash content was reduced from 

17.57% to a value as low as 6.51% while recovering 97% of the combustible material.  Similar 

performances were achieved on the Seam A coal with product ash values as low as 7.51%.  The 

performances from eight of the nine tests were very close to ideal as indicated by the comparison 
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with the washability data in Figure 1.13.  The teeter-bed performances compare favorably with 

those achieved by the existing spiral circuit shown in Table 1.9. 

 The size-by-size performance of the test unit is shown in Tables 1.10 and 1.11 for the 

Seam B and Seam A coals, respectively. These results indicate that the teeter-bed unit performed 

exceptionally well on the plus 28 mesh and the 28 x 48 mesh particle size fractions. For example, 

a 2.87% product ash was achieved from the plus 28 mesh Seam B coal, while the tailings ash 

content was maintained at a relatively high 72.26%.  However, the separation density appears to 

shift upward significantly with a decrease in particle size as evident by the higher product ash 

contents in the 48 x 100 mesh particle size fractions of both coals. 

 

Table 1.8.  Teeter-Bed Separation Performances at Coal Plant C. 
Ash (%) Test 

Number Feed 
(%) 

Product 
(%) 

Tailing 
(%) 

Yield 
(%) 

Recovery 
(%) 

1 19.96 9.97 86.67 86.97 97.83 
2 20.54 14.55 86.88 91.71 98.63 
3 18.99 8.45 82.06 85.68 96.83 
4 24.05 10.01 76.51 78.89 93.47 
5 17.57 6.51 84.08 85.74 97.25 
6 17.57 7.69 86.43 87.45 97.93 
7 21.44 13.45 86.43 89.06 98.11 
8 21.21 8.86 83.25 83.40 96.47 
9 23.43 7.51 50.09 62.61 75.63 

 

 
Table 1.9.  Separation Performances Achieved by the Existing Spiral Circuit  

at Coal Plant C. 
Ash (%) Test 

Number 
Seam 

Feed Product Tailing 
Yield 
(%) 

Recovery 
(%) 

1 SEAM B 17.57 5.22 85.51 84.61 97.29 
2 SEAM A 21.44 7.49 85.07 82.03 96.58 
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Figure 1.13.  Comparison of the Teeter-Bed Separation Performances and the Washability 
Characteristics of the Seam A and Seam B Fine Coals at Coal Plant C. 

 

 

 

Table 1.10.  Particle Size-By-Size Separation Performance Achieved from the Treatment of 
the Seam B Fine Coal. 

Feed Product Tailings Particle 
Size 

(Mesh) 
Weight 

(%) 
Ash 
(%) 

Weight 
(%) 

Ash 
(%) 

Weight 
(%) 

Ash 
(%) 

Yield 
(%) 

Recovery 
(%) 

+ 28 
28 x 48 
48 x 100 

16.98 
35.98 
47.04 

15.63 
18.38 
19.51 

17.32 
44.87 
37.81 

2.87 
4.53 
11.70 

22.74 
49.12 
28.14 

72.26 
85.86 
89.96 

81.61 
82.97 
82.97 

93.95 
97.05 
98.76 

Total 100.00 18.44 100.00 6.95 100.00 83.92 85.07 97.06 
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Table 1.11.  Particle Size-By-Size Separation Performance Achieved from the Treatment of 
the Seam A Fine Coal. 

Feed Product Tailings Particle 
Size 

(Mesh) 
Weight 

(%) 
Ash 
(%) 

Weight 
(%) 

Ash 
(%) 

Weight 
(%) 

Ash 
(%) 

Yield 
(%) 

Recovery 
(%) 

+ 28 
28 x 48 
48 x 100 

29.20 
31.56 
39.24 

17.28 
19.30 
19.20 

22.38 
34.84 
42.78 

5.01 
7.66 
12.03 

44.45 
38.69 
16.86 

74.48 
84.48 
87.81 

82.34 
84.85 
90.54 

94.55 
97.09 
98.57 

Total 100.00 18.67 100.00 8.94 100.00 80.60 86.42 96.76 
 

 

1.5.5 Sample Analysis 

 Detailed analysis was conducted on each of the samples collected during the testing 

program.  The analyses were performed in accordance with ASTM procedures at the University 

of Kentucky.  Representative samples were collected around the pilot-scale unit.  Slurry flow 

rates for the feed, underflow and overflow streams were directly measured using a stopwatch and 

a calibrated container.  The mass and liquid flow rates were then calculated from the measured 

slurry flow rates and the sample assays using the two-product formula.  

 

1.5.6 Future Work 

 Because of the promising results obtained from this study, a more detailed test program 

will be conducted at the Coal Plant C.  The goal of this additional work will be (i) to obtain data 

needed to identify the optimum separation performances for the test unit and (ii) to compare the 

optimum performance data with similar results obtained from the existing spiral circuit.  This 

work is currently scheduled to be completed sometime during the fall of 2004. 
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1.6 In-Plant Testing at Coal Plant D 

 The next coal plant involved in the field-testing of the pilot-scale CrossFlow separator 

was Coal Plant D. As with the other test sites, this work involved (i) equipment setup, (ii) 

shakedown testing, and (iii) detailed testing.  The goal of this effort was to determine the 

anticipated product yield and grade, combustible recovery, and feed capacity of the test unit in 

order to predict the expected performance of a full-scale unit.  In this particular case, the testing 

was performed to determine whether the installation of one or more full-scale units could be 

justified at a new green-field plant in Kentucky.  Approximately 3 months of effort were 

allocated for field-testing.  Individuals from Eriez Magnetics participated in the testing at Coal 

Plant D with cooperation from key personnel at the preparation plant.  

 

1.6.1 Equipment Setup 

 The CrossFlow separator was transported from Eriez Magnetics Central Research Lab in 

Erie, Pennsylvania to the preparation plant.  The 9x16 inch pilot-scale CrossFlow separator was 

installed at the Coal Plant D (as shown in Figure 1.14), with the cooperation from the operators 

and mechanics at the plant.  Feed was supplied to the CrossFlow separator through a 2 inch line 

connected to the existing coal spiral slurry feed distributor.  A slurry splitter fabricated from 

PVC pipe with a tee and valves was used to regulate the feed to the unit, with the remaining 

slurry reporting to the spiral circuit.  Underflow and overflow material was discharged to sizing 

screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system.  The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 
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measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level).  Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 

 

Figure 1.14. The 9x16-inch Pilot-Scale CrossFlow Test Circuit at Plant D. 
 

1.6.2 Shakedown Testing 

 Preliminary shakedown testing was conducted after completing the installation of the test 

unit to resolve any unexpected operational problems that could arise.  These tests are conducted 

to resolve any problems that may have been overlooked in the initial engineering and to confirm 

that feed capabilities, pipe sizes, electrical supplies, control systems, etc., are adequate.   
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1.6.3 Detailed Testing 

 Two series of detailed test programs were conducted using the pilot-scale test unit.  The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was performed to investigate the effects of key operating parameters.  

Tests were conducted primarily as a function of teeter bed pressure and fluidization water rate.  

The coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) 

for each steady-state test.  Fluidization water was adjusted to fine tune the separation.   Other 

variables considered were solids mass feed rate and volumetric slurry feed rate.  For each test, 

samples were taken from the feed, overflow, and underflow streams after conditions were 

stabilized.  The samples were analyzed for ash and sulfur contents on a size-by-size basis.   

 

1.6.4 Process Evaluation 

 To ensure the test data was reliable and self-consistent, all test data was analyzed and 

adjusted using mass balance software.  Experimental values that were deemed by the mass 

balance routines to be unreliable were removed from the data set.  The participating mining 

company used the compiled data to establish the metallurgical improvement, operating savings 

and economic payback that may be realized by implementing the proposed high-efficiency 

technologies.   

 Nine test runs were completed during the on-site test work.  The parameters of these tests 

are summarized in Table 1.12. The results from the on-site CrossFlow separator investigation are 

shown graphically in Figures 1.15 and 1.16. The results are summarized as: “As-Tested” and “x 

100 Mesh” with the passing 100 mesh material mathematically removed from the data. This 
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approach is acceptable as it is expected that the clean coal product will be deslimed at 

approximately 0.150 mm and the fine material upgraded by flotation. 

 

Table 1.12.  Operating Parameters for On-Site Pilot-Scale Testing at Coal Plant D. 
Test Feed Level Water 

Number % Solids tph gpm inches gpm 
1 32.55 1.83 20 14.5 8 
2 34.44 1.95 20 20.0 8 
3 35.24 2.00 20 10.0 8 
4 35.71 1.73 17 10.0 9.5 
5 32.90 2.22 24 14.5 9.5 
6 32.71 1.84 20 20.0 9.5 
7 35.21 2.00 20 20.0 6.5 
8 34.10 1.93 20 14.5 6.5 
9 33.55 1.89 20 10.0 6.5 
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Figure 1.15. Recovery vs. Product Ash Content of 100 M Coal. 
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Figure 1.16.  Mass Yield vs. Product Sulfur Content of 100 M Coal. 
 

 As shown in Figure 1.15, this pilot-scale test work was able to define the expected grade 

and recovery curve. Specifically, the CrossFlow separator is capable of producing a product 

ranging between 6% and 11% ash at a combustible recovery of greater than 97% (when deslimed 

at 100 mesh).  At maximum separation efficiency, the combustible recovery, for this application, 

approached 98%.  The data presented in Figure 1.16 indicates that the sulfur content of the 

corresponding product will be approximately 1.50%.  Table 1.13 is a summary of test results of 

the “x 100 Mesh” material for all nine tests conducted during this series.  
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Table 1.13. Test Results for x100 Mesh Coal at Coal Plant D. 
  Feed   Comb. Ash 

Test Rate Ash Yield Recovery Rejection 
No. (tph) (%) (%) (%) (%) 
1 1.83 9.08 88.99 97.92 53.48 
2 1.95 11.35 91.20 98.49 42.20 
3 2.00 9.96 92.92 98.79 39.55 
4 1.73 8.67 91.60 98.52 47.37 
5 2.22 5.95 91.05 98.52 58.58 
6 1.84 7.59 89.26 98.13 57.50 
7 2.00 10.32 93.37 98.97 37.39 
8 1.93 9.66 89.10 97.87 51.51 
9 1.89 8.82 88.50 97.47 54.64 

 

 

 The material balance outlined in Figure 1.17 is included as a summary of the test work 

conducted at the Coal Plant D.  This material balance includes all expected metallurgical results, 

ancillary requirements, and volumetric flows for a full-scale installation with the capacity to treat 

175 tph of feed at approximately 50% solids, by weight.  A 9x9-ft CrossFlow separator has been 

recommended for the circuit, offering 81 ft2 of cross-sectional area which results in a normalized 

feed rate of 2.1 tph/ft2. The current test work has demonstrated the ability of the CrossFlow 

separator to handle this entire flow in a single-stage circuit. 
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Figure 1.17.  Expected Material Balance for a CrossFlow Separator Treating 175 tph. 
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1.6.5 Sample Analysis 

 Detailed analysis was conducted on each of the samples collected during the testing 

program.  The analyses were performed in accordance with ASTM procedures required by the 

personnel at Coal Plant D.  Representative samples were collected around the pilot-scale unit.  

Slurry flow rates for the feed, underflow and overflow streams were directly measured using a 

stopwatch and a calibrated container.  The mass and liquid flow rates were then calculated from 

the measured slurry flow rates and the sample assays using the two-product formula.  

   

1.6.6 Future Work 

 After successful completion of testing at Coal Plant D, the company has agreed to install 

a prototype of the CrossFlow technology at one of their processing facilities.  This commercial 

installation is expected to be underway by the start of fall 2004. 
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1.7 In-Plant Testing at Coal Plant E  

 The last set of field tests with the CrossFlow unit were conducted at Coal Plant E. This 

effort involved equipment setup, shakedown and detailed testing.  The goal of this effort was to 

determine the anticipated product yield and grade, combustible recovery, and feed capacity of 

the unit for comparison against the existing clean coal effluent cyclones at the plant. The plant 

personnel desired to classify minus 28 mesh clean coal slurry into plus 100 mesh and minus 100 

mesh fractions.  Individuals from Virginia Tech participated in the testing at Coal Plant E with 

cooperation from key personnel at the preparation plant.    

 

1.7.1 Equipment Setup 

 The 9x16 inch CrossFlow separator was transported from the Coal and Minerals 

Research Lab at Virginia Tech in Blacksburg, Virgina to the preparation plant.  With cooperation 

from the operators and mechanics at the plant, the separator was installed at the plant (see Figure 

1.18).  Feed was supplied to the separator through a 2 inch line by connecting to a sampling port 

located on the feed manifold for the existing clean coal effluent cyclones.  Underflow and 

overflow material was discharged to sizing screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system.  The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level).  Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 
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Figure 1.18. The 9x16-inch Pilot-Scale CrossFlow Separator Test Circuit at Plant E. 
 

1.7.2 Shakedown Testing 

 After completing the installation of the test unit, preliminary shakedown testing was 

conducted to resolve any unexpected operational problems that could arise.  These tests are 

normally necessary to resolve any problems that may have been overlooked in the initial 

engineering and to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, 

etc., are adequate.  In addition, the shakedown tests provided an opportunity to roughly 

determine the ranges of operating conditions that would be most appropriate for this particular 

application. 
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1.7.3 Detailed Testing 

 Two series of detailed test programs were conducted using the pilot-scale test unit.  The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was used to investigate the effects of key operating parameters.  

Tests were conducted primarily as a function of teeter bed pressure and fluidization water rate.  

The coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) 

for each steady-state test.  Fluidization water was adjusted to fine tune the separation.  For each 

test, samples were taken from the feed, overflow, and underflow streams after conditions were 

stabilized.  Five test runs were completed during the on-site test work.   

 

1.7.4 Process Evaluation 

 Due to the low percent solids, the fine size distribution, and the low specific gravity of 

the material, bed development in the CrossFlow separator was very difficult for this particular 

application.  Initial plans to feed the unit at 1 tph/ft2 could not be obtained due to the turbulence 

occurring in the bed formation area.  Feed rates were slowly reduced over time until a 0.10 

tph/ft2 feed rate with a water addition rate of 1.5 gpm produced a stable bed in the unit.  Even at 

this low feed rate, an appreciable amount of plus 100 mesh material was still reporting to the 

overflow.  Five sets of samples were collected of the feed, overflow, and underflow streams.  

However, laboratory analyses were not conducted on these samples because visual observations 

of the product streams indicated poor performance at attempting to classify the feed stream.  
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 The coal slurry evaluated in this series of experiments possessed a mean particle size of 

0.075 mm.  Table 1.14 is a summary of the array of operating parameters that were investigated 

during testing.  The feed slurry specific gravity was measured to be 1.05 with an average of 12% 

solids.  The feed rate was varied from 0.02-0.09 tph/ft2.  Due to the poor levels of separation 

performance, the classification of very fine clean coal slurry using the CrossFlow separator is not 

recommended at this time. 

 

Table 1.14 Operating Parameters for On-Site Pilot Scale Testing at Coal Plant E. 
Unit Test Feed Level Water 

Operation Number % Solids tph gpm  Gpm 
CrossFlow F1 12 0.09 2.8 80 4.0 
CrossFlow F2 12 0.09 2.8 80 4.0 
CrossFlow F3 12 0.05 1.6 80 3.0 
CrossFlow F4 12 0.04 1.2 80 1.5 
CrossFlow F5 12 0.02 0.5 80 1.5 

 

1.7.5 Sample Analysis 

 Detailed analysis of these samples was not conducted due to the poor results obtained at 

the plant (as indicated by the visual observations of the solids in the product streams). 

 

1.7.6 Future Work 

 There is currently no future work planned at this location due to the poor preliminary 

results. 
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1.8 Conclusions  

1. A comprehensive study of the CrossFlow separator was conducted at four coal 

preparation plants on the east coast.  In-plant testing of a 9 x 16 inch unit resulted in 

separation efficiencies at or above existing classification equipment in the size class of 

0.2 to 1.0 mm. 

   

2. The data demonstrate that for any given product ash content or sulfur content, the 

CrossFlow separator can produce a higher clean coal yield and higher combustible 

recoveries at higher feed rates when compared to the existing coal spirals.  The 

CrossFlow also demonstrated its ability to handle the entire flow of multiple spirals in a 

single-stage circuit. 

 

3. In the instance where the ultimate goal was to compare results against the existing clean 

coal effluent cyclones (28 mesh by zero material at 100 mesh), it was determined that the 

material was too fine to develop the necessary teeter-bed, and the project was therefore 

abandoned.  

 

4. The test work conducted in this series of tests supports the replacement of spirals with the 

CrossFlow technology for several applications.  As a result, several full scale installations 

of the unit are being planned in the near future. Based on the successful installation of 

these full scale units, further implementation of additional units can be utilized in a broad 

spectrum of companies and industries.   
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IN-PLANT TESTING OF HYDROFLOAT IN THE PHOSPHATE 

INDUSTRY 

 

2.1 Introduction 

2.1.1 General 

 Teeter bed technologies can only be applied for gravity concentration when the particles 

in the feed stream have a relatively narrowly size distribution and moderately large difference in 

component densities.  These units inherently accumulate low density coarse particles at the top 

of the teeter bed which are too light to penetrate the bed, but at the same time, too heavy to be 

carried by the rising water into the overflow.  As a result, misplacement of low-density, coarse 

particles to the high-density underflow can occur.  This inefficiency can be partially corrected by 

increasing the elutriation water, to try to carry the low density coarse particles into the overflow. 

However, this action often causes the fine, high-density particles to also report to the overflow, 

thereby impacting the quality of the products.  As a result, the widespread application of 

traditional hydraulic separators is greatly limited by these physical constraints. 

 The limitations of traditional hydraulic separators were recently recognized and 

overcome through the design of the HydroFloat separator.  This technology effectively combines 

the flexibility of a flotation process with the high capacity of a density separator to overcome 

barriers that commonly limit conventional teeter bed separators. The HydroFloat can 

theoretically be applied to any mineral classification system where differences in apparent 

density can be created by the selective attachment of air bubbles.  Figure 2.1 provides a 

schematic drawing of the HydroFloat separator.   

 



 68 

High Density

Low Density

Bubbles

Teeter Bed

Interface

Float
Product

Water
Addition

Float
Reject

Dewatering
Cone

Separation
Chamber

Feed

Circulation
Loop

Elutriation
Network

 

Figure 2.1. Schematic Drawing of HydroFloat Separator. 
 

 The HydroFloat operates similar to a traditional teeter bed separator with the feed settling 

against an upward current of fluidization water.  However, unlike other hydraulic separators, the 

HydroFloat utilizes compressed air and a small amount of frothing agent in the fluidization water 

to produce fine air bubbles.  Reagentized feed is introduced into the top of the separator where 

the feed particles are allowed to settle based on their size and/or density.  Previously treated with 

a collector to make one or more of the minerals hydrophobic, the particles within the separation 

chamber attach to the small bubbles, reducing their effective density.  These lighter bubble-

particle aggregates rise through the separation chamber, through the teeter bed and overflow the 

top of the HydroFloat separator into the product launder.  The hydrophilic particles move down 

through the teeter bed and are eventually discharged through the control valve at the bottom of 

the separator.   
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2.1.2 Advantages of a Hydraulic Separator  

 Compared to traditional froth flotation, the use of a fluidized bed within the HydroFloat 

significantly improves the recovery of particles by (i) reducing turbulence, (ii) enhancing 

buoyancy, (iii) increasing particle retention time, and (iv) improving bubble-particle contact. The 

presence of the high-solids teeter bed reduces the turbulence commonly associated in traditional 

flotation units and therefore enhances the buoyancy of the particles. The teetering effect of the 

hindered-bed relinquishes the need for bubble-particle aggregates to have sufficient buoyancy to 

rise to the top of the cell.  The low density agglomerates can easily overflow into the product 

launder, where as the hydrophilic particles move  through the teeter bed and eventually discharge 

through the control valve at the bottom of the separator.   

 Other benefits of the HydroFloat separator versus traditional froth flotation cells include 

increases in particle retention time by producing a counter-current flow of particles settling in a 

hindered state against an upward rising current of water, and the increased probability of bubble-

particle contacting in the teeter-bed due to the high-solids content.  A higher production rate is 

possible with the HydroFloat separator than in traditional froth flotation cells due to the high 

percent solids in the compact teeter bed.   

 The HydroFloat separator is ideally suited to recover coarse particles that traditional froth 

flotation cells cannot efficiently recover for several reasons.  One reason for the improved 

recovery of coarse particles is the upward flow of elutriation water in the HydroFloat separator 

helps lift the larger particles into the product launder.  The teeter bed also produces ideal 

conditions for bubble-particle interactions by maintaining high solids content and quiescent flow 

conditions.  In addition, the high solids content within the teeter-bed separator makes it possible 
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to treat large tonnages in a very compact volume as compared to conventional flotation 

separations which are conducted at very low solids contents using large volume cells.   

 

2.1.3 Project Justification 

 One of the driving forces behind the HydroFloat separator is the phosphate industry’s 

need to recover coarse particle phosphate (28 x 35 M size fraction) from the feed matrix.  It is 

estimated that 10% of feed material to a Florida phosphate plant is in the plus 35 mesh fraction, 

which is virtually impossible to recover with present classification equipment.  An improvement 

in coarse particle recovery with the HydroFloat alone corresponds to an additional $7.5-15 

million of revenues.   

 As in the coal industry, the energy benefits of the HydroFloat over conventional 

equipment are related to the reduction in pumping requirements and water usage which is a 

direct result of the higher feed ton rate.  The lower operating and maintenance cost per ton of 

product is significantly reduced with the HydroFloat versus conventional equipment.  Overall, 

the implementation of the HydroFloat separator will allow operations to become more profitable 

and more competitive by utilizing reserves more effectively, reducing waste and increasing 

productivity.     

 



 71 

2.2 Literature Review 

2.2.1 General 

 The recovery of minerals by flotation is one of the most versatile mineral-processing 

techniques used in industry today.  Flotation methods are utilized throughout the mining industry 

to treat sulfide ores such as copper, lead and zinc, oxide ores such as hematite and cassiterite and 

non-metallic ores such as phosphate and coal (Wills, 1992).  Since its inception in the early 

1900’s, improvements in the flotation process have long been a goal within the industry and 

numerous studies have been financed to overcome the inefficiencies inherent in the process.  

Industry and government sponsored research programs have focused on all areas of the flotation 

process to improve recoveries including advancements in chemical reagents, adaptations to 

existing equipment and introduction of novel equipment.         

 

2.2.2 History of Flotation 

 Although a subject of considerable debate, flotation was believed to be first utilized in the 

mining industry by T.J. Goover, who in 1909 patented (British Patent No. 27-02-1909) the first 

multi-cell impeller-type apparatus for froth flotation (Rubinstein, 1995).  However, research into 

the relationship between particle size and floatability did not begin until 1931, when Gaudin, et 

al. (1931) showed that coarse and extremely fine particles are more difficult to recover as 

compared to intermediate size particles.  Twenty years after this original work, Morris (1952) 

arrived at the same conclusion, that particle size is one of the most important factors in the 

recovery of ores by flotation.  Intermediate size particles will achieve the highest recovery, 

where as very fine particles (dp<20µm) will have the lowest recovery.  In addition, as the particle 

diameter begins to increase, the recovery will start to decline.  This reduction in recovery on the 
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fine and coarse size fractions is indicative of a reduction in the flotation rate of the particles 

(Jameson, 1977).  It can be seen that the efficiency of the froth flotation process deteriorates 

rapidly when operating in the extremely fine or coarse particle size ranges, which is considered 

between 10 µm and 200 µm.  This is evidence that conventional flotation practices are optimal 

for the recovery of particles between 65 to 100 mesh.            

   According to Soto and Barbery (1991), conventional flotation cells operate with two 

contradictory goals.  First, a conventional cell has to provide enough agitation to maintain 

particles in suspension, shear and disperse air bubbles, and promote bubble-particle collision.  

However, for optimal recovery, a quiescent system is required to reduce detachment and 

minimize entrainment.  As a result, coarse particle flotation is more difficult since increased 

agitation is required to maintain particles in suspension.  Furthermore, coarse particles are more 

likely to detach under turbulent conditions.  To compensate for the lack of recovery, some 

installations are using relatively small flotation devices operated at low feed rates (Lawver, 

1984). 

 As particle size is reduced, two dominating characteristics begin to emerge, i.e., the 

specific surface becomes large and the mass of the particle becomes very small (Abdel-Khalek, 

et al., 1990).  These are the dominating factors affecting fine particle recovery in flotation 

systems.  Virtually all ores are associated with a clay mineral, which is ultimately transferred to 

the preparation plant with the mineral of interest.  The clay minerals associated with the fine 

fractions will reduce mineral recovery by inhibiting bubble-particle attachment, and consuming 

flotation reagents. 

  The variety of flotation machines available on the market today can be classified into two 

distinct groups:  pneumatic and mechanical machines (Wills, 1992).  Pneumatic machines 
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commonly utilize air that is blown in or induced, where it must be dissipated through a series of 

baffles or some form of permeable base within the cell.  Since air is used not only to produce the 

froth and create aeration but also to maintain the suspension and to circulate it, an excessive 

amount is usually introduced (Wills, 1992).  Complications directly related to the excessive 

amount of air limited the use of pneumatic machines until the development of the flotation 

column.   

 Mechanical flotation machines are the most common and widely used flotation machine 

on the market today.  The units are characterized by a mechanically driven impeller which 

agitates the slurry and disperses the incoming air into small bubbles (Wills, 1992).  Air addition 

into the cell can either be forced through an external blower, or self-aerating.  Typically most 

mechanical flotation cells are set up in a series of “banks”, where several cells will allow free 

flow from one cell to the next down the bank.   

 Performance is generally based on three factors including: (i) metallurgical performance, 

i.e., product recovery and grade, (ii) capacity, and (iii) operating and maintenance costs (Wills, 

1992).  An analysis of the effectiveness of the various types of flotation machines was made by 

Young (1982), who discusses performance with regard to the basic objectives of flotation, which 

are the recovery of the hydrophobic species into the froth product, while still achieving a high 

selectivity by retaining as much as the hydrophilic species as possible in the slurry.  Recovery is 

directly related to particle-bubble attachment and requires quiescent conditions, which is not 

found in conventional mechanical flotation devices.  The mechanical impellers found in typical 

flotation cells are not ideal for particle-bubble contact, which has led the industry to utilize 

column cells for a variety of mineral applications that, up until the past decade or two, was 

unheard of.   
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 Column cells are considered to be ideal displacement machines, where as mechanical 

cells are ideal mixers (Wills, 1992).  A column cells improves flotation performance by 

minimizing turbulence within the cell and reducing entrainment using froth washing.  In 1914, 

G.M. Callow patented the first apparatus with air sparging through a porous false bottom, 

(Rubinstein, 1995), which would become the basis for future column cell designs.  By 1919, M. 

Town and S. Flynn had developed the first design involving a countercurrent of slurry and air 

within a column.  While pneumatic Callow apparatuses were very popular in the early 1920’s 

and 30’s, the lack of technological progress in the area of reliable pneumatic air spargers and 

lack of process control systems forced the introduction of impeller-type apparatuses.  It wasn’t 

until the mid 1960’s that column cells began to be intensively developed and extensively 

introduced into the industry, when practically all the work on updating other types of flotation 

cells ceased (Rubinstein, 1995).   

 The advantages of column cell technology over conventional mechanical cells are 

directly related to the direction of flow of the slurry and air.  The counter-current regime 

provides for more ideal bubble-particle attachment and enhanced aggregate stability.  The 

likelihood of bubble-particle detachment is minimized due to low turbulence of slurry flows 

within the column.  These benefits have prompted the phosphate industry to implement column 

flotation cells into the industry for fine and coarse particle flotation.   

 

2.2.3 Phosphate Flotation 

 Phosphate beneficiation plants are designed to process run-of-mine ore, typically called 

the ore matrix, into a sellable product for use in either the fertilizer market or as an integral part 
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or the production of phosphoric acid.  The ore matrix is upgraded by separating the phosphate 

grains from other impurities such as clay and silica.  Beneficiation plants in the southeastern 

United States (Florida and North Carolina) generally use sizing and classification processes to 

concentrate the phosphate rock and separate it from impurities.       

 Florida beneficiation plants typically wash and deslime the ore matrix at 150 mesh.  The 

material finer than 150 mesh is considered tailings and is pumped to settling ponds. 

Approximately 30% of the phosphate contained in the original ore matrix is lost to the tailings 

ponds. The remaining rock is separated into three size classes, a pebble size fraction, coarse and 

fine size fractions.  The pebble is a high phosphate content rock (-3 ¼ x 14 mesh) that requires 

no further processing.  The coarse size fraction (14 x 35 mesh) and fine size fraction (35 x 150 

mesh) are treated separately in different flotation circuits.   

 Historically, fine phosphate flotation is an efficient process with recoveries from 

conventional froth flotation in excess of 90% for most ores.  Recoveries will vary depending on 

the ore type, with recoveries dropping slightly fo r some high manganese or dolomitic ores.  In 

contrast, froth flotation recoveries for coarse phosphate are generally much lower than those of 

fine phosphate ores.  Typical recoveries for coarse flotation are less than 50%.  Historically, 

hammer mills were used for size reduction, but due to high maintenance costs and loss of fines, 

this practice has been discontinued (Soto, 1992). 

 The industry, however, has taken other approaches to circumvent the problem of low 

floatability of coarse particles. For instance, such approaches are exemplified by the use of 

gravitational devices such as spirals, tables, launders, sluices and belt conveyors modified to 

perform a "skin flotation" of the reagentized pulp. Although a variable degree of success is 

obtained with these methods, they have to be normally supplemented by scavenger flotation. In 
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addition, some of them require excessive maintenance, have low capacity, or involve high 

operating costs. Their performance is less than satisfactory and in certain cases their use has been 

discontinued. 

 Previous laboratory and pilot-scale testing of the HydroFloat separator has proven its 

capabilities as an effective flotation device for recovering fine and coarse phosphate.  The unit 

has especially proven successful in the 35 mesh fraction of the phosphate ore matrix in Florida.  

This size fraction was previously discarded to the tailings when detachment and buoyancy 

limitations in traditional flotation methods failed to recover the material.     
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2.3 In-Plant Testing at Phosphate Plant A 

 The Phase I field-testing of the HydroFloat separator involved equipment setup, 

shakedown and detailed testing at the Phosphate Plant A.  The goal of this effort was to compare 

the unit to existing conventional cells in several different areas of the plant by analyzing the 

anticipated product grade and recovery, insol content, reagent consumption, and feed capacity at, 

and above, design feed rates of the unit.  The three areas of the plant where the HydroFloat 

separator was tested included the fine feed, amine flotation and coarse feed circuits.       

 The main objective of the fine and coarse phosphate testing was to demonstrate the 

potential of the unit as a candidate for the process equipment in a proposed plant design with 

both fine and coarse circuits.  The main objective of the amine flotation testing was to 

demonstrate the feasibility of using the unit for silica flotation and to develop data to determine 

its potential application for use in the amine flotation circuit at Phosphate Plant A.  

Approximately 6 months was allocated to this task.   

 Individuals from Eriez Magnetics and Virginia Tech participated in the testing at 

Phosphate Plant A with cooperation from key personnel at the processing plant.   Additional tests 

were conducted by Phosphate Plant A representatives to expand the data base for evaluating the 

potential of incorporating the HydroFloat separator into proposed circuit upgrades.  

 

2.3.1 Equipment Setup 

2.3.1.1 Fine Circuit 

 The installation of the pilot-scale unit in the fine feed circuit at Phosphate Plant A was the 

main objective of this task.  The separator was transported from the Eriez Magnetics Central 

Research Lab in Erie, Pennsylvania to the processing plant.  With cooperation from the operators 
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and mechanics at the plant, the 18- inch diameter pilot-scale HydroFloat separator was installed at 

the fine circuit at Phosphate Plant A as shown in Figure 2.2.  Reagentized feed was supplied to 

the HydroFloat separator through a 2 inch line connected to the existing plant condit ioning tanks.  

Concentrate and tailings streams were discharged into floor sumps.   

 The unit was operated as a column flotation cell, utilizing the HydroFloat separator air 

sparging system.  The test unit included 3 compartments that allowed more water and air to be 

added (up to 60 gpm water and 10 cfm air).  There was no teeter-bed required in this system.  

Plant compressed air and 115 volt electrical power were connected to the separator for the 

automated control system.  The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level).   
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Figure 2.2. The 18-inch Diameter Pilot-Scale HydroFloat Separator Test Circuit at Plant A. 
 

2.3.1.2 Amine Circuit 

 The same separator used in the fine circuit was also used in the amine flotation circuit.  

With cooperation from the operators and mechanics at the plant, the 18- inch diameter pilot-scale 

HydroFloat separator was installed in the amine circuit at Phosphate Plant A.  Reagentized feed 

was supplied to the HydroFloat separator through a two-inch line connected to the existing plant 

conditioning tanks.  Concentrate and tailings streams were discharged into floor sumps.   
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 The unit was operated as a column flotation cell, utilizing the HydroFloat separator air 

sparging system.  The test unit included 3 compartments that allowed more water and air to be 

added (up to 60 gpm water and 10 cfm air).  There was no teeter-bed required in this system.  

Plant compressed air and 115 volt electrical power were connected to the separator for the 

automated control system.  The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant pressure (level). 

 

2.3.1.3 Coarse Circuit 

 The same separator used in the fine and amine flotation circuits was also used in the 

coarse circuit, with one modification.  The center compartment was removed from the unit, so as 

to allow the unit to operate with a typical teeter-bed (a total of 2 compartments).  With 

cooperation from the operators and mechanics at the plant, the 18- inch diameter pilot-scale 

HydroFloat separator was installed in the coarse circuit at Phosphate Plant A.  Reagentized feed 

was supplied to the HydroFloat through a 2- inch line connected to existing plant conditioning 

tanks.  Concentrate and tailings streams were discharged into floor sumps.   

 Electrical power at 115 volt and plant compressed air were connected to the separator for 

the automated control system.  The separator was automatically controlled through the use of a 

simple PID control loop which includes a single loop PID controller, a pressure sensor mounted 

on the side of the separator to measure the relative pressure, and a pneumatic pinch valve to 

control the underflow discharge to maintain a constant bed pressure. 
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2.3.2 Shakedown Testing 

 Preliminary shakedown testing was conducted after completing the installation of the test 

HydroFloat unit to resolve any unexpected operational problems that could arise.  These tests are 

normally necessary to resolve any problems that may have been overlooked in the initial 

engineering and to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, 

etc., are adequate.  An average of six shakedown tests per circuit was conducted with the unit. 

 

2.3.3 Detailed Testing 

 Two series of detailed test programs were conducted using the pilot-scale test unit.  The 

first series of test were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve.  

 The HydroFloat separator is designed for feed rates of 2 tph/ft2 and 1 tph/ft2 rougher 

concentrate, which allows the test unit to operate at 4 tph feed and 2 tph concentrate, 

respectively.  The initial testing in the fine and coarse circuit evaluated the unit at loading rates 

much higher than design to establish the recovery fall-off.  The design rates for the amine 

flotation circuit were not precisely known going into the testing, but were thought to be similar 

to those for rougher flotation.  Part of the amine testing program was devoted to determining the 

design rates and evaluating the HydroFloat separator performance across the board, both at the 

design rate and above.   

 With the recovery fall-off determined for each circuit and unit configuration, the 

subsequent series of testing was used to investigate the effects of key operating parameters.  

Tests were conducted to establish reagent consumption (fatty acid, surfactant, amine and diesel 

oil), to investigate the bed levels and sparger water required for the best unit operation and to 
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investigate the variability associated with the overall system.  For each test, samples were taken 

from the feed, concentrate and tailings streams after conditions were stabilized.  The samples 

were analyzed for BPL, MgO and insol contents. 

 

2.3.4 Process Evaluation 

 All as-received results were analyzed and adjusted using mass balance software to ensure 

the test data was reliable and self-consistent.   Any experimental values that were deemed by the 

mass balance routines to be unreliable were removed from the data set.  The participating mining 

company used the compiled data to establish the metallurgical improvement, operating savings 

and economic payback that may be realized by implementing the proposed high-efficiency 

technologies.   

 The process evaluation has been divided into three sections including (i) fine feed circuit, 

(ii) amine flotation circuit, and (iii) the coarse feed circuit. 

 

2.3.4.1 Fine Feed Circuit 

 Fifty-three tests were conducted during the fine circuit testing at Phosphate Plant A.  

Testing in the fine circuit produced an average of 10% higher BPL recoveries with a 0.8% lower 

BPL rougher tail in the HydroFloat separator than in the plant Wemco cells.  Figure 2.3 displays 

the HydroFloat separator and plant tails percent BPL for each test.  The plant Wemco cells 

averaged only about 0.7% BPL higher-grade rougher concentrates than the HydroFloat as shown 

in Figure 2.4.  An average HydroFloat separator rougher concentrate grade of 54.9% BPL is 

satisfactory considering the test feed grade only average 8% BPL through most of the testing.   
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Figure 2.3 - Recovery of HydroFloat Separator versus Plant Cells. 
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Figure 2.4. Rougher Concentrate Grade of HydroFloat Separator versus Plant Cells. 
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 During testing, several attempts were made to obtain final grade concentrates (7% insol) 

with one stage of flotation. The results show that insol concentrates between 9-10% produced 

only 74-76% recoveries, and dropping the insol to 7-8% reduced the recoveries to 70% or less.  

Further testing in this area needs to be conducted utilizing more selective reagents or higher feed 

grades to achieve the desired 7% insol concentrates in a one step flotation process with the 

HydroFloat separator. 

 One of the most important operating parameter to consider for fine flotation is the ability 

of the process equipment to recover coarser material into an acceptable concentrate: i.e., recover 

coarse phosphate without recovering fine silica. Comparison testing of the HydroFloat separator 

with the Wemco Cell produced promising results.  As shown in Figure 2.5, the HydroFloat 

separator recovered 80%, 83%, and 88% of the plus 20 mesh, 20 x 28 mesh, and 28 x 35 mesh 

phosphate, respectively. The performance values were well above those established for the plant; 

the plant recovered only 24% of the plus 35 mesh and 67% of the plus 48 mesh phosphate.  

 Percent solids in the tailings averaged between 20-30% at optimum testing conditions.  

During less than optimum conditions, the solids were as high as 53%.  Optimum conditions 

occurred at 70-75 bed levels, with between 50-60 gpm of sparger water, and 4 tph feed.  While 

higher bed levels and less sparger water could produce a slightly higher percent solids in the 

tailings, this adversely affected the recovery and concentrate grades.  Using the unit with 3 

compartments and with bed levels of 70-75, the optimum froth depths were 15-20 inches. 

 Reagent dosages were affected by the poor water quality and excessive slimes in the feed 

during the testing program.  The fatty acid dosage in the plant ranged from 0.80 to 1.20 lb per ton 

of fine feed during testing, whereas the fuel oil dosage  in the plant ranged from 0.35 to 0.55 lb  
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Figure 2.5. Comparison of Test Results for Fine Phosphate (Plant Circuit #2). 
 

per ton fine feed.  The fuel oil dosage  was slightly higher than average dosage at Phosphate Plant 

A, which is partially to blame for the poorer than expected recoveries.  

 The recommended surfactant dosage was 0.13 lb per ton at design rates, with actually 

results being slightly higher.  Dosage in the HydroFloat separator ranged from 0.20 to 0.32 lb per 

ton of feed (6.9 to 10.4 cc per minute).  Projected surfactant dosage  for the fine circuit can not be 

determined at this time, but it is estimated that it is just slightly higher than the recommended 

dosage.   

  While the operation of the HydroFloat separator for fine flotation was difficult to 

optimize due to various outside variables affecting the system, a significant number of tests were 

conducted at differing operating variables under varying operating conditions to achieve 

optimum operating conditions.  The optimum conditions for the HydroFloat separator for use in 
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fine flotation as defined by this testing program are: 3 compartment unit, with bed level between 

70-75, a froth depth of 15-20 inches, sparger water between 55-60 gpm, air flow of 10 cfm, and a 

surfactant dosage of at least 0.2 lb per ton of feed.  The measured recovery values and 

concentrate grade at these design rates were acceptable.  Based on this data, the HydroFloat 

separator can successfully be implemented into the Phosphate Plant A fine flotation circuit.   

 

2.3.4.2 Amine Circuit 

 Twenty-four tests were conducted during the amine flotation circuit testing at Phosphate 

Plant A.  HydroFloat separator testing in the amine flotation circuit produced an average of 1.3% 

higher insol concentrate and recovered about 8% less insol to the amine tailings than in the Plant 

Wemco Cell.  Figure 2.6 displays the concentrate grade for the HydroFloat separator and the 

plant for each test.  The plant Wemco cells averaged only about 0.5% higher BPL recovery than 

the HydroFloat separator as shown in Figure 2.7.   

 The HydroFloat separator performed virtually the same as the plant Wemco cell for 

amine flotation over the range 3 to 18% concentrate insol and 95 to 99% BPL concentrate 

recovery.  The unit demonstrated it could effectively recover coarse silica.  The HydroFloat 

separator insol recovery values were about 3% lower on average than those in the plant at above 

design feed rates.  The differences ranged from 6% to 11% in the 35 mesh and 48 mesh fractions 

to 2% in the finer fractions.  The HydroFloat separator insol recovery values were about 2% 

higher on average than those in the plant at the lower feed rates.     
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Figure 2.6. Amine Concentrate Grade Comparison of HydroFloat Separator vs. Existing 
Plant Cells. 
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Figure 2.7. BPL Recovery Comparisons HydroFloat Separator vs. Existing Plant Cells. 
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 One of the most important operating parameters to consider for amine flotation is the 

ability of the process equipment to recover coarse silica without recovering phosphate. 

Comparison testing of the HydroFloat separator with the Wemco Cell produced promising 

results.   As shown in Figure 2.8, the HydroFloat separator had just slightly less recoveries than 

the plant for all of the size fractions except the 35 mesh, where it had a nearly 6% increase in 

BPL recovery than the plant.   

 Reagent dosages were affected by the poor water quality and excessive slimes in the feed 

during the testing program.  The surfactant dosage for the HydroFloat separator ranged from 0.13 

to 0.40 lb per ton of feed.  The recommended dosage was 0.14 lb per ton at design rates. 
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Figure 2.8. Comparison of Test Results for Amine Phosphate (Plant Circuit #2). 
  

 The interactions of varying diesel fuel dosage rates were studied during the amine circuit 

testing.  Amine flotation circuits use diesel oil or polymer occasionally to modify the froth when 
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slimy water is present.  Froth stability was investigated, but was difficult to determine due to the 

lack of air flow measurement available at the time of testing.  Exact diesel fuel dosage rates are 

unknown at this time.   

 While the operation of the HydroFloat separator for amine flotation was difficult to 

optimize due to various outside variables affecting the system, a significant number of tests were 

conducted at differing operating variables under varying operating conditions to achieve 

optimum operating conditions.  The optimum conditions for the HydroFloat separator for use in 

amine flotation as defined by this testing program are: 3 compartment sections, with bed level 

between 70-75, a froth depth of 15-20 inches, sparger water at 25 gpm, air flow of 10 cfm, and a 

surfactant dosage of at least 0.2 lb per ton of feed.  Additional testing will be needed in the future 

to validate these recommendations.  The measured silica recovery values and concentrate grades 

at these design rates were acceptable.  Based on this data, the HydroFloat separator can 

successfully be implemented into the Phosphate Plant A amine flotation circuit.   

 

2.3.4.3 Coarse Circuit 

 Twenty-four tests were conducted during the coarse circuit testing at Phosphate Plant A.  

Testing in the coarse circuit produced an average 12% higher BPL recovery with a 3.5% lower 

BPL rougher tail in the HydroFloat separator than in the Plant Wemco Cell.  Figure 2.9 displays 

the HydroFloat separator and plant tails percent BPL for each test.  Figure 2.10 displays the 

concentrate recovery for the HydroFloat separator and Plant Wemco Cell.  The plant average 

about 6% BPL higher-grade rougher concentrates than the HydroFloat separator as shown in 

Figure 2.11.  However, the average concentrate grade of 62.6% BPL was still considered 

satisfactory for the testing.   
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   As with the fine and amine flotation circuits testing, poor water quality played an 

important role in the overall performance of the reagents during testing.  Fatty acid dosage in the 

plant ranged from 2.04 to 3.61 lb per ton of coarse feed dur ing testing, while fuel oil dosage  

ranged from 1.06 to 1.68 lb per ton of feed.  Both of these values are considered high for 

Phosphate Plant A, and hindered recoveries as a result.   

 Surfactant dosage for the HydroFloat ranged from 0.23 to 0.77 lb per ton of feed, which 

was also considered to be a high dosage, mostly attributable to the high fatty acid-fuel oil dosage  

in the plant.  Other contributing factors were the poor water quality and the need to set the 

surfactant dosage rates higher than normal in the plant to maintain an adequate froth bed depth.  

(This was the case in the fine and amine flotation circuits testing as well.) 
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Figure 2.9. Tailings Comparison of HydroFloat Separator versus Plant Cells.   
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 The ability of the unit to recover coarse material into an acceptable concentrate proved to 

be successful during the testing program.  One test achieved an overall BPL of 92% at a feed rate 

of 3.92 tph (98% of design) and a concentrate overflow froth rate of 1.56 tph (78% of design).  

The associated concentrate grade was 61% BPL.   

 Screen and chemical analyses were conducted on selected tests to determine the recovery 

values for various mesh sizes.  The HydroFloat separator recovery values are considered to be 

excellent as shown in Figure 2.12.   
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Figure 2.10. Recovery Comparison of HydroFloat Separator vs. Existing Plant Cells. 
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Figure 2.11. Grade Comparison of HydroFloat Separator vs. Existing Plant Cells. 
 

 

 

Figure 2.12. Comparison of Test Results for Coarse Phosphate (Plant Circuit #1). 
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 Percent solids in the tailings averaged 75.8% for all tests.  The HydroFloat separator was 

configured with 2 compartments, with bed levels between 82 and 87, and with a recommended 

level of 85.  This resulted in optimum condition of: froth depths between 15 and 20 inches, 

sparger water near 20 gpm, and air flow at 5.0 cfm.  The measured recovery values and 

concentrate grade at these design rates were acceptable.  Based on this data, the HydroFloat can 

successfully be implemented into the Phosphate Plant A coarse flotation circuit.   

 

2.3.5 Sample Analysis 

 Detailed analysis was conducted on each of the samples collected during the testing 

program.  The analyses were performed in accordance with ASTM procedures onsite at the 

Phosphate Plant A.  Representative samples were collected around the pilot-scale unit.  Slurry 

flow rates for the feed, concentrate and tailings streams were directly measured using a 

stopwatch and a calibrated container.  The mass and liquid flow rates were then calculated from 

the measured slurry flow rates and the sample assays using the two-product formula.  

   

2.3.6 Future Work 

 While the results of the testing look promising, the project has been temporarily been put 

on hold for administrative reasons.    
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2.4 In-Plant Testing at Phosphate Plant B 

 Equipment setup, shakedown testing, and detailed testing comprised the phase I field-

testing of the HydroFloat separator at Phosphate Plant B.  The goal of this effort was to compare 

the unit to existing hydroclassifiers and conventional cells by analyzing the anticipated product 

grade and recovery, insol content, reagent consumption and feed capacity at, and above, design 

feed rates of the unit.  The main objective of testing was to determine if the HydroFloat separator 

could achieve higher recoveries of the ultra-coarse particles than the existing second-stage 

hydroclassifer at the plant.  Further investigations of the coarse and fine matrices were 

conducted, comparing results against the existing conventional cells currently in operation at the  

plant.  Approximately 12 months was allocated to this task.  Individuals from Eriez Magnetics 

and Virginia Tech participated in the testing at Phosphate Plant B with cooperation from key 

personnel at the processing plant. 

 

2.4.1 Equipment Setup 

 The separator was transported from the Eriez Magnetics Central Research Lab in Erie, 

PA to the processing plant.  With cooperation from the operators and mechanics at the plant, the 

1-foot diameter pilot-scale HydroFloat separator was installed at each circuit (ultra-coarse, 

coarse and fine) for a period of several weeks for each circuit at Phosphate Plant B as shown in 

Figure 2.13.  Reagentized feed was supplied to the HydroFloat separator through a 2- inch line 

connected to the existing plant conditioning tanks.  Concentrate and tailings streams were 

discharged into floor sumps.   

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system.  The separator was automatically controlled through the use of a 
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simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level).   Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 

 

Figure 2.13. Pilot-Scale HydroFloat Separator Test Circuit at Plant B. 
 

 

2.4.2 Shakedown Testing 
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 After completing the installation of the test HydroFloat unit  in each circuit, preliminary 

shakedown testing was conducted to resolve any unexpected operational problems that could 

arise.  Shakedown test are commonly utilized to resolve any problems that may have been 

overlooked in the initial engineering and to confirm that feed capabilities, pipe sizes, electrical 

supplies, control systems, etc., are adequate.  

 

2.4.3 Detailed Testing 

 Two series of detailed test programs were conducted for each circuit using the pilot-scale 

test unit.  The first series of test were performed to investigate the effects of the key design 

variables on separator performance and to simultaneously define the overall grade and recovery 

curve. 

 The HydroFloat separator is designed for feed rates of 2 tph/sqft and 1 tph/sqft rougher 

concentrate, which allows the test unit to operate at 4 tph feed and 2 tph concentrate, 

respectively.  The initial testing in the coarse circuit evaluated the unit at loading rates much 

higher than design, to establish the recovery fall-off.   

 With the recovery fall-off determined for each circuit and unit configuration, the 

subsequent series of testing was used to investigate the effects of key operating parameters.  

Tests were conducted to establish reagent consumption (fatty acid, surfactant, and diesel oil), to 

investigate the bed levels and sparger water required for the best HydroFloat separator operation, 

and to investigate the variability associated with the overall system.  For each test, samples were 

taken from the feed, concentrate and tailings streams after conditions were stabilized.  The 

samples were analyzed for BPL, MgO, and insol contents. 
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2.4.4 Process Evaluation 

 To ensure the test data was reliable and self-consistent, all as-received results were 

analyzed and adjusted using mass balance software.   Experimental values that were deemed by 

the mass balance routines to be unreliable were removed from the data set.   The participating 

mining company used the compiled data to establish the metallurgical improvement, operating 

savings and economic payback that may be realized by implementing the proposed high-

efficiency technologies.   

 The process evaluation has been divided into three sections including the (i) ultra-coarse 

rock feed, (ii) the coarse rock feed, and (iii) the fine feed circuits. 

    

2.4.4.1 Ultra Coarse Feed 

 Grade versus recovery data for the in-plant evaluation of the HydroFloat had BPL 

recoveries of 87% to 99% with product grades ranging between 5% and 14% insols.  The 

resulting products contained, on average, 67% BPL.  Figure 2.14 is a graph of the grade versus 

recovery data for the in-plant testing and earlier laboratory-scale testing.  Size-by-size analysis of 

the HydroFloat was conducted and results are presented in Figure 2.15.  The HydroFloat is 

capable of high BPL recoveries for even the coarsest size fractions, where 96.7% of the available 

BPL in the +16 mesh size class was recovered.   
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Figure 2.14. BPL Recovery vs. Product Insol Grade for Ultra-Coarse Rock Feed at 
Phosphate Plant B. 
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Figure 2.15. Size-by-Size Recovery and Grade for Ultra -Coarse Rock Feed. 
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2.4.4.2 Coarse Feed 

 Figure 2.16 summarizes the grade and recovery data for the coarse feed test work.  BPL 

recoveries ranged from 90% to 98% while product grades averaged 24.7% insols.  The resulting 

products contained, on average, 55% BPL by weight.  Figure 2.16 also illustrates that the results 

for the laboratory evaluations were superior to those produced for the in-plant trials.  This 

occurrence is a direct result of the mean particle size difference found between the samples used 

for the laboratory and in-plant testing.  It was calculated that the sample used for the coarse 

matrix laboratory testing was as coarse (mean size: 0.706 mm) as the sample provided for the 

ultra-coarse testing (mean size: 0.721 mm).  During the in-plant trials, it was observed that the 

coarse matrix was significantly finer, amplifying any occurrence of hydraulic carry-over or 

activation of fine floatable insols. 
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Figure 2.16. BPL Recovery vs. Product Insol Grade for Coarse Matrix. 
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2.4.4.3 Fine Feed 

 The results from the in-plant testing on the fine matrix are shown in Figure 2.17.  BPL 

recovery ranged from 88% to 97% using the HydroFloat.  When operated as an open column, 

BPL recoveries ranged from 85% to 92%, though at a significantly lower product insol (37% vs. 

22%, respectively).  Results from samples collected around the existing plant rougher-scavenger 

swing circuit are also presented in Figure 2.17 for comparison.  The findings indicate that the 

open column cell (w/ HydroFloat sparging system) is able to achieve incrementally higher BPL 

recoveries at lower product insol grades compared to either the HydroFloat or the existing 

column technology.  The corresponding product grade (%BPL) averaged 55% for the open 

column system as seen in Figure 2.18. As with the ultra-coarse and coarse circuits, the 

HydroFloat achieved an acceptable product grade and recovery in the fine circuit.     
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Figure 2.17.  BPL Recovery vs. Product Insol Grade for Fine Matrix. 
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Figure 2.18.  BPL Recovery vs. Product BPL Grade for Fine Matrix. 
 

2.4.5 Sample Analysis 

 Detailed analyses were performed in accordance with ASTM procedures onsite at the 

Phosphate Plant B.  Representative samples were collected around the pilot-scale unit.  Slurry 

flow rates for the feed, underflow and overflow streams were directly measured using a 

stopwatch and a calibrated container.  The mass and liquid flow rates were then calculated from 

the measured slurry flow rates and the sample assays using the two-product formula.  

   

2.4.6 Future Work 

 Pilot-scale testing at Phosphate Plant B in Florida proved to be successful, and the 

company has agreed to purchase a prototype HydroFloat separator for testing and evaluation. 

The prototype unit will be compared to existing flotation cells in the coarse recovery circuit.   
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2.5 Conclusions  

 

1. The in-plant evaluation of the HydroFloat separator demonstrated that this novel 

separation device can successfully treat the three different size fraction in a typical 

phosphate processing plant.  For the ultra-coarse rock, the separator produced a high 

grade phosphate product (+66% BPL) at BPL recoveries exceeding 95%.  For the coarse 

sized feed fraction, the separator produced a 99% BPL recovery at an 8% insol grade.  

Significant improvements were also achieved in the fine feed fractions where a BPL 

recovery greater than 90% was achieved with product insoles ranging between 22-25%. 

 

2. Several advantages can be realized through implementation of the HydroFloat system.  

The system can provide a higher product mass recovery, superior metallurgical results, 

lower reagent costs and lower power requirements, with the greatest advantage being the 

higher separation efficiency.  A higher product mass recovery with a better product 

quality is a significant achievement for this application.  The HydroFloat has a 

substantially lower operating cost due to reduced reagent consumption and power 

requirements compared to conventional equipment.   

 

3. One of the goals of this project is to successfully prove the technology in a sufficient 

period of time to minimize the financial risk that will be taken by industry.  The previous 

years test work has eliminated the uncertainties associated with the HydroFloat separator 

by proving plant scale units do in fact work.  This can be seen by the fact that industry 

leaders have submitted purchase requests for full scale units in their preparation plants.  
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Based on the successful installation of these full scale units, further implementation of 

additional units can be utilized in a broad spectrum of companies and industries.   

 

4. Key design and operating variables have been established based on the performance 

capabilities of the HydroFloat separator.  From here, proof-of-concept (POC) tests using 

a production-scale unit can be implemented at the various test locations where full scale 

prototypes are being installed.  The POC-scale tests will identify critical scale-up criteria 

for the design of industrial applications.  The POC-scale tests will also be used to define 

the performance capabilities of the high-efficiency processes in an industrial setting and 

to fully demonstrate the potential economic benefits that can be realized with the 

HydroFloat separator.   
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