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Abstract 
 

Molecular analysis of cancer, at the genomic level, could lead to individualized patient 

diagnostics and treatments. The developments to follow will signal a significant paradigm shift 

in the clinical management of human cancer. Despite our initial hopes, however, it seems that 

simple analysis of microarray data cannot elucidate clinically significant gene functions and 

mechanisms. Extracting biological information from microarray data requires a complicated path 

involving multidisciplinary teams of biomedical researchers, computer scientists, 

mathematicians, statisticians, and computational linguists. The integration of the diverse outputs 

of each team is the limiting factor in the progress to discover candidate genes and pathways 

associated with the molecular biology of cancer. Specifically, one must deal with sets of 

significant genes identified by each method and extract whatever useful information may be 

found by comparing these different gene lists. Here we present our experience with such 

comparisons, and share methods developed in the analysis of an infant leukemia cohort studied 

on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional 

projections, and computational linguistics were used to compare different gene lists. In spatial 

gene clustering, different gene lists are grouped
 

together and visualized on a three-dimensional 
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expression map, where genes with similar expressions are co-located. In another approach, 

projections from gene expression space onto a sphere clarify how groups of genes can jointly 

have more predictive power than groups of individually selected genes. Finally, online literature 

is automatically rearranged to present information about genes common to multiple groups, or to 

contrast the differences between the lists. The combination of these methods has improved our 

understanding of infant leukemia. While the complicated reality of the biology dashed our initial, 

optimistic hopes for simple answers from microarrays, we have made progress by combining 

very different analytic approaches. 

 

Analysis techniques for molecular classification in infant leukemia  
 

Advances in the treatment and prognosis of childhood leukemia are considered remarkable 

successes in modern medicine (Greaves, 2002). However, even using the current risk 

classification systems (combining age, white blood cell count at presentation (WBC), 

morphology, cytogenetics, and other biologic parameters), infants with leukemia who will 

ultimately achieve complete clinical remission cannot be precisely identified (Biondi, 2000). 

Notably, those patients who will be primarily resistant, or more prone to relapse, are simply not 

completely predicted by cytogenetic parameters; they are distributed among all clinically defined 

risk groups. Refined recognition of patients who will respond to the less intensive therapies 

would be very desirable, particularly to increase survival and decrease therapy-related toxicity 

(Felix, 1999; Biondi, 2000). We are addressing the need for such discrimination diagnostics by 

developing gene expression-based classifications using Affymetrix U95Av2 oligonucleotide 

microarrays (with 12,625 probes). Here we discuss the methods used to analyze our infant 

cohort, which is a statistically designed group of 126 infant patients with acute leukemia. Of the 

126 cases, 78 were Acute Lymphoid Leukemia (ALL, 62%), 48 were Acute Myeloid Leukemia 

(AML, 38%). In addition, 53 cases (42%) had translocations involving the MLL gene 

(chromosome segment 11q23), see Figure 1. 
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Figure 1. Design of the leukemia cohort. The statistically designed cohort contained 126 acute leukemia 

samples from infant patients. Of the 126 cases, 78 were Acute Lymphoid Leukemia (ALL, 62%), 48 were 

Acute Myeloid Leukemia (AML, 38%), and 56 (44%) cases had translocations involving the MLL gene 

(chromosome segment 11q23). Cases were studied using Affymetrix U95Av2 oligonucleotide 

microarrays (12,625 probes). 

 

Traditionally, the analysis of microarray data has used both unsupervised methods, which group 

together genes or patients based on quantitative similarities in expression, and supervised 

approaches, which exploit knowledge available in a training set to predict unknown groups of 

genes or patients. We began our analysis with an unsupervised search for two traits: 1) gene 

expression profiles related to leukemia type (AML vs. ALL, as defined by traditional 

morphology standards), and 2) clinical outcome (remission vs. failure) in infant patients. 

Principal Component Analysis (PCA) (see Joliffe, 1986) was used to determine whether an 

apparent partition could be seen between the expression profiles of cases in each one of the 

classes (specifically, ALL versus AML and remission versus failure cases).  

 

As shown in Figure 2, PCA uncovers a clear separation between the lymphoid cases (in blue) 

and the myeloid cases (in red). In fact, the first three principal components capture the infant 

ALL/AML lineage distinction. However, PCA failed to find a clear partition between the 

remission (shown in pink, Figure 3) and the failure cases (shown in green, Figure 3). In general, 

and despite an array of different methods, we found that predicting resistance and treatment 

failure was a much more complex problem than the “type” classification (ALL vs. AML). 

 
 

Figure 2. Principal Components Analysis (PCA) ALL/AML separation. The figure shows the projections 

of the first and second (left panel) and third and fourth (right panel) principal components of the infant 

microarray data (using all genes). Each sphere represents an infant sample in the “gene expression” 

dimension. A separation of the gene expression profiles of lymphoid cases (ALL, shown in blue) versus 

the myeloid cases (AML, shown in red) can be seen in the third and fourth PCA projections. 
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Figure 3. Principal Components Analysis (PCA) remission vs. failure separation. The figure shows two-

dimensional projections of the first and second (left panel) and second and third (right panel) principal 

components of the infant microarray data (all genes included). Each sphere represents an infant sample in 

the “gene expression” dimension, and is color-coded to indicate the specific outcome of the case: 

remission (pink) or failure (green). The first three principal components captured the infant ALL/AML 

lineage distinction (Figure 2), but failed in demonstrating a partition between remission and failure cases. 

 

The next step in our analysis involved using supervised learning methods to predict patient 

outcome. Supervised learning methods are trained to recognize “known classes”, creating 

classification algorithms that may be able to predict new cases.  These algorithms are also 

capable of uncovering interesting and novel therapeutic targets by way of gene selection. A 

supervised method needs a training set (known examples) and a test set (for evaluating the 

effectiveness of the classifier). For these methods, the 126 infant samples were divided into 

representative training (82 cases) and test sets (44 cases), statistically balanced according to the 

clinical labels (leukemia lineage, cytogenetics and outcome).  

 

Several supervised class prediction approaches were used including: Bayesian networks (Helman 

et al. 2002), Recursive Feature Elimination in the context of Support Vector Machines (SVM-

RFE) (Guyon et al. 2002), Neuro-Fuzzy Logic, and Discriminant Analysis. These classification 

algorithms were evaluated using fold-dependent, leave-one-out, cross validation (LOOCV) 

techniques. As shown in Table 1, outcome prediction (remission versus failure) was particularly 

poor for all of the methods employed. 

 

Parallel comparison of discriminating genes 
 

The process of defining the best set of discriminating genes identified by the different methods is 

difficult. Different methods of gene selection typically produce different lists of genes (note that  
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this is not necessarily bad because related genes can be essentially equally predictive). We 

developed two main methods for visualizing many gene lists at once and consequently 

comparing not only the lists but also the methods that produced them.  

 

It is reasonable to imagine that two different gene lists carry nearly the same information if the 

genes in the lists generally cluster near each other. We tested this approach with an unsupervised 

clustering algorithm (Kim et al., 2001) that uses Pearson’s correlation coefficient to estimate the 

similarity between any
 

pair of genes. The 20 strongest positive correlations between each gene 

and its neighbors were used
 

to assign that gene to an x-y coordinate in the two-dimensional plane 

using force-directed placement (Davidson et al., 2001). In this
 

x-y ordination step, genes are 

positioned relative to each other
 

under the influence of attractive and repulsive forces. Each gene
 

is attracted to other genes with a force proportional to their
 

similarity in gene expression, and is 

repelled by a constant force proportional the local density of genes.  A computer
 

program called 

VxInsight was used to visualize the spatial distribution
 

of the genes, resulting in a visualization 

wherein genes with a high
 

correlation are placed near each other.  As a further visual cue, the 

two-dimensional
 

scatter plot is converted into a three-dimensional terrain map
 

in which the z-axis 

denotes the density of genes within a given area. The genes identified by the various supervised 

methods were highlighted, and colored as shown in Figures 4 and 5. Not surprisingly, the gene 

lists that are successful in differentiating between ALL and AML do cluster near each other, as 

seen in Figure 4. However, as the various methods have difficulty with the remission/failure 

prediction, it is reasonable to assume that there is no readily identifiable set of differentiating 

genes for this prediction, and indeed, the various methods have no consensus and the suggested 

genes are scattered widely across the overall gene clusters (See Figure 5). 
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Table 1. Class Predictor Performance  
 

Bayesian Net SVM Fuzzy Inference Discriminant 

Analysis 
Description 

r p-value
1 

r p-value
1 

r p-value
1 

r p-value
1 

ALL vs. AML .912 <.001** .971 <.001** .971 <.001** .853 <.001** 

Remission. vs. Fail .568 .256 .622 .094 .405 .906 .568 .256 

Remission. vs. Fail in ALL .542 .419 .625 .153 .375 .924 .500 .580 

Remission. vs. Fail in AML .461 .709 .769 .046* .461 .709 .461 .709 

 

r   = Success rate. 
p-value1 = Computed estimating the probability of successful prediction. 

*    means that the predictor is significant at level α=0.05 

**  means that the predictor is significant at level α=0.01. 
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Figure 4. Co-localization of ALL vs. AML gene lists in a gene expression map. The genes that 

characterize ALL versus AML samples are shown, with a different color for each of the methods used to 

obtain them (green for Bayesian Networks, yellow for discriminant analysis, blue for Fuzzy logics and 

white for SVM). Very similar lists will be co localized, while lists with bigger variation will be further 

apart. A computer program called VxInsight was used to visualize the spatial distribution of the genes, 

resulting in a display in which genes with a high correlation are placed near to each other on a three-

dimensional terrain map wherein the z-axis denotes the density of genes within an area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Visualization of outcome (remission vs. failure) gene lists in a gene expression map. The genes 

that characterize remission versus failure are shown, with a different color for each one of the methods 

used to obtain them (white for SVM and yellow for Bayesian Networks). Very similar lists will be co-

localized, while lists with bigger variation will be further apart. 
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We developed a second method to compare and visualize many gene lists simultaneously. In this 

approach, each gene is considered to be a point in patient-space, where each dimension 

corresponds to a different patient. Since there were 12,625 genes and 126 patients, this spatial 

representation had 12,625 points (samples) in a 126 dimensional space. Of the 12,625 genes we 

only considered about 600 that occurred in the different gene lists, reducing our problem to 600 

genes in 126 dimensions.  Furthermore, because we were mainly interested in how the genes 

compared as discriminators, and not how their actual expression levels compared, we projected 

the genes onto the 126 dimensional unit sphere in patient-space, as shown in Figure 6. 

Geometrically, this corresponds to comparing the “directions” of the genes in the various gene 

lists as opposed to their “magnitudes”. 

 

 
Figure 6. Gene lists projections onto the “126 dimensional unit” sphere in patient space.  This is an 

artificial depiction of the sphere method used to visualize gene lists.  The plane spanned by the first two 

principal components is shown intersecting the unit sphere, and each gene is shown as a point.  The 

method of projecting from the ambient dimensions to the principal component plane is illustrated by first 

following a given point back to the sphere and then to the plane via the vertical lines. 

 

In order to understand this visualization is it useful to imagine a sphere with a plane passing 

through the origin. The sphere corresponds to the unit sphere (the sphere with radius one 

centered at the origin) in the patient space and the plane corresponds to the plane determined by 

the first two principal components.  The first principal component points in the radial direction of 
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the sphere and the second principal component is tangential to the sphere at the sphere’s 

intersection with the first principal component.  It is precisely the first two dimensions that are 

shown in Figure 7.  The vector representing a particular gene will intersect the unit sphere, and 

will be near the arc of the sphere (unit circle) in the plane if it lies in the first two principal 

components.  To the extent that the gene lies out of the plane, the projection of the intersection 

back down onto the plane will lie further inside the arc. The distribution of these projections onto 

that principal component plane suggests how a given method of gene selection identifies 

important genes. 

 

 
 

Figure 7. ALL vs. AML gene lists comparison. The gene lists that characterize ALL versus AML are 

shown, with a different color for each of the methods used to obtain them. In distinguishing infant ALL 

from infant AML we found that most of the genes in the list were co-localized in our representative 

visualization. Compare this plot with the results shown in Figure 8. 

 

One of the main observations that can be made is the division of the gene lists above and below 

the center of the plot (in fact divided by the 2
nd

 principal component).  This division is especially 

noticeable in the Bayesian and discriminant analysis gene lists and is due to the fact that these 

methods are univariate gene selection methods.  The univariate methods rank and subsequently 

select genes as isolated variables, and hence obtain gene lists that are in some sense very 
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redundant.  In contrast, the NeuroFuzzy and SVM methods are multivariate and tend to select 

gene lists that are less redundant and hence not entirely determined by the first two principal 

components. 

 

It is evident from Figure 7 that the gene lists selected for the ALL/AML problem are related. 

Unfortunately, it is equally obvious that the gene lists selected for the remission/failure problem 

are unrelated, as shown using the same analysis in Figure 8. 

 

 
 
Figure 8. Remission vs. Failure gene lists comparison. The gene lists that characterize remission versus 

failure are shown, with a different color for each of the methods used to obtain them. It can be seen in this 

figure that distinguishing remission from failure is a difficult task. 

 

In summary, when distinguishing infant ALL from infant AML we found that most of the list 

were co-localized in our representative visualization (see Figures 4 and 7).  When distinguishing 

remission from failure, on the other hand, we could not arrive at a satisfactory conclusion 

(Figures 5 and 8).  Understanding the relationships between these gene lists was important as we 

evaluated their implications, although the lists alone were not sufficient. We wanted to 

understand the mechanisms of these genes in the context of leukemia. The next section discusses 

how we explored the biology of the genes using one specific gene list. 
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Class discovery in infant leukemia 

 

The unsupervised force-directed clustering method, previously described with respect to gene 

clusters, can also be used to cluster patients. When applied to the infant data using the similarity 

of gene expression profiles between patients, we found the existence of three major groups (as 

shown in Figure 9A), hereafter denoted clusters A, B, and C. We searched for genes with 

different expression patterns across these three groups using analysis of variance (ANOVA). 

This method was applied to order all of the genes with respect to different expressions between 

the groups as shown in Figure 9B. The strengths of these gene lists were studied using statistical 

bootstrapping. The results suggested that the identified groups represented well-separated patient 

subclasses. Analysis of the genes that characterized each one of these clusters revealed patterns 

that implied different characteristics with potential clinical relevance. In particular, the three 

distinct expression profiles are unrelated to type labels or cytogenetics, but are instead 

characterized by genes predominantly expressed and probably related to three independent 

disease initiation mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9A. Cluster-by-patients representation. Results of the force directed algorithm applied to the infant 

dataset. The VxInsight program constructs a mountain terrain over the clusters such that the height of each 

mountain represents the number of elements in the cluster under the mountain, A (n=20), B (n=52) and C 

(n=54). The force-directed clustering algorithm coupled with the VxInsight visualization tool suggested 

the existence of three clusters of infant patients separated by their gene expression patterns, and not 

correlated to the traditional clinical labels (morphology: ALL vs. AML, or cytogenetics: MLL 

rearrangement vs. not 
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Figure 9B. Gene expression “heat map” of the 126 infant samples (left hand side). Panel B shows the 

expression levels of the top 89 genes that distinguish the three subgroups of infant leukemia (right hand 

side) cluster A, B and C; as shown, also, in Figure 9A. Each column represents an infant leukemia sample 

and each row represents the relative expression for a particular gene across the samples. Gene expression 

above the mean, below the mean, and around the mean is shown in shades of red, green and black, 

respectively. 

 

Remarkably, the performance of the supervised, class predictor algorithms improved once the 

classifiers were conditioned within the A, B, and C clusters (see Table 2). We were particularly 

interested in the stability, or sensitivity to change in the data, of the rank ordering for these genes. 

We have previously studied gene list stability by adding increasing amounts of white noise to the 

gene similarities (Davidson et al., 2001). However, we now believe that statistical bootstrapping, 

using the actual data, is a better approach (Efron, 1979). Figure 10 outlines how the original data 

was processed to generate an ordered gene list, and then how 100 random resamplings (with 

replacement) from that original data were created. These additional data sets yield another 100 

gene lists so that each gene in the original list can be annotated to show the range of positions 

assigned to it across the 100 lists from the bootstrap study. Note that the top ranking genes, as 

identified by the original measurements, are generally very near the top of the ordered list of 12,625 

probes. The number one gene has an average rank order of 5.3, and none of the average rank 

orders are below 47, thus increasing our confidence in the stability of the reported list. On the other 

hand, Table 3 shows the list associated with the more difficult problem of separating remission and 

failure. In this case, while the genes are relatively high compared to the total of 12,625, the average 

ranking is much less stable than observed for the AML/ALL distinction. The bootstrap method 

described above addresses list stability, but can be extended to address the null hypothesis, namely, 

there is no significant difference in gene expression between the two classes being contrasted. By 

testing this hypothesis we can compute a p-value for the gene’s significance.
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Table 2. Overall Success Rates of Class Predictors After Including the A, B, and C Cluster Distinctions  
 

Bayesian Net SVM Fuzzy Inference Discriminant Analysis Task # Description 

r C.I. p-value R C.I. p-value r C.I. p-value r C.I. p-value 

2 Remission. vs. Fail 
.568 [.39, .73] .256 .622 [.45, .78] .094 .405 [.25, .58] .906 .568 [.39, .73] .256 

7 Remission. vs. Fail in VX-GA 
.714 [.29, .96] .226 .714 [.29, .96] .226 .857 [.42, .00] .062 .714 [.29, .96] .226 

8 Remission. vs. Fail in VX-GB 
.688 [.41, .89] .105 .563 [.30, .80] .401 .563 [.30, .80] .401 .438 [.20, .70] .772 

9 Remission. vs. Fail in VX-GC 
.714 [.42, .92] .090 .714 [.42, .92] .089 .500 [.23, .77] .604 .500 [.23, .77] .604 

OnVx R/F Conditioned on VX-Groups 
.703 [.53, .84] .010** .649 [.47, .80] .049* .595 [.42, .75] .162 .514 [.34, .68] .500 

 

 

r = Estimate of the success rate of the class predictor. 
C.I. = 95% confidence interval of the success rate of the class predictor. 
p-value = p-value of hypothesis test [2] (see text).  

*    means that r > 0.5 at significance level α = 0.05. 

**  means that r > 0.5 at significance level α = 0.01. 
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Figure 10. Gene list stability exploration. A schematic showing the bootstrap 

process, where the original data was resampled to create 100 new datasets each of 

which were processed in exactly the same manner as the original data, to produce 

the associated 100 new gene lists. The stability of the original data is assessed from 

the bootstrap distribution; see the text for a more detailed description. 
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Table 3. Top 24 genes that characterize ALL vs. AML 
samples, derived from ANOVA. 

Order ANOVA_F ORF Contrast Bootstrap avg. order Description 

1 160.82 40103_at 852.39  
[1<=[1<=5.3 {<=16} <=18] 

p<=0.001 
villin 2 

2 134.75 39689_at -822.75  
[1<=[1<=10.4 {<=26} <=32] 

p<=0.002 

cystatin C amyloid angiopathy and cerebral 

hemorrhage 

3 134.62 1230_g_at -817.22  
[1<=[1<=12.9 {<=46} <=49] 

p<=0.004 
cisplatin resistance associated 

4 130.95 39062_at -930.76  
[1<=[1<=12.4 {<=41} <=42] 

p<=0.009 

protective protein for beta-galactosidase 

(galactosialidosis) 

5 128.94 36766_at -1389.66  
[1<=[1<=14.4 {<=42} <=46] 

p<=0.004 

ribonuclease RNase A family 2 liver 

eosinophil-derived neurotoxin 

6 124.26 38269_at 794.69  
[1<=[1<=14.8 {<=47} <=60] 

p<=0.005 
protein kinase D2 

7 123.69 41523_at -689.50  
[1<=[1<=14.2 {<=40} <=44] 

p<=0.007 
RAB32 member RAS oncogene family 

8 123.18 36938_at -1003.98  
[1<=[1<=14.0 {<=36} <=40] 

p<=0.003 

N-acylsphingosine amidohydrolase acid 

ceramidase 

9 119.83 40432_at -918.53  
[1<=[1<=17.1 {<=42} <=47] 

p<=0.002 

glucosamine (N-acetyl)-6-sulfatase 

(Sanfilippo disease IIID) 

10 111.60 36879_at -968.73  
[1<=[1<=18.6 {<=70} <=73] 

p<=0.005 

endothelial cell growth factor 1 platelet-

derived 

11 109.22 36889_at -756.72  
[1<=[1<=20.0 {<=58} <=68] 

p<=0.002 

Fc fragment of IgE high affinity I receptor 

for gamma polypeptide precursor 

12 106.12 1096_g_at 1000.03  
[1<=[2<=20.8 {<=47} <=54] 

p<=0.007 
CD19 antigen 

13 101.60 38363_at -1152.58  
[1<=[3<=26.1 {<=69} <=75] 

p<=0.008 

TYRO protein tyrosine kinase binding 

protein 

14 101.57 38604_at 1032.19  
[1<=[7<=23.6 {<=43} <=48] 

p<=0.002 
neuropeptide Y 

15 100.80 37398_at -824.41  
[1<=[4<=27.0 {<=67} <=77] 

p<=0.005 

platelet/endothelial cell adhesion molecule 

CD31 antigen 

16 100.22 41221_at -744.57  
[1<=[2<=24.1 {<=56} <=66] 

p<=0.004 
phosphoglycerate mutase 1 brain 

17 99.00 40310_at -625.93  
[1<=[2<=35.4 {<=78} <=123] 

p<=0.005 
toll-like receptor2 

18 94.81 35926_s_at -1584.41  
[1<=[3<=30.7 {<=68} <=79] 

p<=0.004 

leukocyte immunoglobulin-like receptor 

subfamily B with TM and ITIM domains 

19 94.51 39581_at -736.47  
[1<=[2<=32.0 {<=94} <=96] 

p<=0.009 
cystatin A stefin A 

20 93.87 39994_at -929.11  
[1<=[2<=35.0 {<=92} <=99] 

p<=0.010 
chemokine C-C motif receptor 1 

21 89.53 35012_at -888.77  
[1<=[3<=34.9 {<=76} <=86] 

p<=0.007 
myeloid cell nuclear differentiation antigen 

22 87.53 40282_s_at -904.35  
[1<=[3<=36.0 {<=85} <=111] 

p<=0.008 
adipsin/complement factor D precursor 

23 85.87 39593_at -907.59  
[1<=[4<=47.4 {<=142} <=167] 

p<=0.009 
fibrinogen-like 2 

24 85.71 33856_at -604.82  
[1<=[3<=35.2 {<=86} <=98] 

p<=0.013 
CAAX box 1 

 

Table 3. The 24 genes, out of 12,625, with the greatest F-scores by ANOVA to differentiate 

between ALL and AML samples. Note that these F-scores are only used for ranking, while 

stability is investigated by bootstrapping (see Figure 10). The average order across the 

bootstraps is shown for both an upper 95% confidence band, and for the 95% confidence band 

surrounding the average ranking, which is the bold number. The reported p-value is derived 

from another bootstrap as described in the text. 
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The bootstraps described above resample from the two categories being 

contrasted.  For example, the bootstrap AML cases will be drawn from AML 

patients, and ALL cases are drawn from the ALL patients. However, under the 

null hypothesis that there is no difference in gene expression between these two 

cases (AML or ALL) the bootstrap should not distinguish between the cases when 

resampling. Hence, to test the null hypothesis, the samples are drawn randomly 

from either type to investigate how rare the actual observation would be in the 

absence of a real distinction between AML and ALL gene expressions. To 

compute the significance (p-value) for a gene, we generate 10,000 such 

bootstraps, and observe the fraction of times the gene ranked at or above the list 

order found with the real data. 

These statistics have been very valuable by allowing us to avoid investing large 

amounts of effort into genes that are unlikely to be significant. However, a great 

proportion of the investigative effort still involves reading existing papers and 

other text about each one of the genes in the lists. We recognized that this text 

processing had become a bottleneck in our research. As a result, we investigated 

how Natural Language Processing (NLP) could be employed to help us, as 

described in the following section. 

 

Gene List Exploration Environment 

The next step, in the traditional exploratory analysis of microarray data, is the 

very labor and knowledge intensive work of learning everything that is known 

about these genes, especially with respect to disease and biological pathways. We 

collaborated with computational linguists to build a knowledge-mining tool, 

which we regularly use in our analysis. This first implementation of our Gene List 

Exploration Environment (GLEE program) consists of a simple interface that 

speeds up our search through text about genes identified by any of our 

approaches. A demonstration version of GLEE, together with user documentation, 

is available from Computing Research Laboratory web site:  

http://aiaia.nmsu.edu/. 

The input to the system is a list of gene identifiers from Affymetrix translated by 

the program to the equivalent OMIM gene identifier (See Figure 11, and further 

details at the OMIM web site:  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM). 

As shown in the Figure 12, the relevant OMIM text is retrieved and re-ordered to 

match the criteria that we use for evaluating genes. This automated retrieval and 

reordering also employs text summarization. We are presently in the process of 

extending GLEE to use a subset of the NCI Enterprise Vocabulary Services, EV, 

which is a first step toward a more knowledge-based tool that will be 

implemented with semantic networks. Because so much of our knowledge about 

the functions, localizations, and clinical impacts of genes is encoded in published 

literature, and because the effort to incorporate that knowledge is so labor and 

knowledge intensive we believe the application of NLP to our specific needs is a 

critical, and a still largely missing tool for genomic and proteomic investigations. 
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Figure 11. The Gene Literature Exploration Environment (GLEE) interface is configured 

as a web server, which handles document and query management, and a web browser that 

provides the user interface. 

 

 
 

Figure 12. Output of the GLEE program. Summarized, and reordered annotations of a set 

of genes. Note that this is just the first page of annotations; further annotations are 

available by scrolling down in the browser. 
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Conclusions 

 

Exciting preliminary gene expression profiling studies are providing new insights 

into the molecular mechanism of tumorigenesis in acute leukemia. These studies 

hold promise to impact diagnosis, prognosis, and therapeutic interventions. 

However, the speed at which groups of genes generated by microarray analysis 

can be put together in pathways is one of the limiting steps in the translation of 

these discoveries to clinical applications. 

 

The methods presented here can potentially be useful in uncovering groups of 

genes that serve to fingerprint subtypes of acute leukemia and that could aid in 

refining diagnosis and improving assessment of prognosis. Additionally, gene list 

comparison and exploration methods will increase the speed at which researchers 

can visualize and extract the more complex relationships encoded in gene 

expression data. 

 

The ultimate goal of our multidisciplinary approaches will be to accelerate the 

rate at which the discoveries, derived from high-throughput gene expression 

analysis, can be materialized into better cancer treatments. 
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