DOE/ET/28393-7

THERMAL WATERS OF UTAH TOPICAL REPORT

R

0

P

 \bigcirc

LATES

November 1978

MASTER

by

Utah Geological and Mineral Survey 606 Black Hawk Way Salt Lake City, Utah 84108

DISTRIBUTION OF THIS DOCUMENT IS LIMITED TO DOE Offices and BOE Contractors

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161 Price: Printed Copy \$9.00; Microfiche \$3.00

- NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Ś.S.

DOE/ET/28393-7 Limited Distribution

THERMAL WATERS OF UTAH

Topical Report

by

Harry D. Goode

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

- NOTICE -

Utah Geological and Mineral Survey 606 Black Hawk Way Salt Lake City, Utah 84108

November 1978

Prepared for the U.S. Department of Energy Under Contract No. DE-AS07-77ET28393

CONTENTS

2

ABSTRACT	Ţ
INTRODUCTION	3
Summary of Occurrences of Thermal Waters Purpose and Scope Evaluation of Temperature Measurements Origin of the Thermal Waters Hot Springs along the Wasatch Fault Zone Known Geothermal Resource Areas (KGRAs) Possible Uses for the Thermal Waters of Utah Recommendations for Future Work Acknowledgments Cited References	3 6 7 8 10 11 12 12 13
DESCRIPTIONS OF AREAS OF THERMAL WATERS	15
Areas That Have Hot, Warm, and Slightly Warm Water	15
Lower Bear River Area Bonneville Salt Flats Cove Fort-Sulphurdale Southern Curlew Valley East Shore Area Escalante Desert Escalante Valley (Roosevelt, Thermo) Fish Springs Grouse Creek Valley Heber Valley (Midway) Jordan Valley Pavant Valley - Black Rock Desert Sevier Desert Sevier Desert Sevier Valley Uinta Basin Utah and Goshen Valley Central Virgin River Basin	16 18 19 21 23 27 29 34 35 36 37 44 47 49 53 58 65
Areas That Have Warm and Slightly Warm Water	68
Beaver Valley Blue Creek Valley Cache Valley Canyon Lands Cedar City Valley - Parowan Cedar Valley Northern Juab Valley Park Valley Promontory Mountains Rush Valley Skull Valley Snake Valley Tooele Valley Tule Valley Wah Wah Valley	68 69 70 74 74 74 75 75 76 76 76 77 880 82

Areas That Have Slightly Warm Water		83
Grand Staircase Hansel Valley Pilot Valley Pine Valley Sink Valley Yuba Dam - Leamington Canyon		83 84 85 85 85
Other Occurrences of Hot and Warm Water: Casti Como Springs, Diamond Fork Spring, Patio S well in Great Salt Lake Desert	-	
RECORD OF THERMAL SPRINGS AND WELLS		88
Explanation for Tables in This Report		88
Areas That Have Hot, Warm, and Slightly Warm Wa Tables 1-A to 23-B	ter	92
Areas That Have Warm and Slightly Warm Water Tables 24 to 39		145
Areas That Have Slightly Warm Water Tables 40 to 45	•	168
Other Occurrences of Hot and Warm Water Table 46		171
SELECTED BIBLIOGRAPHY		172

z

ILLUSTRATIONS

:

Figure 1 - Map of Utah summarizing occurrence of thermal water.	2
Figure 2 - Ideal sections of progressive dislocation of valley block	. 9
Figure 3 - Map of East Shore Area showing thermal wells and springs.	24
Figure 4 - Map of Newcastle area showing geothermal test holes.	27
Figure 5 - Map of Thermo area showing geothermal test holes.	31
Figure 6 - Map of Jordan Valley showing thermal wells and springs.	38
Figure 7 - Map showing selected faults and temperatures of ground water in the Jordan Valley, Utah	42
Figure 8 - Map showing areal distribution of water temperature in the principal aquifer in Jordan Valley.	43
Figure 9 - Map of Ashley Valley Oil Field showing oil well locations and water temperature measurement sites.	54
Figure 10 - Map of Utah Valley, Utah, showing wells and springs that yield hot, warm, and slightly warm water.	59
Figure 11 - Well-numbering system used in Utah.	89
TABLES	
Table 1-A Lower Bear River Area. Springs and Wells with Water Temperatures of 20° to 105°C.	92

Table 1-B	Lower Bear River Area. Springs and Wells with Water Temperatures of 15.5° to 19.5°C.	93
Table 2	Bonneville Salt Flats. Wells and one spring with Water Temperatures of 20 ⁰ to 88 ⁰ C.	95
Table 3	Cove Fort-Sulphurdale. Measured temperatures and computed geothermal gradients in 13 drill holes.	20
Table 4-A	Southern Curlew Valley. Springs and wells with water temperatures of 20° to 43° C.	96
Table 4-B	Southern Curlew Valley. Springs and wells with water temperatures of 15.5° to 19.5°C.	96
Table 5-A	East Shore Area. Springs and wells with water temperatures of 20 [°] to 60 [°] C.	97
Table 5-B	East Shore Area. Springs and wells with water temperatures of 15.5° to 19.5°C.	99

6	Escalante Desert (Beryl, Lund, Newcastle). Selected- wells with water temperatures of 15.5° to 149°C.	102
7 - A	Escalante Valley. Springs and wells with water temperatures of 20° to 99° C.	103
7 - B	Escalante Valley. Springs and Wells with Water Temperatures of 15.5° to 19.5° C.	104
8	Fish Springs Group. Three Springs with water temperatures of 17.5° to 38°C.	106
9	Grouse Creek Valley. Springs and wells with water temperatures of 16° to 42° C.	106
10	Heber Valley. Springs and wells with water temperatures of 16° to 45° C.	106
11-A	Jordan Valley. Springs and wells with water temperatures of 20° to 58.5°C.	106
11 - B	Jordan Valley. Springs and wells with water temperatures of 15.5° to 19.5° C.	110
12 - A	Pavant Valley - Black Rock Desert. Springs and Wells with Water Temperatures of 20° to 67°C.	115
12 - B	Pavant Valley. Black Rock Desert. Springs and Wells with Water Temperatures of 15.5° to 19.5°C.	116
13-A	Sevier Desert. Wells that Yield Water of 20 ⁰ to 29 ⁰ C and One Spring at 82 ⁰ C.	120
13-B	Sevier Desert. Wells with Water Temperatures of 15.5 [°] to 19.5 [°] C.	121
14	Upper Sevier River Valley. Wells and Springs with Water Temperatures of 15.5° to 32°C.	124
15-A	Central Sevier River Valley. Wells and Springs with Water Temperatures of 20° to 76.5°C.	125
15-B	Central Sevier River Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5°C.	126
16 - A	San Pitch Valley. One Well and Two Springs with Water Temperatures of 20° to 55°C.	128
16-B	San Pitch Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5°C.	128
	7-A 7-B 8 9 10 11-A 11-B 12-A 12-B 13-A 13-B 13-B 14 15-A 15-B 16-A	 wells with water temperatures of 15.5° to 149°C. 7-A Escalante Valley. Springs and wells with water temperatures of 20° to 99°C. 7-B Escalante Valley. Springs and Wells with Water Temperatures of 15.5° to 19.5°C. 8 Fish Springs Croup. Three Springs with water temperatures of 17.5° to 38°C. 9 Grouse Creek Valley, Springs and wells with water temperatures of 16° to 42°C. 10 Heber Valley. Springs and wells with water temperatures of 16° to 45°C. 11-A Jordan Valley. Springs and wells with water temperatures of 16° to 58.5°C. 11-A Jordan Valley. Springs and wells with water temperatures of 16° to 19.5°C. 12-A Pavant Valley. Springs and wells with water temperatures of 15.5° to 19.5°C. 12-B Pavant Valley. Black Rock Desert. Springs and Wells with Water Temperatures of 15.5° to 19.5°C. 13-A Sevier Desert. Wells that Yield Water of 20° to 29°C and One Spring at 82°C. 13-B Sevier Desert. Wells with Water Temperatures of 15.5° to 19.5°C. 14 Upper Sevier River Valley. Wells and Springs with Water Temperatures of 15.5° to 32°C. 15-A Central Sevier River Valley. Wells and Springs with Water Temperatures of 20° to 76.5°C. 15-B Central Sevier River Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5°C. 16-A San Pitch Valley. One Well and Two Springs with Water Temperatures of 20° to 55°C.

Ľ.

.

-

.

8

~ >

Table 17	Uinta Basin-Ashley Valley. Temperature of Water from Oil Wells, an Irrigation Ditch, and Ashley Creek.	129
Table 18	EXPLANATION for Figure 7 and records of water temperature and conductance in the Ashley Valley oil field.	55
Table 19-A	Uinta Basin. Wells and Springs with Water Temperatures of 20° to 57.5°C.	130
Table 19-B	Uinta Basin. Wells and Springs with Water Temperatures of 15.5° to 19.5°C.	131
Table 19 - C	Uinta Basin. Gas and Water Wells with Tempera- tures of 17° to 34° C.	132
Table 20-A	Northern Utah Valley. Wells and Springs with Water Temperatures of 20° to 46° C.	133
Table 20-B	Northern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5°C.	134
Table 21-A	Southern Utah and Goshen Valleys. Wells with Water Temperatures of 20° to 34° C.	135
Table 21-B	Southern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5° C.	136
Table 22-A	Southern Utah and Goshen Valleys. Springs with Water Temperatures of 15.5° to 31.5° C., and a Mine with Water Temperature of 54.5° C.	141
Table 22-B	Goshen Valley. Wells with Water Temperatures of 15.5° to 19.5°C.	142
Table 23-A	Central Virgin River Basin. Wells and Springs with Water Temperatures of 20 $^{\circ}$ to 42 $^{\circ}$ C.	143
Table 23-B	Central Virgin River Basin. Wells and Springs with Water Temperatures of 15.5° to 19.5°C.	144
Table 24	Beaver Valley. Wells and Springs with Water Temperatures of 15.5° to 23.5° C.	145
Table 25-A	Blue Creek Valley. Wells and Springs with Water Temperatures of 20° to 28°C.	146
Table 25-B	Blue Creek Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5°C.	146

Ŧ

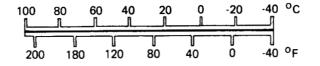
••

-

Table	26-A	Cache Valley. Wells and One Spring with Water Temperature of 20° to 49°C.	147
Table	26 - B	Cache Valley. Wells and One Spring with Water Temperatures of 16° to 19°C.	148
Table	27 - A	Canyon Lands. Wells with Water Temperatures of 15.5° to 28°C.	150
Table	27-В	Canyon Lands. Springs with Temperatures of 15.5° to 31° C.	152
Table	28	Cedar City Valley. Wells with Water Tempera- tures of 15.5° to 21°C.	156
Table	29	Parowan. Spring and Wells with Water Temperatures of 14.5° to 20° C.	156
Table	30	Cedar Valley. Wells with Water Temperatures of 15.5° to 27°C.	157
Table	31	Northern Juab Valley. Records of a Spring with Temperature of 20°C and a Well with Water Temperature of 15.5°C, and Chemical Analyses of Water from Both.	157
Table	32	Park Valley. Records of Springs with Water Temperatures of 16° to 26.5°C and Chemical Anlayses of Water from Those Springs	158
Table	33	Promontory Mountains. Records of Wells and Springs with Water Temperatures of 15.5° to 25°C and Chemical Analyses of Water from those Wells and Springs.	159
Table	34	Rush Valley. Records of One Well and Three Springs with Water Temperatures of 16° to 26.5°C and Chemical Analyses of Water from the Well and Springs	160
Table	35 - A	Skull Valley. Records of Wells and Springs with Water Temperatures of 20° to 26.5°C and Chemical Analyses of Water from Some of Those Wells and Springs.	161
Table	35 - B	Skull Valley. Records of Wells and Springs with Water Temperatures of 15.5° to 19.5°C and Chemical Analyses of Water from Some of the Wells and Springs.	162
Table	36	Snake Valley. Records of Springs and Wells with Water Temperatures of 15.5° to 27°C.	162

Table 37-A	Tooele Valley. Wells and One Spring with Water Temperatures of 20° to 30°C.	164
Table 37-B	Tooele Valley. Wells and One Spring with Water Temperatures of 15.5° to 19.5°C.	165
Table 38	Tule Valley. Wells and Springs with Water Temperatures of 16° to 31° C.	167
Table 39	Wah Wah Valley. Wells and Springs with Water Temperatures of 15.5° to 24.5°C.	167
Table 40	Grand Staircase. Springs with Water Temperatures of 15.5° to 35.5° C.	168
Table 41	Hansel Valley. Spring and Wells with Water Temperatures of 16° to 18° C.	169
Table 42	Pilot Valley. Well and Springs with Temperatures 15.5° to 16° C.	169
Table 43	Pine Valley. Well with a Water Temperature of 16° C	169
Table 44	Sink Valley. Wells with Water Temperatures of 15° to 18° C.	170
Table 45	Yuba Dam to Leamington Canyon. Springs in Mills Valley with Temperatures of 16.5° to 17°C.	170
Table 46	Records of Castilla, Como, Diamond Fork, and Patio thermal springs and of a well in the Great Salt Lake Desert.	171

ABSTRACT


Western and central Utah has 16 areas whose wells or springs yield hot water (35°C or higher), warm water (20°- 34.5°C), and slightly warm water (15.5°- 19.5°C). These areas and the highest recorded water temperature for each are: Lower Bear River Area, 105°; Bonneville Salt Flats, 88°; Cove Fort-Sulphurdale, 77°; Curlew Valley, 43°; East Shore Area, 60°; Escalante Desert, 149°; Escalante Valley (Roosevelt, 269°, and Thermo, 85°); Fish Springs, 60.5°; Grouse Creek Valley, 42°; Heber Valley (Midway, 45°); Jordan Valley, 58.5°; Pavant Valley-Black Rock Desert, 67°; Sevier Desert (Abraham-Crater Hot Springs, 82°); Sevier Valley (Monroe-Red Hill, 76.5°, and Joseph Hot Spring, 64°); Utah Valley, 46°; and Central Virgin River Basin, 42°. The only hot water in eastern Utah comes from the oil wells of the Ashley Valley Oil Field, which in 1977 yielded 4400 acre-feet of water at 43° to 55°C. Many other areas yield warm water (20° to 34.5°C) and slightly warm water (15.5° to 19.5°C).

With the possible exception of the Roosevelt KGRA, Crater Hot Springs in the Sevier Desert, Escalante Desert, Pavant-Black Rock, Cove Fort-Sulphurdale, and Coyote Spring in Curlew Valley, which may derive their heat from buried igneous bodies, the heat that warms the thermal water is derived from the geothermal gradient. Meteoric water circulates through fractures or permeable rocks deep within the earth, where it is warmed; it then rises by convection or artesian pressure and issues at the surface as springs or is tapped by wells. Most thermal springs thus rise along faults, but some thermal water is trapped in confined aquifers so that it spreads laterally as it mixes with and warms cooler near-surface water. This spreading of thermal waters is evident in Cache Valley, in Jordan Valley, and in southern Utah Valley; likely the spreading occurs in many other artesian basins where it has not yet been recognized. In the East Shore Area thermal water trapped in confined aquifers warms water in overlying aquifers.

Some of the areas of hot water, such as Roosevelt, Pavant-Black Rock, and Cove Fort-Sulphurdale, probably have a potential to produce electricity; the estimated potential at Roosevelt is 300 megawatts. But the many areas of warm and hot water whose temperatures are too low to produce electricity may still have their waters utilized for space heating, as is planned for Monroe, for greenhouses, and for the processing of farm produce.

In this report are tables that give records of about 1500 thermal springs and wells, 66 yield hot water, more than 400 yield warm water, and more than 1000 yield slightly warm water. The records include location, ownership, temperature, yield, depth (of wells), geologic unit, and some chemical analyses.

In this report temperatures are recorded in ${}^{\circ}C$. To convert ${}^{\circ}C$ to ${}^{\circ}F$ multiply by 2, subtract 10%, and add 32. For example: 22 ${}^{\circ}C$ = 44-4.4+32 = 71.6 ${}^{\circ}$ or 72 ${}^{\circ}F$

1

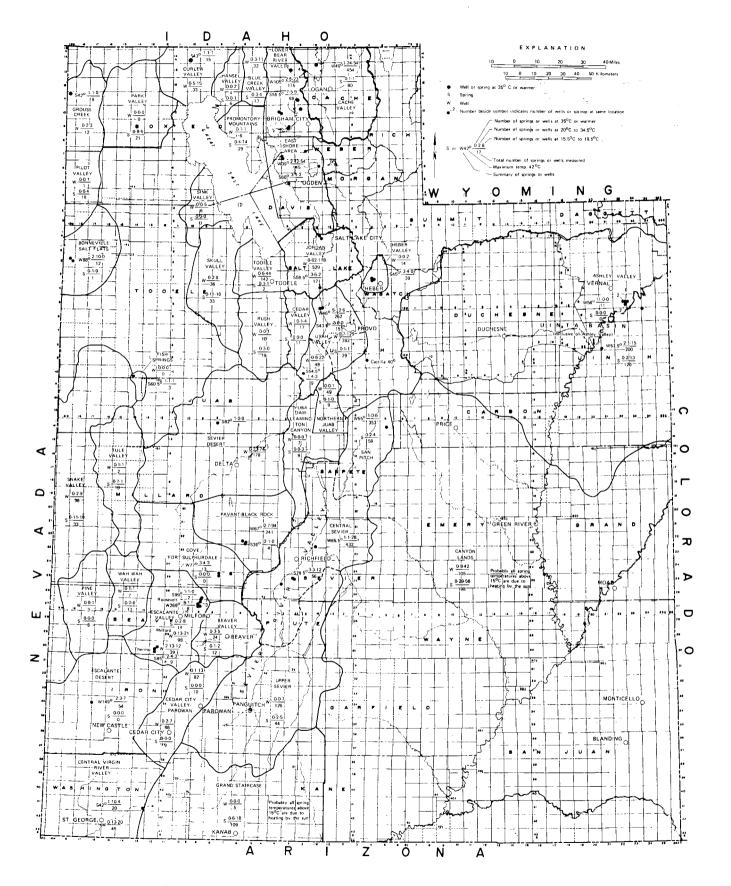


Figure 1. Map of Utah summarizing occurrence of thermal water.

INTRODUCTION

Summary of Occurrences of Thermal Water in Utah

Thermal waters are defined as those waters whose temperature is "appreciably above the mean annual temperature of the atmosphere" (Meinzer, 1923, p. 54). In this report, all water of 15.5°C or higher is considered to be thermal water. Thermal waters are here divided into three categories: hot water is 35° C or higher, warm water is 20° to 34.5° C, and slightly warm water is 15.5° to 19.5° C.

In western and central Utah there are 16 areas that have hot, warm, and slightly warm waters. In eastern Utah the only hot water comes from the oil wells of the Ashley Valley Oil Field. Warm and slightly warm water is discharged by wells or springs in 15 additional areas, scattered over the State, and slightly warm water occurs in 6 other areas. In addition, one isolated spring (Castilla) yields hot water of 40°, and three other springs and a well yield warm water of 20° to 16.5°. These areas and the number of springs and wells in each temperature range are shown on the map (fig. 1), and wells and springs that yield hot water are plotted on the map. Brief summaries of 16 significant areas are given here and all areas are discussed at greater length in the body of the report.

Lower Bear River Area -

Several hot springs $(42^{\circ} \text{ to } 55.5^{\circ}\text{C})$ have high yields of 450-5000 gallons per minute (gpm) but the water is moderately saline to briny (7,850 to 43,500 milligrams per liter (mg/l) dissolved solids).

In a geothermal test well near Brigham City a bottom-hole temperature of 105°C was measured at 11,005 feet.

Bonneville Salt Flats -

Wells drilled in connection with salt recovery have temperatures that range between 21° and 35° C; two deep wells have temperatures of 43° at 1200 ft and 88° at 1636 ft respectively.

Cove Fort-Sulphurdale -

There are no records of water wells or springs in the Cove Fort-Sulphurdale area, but Rush (1977) measured temperatures in 13 drill holes and the three highest were 77° , 49° , and 43° C in holes from 1000 to 400 feet deep. The computed geothermal gradients for those holes were 5.8°, 7.7°, and 7.1°C per 100 feet, respectively.

East Shore Area -

Temperatures $(21^{\circ} \text{ to } 39^{\circ})$ and chemical analyses of water from wells drilled by Great Salt Lake Minerals and Chemicals Corp. north of Little Mountain suggest that heat from a fault zone rises through aquifers and confining beds and warms water at shallow depths without circulation of the hotter saltier water from the fault zone itself.

Three hot springs, Hooper, Ogden, and Utah, yield moderately to very saline water at 60° , 57°, and 58.5° respectively.

Escalante Desert -

Two wells yield large quantities of slightly to moderately saline hot water: one 500 feet deep near Newcastle yields1700 gpm (pumped) of 35°C water, and one near Beryl Junction yields 1000 gpm (flow) of 149°C water from 7000 feet.

Escalante Valley -

The two Known Geothermal Resource Areas, Roosevelt and Thermo, with high temperatures of 269° and 85°C respectively, appear to have the potential to produce electricity, and Dotsons Warm Springs should be satisfactory for recreation. In addition, about 15 irrigation and domestic wells have water temperatures between 20° and 26.5° C.

If a 50-megawatt generating plant is put into operation at Roosevelt, a "spin-off" benefit probably will result because such a plant will have available about 500,000 gallons of waste water per hour at 116°C. Heat from this water could be used before the water is injected back into the geothermal reservoir (Val Finlayson, pers. commun., 1978).

Heber Valley -

Three springs near Midway yield slightly saline water at 39° to 45° ; several others yield warm water at 21° to 30° . Waters from several of the Midway Hot Springs are used in swimming pools.

Jordan Valley -

Three hot spring areas, Becks and Wasatch at the north end of the valley and Crystal near the south end, yield water of $40.5 - 58.5^{\circ}$ C. Becks and Wasatch have been used for recreation in the past, and the area around Crystal is being investigated to determine the feasibility of using some of the water for space heating in the Utah State Prison.

Warm water appears to move laterally in some of the artesian aquifers. Warm water of $20^{-}31^{\circ}$ C is reported in about 60 wells and slightly warm water of 15.5° - 19.5° C in another 120 wells. The areas of greatest concentration of warm water are a fan-shaped area in the north part of the valley and a northsouth elongate area in the south-central part.

An area of possible interest for further exploration is about $3\frac{1}{2}$ miles east of Magna where 5 wells show anomalously high silica contents of 71 to 82 mg/l. Water temperatures in these wells range from 17° to 21.5° C, well depths from 105 to 156 feet, and dissolved solids from 976 to 1220 mg/l.

Pavant Valley - Black Rock Desert

Meadow and Hatton Hot Springs yield moderately saline water of 35° - $36^{\circ}C$ and a 90-ft well near Hatton Hot Springs yielded water to $67^{\circ}C$. Studies of chemical temperatures of these waters by Parry and Cleary (1978, p.46) and by Rush (1978, written commun.) suggest that this area should be explored further for potential geothermal energy.

Sevier Desert -

Abraham (Crater) Hot Springs yields water at temperatures up to 82° C with 3200 to 3800 mg/l dissolved solids. Although it has been designated a Known Geothermal Resource Area (KGRA), chemical thermometer temperatures of 165°C (Na-K-Ca) and 110°C (SiO₂) reported by Parry and Cleary (1978, p.8) suggest that the area has little potential as a high-temperature resource.

All 175 wells for which water temperatures have been reported have temperatures of 11.5°C or higher, 2°C above the mean annual air temperature. Seventy-four of those wells have water temperatures between 15.5° and 19.5°C and 20 have water temperatures between 20° and 28° C.

Sevier River Valley -

In the Central Sevier Valley, Monroe and Red Hill Hot Springs $(76^{\circ} \text{ and } 76.5^{\circ})$ probably will soon be developed to provide space heating for schools and other buildings in Monroe. If that development is successful, it is likely that the water from Joseph Hot Spring (64°) could be similarly used.

In the San Pitch Valley, Crystal and Peacock Warm Springs yield fresh water at 22°C which is used for irrigation. A 5800-ft-deep well flows 300 gpm of fresh water at 55°C.

Vinta Basin -

Only oil wells yield hot water $(44.5^{\circ} \text{ to } 56^{\circ})$ in the Uinta Basin and only gas wells and two springs yield warm water $(20^{\circ} - 34.5^{\circ}\text{C})$.

In 1977 the Ashley Valley oil field produced more than 4400 acre-feet of hot water that was used for irrigation downstream from the field.

Utah Valley (Northern and Southern) and Goshen Valley -

The only hot springs in the area are at Saratoga (46° C), but water from the Burgin mine west of Goshen Valley yields moderately saline water at 54.5°C.

Despite the lack of hot water in southern Utah Valley there appears to be a heat source which heats water that then spreads laterally in the confined aquifers so that the median temperature of well water in southern Utah Valley is $14^{\circ}C$, $2\frac{1}{2}^{\circ}C$ higher than the median temperature of well water in northern Utah Valley.

Central Virgin River Valley -

The median temperature of well waters in the Central Virgin River Valley is 18°C and of springs 20.5°C, both above the average annual air temperature of 16°C. The only hot water (42°C) is at LaVerkin Hot Springs which discharge about 10 cfs of moderately saline water (9500 mg/l dissolved solids) into the Virgin River.

Cache Valley -

The north-south faults that bound the graben of Cache Valley apparantly permit warm water to rise from depth, but confining beds that overlie the artesian aquifers divert the water so that the heated water moves laterally away from the faults. Thus most of the warm and slightly warm water is concentrated in two tabular bodies, one on either side of the valley. One deep well (5,208 ft) that bottomed in Paleozoic rock yields moderately saline water at 49°. Eighty other wells yield water at 15.5° to 31°.

Canyon Lands -

Most of the warm water in the springs of Canyon Lands can be attributed to solar heating. Several "warm" springs of the Henry Mountains were remeasured in December 1977 and found to be definitely cool.

Purpose and Scope

This report is intended to provide information about the occurrence, geologic control, and potential for use of natural thermal waters of the State of Utah at 15.5°C or higher. Much of the information about thermal springs has come from J. C. Mundorff's report Major Thermal Springs of Utah, published in 1970 by Utah Geological and Mineralogical Survey as Water-Resources Bulletin 13 (in 1978 out of print). Information about wells that produce warm water and also additional information about warm-water springs have come from Technical Publications of the Utah Division of Water Rights, from other Water-Resources Bulletins of the Utah Geological and Mineral Survey, from Water-Supply Papers, Basic-Data Reports, Basic-Data Releases, Professional Papers, and Bulletins of the U.S. Geological Survey, and from unpublished records by the author.

The study consisted largely of compiling and evaluating information in published reports; one four-day field trip was made to remeasure temperatures of water from oil wells in the Ashley Valley oil field and to remeasure temperatures of a few springs in the Henry Mountains area. The study began on November 1, 1977, and the report was completed on May 31, 1978.

All work was done under Contract 78-5146 between the Utah Geological and Mineral Survey and the Contractor, Harry D. Goode, author of this report.

Evaluation of Temperature Measurements of Water in Springs and Wells

This study has considered all published occurrences of spring and well waters in Utah that have temperatures of 15.5° C or higher. These occurrences are listed in the tables that accompany each discussion of the thermal areas. Although it is recognized that a temperature of 16° recorded for a well 1000 feet deep is not as significant as the same temperature in a well 100 feet deep, the criterion used here is temperature and not depth of well, and the reader is left to evaluate the significance of the temperature/depth relationship.

Spring temperatures also must be evaluated not only because many springs issue from near-surface aquifers, such as thin pediments, that may be warmed by the sun, but also because spring temperatures are commonly measured where there is sufficient flow to make a conductance measurement or to collect a sample for chemical analysis rather than at actual points of seepage. Thus many above-normal temperatures of spring water are simply the result of excessive warming by the sun, and since most sampling and testing of spring waters is done during the warm-weather months, temperatures of 16° to as much as 30°C may not indicate an anomalous deep heat source.

During my studies of the Henry Mountains (Goode and Olson, 1977) in the summers of 1975-76-77, I measured temperatures of 150 springs, of which 50 had temperatures of 15.5°C or higher. Where possible these temperatures were measured where the water issued from the ground but many of the springs yield water by seepage so these temperatures were measured where the flow became concentrated enough for a conductance measurement or for sample collection. A few developed springs were measured where the water flowed from a pipe. Obviously the temperatures measured in the summertime some distance from point of issue will be anomalously high. To verify this explanation, in December 1977 I measured temperatures of about 10 springs in the Henry Mountains that had showed temperatures of 15.5° or higher during summertime measurements. All the remeasurements were cooler; one spring that had been measured at 23° in summer was frozen in winter.

My experience with measurements of spring temperatures seems to be confirmed by repeated measurements recently published for five springs in the south-eastern Uinta Basin (Conroy and Fields, 1977, p. 211). At each spring, temperatures were measured 9 to 14 times at approximately monthly intervals between December 1974 and September 1976.

Spring	gpm	^O C	^O C Total
	Range in yield	Range in temp.	Fluctuation
(D-15-20)15bbd	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 - 12.5	9.5
(D-15-23)36ddd		1 - 17	16
(D-15-24)10bcd		7 - 11	4
(D-15-25)13bad		5 - 12	7
(D-15-25)18cda		2 - 10	8

Although none of these springs has a particularly high temperature, all the highest temperatures were measured between the end of May and mid-September, suggesting some warming by the sun.

On Bonneville Salt Flats the U.S. Geological Survey in 1976 augered 119 test holes 1 to 19 ft deep (Lines, 1978). Water levels ranged from 1 inch above land surface to 11 feet below land surface, but most were within 2 ft of land surface. Temperatures measured in 60 of those holes between March 31 and April 7, 1976, ranged from 5° to 13°C with a median of 8°; temperatures measured in 40 of those holes between August 31 and September 28, 1976, ranged from 16° to 23° with a median of 21°. These measurements not only confirm the effect of the sun's heat on water temperatures but also indicate a magnitude of 13° for summer warming. Additional temperature measurements could refine the indicated magnitude of solar heating.

From the evidence above, I feel that many, probably most, of the temperature measurements of springs in the 16° to 30°C range are not indicators of a subsurface heat source, although I have included them in the tables.

Origin of the Thermal Waters

Essentially all the thermal waters of Utah have originated as meteoric water that has circulated deep below the surface of the earth and has been warmed by the normal or slightly elevated geothermal gradient. In some places, deeply circulating waters have warmed overlying bodies of water that now yield thermal water to wells by conduction. In some places, such as Roosevelt Hot Springs, Abraham (Crater) Hot Springs, Coyote Spring in Curlew Valley, Escalante Desert, Pavant-Black Rock Desert, and Cove Fort-Sulphurdale heating may result from a still-hot intrusive body or from adjacent volcanic rocks. It is unlikely that any of the thermal water is magmatic water (water derived from the cooling of magma as it solidifies).

Mundorff (1970, p. 6) has said that "nearly all thermal springs in Utah are in or very near fault zones that serve as escape routes for deeply circulated waters under artesian pressure." Meteoric water penetrates cracks and fissures in the bedrock of the mountains, moves deep within the earth and becomes heated, then seeks to escape back to the surface by the shortest possible route. Commonly, such a route is the fault that separates the mountain mass from the adjacent valley. Examples of this idealized system occur in many places in the Basin-Range Province in the western part of Utah, but the hot springs along the Wasatch Fault Zone present a special case because the bounding fault has only a shallow dip of about 35° (see discussion of Wasatch Fault Zone below). Where the meteoric water of the mountains penetrates only to moderate depths, it does not become heated but it may still return to the surface as cold springs along the bounding faults

Many of the wells that produce thermal water are located on or near faults, some of which also have nearby thermal springs, such as those at Saratoga near the Utah Lake Fault Zone. But many areas in the artesian basins of the Basin-Range Province have thermal wells that are not near thermal springs and the water presumably is warmed by conduction from deeper circulating hot water. For example, two areas in Cache Valley yield warm water to wells and are near buried faults that separate the valley from the adjacent mountain; a large warm-water area in the north-central part of Jordan Valley is apparently related to a buried fault; and in the western part of the East Shore area several wells near Little Mountain yield warm water from an area that may be near a buried fault. In such areas it appears that heated water rises along the fault but its vertical movement is finally stopped by a relatively impermeable confining bed that overlies the fault. The heated water then moves laterally and mixes with other water in the permeable zone, but the constant supply of heat warms the water in permeable zones that overlie the confining bed above the fault and that water, generally appreciably fresher than the water that rises along the fault, becomes available to be withdrawn by wells. This system might be described as a natural heat-exchanging system whereby deeply circulating, commonly saline water transfers its heat by conduction to an overlying fresher-water aquifer from which it is separated by a relatively impermeable confining bed.

Hot Springs along the Wasatch Fault Zone

Four of the five hot spring areas along the Wasatch Front occur on faults that bound the distal ends of spurs that project from the front, and only one of the spring areas is on the main Wasatch frontal fault. In addition, the Cutler Warm Springs, temperature 21°-26.5°C, "issue from limestones of Paleozoic age along the bed and banks of the Bear River...about one mile east of the main Wasatch fault" (Mundorff, 1970, p. 50). The discussion below will suggest that the main deep conduit for hot water is the frontal fault, but that most of the readily visible hot and warm water finds shorter routes to the surface along the faults that bound the spurs than along the frontal fault itself. Furthermore, the frontal fault may, through buried splinter faults, transmit heat to many areas of warm water of 15-20°C whose sources cannot be directly identified.

From north to south the five hot spring areas are:

	Spur	Distance in miles from main fault	°c	gpm Discharge	Total <u>solids</u> mg/l
Madsens (Crystal) (B-11-2)29da	Madsen	112	51-55.5	500-1800	38,500 45,500
Utah (B-7-2)14dca	Pleasant View	2 ¹ / ₂	57-58	250-700	18,900 25,200
Ogden (B-6-1)23ccd		On frontal fault	49-65	35-100	8,650 8,820
Becks-Wasatch (B-1-1)14dcb	City Creel	k 4-5	52-56	60-450	13,100 13,900
(B-1-1)25db			40-42	310-1020	5,590 12,800
Crystal (C-4-1)and (C-4-1)12b	Traverse Range	4	.50 - 58	45-60	1,300 1,700

8

Although Crystal Springs are included among these five hot spring areas in this group, it should be pointed out that Mundorff (1970, p. 34) attributes the source of heat for these springs to the Tertiary volcanic rocks that are about 700 feet deep, as well as the geothermal gradient.

Gilbert (1928, p. 22) in his report on basin-range structure, mentions these five springs in part of his discussion of the Wasatch fault, which is excerpted below. First, Gilbert points out that the plane of the "frontal fault of the range," as measured at about 10 places, generally dips about 35° , with one measurement of 20° and another of 45° (1928, p. 22). Then he describes how the spurs are created as successive movements occur on the frontal fault:

The local dip line is assumed to be straight except at a single place, low down, where a firmly fixed knob of strong rock projects from the footwall. During early stages of the movement (A) (fig. 2) weaker rocks of the valley block make the necessary adjustment by flow. At some later stage the knob punches out a piece of the valley block, creating a spur block. If the spur block were merely severed and the valley block moved away from it a chasm would be created (B) like the crevasse of a glacier, but the parts are too heavy to permit this, and their settling yields a condition like that shown in (C) (1928, p. 32).

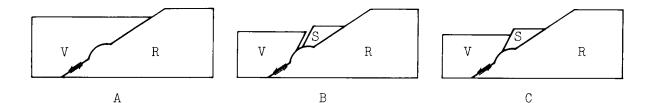


Figure 2. Ideal sections of progressive dislocation of valley block, V. and range block, R, to illustrate hypothetical derivation of spur block, S. (Source: Gilbert, 1928, fig. 27)

Gilbert continues:

all four of the fault-block spurs are accompanied by thermal springs, whose waters rise along their bases. The spur base is lower than adjacent parts of the range base, and the point of issue at each spur locality may be determined by that fact, but that conclusion does not explain the scarcity of thermal waters on the long line of the frontal fault. It may be that the outer faults of the spurs are peculiarly favorable for the conveyance of deep penetrating circulation because of the conveyance of the less perfect adjustment there of the fault walls (p. 32).

Gilbert then estimates that where the mean annual air temperature is 52° (11°C), as at Salt Lake City, and where the temperature gradient is 1°F for each 75 feet, rock temperature of 134° (56.5°C) is reached at depth of 6,150 feet.

This may be accepted as an underestimate of the depth to which water circulates on the faults that limit the spurs (p. 33).

When we realize that Gilbert also attributed the fluctuations of temperatures of some thermal springs to "the dilution of a practically constant discharge of uniformly hot water rising from the depths with a variable discharge of cool ground water," and that "in localities that show no indications of recent volcanism the heat of waters rising along the fault is presumably derived from the inner earth's store" (p. 33), we have to admit that Gilbert did a magnificent job of interpreting the geologic environment of the hot springs near the Wasatch fault zone. But I should like to expand on his interpretation of the reason for the concentration of hot springs on the faults bounding the spurs rather than on the main frontal fault. In addition to the "less perfect adjustment...of the fault walls" of the bounding faults, the steep bounding faults provide shorter conduits to the surface than does the frontal fault. From this we can infer that meteoric water circulates at great depth and is heated along the frontal fault, then rises to the surface by the shortest routes. The best exposed of these short routes are at the distal ends of the spurs, but it is likely that there are many similar small faults, now buried by surficial deposits, that act as escape routes for warm water that rises along the frontal fault elsewhere. These hidden escape routes may permit the rising of hot waters in many places that cannot be pinpointed, but instead effect a general warming of the subsurface water. This phenomenon could be the explanation for areas that produce water of 15° to 20° C, about 4° to 9° above the mean annual air temperature.

Marsell (Milligan and others, 1966, p. 4) suggests that "Commonly the heated water finds freer avenues of escape to the surface along the more open fissures in the 'footwall' of the fault than along the major fault plane itself. Thus many thermal springs issue at points several hundred feet back from the associated fault zone. Examples are: Cutler Thermal Springs, where Bear River breaches the Wasatch Range; the hot springs at the mouth of Ogden Canyon; and the LaVerkin Hot Springs along the Virgin River just east of the Hurricane Fault Zone."

Known Geothermal Resource Areas (KGRAs)

The Energy Resources Map of Utah (Utah Geol. & Mineral Survey, 1975) classifies geothermal areas into three categories, Original KGRA, Known Geothermal Resource Area defined by geologic criteria; Administrative KGRA, Known Geothermal Resource Area defined by competitive interest; and Area Potentially Valuable for Geothermal Resources (PVGRA). These areas and the areas under lease are listed here (Rush, 1978).

Original KGRAs	Total ₂ Area (Km ²)	Area leased
Roosevelt Hot Springs (Escalante Valley)	121	100
Abraham (Crater) Hot Springs (Sevier Desert	;) 70	70
Administrative KGRAs		
Navajo Lake	10	. 0
Lund (Escalante Desert)	16	14
Thermo Hot Springs (Escalante Valley)	100	54
Cove Fort-Sulphurdale	100	. 79
Monroe, Red Hill, Joseph (Sevier River)	66	2.9
PVGRAs		
Little Mountain (East Shore Area)		*
East Tintic-Burgin Mine (Utah and Goshen Va	lleys)	
Wilsons Hot Springs (Fish Springs)		
Black Rock Desert-Neels well		
Bonneville Salt Flats		

Presumably these areas were classified on their apparent potential to yield geothermal energy that could be used to generate electricity.

Since the publication of the map, Navajo Lake has been dropped from the list, and the Roosevelt, Thermo, and Cove Fort-Sulphurdale areas have been identified by Rush of the U.S. Geological Survey as having potential for generating electric power. The Earth Science Laboratory at the University of Utah Research Institute has also recommended that the hot springs at Monroe be used for space heating in two schools and other municipal buildings in Monroe. These geothermal areas are discussed in more detail in the appropriate sections on individual areas.

Exploration near Beryl (see Escalante Desert) located 149^oC water at 7000 feet, and exploration by Great Salt Lake Minerals and Chemicals Corp. near Little Mountain (see East Shore Area) located hot water at about 900 feet. No other exploration in those areas has been reported.

Further information about history and problems of developing the geothermal resources of Utah are contained in Utah Energy, Research Report No. 8 of the Office of Legislative Research (Millar and Searle, 1976).

Possible Uses for the Thermal Waters of Utah

This study originally set as its limit waters in the temperature range $15.5^{\circ}-90^{\circ}C$, but this report has also included reported temperatures appreciably higher (such as the geothermal-test well near Beryl whose water temperature was reported as $300^{\circ}F$, $149^{\circ}C$). Therefore, we shall begin this section on utilization of thermal waters by removing from consideration all geothermal systems that may have a potential to produce electrical energy, say those above $200^{\circ}C$. Thus all thermal waters not used to generate power and all geothermal waters discarded after generation of power can be considered to be available for other uses.

The areas that have thermal waters are shown on figure 1; some of the possible uses are considered below.

Uses for thermal waters can be divided into three categories: domestic, in which the waters come into contact with human beings; agricultural, in which the waters come into contact with crops; and industrial, in which the waters are kept within the industrial system. For many of the specific uses within each category there are limitations about the chemical quality of the water that may be used. These limitations are complex and therefore no attempt will be made here to define the quality of water required for each use. Rather, some of the possible uses and the minimum temperatures needed for each use are listed here. (The interested reader is referred to a short discussion. Relationship of quality of water to use. in Hem, 1970, or to a more complete discussion in Water Quality Criteria by McKee and Wolf, 1963).

Domestic	Agricultural	Industrial
Heating swimming pools Therapeutic bathing Home hot-water Public hot-water supplies at campgrounds, resorts, etc.	 30° Sish farming 20° 40° Soil warming 30° 90° Greenhouse 50° 95° Protein extraction 50° from plants Mushroom growing 50° Animal husbandry 60° Drying produce 100° 	Space heating $15^{\circ}-25^{\circ}$ (with pumps) All-year mining 30° Deicing 30° Space heating $60^{\circ}-90^{\circ}$ (optimum) Refrigeration 70° Drying cement 110° Air conditioning 110° (H ₂ O+Li+Br system)

(Industrial uses continued)

Fresh water by 120[°] distillation Sugar refining 120[°] Evaporation of 120[°] saline solutions Food canning 140[°]

Many more uses of thermal waters and the problems of such utilization are given in the papers presented at a symposium held in San Diego, California, January 31 - February 2, 1978. The papers were published by Geothermal Resources Council, P.O. Box 98, Davis, California 95616, under the title Direct Utilization of Geothermal Energy: a Symposium.

Obviously the warm and hot waters of Utah could be put to many uses. So far, utilization has been minimal, a few greenhouses and swimming pools; but as other sources of energy become more costly we can expect appreciable development of thermal waters for space heating, greenhouses for year-round production of highvalue crops, food processing, and many of the other uses listed above.

Recommendations for Future Work

Periodic Up-Dating of Thermal Data

This study has confined itself principally to data in published reports, supplemented by small amounts of information collected by the author in prior investigations of water resources. Thus, descriptions of some areas, such as Tooele Valley and Northern Utah Valley, depend on information collected more than 15 years ago. Therefore, there should be added to the tables presented here information collected since the last publication of data, and a program of periodically updating the file on thermal waters should be instituted.

Use of Thermal Water - Temperature and Quality Requirements

Some areas in Utah, such as the lower Bear River area and Ashley Valley, annually discharge thousands of acre-feet of hot water, and, if a 50-megawatt generating plant is put into operation at Roosevelt Hot Springs, many million gallons of water above the boiling point will be discharged each day as waste water from the plant.

This study has presented a short list of possible direct uses for thermal water. A fuller study could equate the amounts, temperature, and quality of thermal waters with the specific requirements of various uses.

Acknowledgments

This report on thermal water in Utah is the result of a study of the literature on ground water in Utah. The more than 1500 well and spring records that are included in the report were culled from about 6000 records of wells and springs on which water temperatures were measured and published by hydrologists of the U.S. Geological Survey over a period of many decades. Without this large amount of basic data, the records of water temperatures included here would have been appreciably less complete. Similarly, most of the discussions of geology have been taken from reports by geologists of the U.S. Geological Survey. Thus I owe a deep debt of gratitude to all whose material I have used. Val Finalyson of Utah Power and Light Co. supplied me with information about geothermal test wells drilled near Brigham City and in the Escalante Desert, and Richard Peterson of Equity Oil Co. discussed the wells of the Ashley Valley Oil Field with me. To both I am grateful.

This report was prepared under contract #78-5146 between the Utah Geological and Mineral Survey and me. During the preparation of the report I received excellent cooperation from the drafting and clerical staff of the Utah Survey, and I am especially grateful to Donald T. McMillan, Director, for editing the manuscript and to Brad Taylor for preparing most of the tables of wells and springs that have slightly warm water. Wallace Gwynn and Peter Murphy contributed reports and made suggestions that were extremely helpful as the work progressed.

Cited References

The references listed here apply only to the foregoing introductory material. References that apply to the individual areas of Utah that are discussed in the next section are listed at the end of each sub-section. A selected bibliography at the end of this report lists other works that were consulted but not listed.

- Conroy, L.S., and F.K. Fields, 1977, Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976: U.S. Geol. Survey Utah Basic-Data Release No. 29, 244 p.
- Geothermal Resources Council, 1978, Direct utilization of geothermal energy: a symposium at San Diego, California, Jan. 31 Feb. 2, 1978, 133 p.
- Gilbert, G.K., 1928, Studies of Basin-Range structure: U.S. Geol. Survey Prof. Paper 153, 92 p.
- Goode, H.D., and Eric Olson, 1977, Reconnaissance appraisal of the water resources of the Henry Mountains coal field, Wayne and Garfield Counties, Utah. Univ. of Utah, College of Mines and Mineral Industries, 85 p.
- Hem, J.D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 363 p.
- Lines, G.C., 1978, Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah: U.S. Geol. Survey Basic-Data Release No. 30, 14 p.
- McKee, J.E., and H.W. Wolf, 1963, Water Quality Criteria: California State Water Quality Control Board Publ. 3-A, 548 p.
- Meinzer, O.E., 1923, Outline of ground-water hydrology with definitions: U.S. Geol. Survey Water-Supply Paper 494, 71 p.
- Millar, R.D., and R.T. Searle, 1976, Utah Energy a staff report to the Joint Legislative Committee on Energy Policy: Utah Office of Legislative Research, Research Rept. 8, 115 p.
- Milligan, J.H., R.E. Marsell, and J.M. Bagley, 1966, Mineralized springs in Utah and their effect on manageable water supplies: Utah State Univ., Logan, Utah, Water Research Lab. Rept. WG23-6, 50 p.

Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.

Parry, W.T., and M. Cleary, 1978, Na-K-Ca and SiO₂ temperature estimates for Utah spring and well waters: U.S. Geol. Survey, Geothermal Research.

Rush, F.E., 1977, Subsurface temperature data for some wells in western Utah: U.S. Geol. Survey Open-File Report 77-132, 84 p.

DESCRIPTIONS OF AREAS OF THERMAL WATERS

The thermal waters of Utah are divided into three categories: hot at 25°C and higher, warm at 20° to 34.5°C, and slightly warm at 15.5° to 19.5°C. The seventeen areas of Utah that have hot water also have warm and slightly warm water. They will be discussed first, in alphabetical order. Then the areas that have warm and slightly warm water will be discussed followed by the areas that have only slightly warm water. Finally, a few isolated thermal springs and a well will be discussed.

The discussions of each area refer to tables of records of thermal springs and wells and of chemical analyses where they are available. These tables follow the text of the report.

References for the discussions and records of the individual areas follow each discussion. Additional but uncited references appear in the Selected Bibliography.

Areas That Have Hot, Warm and Slightly Warm Water

Sixteen areas in the western and central part of Utah and the Ashley Valley oil field in the Uinta Basin in the eastern part of Utah yield hot, warm and slightly warm water to wells or springs. The hottest water at 269°C has been measured in a geothermal test well in the Roosevelt KGRA in the Escalante Valley. That area probably has potential to generate electricity, perhaps as much as 300 megawatts (Ward and others, 1978). Another area, Monroe-Red Hill Hot Springs in the Sevier River Valley, is being developed to provide space heating. It is likely that the hot and warm waters of some of the other of these seventeen areas could be utilized for space heating, greenhouses, or food processing. Descriptions of these seventeen areas follow.

Cited References

Ward, S.H., W.T. Parry, W.P. Nash, W.R. Sill, K.L. Cook, R.B. Smith, D.S. Chapman, F.H. Brown, J.A. Whelan, and J.R. Bowman, 1978, A summary of the geology, geochemistry, and geophysics of the Roosevelt Hot Springs thermal area, Utah: Geophysics, v. 43, p. 1515-1542.

15

Lower Bear River Area

INTRODUCTION

The lower Bear River area includes the easternmost portion of Box Elder County. It encompasses about 700 square miles in the valleys of the Lower Bear River and its principal tributary, the Malad River.

SUMMARY of OCCURRENCES of HOT and WARM WATER

The hot- and warm-water springs of the Lower Bear River Valley yield water that is slightly saline to briny (2120 to 43,500 mg/l dissolved solids), and the hot springs above 42° C generally have high yields of 450 to 5000 gpm. Despite this seeming evidence for a subsurface source of high heat, the only geothermal test well in the area, (B-10-2)bcc, reported a temperature of only 105°C at 11,005 feet.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

Precambrian and Paleozoic rocks form the mountains that bound the area on the east and west, and Cenozoic rocks fill the valleys. No rocks of Mesozoic age are exposed in the area, probably because the area was a highland of the Sevier Orogenic belt in late Mesozoic time and therefore early Mesozoic rocks that may have been deposited were eroded away.

Today the dominant structure is a narrow north-trending graben, or series of grabens, that is a continuation of the graben structure along the Wasatch Front farther south. Little Mountain, west of the main part of the graben, is a horst bounded by north-trending faults.

Cenozoic deposits fill the graben to thicknesses that may reach 8000 feet (Bjorklund and McGreevy, 1974, p. 11). These deposits are principally deltaic and lake-bottom deposits except around the margins of the valleys where there are alluvial, colluvial, and landslide deposits. The great bulk of the deltaic and lacustrine deposits consists of silt and clay with interbedded alluvial sand and sparse gravel. Except where this valley fill has been drained by streams that have dissected it, it is so saturated that Bjorklund and McGreevy have mapped most of the valley fill, perhaps half of the total area, as areas of natural discharge (1974, plate 2). About 190,000 acre-feet of the natural discharge of 295,000 acre-feet per year is by springs and drains (figures adjusted from Bjorklund and McGreevy, 1974, p. 21). Springs near West Hills, Blue Springs Hills, and Little Mountain discharge about 30,000 acre-feet annually from Paleozoic limestone or from unconsolidated sediments nearby. Another 30,000 acre-feet is discharged by "springs along the west side of the Wasatch Range and Clarkston Mountain." And "at least 140,000 acre-feet of water is discharged annually from springs and drains on the valley floor" (Bjorklund and McGreevy, 1974, p. 23-24).

OCCURRENCES of WARM and HOT WATER

A now abandoned geothermal-test well had a reported bottom-hole temperature of 105°C from a depth of 11,005 feet (Val Finlayson, Utah Power & Light Co., pers. commun. 1978), and twelve springs and six water wells have reported water temperatures of 20° to $74^{\circ}C$ (table 1A). Of the latter 18, nine are between 20° and 34° , six between 35° and 49° , and three others are at 51° , 53.5° , and 74° respectively. The highest temperature, 74° , was measured in a well, (B-9-3)27cba, 502 feet deep. This well produced gas and was plugged and abandoned. A companion well, $(B-9-3)27cba_2$, 500 feet deep, also produced gas. Its water temperature, 43° , was measured in a pool, so it is probably appreciably lower than if measured at the discharge point. The geologic map of Bjorklund and McGreevy (1974, plate 1) shows a northwest-trending normal fault in the immediate vicinity of the two wells. Likely the fault is the source of the heat. Four wells (table 1A) have reported water temperatures of 20° to 29° . Two of these, (B-10-3)4add and (B-10-3)33dac, are nearly on a N-S line with the two wells above. If the inferred N-S fault that is shown on the Bjorklund-McGreevy geologic map were plotted about one mile to the west, all four of these wells would be close to that plot. The remaining two wells obtain their water from Paleozoic limestone and the Tertiary Salt Lake Formation, respectively. The

Of the dozen springs, five have temperatures of 21° to 26° and seven have temperatures from 42° to 53.5° . The five with the lower temperatures rise from the Oquirrh Formation or other Paleozoic rocks, and at least Cutler Warm Springs and the two near Little Mountain are controlled by faults; probably the other two are also. Stinking Hot Spring, Little Mountain Hot Spring, and Crystal Hot Spring are all controlled by faults. (See discussion of Hot Springs along the Wasatch Fault Zone for further information about Crystal Hot Spring and Cutler Warm Springs). The four springs that rise in (B-13-2)23 probably are those called Uddy Hot Springs by Mundorff. He says that they "issue from Paleozoic limestones at the small escarpment between the flood plain and the higher levels of the Malad River valley...The springs may issue in the vicinity of a fault concealed beneath the valley fill of Quaternary age" (1970, p. 32).

Only one of the warm-water wells, (B-12-3)15cdc, yields water of even passable quality, probably about 1000 mg/l dissolved solids; the other five apparently yield or did yield water that is too salty for use. Similarly, all the warm- and hot-water springs yield water that is slightly saline to briny (2120 to 43,500 mg/l dissolved solids). In general the hot springs above 42°C have high yields of 450 to 5000 gpm. Only Stinking Hot Spring yields less, an estimated 45 gpm. The five springs that have temperatures from 21° to 26° have appreciably lower yields of 2 to 15 gpm.

Twenty-two wells and eight springs yield water at temperatures from 15.5° to 19.5°C (table 1B). Conductance measurments show that the quality of this cooler water is appreciably better than the quality of the warmer water, but even several of these springs and wells yield slightly to moderately saline water of up to about 10,000 mg/l.

Cited References

Bjorklund, L.J., and L.J. McGreevy, 1973, Selected hydrologic data, lower Bear River drainage basin, Box Elder County, Utah: U.S. Geol. Survey Basic-Data Release No. 23, 22 p.

, 1974, Ground-water Pesources of the lower Bear River drainage basin, Box Elder County, Utah: Utah Dept. Nat. Resources Tech. Publ. No. 44, 58 p.

Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.

Bonneville Salt Flats

INTRODUCTION

The Bonneville Salt Flats are in western Tooele County adjacent to the Nevada border. Wendover is the only town, and the principal industry is the extraction of salt from brines that underlie the salt flats. The wells drilled to explore for and recover the brines provide the principal information about subsurface temperature.

SUMMARY of OCCURRENCES of HOT and WARM WATER

Many shallow and deep wells drilled to extract brines from the Bonneville Salt Flats have reported warm and hot water. Two deep wells that seem to straddle a northeast-trending fault reached water of 43° at 1200 feet and 88°C at 1636 feet, respectively.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The Bonneville Salt Flats are in an asymmetric two-step graben whose axis trends about N50°E (Turk, 1973, fig. 3). The northwestern boundary of the graben is the Silver Island Mountains formed largely of Paleozoic sedimentary rocks, but "intruded by five stocks of unknown age, ranging in composition from quartz monzonite to granodiorite (Whelan and Petersen, 1974, p. 75). In addition, there are dikes of various compositions and "seven volcanic flows of rhyolite or andesitic composition in the southern Silver Island Pange" (Whelan and Petersen, 1974, p. 77). The southeastern flank of the graben probably is composed of volcanic rock but it has no surface expression and is hidden by the valley fill.

"The basin overlying the volcanic rocks was filled with fluvial and later lacustrine sediments of Plio-Pleistocene age" (Turk, 1973, p. 1). The youngest deposits form the salt crust which underlies about 150 square miles "and ranges in thickness from a feather edge to nearly 5 feet in the center...The sediments underlying the salt crust are saturated with sodium chloride brine" (Turk, 1973, p. 1).

Turk (1973, p. 1) has identified three aquifers: 1) an alluvial fan aquifer off the southeast slope of the Silver Island Mountains that supplies brackish water to 27 wells, 2) "a deep stratified aquifer holding low-grade brine recoverable by deep wells, and 3) a shallow aquifer of lacustrine sediments containing high-grade brine which is harvested for its potassium chloride content."

OCCURRENCE of HOT and WARM WATERS

Turk (1973, p. 5) reports one spring, Blue Lake Spring, (C-4-19)6d, about 15 miles south of Wendover, that yields moderately saline water at a temperature of 29°C (84°F). All other temperature data come from wells, of which only a few records are given here in table 2. Most of the wells, even one, (C-1-19)23cbc, that is 1496 feet deep, have water temperatures that range from 21°C to 35°C, but deep wells 1 and 3 reached water of 43°C at 1200 feet and 88°C at 1636 feet, respectively. These last two wells seem to straddle a southwestward extension of the inner fault on the southeast side of the graben.

Whelan and Petersen have computed reservoir temperatures using the Na-K-Ca method of Fournier and Treusdell, and have determined that the temperature for well #5 is 270°C, for DBW13, 199°C, and for DBW8, 285°C. Because the waters of DBW8 and 13 are so briny, Whelan and Petersen feel that the temperature at well #5, 270°C, may be the best indicator of the reservoir temperature (1974, p. 77).

Whelan and Petersen (1974, p. 78) conclude that "Bonneville Salt Flats just south of Wendover, Utah, possibly contain a geothermal reservoir. All of the theoretical requirements for the system could be present. There is a buried intrusive which could be the heat source; water in the form of brines appears to be present; the faulting of the Wendover Graben could provide the required permeability; and buried volcanics could provide the cap rock."

Although Turk (1973, p. 74) doesn't specifically deny the existence of a thermal reservoir, in his short discussion on the Great Salt Lake Desert he suggests that the warmth of the water may be due to a high geothermal gradient which results from a hindering of heat flow by the thick porous clay beds that underlie the desert. "The implication is that areas of thick clay accumulation, like the Great Salt Lake Desert, may have a low-temperature geothermal potential without a near-surface source of heat..."

Cited References

- Lines, G.C., 1978, Selected groundwater data, Bonneville Salt Flats and Pilot Valley, western Utah: U.S. Geol. Survey Basic-Data Release No. 30, 14 p.
- Stephens, J.C., 1974, Hydrologic reconnaissance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah: Utah Dept. Nat. Resources Tech. Pub. No. 42, 48 p.
- Turk, L.J., 1973, Hydrology of the Bonneville Salt Flats, Utah: Utah Geol. and Mineral Survey Water-Resources Bull. 19, 81 p.

Whelan, J.A., and Petersen, C.A., 1974, Bonneville Salt Flats - a possible goethermal area?: Utah Geology, vo.1, n. 1, p. 71-82.

Cove Fort - Sulphurdale

Cove Fort-Sulphurdale, in an area of Quaternary volcanic rocks, is listed as an Administrative KGRA in the section on Known Geothermal Resource Areas, above. No records of water wells in the area were found in the literature, and Mundorff (1970, p. 50) reported an unsuccessful search for "Sulphurdale Hot Springs" that may have been related to the mining of sulfur deposits in the area.

Rush (1977) reported temperature measurements that he made in 13 wells or drill holes in the Cove Fort-Sulphurdale area, and I have computed geothermal gradients from his reported measurements:

Coordinate of drill hole	Bottom	Bottom	Reference	Reference	Gradient
	depth	temp. ^O C	depth	temp.°C	C/km
(C-23-8)28ba	104	18.94	20	15.34	141
33cd	295	22.34	105	15.89	116
(C-23-9)34cd	293	18.96	105	15.84	56
(C-24-8) 2ac	377	19.64	105	17.10	30
9a	487	20.32	100	14.77	46
(C-24-9)12cc	493	21.00	100	16.14	39
25ba	168	13.20	100	12.84	16
(C-25-7) 2cc	1000	77.20	100	25.10	190
(C-25-9) lcc	400	43.00	100	21.85	232
7cc	206	17.83	105	16.60	39
12dc	4 <i>3</i> 7	49.30	100	23.47	252
(C-26-7)18cc	112	12.62	20	11.02	56
(C-26-8)27bc	289	14.80	105	12.82	36

Table 3. - Cove Fort-Sulphurdale. Measured temperatures and computed geothermal gradients in 13 drill holes. Data from Rush, 1977.

Three of those holes show very high geothermal gradients of 190, 232, and 252, but only further exploration will reveal the potential of the area.

Cited References

Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.

Rush. F.E., 1977, Subsurface-temperature data for some wells in western Utah: U.S. Geol. Survey Open-File Report 77-132, 84 p.

Southern Curlew Valley, Utah

INTRODUCTION

Curlew Valley heads in southern Idaho, crosses into Utah, and drains into the northern part of Great Salt Lake. The Utah (southern) part of Curlew Valley encompasses about 550 square miles (Bolke and Price, 1969, p. 1). Probably fewer than 300 people live in the Utah portion of the valley and essentially all of them are engaged in agriculture, principally the raising of livestock.

SUMMARY of OCCURRENCES of HOT and WARM WATER

Coyote Spring, (B-14-10)33bcc, yields about 20 gpm of hot $(43^{\circ}C)$ moderately saline (3240 mg/l) water. Volcanic rocks crop out a mile or two from the spring and probably underlie the spring area at depth. Although only two wells, both about 10 miles southwest of the spring have reported warm saline water, the spring area would seem to be a likely place to explore for hotter water at depth.

Another area, between Rose Ranch and the Idaho border, has five wells with water of 20° - 24°C; three of these appear to line up with an inferred N-S fault. One of these wells, (B-15-9)28cbb, yields slightly saline water that has 77 mg/l silica and 2640 mg/l dissolved solids; two others yield fresh water. Probably water in this temperature range could be expected in the vicinity.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The Utah portion of Curlew Valley is flanked on the west by the Raft River Range and on the east by the Hansel Mountains. Northward the Utah portion receives drainage from Idaho and southward it opens toward Great Salt Lake. Within the Utah portion of the valley are hills of Tertiary and Quaternary felsic volcanic rocks and basalt that cap a gravity high which occupies the central and eastern portions of the valley (Baker, 1974, plate 2). Thus the valley fill in the central and eastern portions is probably less than 1000 feet thick whereas in the western portion there is a trough at least 3000 feet deep between the Raft River Range and the Wildcat Hills.

"The consolidated rocks surrounding Curlew Valley and underlying it at depth have been distorted by repeated episodes of structural deformation... The abundant faults, fractures, and associated solution openings form the principal conduits through which water moves in the older consolidated rocks in the Curlew Valley drainage basin. Major structural features probably exerted considerable influence on the distribution of the basaltic lava flows, which are an important element of the ground-water flow systems in the valley fill...(and provide) the principal source of water to many wells in the area" (Baker, 1974, p. 12-13).

Because the hydrology of the valley is complex, Baker (1974, p. 1) has distinguished three major ground-water flow systems "that contain water of suitable chemical quality for irrigation. A fourth flow system, which contains hot, saline water, is present at depth in the western part of the valley."

OCCURRENCES of HOT and WARM WATER

Hot (45[°]C) moderately saline water (3240 mg/l dissolved solids) is yielded by Coyote Spring, (B-14-10)33bcc (table 4-A). "Although no other source in Curlew Valley produces thermal water, two wells in the Kelton area (about 10 miles southwest of Coyote Spring) reportedly encountered hot saline water at depth (probably below 500 feet)... These data suggest that hot saline water may underlie at least part of the western half of Curlew Valley."

"The high temperatures of water in the system probably indicate the presence in the subsurface of a relatively young intrusive body that is still hot, or relatively deep circulation of the water" (Baker, 1974, p. 34). A mile long outcrop (dike?) of basalt that Baker has mapped about a mile west of Coyote Spring suggests that there may be a hydrologic barrier between the source of Coyote Spring and the thermal waters encountered in the two wells cited above, but the presence of volcanics in the Wildcat Hills that also lie between the spring and the wells and the gravity high in the same area are strong evidence for a deep volcanic source for the heat for both the spring and the wells.

A temperature of 25° is reported for a spring (B-13-12)30caaS that discharges near several presumably cooler springs that are near the base of an alluvial fan at the southeast corner of the Raft River Range. Other springs with temperatures of 21° to 23° are reported a few miles to the west in the Park Valley area.

Five wells in Ts. 14 and 15 N., R.9 W. between the Rose Ranch and the Idaho border have reported temperatures of 20° to 24°C. In the vicinity are other wells 15.5° - 19°C. Baker's geologic map (1974, plate 2) shows an inferred N-S fault about on line with three of the wells (20.5° - 24°); he makes no specific mention of the wells or the fault, but if there is a fault it could be the source of heat for the warmer water.

The very saline Black Butte Spring, 20,300 mg/l dissolved solids, yields slightly warm water of 19^o near a basalt outcrop (table 4-B).

Cited References

- Baker, C.H., Jr., 1974, Water resources of the Curlew Valley drainage basin, Utah and Idaho: Utah Dept. Nat. Resources Tech. Pub. No. 45, 83 p.
- Bolke, E.L., and Don Price, 1969, Hydrologic reconnaissance of Curlew Valley, Utah and Idaho: Utah Dept. Nat. Resources Tech. Pub. No.25, 35 p.
- Hood, J.W., 1971, Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 30, 46 p.

22

East Shore Area

INTRODUCTION

The East Shore Area lies between Great Salt Lake on the west and the foot of the Wasatch Range on the east (fig. 3). It includes the portions of Weber and Davis Counties that are west of the mountains and a small part of southern Box Elder County, in township 7 north. This area with a population of about 250,000 is second in Utah only to Salt Lake County which has about 508,000 people (Bur. of Econ. And Business Research, March 1976). It is the site of Weber State College, Hill Air Force Base, and the Clearfield Depot as well as other military and governmental agencies. The Weber County portion produces beef, dairy products, and poultry and has processing facilities to make them ready for market. The Davis County portion also is partly agricultural and industrial but much of its expansion in the last two decades has been to provide homes for people who work in Salt Lake Valley.

SUMMARY of PRINCIPAL OCCURRENCES, USE, and POTENTIAL for USE

Temperature measurements on 145 wells in the East Shore area (Bolke and Waddell, 1972, p. 40-51) suggest that in most areas west of Ogden wells of depths of a few hundred feet are likely to reach water of $15\frac{1}{2}$ °C or warmer, 4 or more degrees above the mean annual air temperature. Of the 145 wells, 45 that have temperatures of 20° or higher are listed in table 5-A and are discussed in some detail, 54 others that have temperatures of $15\frac{1}{2}$ ° to $19\frac{1}{2}$ ° are listed in table 5-B and only 47 have temperatures of 15° or lower. The highest well water temperatures, 25° and 39°, are in a cluster of 13 wells drilled by Great Salt Lake Minerals and Chemicals Corp. to depths of 412 to 920 feet. The waters from all except the deepest of these wells have conductances that suggest the dissolved minerals content is 500 mg/l or less. So far, no use has been made of the heat from these well waters, but those wells reporting the higher temperatures would certainly have potential to provide space heating.

Three spring areas, Ogden, Utah, and Hooper Hot Springs, yield highly saline water of 57° to 60°C and another, Southwest Hooper Warm Springs, yields brine at about 32°C. The water from Utah Hot Springs is used to heat nearby buildings (Mundorff, 1970, p. 29); the water from the other springs is unused. The discharge of Ogden Hot Springs has been reported as 35 to 100 gpm, but the discharges of the other springs have not been reported. The waters from all these springs probably could be used for space heating.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The East Shore Area, like other areas along the Wasatch Front, is a structural graben whose eastern side is marked by the Wasatch fault and by the scarps along the face of the mountains. The western side is probably marked by buried faults east of Little Mountain and Antelope Island. Feth and others (1966, p. 26) say "that in general the bedrock surface (of the graben) is in the shape of an elongated trough, the deepest part of which is in the eastcentral part of T.6 N., R.2 W., about 3 miles north of the Ogden Municipal Airport and about 5 miles west of the Wasatch front. The gravity anomalies indicate that the unconsolidated or poorly consolidated rock in the trough has a maximum thickness of 6,000 - 9,000 feet." South of this area is another elongate gravity low that Cook and Berg (1961, p. 79) describe as the Farmington graben where "the thickness of the valley fill...is unknown..but exceeds 3500 feet."

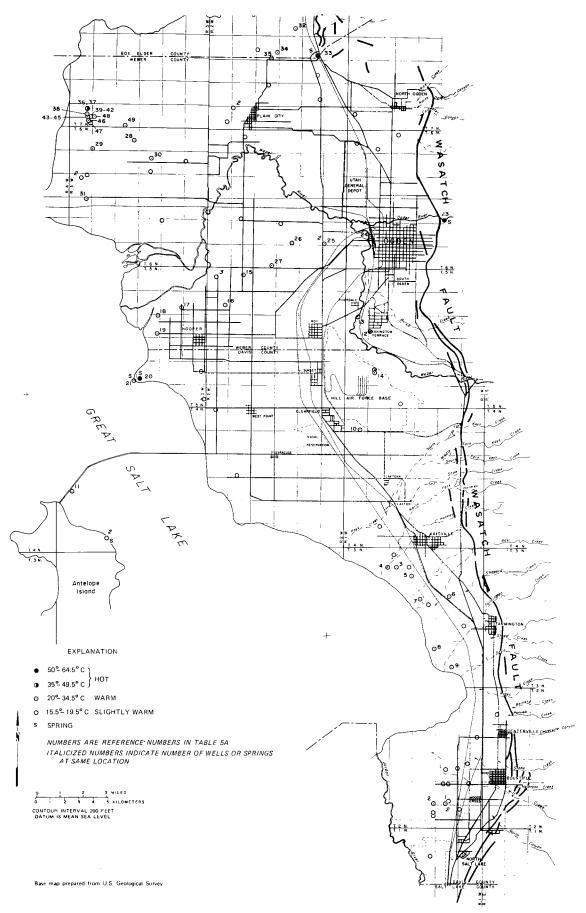


Figure 3. Map of East Shore Area showing thermal wells and springs.

The valley fill consists of detritus derived from the nearby Wasatch and from the Uinta Mountains to the east, and brought into the valley principally by the Weber and Ogden Rivers. During the high cycles of Lake Bonneville the rivers formed huge deltas that make up the bulk of the near-surface deposits, which today near the mountains provide relief of nearly a thousand feet above the flat lake plain near the shore of Great Salt Lake.

The character of the deep sediments in the valley fill is not known, but they are probably similar to the intertonguing alluvial and lacustrine deposits that make up the upper 1200 feet. These deposits are gravel and sand near the mountain front and largely sand, silt, and clay in the lower parts of the valley. Even the delta deposits laid down in Lake Bonneville have large proportions of silt and clay because the outflows from the Weber and Ogden Rivers traveled through estuaries before they reached the mountain front.

The unconsolidated deposits form extensive aquifers that are largely artesian so that there is a constant tendency toward upward movement of water. The wide-spread lacustrine clay beds that act as confining layers inhibit this tendency, but undoubtedly some upward movement occurs. Whether or not the hydraulic environment promotes the upward transfer of heat is not known, but only 6 of the 137 wells for which temperatures have been reported (Bolke and Waddell, 1972, p. 40-51) show temperatures as low as 11°, which is about the mean annual air temperature. In addition to the 45 wells that have temperatures of 20° or higher and are discussed in the section on occurrences of warm and hot water, about 60 wells report temperatures of 15° to 19° and about 25 others temperatures of 12° to 14°.

OCCURRENCES and CONTROL of WARM and HOT WATER

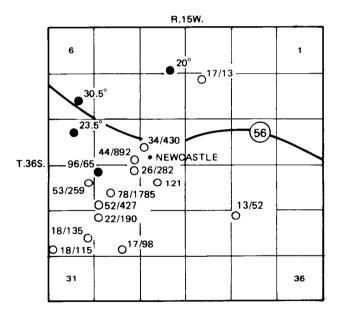
About 6 miles west of Plain City 14 wells (table 5-A) that range in depth from 399 to 806 feet yield water of good quality (260 to 531 mg/l dissolved solids) at temperatures from 21° to 39°C (Bolke and Waddell, 1972, plate 3). Another well in the same cluster reaches bedrock at 920 feet and produces 38° water of poorer quality (980 mg/l dissolved solids). For a full discussion of the findings of Bolke and Waddell the reader is referred to their report, Technical Publication No. 35, p. 16, but, briefly, they concluded that in that area there are "at least four distinct water-bearing zones...delineated on the basis of drillers' logs and water quality, water temperature, and water-level data obtained from 12 wells perforated at various depths." They further say that "the source of heat causing the abnormally high ground-water temperatures is unknown, but it may be an underlying hot body or warm water that is moving upward along a fault." However, because the water in the upper zones is not highly saline as is water of 32° to 60° that comes from Hooper Springs about 11 miles south, they believe that "the higher than normal temperatures probably result from conductive vertical heat transfer rather than from mixing with warm saline water." The higher silica content, 67 mg/l, of the water from the 920-foot well may indicate that some mixing occurs at about 900 feet.

Thirteen of the wells mentioned above were drilled by Great Salt Lake Minerals and Chemicals Corp. to obtain hot process water of 82°C or higher for their plant at Little Mountain.

Two highly saline springs, Hooper Hot Springs and Southwest Hooper Warm Springs, on the shore of Great Salt Lake about 2 miles southwest of Hooper, yield water of 60° and 32°. This hot and warm water is probably rising along the same fault that is believed to supply the heat for the GSIM&C Corp. wells mentioned above. (The geologic map of Feth and others (1966) shows a N-S trending fault that goes through Hooper Springs and extends nearly to the vicinity of GSLM&C Corp. wells.) Two other hot springs, Ogden and Utah Hot Springs, have been mentioned in many reports, probably the first of which was Hayden's (1871, p. 175) observation on the spring near the mouth of Ogden Canyon, for which he reported a temperature of 121°F (49.5°C). Most authors assign the geothermal gradient as the source of the heat for these springs, both of which are on major faults (see discussion on springs along the Wasatch fault zone), but Pack (Pack and Carrington, 1921, p. 26-27) contended that, except in volcanic areas, surface waters cannot descend to depths great enough to supply hot springs, and therefore "most of such springs have their origin at very great depths, in other words, that the water issuing from them is coming to the surface for the first time... and is, therefore, known as 'magmatic' water."

In addition to the wells of Great Salt Lake Minerals and Chemicals Corp. and the warm and hot springs mentioned above, 30 wells whose depths range from less than 200 to about 1000 feet report temperatures of 20° to 25°C and one well in the Farmington Bay Refuge, 1220 feet deep, reports temperatures as high as 33°C. These wells generally seem to have a random distribution from Bountiful on the south nearly to Willard and from Ogden on the east to Antelope Island. The only pattern that can be discerned in their distribution is formed by the group of nine wells that stretches southwestward from Ogden to Hooper. Parallel to and partly coincident with this band of wells, Feth and others (1966, plate 3), show a band where the content of silt and clay below 200 feet is less (20 to 40% and 40 to 60%) than it is in adjacent areas (60-80%). The same map also suggests, although its coverage doesn't quite extend to that area, that the GSLM&C Corp. wells may be in an area where the subsurface sediments are slightly coarser (less than 40% silt and clay) than the surrounding sediments (40-60%). The connection between higher temperature and coarser texture, if indeed there is a connection, does not seem to occur in other areas where Feth and others have mapped low silt and clay contents.

Cited References


- Berge, C.W., G.W. Crosby, and R.C. Lenzer, 1976, Geothermal exploration of Roosevelt KGRA, Utah (abs.): Rocky Mtn. Section, AAPG and SEPM 25th Ann. Mtg., Billings Montana, Program, p. 52-53.
- Bolke, E.L., and K.M. Waddel, 1972, Ground water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah 1960-1969: Utah Dept. Nat. Resources Tech. Pub. No. 35, 53 p.
- Bureau of Economic and Business Research, 1969, Statistical abstract of Utah: University of Utah, 231 p.
- Cook, K.L., and J.W. Berg, Jr., 1961, Regional gravity survey along the central and southern Wasatch Front, Utah: U.S. Geol. Survey Prof. Paper 316E, p.75-89.
- Feth, J.H., D.A. Barker, L.C. Moore, R.J. Brown, and C.E. Veirs, 1966, Lake Bonneville: Geology and hydrology of the Weber Delta district, including Ogden, Utah: U.S. Geol. Survey Prof. Paper 518, 76 p.
- Greider, B. 1976, Geothermal energy, Cordilleran hingeline-West, in Hill, J.G., ed., Geology of the Cordilleran hingeline: Denver, Rocky Mtn. Assn. Geologists, p. 351-362.
- Hayden, F.V., 1871, Preliminary report (fourth annual) of the United States Geological Survey of Wyoming and portions of contiguous Territories, 511 p.

- Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.
- Pack, F.J., and A.C. Carrington, 1921, Geologic and economic resources, Weber County, Utah: University of Utah Bull. v. 11, no. 19, 61 p.
- Smith, R.E., 1961, Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah: U.S. Geol. Survey Basic-Data Report No. 1, 35 p.
- Thomas, H.E., W.B. Nelson, 1948, Ground water in the East Shore area, Utah: Part I, Bountiful district, Davis County: Utah State Engineer Tech. Pub. No.5, 152 p.

Escalante Desert

INTRODUCTION

The Escalante Desert occupies about 400 square miles in Iron and Washington Counties about 25 miles west and northwest of Cedar City. The principal communities are Enterprise, Newcastle, and Modena, with Beryl Junction in a cross-roads community near the center of the area. The economy depends on agriculture, which in turn depends on nearly 80,000 acre-feet of ground water for irrigation each year (Sandberg, 1977, p. 14).

0^{16/79}

SUMMARY of OCCURRENCES and POTENTIAL for USE

In the Newcastle area, one well (C-36-15)20bbd, has produced boiling water, and three others have yielded warm water of 20° to 31°C (table 6). Rush (1977) measured temperatures on 15 wells in the vicinity of Newcastle and I have plotted those wells on figure 4. Also shown are temperatures at about 100 feet and the geothermal gradient in each well. The ultimate potential of this area is not known but the waters are satisfactory for irrigation and certainly could be used for greenhouses or space heating.

Near Beryl, a geothermal test well, drilled to a depth of 12,295 feet between April 8 and July 15, 1976, yielded a flow of 1000 gpm from a depth of 7000 feet. This water was at a temperature of 149°C and contained less than 4000 ppm dissolved solids. Although the temperature is too low for efficient production of electricity (Val Finlayson, Utah Power & Light Co. pers. commun. 1978) such a yield without pumping should be useful for crop processing.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The hills and low mountains that nearly surround the Escalante Desert are composed principally of Tertiary volcanic rocks with a few exposures of Cretaceous and Tertiary sedimentary rocks south and southwest of Newcastle. Crosby (1973, p. 31) has interpreted the Escalante Desert as a probable caldera. "The eastern rim of this probable caldera is downfaulted and covered by valley fill deposits of the Escalante Desert." The generally circular shape of this desert and the annular drainage of Shoal Creek west of Enterprise support the caldera hypothesis.

The desert itself is one of the most highly developed ground-water basins in Utah. Pumpage in the Beryl-Enterprise district has risen from about 50,000 acre-feet per year in the 1950's to nearly 80,000 acre-feet in the 1970's. (Sandberg, 1977, p. 57). Although there are no firm estimates of recharge to the ground-water reservoir, it has been generally believed that most of the water pumped comes from storage. Between 1950 and 1977 the water level in an observation well, (C-35-17)25dcd, in the area of high pumping, declined about 40 feet (Sandberg, 1977, p. 57). Much of this period, 1950 to 1964, was also a period of lower-than-normal precipitation, so the lowering of the water levels in response to pumpage from storage is hardly excessive.

OCCURRENCES of HOT and WARM WATER

Hot water of 149° and 95.5°C has been reported from a depth of 7000 feet in a 12,295-ft-deep geothermal-test well about 4 miles southwest of the Beryl siding on the Union Pacific Railroad and from a 500-foot-deep water well near Newcastle (table 5). The geothermal-test well flowed 1000 gpm and the water contained less than 4000 ppm dissolved solids (Val Finlayson, pers. comm. 1978). Ten other wells in the Newcastle area produce water at temperatures ranging from 20° to 78°C (fig. 4). Eleven other wells, six near Newcastle, four west of the main Beryl-Enterprise pumping area, and one about 12 miles southeast of Lund, yield slightly warm water of 15.5° to 19°C.

The temperature of the water from the geothermal test well was lower than 260° that Utah Power and Light Co. required for generating electricity but a free flow of 1000 gpm at 149°C should make the water valuable for crop processing.

Although Sandberg in 1966 (p.34) said that local residents reported hot water near Newcastle, it wasn't until the Christensen Bros. well was drilled in December 1975 that boiling water was encountered (Rush, 1978, written commun.). Rush reports a temperature log was run on January 20, 1976 after the well had been idle for several weeks. That log shows a hot-water aquifer between depths of 230 and 360 feet.

Rush (1978, written commun.) computed the "reservoir temperature of the hydrothermal system to be 117° C and 293°C, using two geothermometers. The difference in estimates may result from either the mixing of thermal and nonthermal water or to misapplication of a geothermometer. If the higher temperature is valid, this would be a very hot hydrothermal reservoir. The depth of ground-water circulation to produce this upper limit without a shallow heat source would be about 7 km (23,000 feet) computed on the basis of a regional heat flow of 2 HFU" (heat flow units).

Crosby's map (1973, p. 28) shows a northeast-trending (buried?) normal fault very close to the Christensen well. Probably the hot water rises along the fault up to a confined permeable bed which permits it to move laterally.

Only further exploration can determine the potential of the Newcastle area as a source of geothermal energy, but meanwhile the hot water in the area of the Christensen well is of good enough quality for irrigation and it is certainly hot enough for use in greenhouses or for space heating.

Cited References

Crosby, G.W., 1973, Regional structure in southwestern Utah in Geology of the Milford Area, 1973, Utah Geol. Assn. Pub. 3, p. 27-32.

Rush, F.E., 1977, Subsurface temperature data for some wells in western Utah: U.S. Geol. Survey Open-File Rept. 77-132, 36 p.

Sandberg, G. W., 1963, Ground-water data, Beaver, Escalante, Cedar City, and Parowan Valleys, parts of Washington, Iron, Beaver, and Millard Counties, Utah: U.S. Geol. Survey Basin-Data Report No. 6, 26 p.

, 1966, Ground-water resources of selected basins in southwestern Utah: Utah State Engineer Tech. Pub. No. 13, 43 p.

, 1977, Beryl-Enterprise area, <u>in</u> Bolke, E.L., and others, Groundwater conditions in Utah, Spring of 1977: Utah Dept. Nat. Resources Coop. Inv. Rept. No. 16, p. 14 and 56-58.

Escalante Valley

INTRODUCTION

Escalante Valley is in eastern Millard, Beaver, and Iron Counties. The Milford pumping district within the valley is one of the most heavily irrigated areas in Utah: from 1966 to 1975 irrigators pumped an average of 55,000 acrefeet of water each year; in 1976 they pumped 65,000 acre-feet. The valley is also the locale of two Known Geothermal Resource Areas (KGRA), Roosevelt and Thermo Hot Springs.

SUMMARY of OCCURRENCES and POTENTIAL for USE

Roosevelt Hot Springs and Thermo Hot Springs have been designated as KGRAs, and the extensive continuing exploration at Roosevelt strongly suggests that at least that area has potential to produce electricity, perhaps as much as 300 MW (megawatts). The potential at Thermo has yet to be tested.

Dotsons Warm Springs are warm enough (36°C) and of satisfactory chemical quality to be used in swimming pools or greenhouses.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The mountains that essentially surround the Escalante Valley are geologically complex, and it can be presumed that the bedrock that underlies the valley fill of alluvium and lake deposits also is complex. Crosby (1973, p. 27-32) has described some of the structural complexities in more detail than will be covered here.

To the east are the Mineral Mountains which consist largely of a Tertiary granite "pluton, which is the largest exposed intrusive body in Utah, covering nearly 150 km²" (Lipman and others, 1978, p. 134). The center of the range was also the site of extensive Pleistocene volcanic activity including rhyolite domes, obsidian-rich lava flows, and pyroclastics of ash-flow tuffs. "Potassium argon ages indicate that all the rhyolite of the Mineral Mountains was erupted between 0.8 and 0.5 m.y.ago" (Lipman and others, 1978, p. 133). The Roosevelt KGRA is on a north-south fault along the west flank of the Mineral Mountains and probably was affected by the Pleistocene volcanism.

To the west are the San Francisco Mountains consisting of Precambrian and Paleozoic rocks, largely metamorphosed, and Tertiary volcanics. To the southeast, also, are extensive Tertiary volcanics.

The mountain blocks are separated from the valley by fault zones that are largely hidden by overlying alluvium.

The valley fill consists of alluvium derived from the flanking mountains and brought in by the Beaver River, and lake deposits laid down in Pleistocene Lake Bonneville. The intertonguing of coarse-grained deposits of high permeability with fine-grained deposits of low permeability has resulted in three zones of high permeability separated by three zones of low permeability. The zones of high permeability make up the principal aquifer, which Mower and Cordova (1974, p.1) estimate to be as much as 840 feet thick.

Because of the high pumpage in the valley, the estimated discharge of 81,000 acre-feet exceeds the estimated recharge of 58,000 acre-feet, and has resulted not only in lowering water levels by as much as 30 feet since 1950, but also in compaction of the valley fill and subsidence of the land surface in an area about 1 mile wide and 11 miles long south of Milford (Mower and Cordova, 1974, p. 1-2).

OCCURRENCE of HOT and WARM WATER

Two hot springs, Roosevelt and Thermo, and one warm spring, Dodsons (Radium) (table 7-A), have been discussed rather extensively by Mundorff (1970) and I shall include his descriptions below. Since Mundorff completed his study, several workers have studied the Roosevelt area, among them Petersen (1973, 1974, 1975a, 1975b), who computed a Na-K-Ca reservoir temperature of 292° to 298°C, Rush (1978, written commun.), and Lipman and others (1978), and there has been extensive drilling. "Phillips Petroleum Co., the successful bidder on the KGRA in 1974, is continuing exploration on the property. Numerous test wells so far drilled in the KGRA have documented the presence of a low-salinity liquid dominated geothermal system (Berge, Crosby, and Lenzer, 1976; Greider, 1976). The thermal anomaly covers approximately 32 km², and reservoir temperatures exceed 250° C" (Lipman and others, 1978, p. 134). Rush (1978, written commun.) says the "reservoir temperature is equal to or greater than 260°C. A recent report on the area (Ward and others, 1978) says that 7 productive wells and 4 "dry holes" have been drilled in the Roosevelt area (in T.26 and 27S., R.9 W.) and the highest temperature recorded was 269°C. The authors further make "a conservative estimate of 10 km² for the size of the region that may be brought into production. This area will support about 60 production wells (1 well per 40 acres) which at 5MW/well will yield 300 MW (megawatts) electricity" (p. 1538).

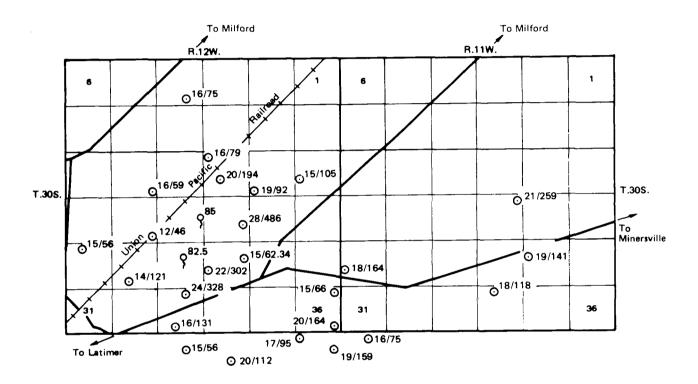


Figure 5 - Map of Thermo area showing geothermal test holes (Rush, 1977). o spring with temperature o geothermal test well 16/75 temperature at / gradient in about 100 feet / °C per kilometer

Rush (1978, written commun.) also studied the Thermo area and concluded that the hydrothermal reservoir is less than 4 km deep and has a temperature "equal to or less than 200°C." The holes that Rush used for his temperature measurements are shown on figure 5; also shown are temperatures at depth of 100 feet in each hole and the computed geothermal gradients.

In addition to the springs mentioned above, warm water at 21° to 33°C also occurs in three springs in the volcanics south of Minersville, in Salt Spring about one-quarter mile northwest of Roosevelt Hot Spring, and in Woodhouse Spring about 10 miles southwest of Milford. About six wells near Milford and two wells southwest of Minersville yield water of 20° to 27°C. The Minersville town well drilled near Dotsons Spring yields water at 33.5°C that is essentially identical in chemical quality to the water from Dotsons Spring.

The follwing excerpts from Mundorff (1970, p. 42-43) give his interpretations of Dotsons Warm Springs and Thermo and Roosevelt Hot Springs.

Roosevelt (McKeans) Hot Springs

Roosevelt (McKeans) Hot Springs, (C-26-9)34dcb-S1, are in Beaver County, about 12 miles northeast of Milford and about 20 miles northwest of Beaver. Lee (1908, p. 20) reported that the largest of the springs in Roosevelt Hot Springs had a discharge of about 10 gpm, and that the temperature at the pipe leading from the spring was 190° F. He also stated that much of the silica contained in solution as the boiling water issued from the rocks was deposited as the water cooled. U. S. Geological Survey personnel reported a discharge of 1 gpm and a temperature of 185° F in November 1950 and reported a temperature of 131° F in September 1957. In May 1966 the spring was dry and appeared not to have discharged for several years.

Intrusive rocks of Tertiary age crop out immediately east of the former springs, and volcanic rocks of late Tertiary age crop out less than two miles southeast of the springs (figure 18). The springs issued from a fault zone along the west side of the Mineral Mountains. The heating of the water, probably of meteoric origin, may have been caused by contact with volcanic rocks or by an abnormally high geothermal gradient in the area where both intrusive and extrusive rocks of Tertiary age are common.

Lee (1908, p. 20 and 50) reported a dissolvedsolids content of only 645 ppm and a discharge of 10 gpm. In 1950 the dissolved-solids content was 7,040 ppm at a measured discharge of 1 gpm. In 1957 the dissolved-solids content was 7,800 ppm. Lee's data show that the water was of the sodium sulfate chloride type; silica concentration (101 ppm) exceeded that of any single ion. In 1950 and 1957, the highly mineralized water was sodium chloride in type; silica content was very high (405 and 313 ppm). The analysis of a sample obtained in 1957 shows fairly high concentrations of boron and fluoride. The source of the dissolved solids is not known. If Lee's data are reliable, the spring discharge showed about a tenfold increase in dissolved-solids content with a tenfold decrease in discharge during a 50-year period. Lee (1908, p. 20) states that "the water contains a large amount of mineral in solution, as shown by the analysis in table 9"; but the data in table 9 of Lee's report do not show an especially "large amount of mineral in solution."

The very high silica concentrations indicate a possibility of marked increase in temperature with depth. The lack of spring flow during the past 10 years and the lack of information on the possible presence of a reservoir rock indicate that the geothermal potential of the area can be evaluated only by intensive subsurface exploration.

Radium (Dotsons) Warm Springs

Radium (Dotsons) Warm Springs, (C-30-9) 7aca-SI, issue from a seepage zone about 300 feet long along the south bank of the Beaver River about one mile east of Minersville in Beaver County. The springs issue from alluvium, but the source of the water probably is the faulted sedimentary rocks of Paleozoic age immediately northeast of the springs. Large areas of pyroclastic rocks of late Tertiary age are within one mile of the springs (figure 18).

Lee (1908, p. 21) reported that the discharge of the springs was 57 gpm and the temperature of the water was 97° F. On July 11, 1967, U. S. Geological Survey personnel measured a water temperature of 89° F and estimated that the total discharge from the spring zone was 100 gpm.

Chemical data obtained during 1963-67 show that the dissolved-solids content ranged from 956 to 1,020 ppm, that the water was of the sodium calcium sulfate type, that fluoride concentrations were moderately high, and that silica concentrations were low.

The altitude of the faulted mountains within a few miles of the springs is 2,000-3,000 feet higher than that of the springs. The presence of volcanic rocks of late Tertiary age in the vicinity of the springs suggests that the source of heat may be either volcanic or an abnormally high geothermal gradient in the zone of faulted sedimentary rocks adjacent to the volcanics. The spring discharge undoubtedly is meteoric water that infiltrates the faulted or porous rocks at higher altitudes a few miles from the springs; the water descends 2,000-3,000 feet through these rocks, is warmed, and issues along a fault zone in the immediate vicinity of the springs.

Thermo Hot Springs

Gilbert (*in* Howell, 1875, p. 257) stated that "Another group of hot springs, ... is located ... sixteen miles west of Minersville [Beaver County]. These springs, [(C-30-12)21-S and (C-30-12)28-S], are situated in the open desert, on two parallel ridges having a north and south trend, placed en echelon, about twenty rods apart, each eight or ten rods in width and 20 feet high, with a total length of about one and a half miles. These ridges have been formed mainly by the drifting sand, held together by the moisture and consequent vegetation, as no sinter nor tufa seems to be deposited by the springs. The highest temperature noted was 185° [F]." In contrast to Gilbert's report of sand ridges and the absence of tufa, Lee (1908, p. 22) reported that "The springs occur in two conspicuous mounds built up from the surface of the plain by silica deposited from the spring waters." U. S. Geological Survey personnel reported in July 1967 that the springs issue along the sides and top of calcareous travertine mounds. The southern mound, which has the most active spring, is about half a mile long, 200-250 feet wide, and 10-20 feet higher than the desert floor. The southern mound is mainly clay covered and has travertine along the sides. The hottest spring was on the south mound and had a temperature of 170° F. The, two sets of observations, which were made nearly a century apart, indicate that the sand ridges observed by Gilbert have become partly indurated by calcium carbonate or silica that precipitated from the spring water. The observations of Lee (1908), however, indicate that appreciable chemical precipitation must have occurred by 1908. Perhaps older travertine deposits had been buried by drifting sand shortly before Gilbert's observations.

The springs issue from the alluvium in Escalante Valley, but the source of the water probably is rainfall on the faulted mountains northwest or southeast of the springs. A fault buried beneath the alluvium may control the location of the springs. Volcanic rocks of late Tertiary age crop out in the mountains within a few miles south of the springs (figure 18). The source of the heat probably is an abnormally high geothermal gradient that results from late Tertiary volcanism.

The dissolved-solids content of the water ranged from 1,470 to 1,500 ppm. The water is sodium sulfate in type although both bicarbonate and chloride anions are present in significant amounts. Silica concentration was fairly high-100 to 108 ppm. Results of spectrographic analyses were somewhat erratic; one sample showed unusual concentrations of aluminum, copper, and lead, but another sample obtained a year later at the same spring showed nothing unusual.

Discharge from the entire spring area was estimated to be about 200 gpm in July 1967.

Cited References

- Crosby, G.W., 1973, Regional structure in southwestern Utah in Geology of the Milford Area, Utah Geol. Assn. Pub. 3, p. 27-32.
- Howell, E.E., 1875, Report on the geology of portions of Utah, Nevada, Arizona, and New Mexico, examined in the years 1872 and 1873 in Report upon geographical and geological explorations and surveys west of the 100th Meridian, v. 3(3) (Wheeler): Washington, U.S. Govt. Printing Office, p. 256-257.
- Lee, W.T., 1908, Water resources of Beaver Valley, Utah: U.S. Geol. Survey Water-Supply Paper 217, 57 p.
- Lipman, P.W., P.D. Rowley, H.H. Menert, S.H. Evans, Jr., W.P. Nash, and F.H. Brown, 1978, Pleistocene rhyolite of the Mineral Mountains, Utah - geothermal and archeological significance, with sections by G.A. Izett and C.W. Naeser and by Irving Friedman: U.S. Geol. Survey Jour. Research, v.6, no.1, p. 133-147.
- Mower, R.W., and R.M. Cordova, 1974, Water resources of the Milford area, Utah, with emphasis on ground water: Utah Dept. Nat. Resources Tech. Pub. No. 43, 99 p.
- Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.
- Petersen, C.A., 1973, Roosevelt and Thermo Hot Springs, Beaver County, Utah: Utah Geol. Assn. Pub. 3, p. 73-74.

Petersen, C.A., 1974, Summary of Stratigraphy in the Mineral Range, Beaver and Millard Counties, Utah: Utah Geology, v. 1, p. 45-54.

, 1975a, Geology and goethermal potential of the Roosevelt Hot Springs area, Beaver County, Utah: Unpublished M.S. Thesis, Univ. of Utah, 50 p.

, 1975b, Geology of the Roosevelt Hot Springs area, Beaver County, Utah: Utah Geology, v.2, no.2, p. 109-116.

- Rush, F.E., 1977, Subsurface temperature data for some wells in western Utah: U.S. Geol. Survey Open-File Rept. 77-132, 36 p.
- Sandberg, G.W., 1963, Ground-water data, Beaver, Escalante, Cedar City, and Parowan Valleys, parts of Washington, Iron, Beaver, and Millard Counties, Utah: U.S. Geol. Survey Basic-Data Report No. 6, 26 p.
- Ward, S.H., W.T. Parry, W.P. Nash, W.R. Sill, K.L. Cook, R.B. Smith, D.S. Chapman, F.H. Brown, J.A. Whelan, and J.R. Bowman, 1978, A summary of the geology, geochemistry, and geophysics of the Roosevelt Hot Springs thermal area, Utah: Geophysics, v. 43, p. 1515-1542.

Fish Springs Group

"The Fish Springs group is in Juab and Tooele Counties, about 55 miles northwest of Delta" (Mundorff, 1970, p.27). The springs rise from three general areas at the north end and northeast flank of the Fish Springs Range (see Table 8). Wilsons Hot (Health) Springs are principally in section 33, T.10 S., R.14 W., in Tooele County. Big Spring (North Springs) is in Juab County about a mile to the southeast of Wilsons Hot Spring at (C-11-14)3d, and Fish Springs are about 3 miles south of Big Spring in the eastern halves of sections 23 and 26, T.11 S., R.14 W.

The working "Wilson Health Springs" on the Fish Springs NW quadrangle and Meinzer's reference to a bathhouse (1911, p. 125) indicate that at one time a resort existed at the hot springs, but Mundorff does not mention it so it probably no longer exists.

Mundorff's (1970, p. 37) interpretation of the group is given here:

Wilson Hot Springs consist of several springs that issue along a northeast-trending line that extends about half a mile into the Great Salt Lake Desert from the base of the Fish Springs Range. The springs issue from soft tufa mounds formed on valley fill of Quaternary age. The springs probably rise along a fault buried beneath the valley fill. Fish Springs Range, which is composed of faulted sedimentary rocks of Paleozoic age (figure 15), extends southward from Wilson Hot Springs and has altitudes more than 4,000 feet higher than those of the springs along the northeast base of the mountains. In July 1967, the temperature of the hottest measured spring in the group was 141° F at the edge of the pool and 168° F in the center of the pool; the estimated discharge was 100 gpm. The dissolved-solids content of these springs, which issue at the southern margin of Great Salt Lake Desert, is about 22,000 ppm; about 83 percent of the dissolved solids, by weight, is sodium chloride.

The discharge of Wilson Hot Springs probably is meteoric water that has circulated to depths of several thousand feet through the fault system of the Fish Springs Range. As the heated water moves up through highly saline lakebed sediments, either large quantities of salts are dissolved or relatively dilute hot water mixes with concentrated interstitial brines of the sediments. If a geothermal gradient of 1° F for each 100 feet of depth is assumed, circulation to a depth of about two miles would be required if the water does not cool as it moves upward and does not mix with cool shallow water. In this area, however, the geothermal gradient may be abnormally high. Volcanic rocks of late Tertiary age crop out about eight miles southeast and about 10 miles southwest of the springs, and a large intrusive igneous body of late Tertiary age crops out about 15 miles northeast of the springs. Although these igneous rocks probably are not the direct source of the heat, they may indicate the possibility that the geothermal gradient is as high as 1° F for each 50 feet or less of depth in the area surrounding the springs.

Both Big Spring, (C-11-14)3-S, and Fish Springs, (C-11-14)23-26-S, appear to be associated with the same fault zone, but not necessarily the same fault, that results in Wilson Hot Springs. The discharges of Big and Fish Springs have much lower temperatures than those for Wilson Hot Springs. Temperatures of these two springs range from about 65° to 82° F, and the dissolved-solids content is about 1,800 ppm for Fish Springs. The water is of the sodium chloride

type; only about 60 percent of the dissolved solids, by weight, is sodium chloride compared to about 83 percent sodium chloride in Wilson Hot Springs. The total discharge of all springs in the Fish Springs group probably varies from less than 40 cfs to more than 60 cfs seasonally and from year to year. The relatively low temperature and dissolved-solids content of Fish Springs indicate that the water does not circulate to great depths and that the water does not have appreciable exposure to a saline environment, as compared to the water issuing from Wilson Hot Springs.

The discharge from Big Spring and the many Fish Springs supplies water to the Fish Springs National Wildlife Refuge where there are extensive pools and marshy areas that are inhabited by waterfowl.

Cited References

Meinzer, O. E., 1911, Ground water in Juab, Millard, and Iron Counties, Utah: U.S. Geol. Survey Water-Supply Paper 277, 162 p.

Mundorff, J. C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 13, 60 p.

Grouse Creek Valley

Grouse Creek Valley is in Box Elder County near the northwest corner of Utah. Grouse Creek and its drainage basin include about 430 square miles. Probably fewer than 500 people live in the valley, most of them in Grouse Creek and Etna (Hood and Price, 1970, p. 3).

A hot spring (42°C) that yields 225 gpm of fresh water (248 mg/l dissolved solids) from Paleozoic rocks in the valley of Death Creek and a warm spring (20°C) that yields 215 gpm of fresh water (304 mg/l) from volcanic rocks near Kimber Ranch are the only thermal springs in Grouse Creek Valley (Table 9). The hot spring may derive its heat from nearby volcanic rocks, but it has only half as much silica (24 vs 47 mg/l) as the warm spring which does come from the volcanics. Both springs have low contents of dissolved solids; in fact the water from the hot spring probably contains less dissolved mineral matter than any other hot spring in Utah.

Two shallow wells, 62 and 92 feet deep, have water temperatures of 20°, and three other wells (60, 232, and 605 feet deep) have water temperatures of 16° and 18°.

Cited References

Hood, J. W., and Don Price, 1970, Hydrologic reconnaissance of Grouse Creek Valley, Box Elder County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 29, 49 p.

Heber Valley

Heber Valley, in Wasatch County, is a small (valley floor about 44 square miles) triangular-shaped "back valley" between the Wasatch Mountains on the west and the volcanic hills of the Wasatch-Uinta transition zone on the east. The upper plate of the great Charleston thrust fault forms a highland south of the valley.

Warm and hot water, 29° to 45°C, occurs as springs and in "hot pots" in the vicinity of Midway in the western part of the valley (see Table 10). These hot pots and springs were investigated rather thoroughly by Baker (1968) who also studied the ground water of the whole of Heber Valley (1970); therefore, I shall mention only briefly some of the pertinent points, for the most part, paraphrasing or quoting from Baker (1968), but with my additions in brackets.

"The hot pots are surrounded by a deposit of calcareous tufa that covers an area of about 4.5 square miles and locally is at least 70 feet thick. The tufa deposit forms a low terrace that is underlain by alluvium; water apparently rises through the alluvium from a bedrock source" (p. D63). Chemical analyses show that the water is not highly mineralized, about 1600 to 2050 mg/l dissolved solids, "but it is much more mineralized than other ground water in the area... which rarely exceeds, 1000 mg/l" (p. D65).

The geologic map of the Heber quadrangle (Bromfield, Baker, and Crittenden, 1970) gives clues to the possible sources of heat for the thermal water. "Carbonate rocks of Mississippian and Pennsylvanian age crop out extensively in the high mountains north and west of Midway and are overlain by younger (Triassic) sedimentary rocks of low permeability. The sedimentary rocks dip steeply toward the valley [and apparently are folded into a buried anticline whose crest is near the hot springs in the southwest quarter of section 26 (Bromfield and others, 1970)]. An intrusive body of Tertiary age crops out a short distance north of Midway, and the sedimentary rocks surrounding the intrusive are intensely fractured and faulted [along the Dutch Hollow and Pine Creek thrust faults]. According to C. S. Bromfield (oral commun. 1966), magnetic anomalies near Midway suggest that the intrusive body extends southeastward under the hot pots. If this is so, the fracturing of the sedimentary rocks in the vicinity of the intrusive body [and along the crest of the anticline] would provide the necessary break in the confining layers to permit water that is under artesian pressure in the carbonate rocks to escape to the surface" (p. D69).

"The following theory of the origin and continued existence of the hot pots is proposed. Meteoric water enters the carbonate rocks in the Wasatch Range, descends along fractures [probably principally the thrust planes] and solution openings, and dissolves minerals from the rocks through which it passes. This mineralized water is heated at depth and, under artesian pressure, returns to the surface through fractures in the rocks [such as the strong fault that cuts Triassic rocks on the south slope of Burgi Hill, a fault whose extension would go through the hot spring area near Mound City]. When the hot mineralized water nears the surface, the drop in confining pressure causes loss of dissolved carbon dioxide and resultant deposition of calcium carbonate (tufa)" (p. D69).

Two wells, one at the northern tip of the valley and the other near the southeast corner, yield slightly warm water of good quality (less than 450 mg/l dissolved solids) at 16° C. These wells are distant from the hot pots and cannot be related to them.

Cited References

Baker, C.H., Jr., 1968, Thermal Springs near Midway, Utah: U.S. Geol. Survey Prof. Paper 600-D, p. D63-D70.

, 1970, Water resources of the Heber-Kanas-Park City area northcentral Utah, with a section on a gravity and aeromagnetic survey of Heber and Rhodes Valleys by D.L. Peterson: Utah Dept. Nat. Resources Tech. Pub. No. 27, 74 p.

Bromfield, C.S., A.A. Baker, and M.D. Crittenden, Jr., 1970, Geologic map of the Heber quadrangle, Wasatch and Summit Counties, Utah: U.S. Geol. Survey Geologic Quadrangle Map GQ-864.

Jordan Valley

INTRODUCTION

Location

Jordan Valley encompasses about 400 square miles in Salt Lake County, Utah (figure 6). Except for the small number of people who live in Emigration, Mill Creek, Big Cottonwood, and Little Cottonwood Canyons, essentially all the 508,000 (1975 estimate) people of Salt Lake County live in Jordan Valley. Salt Lake City, the capital of Utah, is a center for light and heavy industry, oil refining, and tourism, and is the home of the University of Utah. Salt Lake County is one of the leading agricultural counties of the state.

Previous Work

The waters of Jordan Valley have been studied more intensively than those of any other area in Utah. In addition to early mention of thermal waters by the King report (1878), the other principal studies are by Richardson, Underground water in the valleys of Utah Lake and Jordan River, Utah (1906); Taylor and Leggette, Ground water in the Jordan Valley, Utah (1949); Marine and Price, Geology and ground-water resources of the Jordan Valley (1964); and Hely, Mower, and Harr, Water resources of Salt Lake County, Utah (1971a). Records of wells, springs, streamflow, and water chemistry have been published by the U.S. Geological Survey as Basic-Data Reports No. 4 (1963), No. 11 (1966), No. 12 (1966), No. 13 (1967), No. 15 (1968), and No. 17 (1969).

SUMMARY of OCCURRENCES, USES, and POTENTIAL for USE

Hot water occurs at Becks (55°C) and Wasatch (42°C) Hot Springs at the west end of the Salt Lake salient in the northern part of Jordan Valley and at Crystal (58.5°C) Hot Springs in the southern part of the valley. These waters are now unused but Becks and Wasatch have been used for recreation in the past and could be so used in the future; Crystal Hot Springs is being investigated for possible use by the nearby Utah State Prison.

for possible use by the nearby Utah State Prison. Warm water (20-31°C) has been recorded for about 60 wells (Table 11-A) and slightly warm water (15.5° - 19.5°C) has been recorded for about 120 wells (Table 11-B). Some of these wells are in the southern part of the valley and are probably related to the same heat source as Crystal Hot Springs. The other wells form a large fan-shaped pattern in the northern part of the valley. The warmest water is in the center of the fan and the heat is probably supplied by a north-trending buried fault zone, from which it spreads laterally through the horizontal artesian aquifers. Figures 7 and 8 show the patterns of warm ground water as plotted by Marine and Price (1964) and by Hely, Mower, and Harr, 1971a.

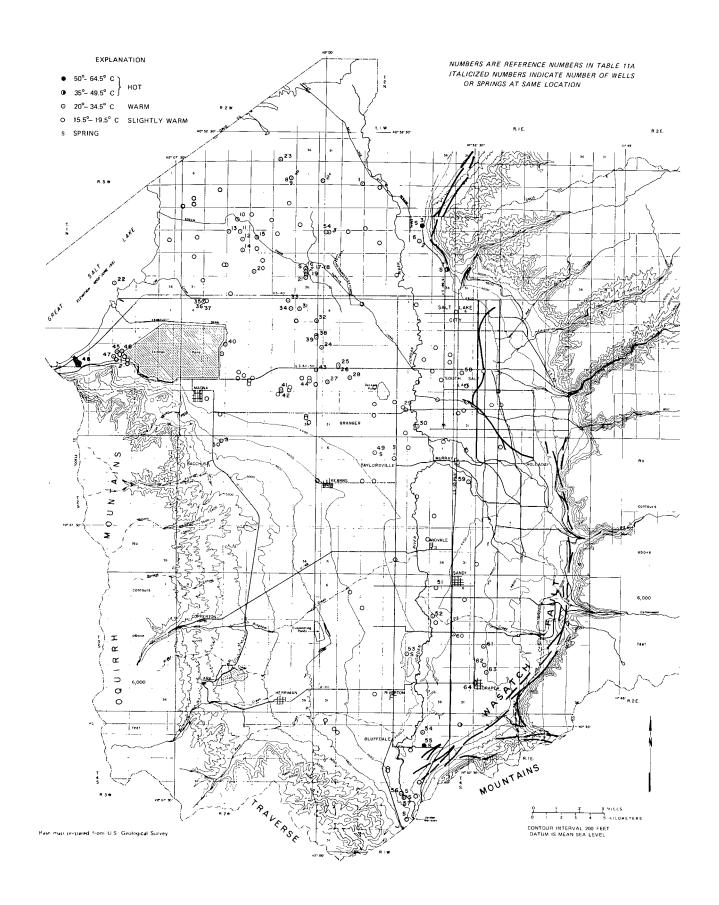


Figure 6. Map of Jordan Valley showing thermal wells and springs.

The warm water in the southern part of the valley should have a potential use for space heating and greenhouses. The warm water in the north is now being used with heat pumps, and it has a good potential for such use as industry expands in that area.

Five wells whose water temperatures range from 17° to 21.5° C, and whose dissolved solids range from 976 to 1220 mg/l, show anomalously high silica of 71 to 82 mg/l. The wells range in depth from 105 to 156 feet and all are within an area of less than half a square mile about $3\frac{1}{2}$ miles east of Magna. There is no ready explanation for the high silica content, but the anomaly is worthy of further investigation.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The Jordan Valley is a north-trending graben, bounded on the east by the Wasatch fault zone and on the west by exposed faults and by buried faults whose existence is based on geophysical data. Jordan Valley is separated from the Utah Valley graben on the south by the Traverse Range spur and from the East Shore graben on the north by the Salt Lake salient. The deepest part of the graben is a bowl-shaped depression in the southern part of the valley in the area of (clockwise from the northeast) Sandy, Draper, Bluffdale, Herriman, and South Jordan. The northwestern portion of the valley, including Granger, Taylorsville, and Magna, is underlain by a pediment that extends eastward from the foot of the Oquirrh Mountains almost to the center of the valley. The eastern edge of that pediment is bounded by a largely buried north trending fault zone that probably marks the western boundary of the graben in that area (Cook and Berg, 1961, p. 79, 80, 83, and plate 13).

The rocks of the Wasatch Range are largely metasediments of Precambrian age and marine sedimentary rocks of Paleozoic and Mesozoic age. The Oquirrh Mountains to the west are principally composed of the Oquirrh Formation of Pennsylvanian age.

The valley fill is composed of alluvial deposits brought in by streams from the mountains and of lacustrine deposits laid down along the shores and on the bottom of Pleistocene Lake Bonneville. The deposits near the mountains on the east, south, and southwest sides of the valley are predominantly thick gravel and sand, but those on the pediment in the northwest portion are thinner silt and clay. The lower portions of the valley are underlain by lake-bottom clay and silt.

The interbedded alluvial and lacustrine deposits have produced excellent aquifers separated by confining layers so that ground water occurs under artesian conditions in most areas of the valley, and in the lowest portions the aquifers supply flowing wells. The aquifers have been developed extensively; almost 12,000 wells were on record through 1969 (Hely, Mower, and Harr, 1971, p. 138), yet the area of flowing wells has changed little since G.B. Richardson published a map showing the area of artesian flow in 1904 (1906, plate VII). (See also Hely, Mower, and Harr, 1971a, plate 1).

Recharge to the aquifers amounts to about 367,000 acre-feet per year and according to Hely, Mower, and Harr (1971a, p. 119 and 135), comes from:

Seepage from	ı bedrock	135,000
11 11	irrigated fields	81,000
11 11	precipitation on valley floor	60,000
11 11	major canals	48,000
11 11	creek channels	20,000
11 31	lawns and gardens	17,000
Underflow fr	om channel fill & Jordan Narrows	4,000
Seepage from	2,400	

367,000

This recharge is matched by discharge:	-
Into Jordan River	170,000
By wells	107,000
Evapotranspiration	60,000
Springs diverted for use	19,000
Other	11,000
	367,000

An appreciable but unmeasured part of this discharge is warm to hot water supplied by springs and wells.

OCCURRENCES of HOT and WARM WATERS

The hottest waters in Jordan Valley are yielded by Becks (55°C) and Wasatch (40°C) Hot Springs at the west end of the Salt Lake salient and by Crystal (55° - 58°C) Hot Springs along the Steep Mountain fault on the north side of the Traverse Range salient. These springs are discussed in more detail in the section on Hot Springs along the Wasatch Fault Zone.

On Table 11-A are listed about 60 wells with temperatures of 20° to 31° C. Most of these wells have been plotted on maps by Marine and Price and by Hely, Mower, and Harr that appear at the end of this discussion (figure 7 & 8). Despite the differences in categories of temperature used for plotting, there is general agreement between the two maps. In the southern part of Jordan Valley there are areas of warm water that are probably related to the Crystal Hot Springs area. Some of the heat from the spring area may spread out northward in favorable confined aquifers. In the northern part of the valley there may be some heat that spreads laterally from the Warm Springs fault at the west end of the Salt Lake salient, but the principal warming apparently comes from the largely buried Granger-Taylorsville fault zone that trends slightly west of north in the valley center. The fan-shaped pattern of the area of warm water, with the warmest water near the center of the fan and with expansion of the fan northwestward in the same direction as ground water moves toward Great Salt Lake, strongly suggests that there is an upwelling of heat along the fault and lateral spreading of that heat in favorable confined aquifers.

Cited References

- Cook, K.L., and J.W. Berg, Jr., 1961, Regional gravity survey along the central and southern Wasatch Front, Utah: U.S. Geol. Survey Prof. Paper 316E, p. 75-89.
- Hely, A.G., R.W. Mower, and C.A. Horr, 1967, Hydrologic and climateologic data 1966, Salt Lake County, Utah: U.S. Geol. Survey Basic-Data Release No. 13, 85 p.

, 1968, Hydrologic and climatologic data 1967, Salt Lake County, Utah: U.S. Geol. Survey Basic-Data Release No. 15, 74 p.

_____, 1969, Hydrologic and climateologic data 1968, Salt Lake County, Utah: U.S. Geol. Survey Basic-Data Release No. 17, 70 p. Hely, A.G., R.W. Mower, and C.A. Harr, 1971a, Water resources of Salt Lake County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 31, 239 p.

, 1971b, Summary of water resources of Salt Lake County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 34, 25 p. Summary of 1971a above.

Iorns, W.V., R.W. Mower, and C.A. Horr, 1966, Hydrologic and climatologic data collected through 1964, Salt Lake County, Utah: U.S. Geol. Survey Basic-Data Release No. 11, 91 p.

, 1966, Hydrologic and climatologic data 1965, Salt Lake County, Utah: U.S. Geol. Survey Basic-Data Release No. 12, 84 p.

Marine, I.W., 1960, Geology and ground-water resources of Jordan Valley, Utah: Univ. of Utah PhD Thesis, 202 p.

Marine, I.W., and Don Price, 1964, Geology and ground-water resources of the Jordan Valley, Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 7, 67 p.

_____, 1963, Selected hydrologic data, Jordan Valley, Salt Lake County, Utah: U.S. Geol. Survey Basic-Data Report No. 4, 30 p.

Richardson, G.B., 1906, Underground water in the valleys of Utah Lake and Jordan River, Utah: U.S. Geol. Survey Water-Supply Paper 157, 81 p.

Taylor, G.H., R.M. Leggette, 1949, Ground water in the Hordan Valley, Utah: U.S. Geol. Sruvey Water-Supply Paper 1029, 257 p.

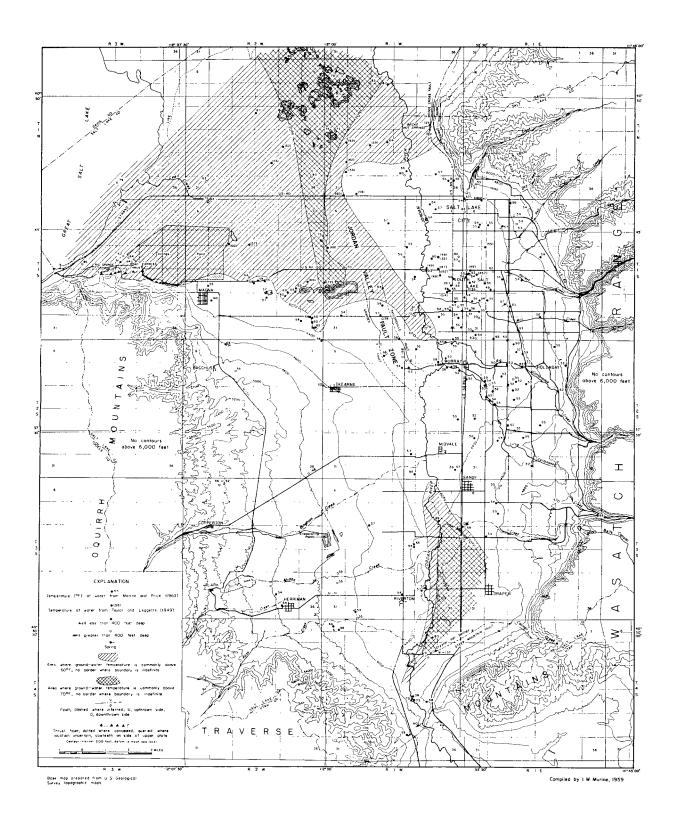


Figure 7. Map showing selected faults and temperatures of ground water in the Jordan Valley, Utah. (Reprinted from figure 30 of Marine and Price, 1964)

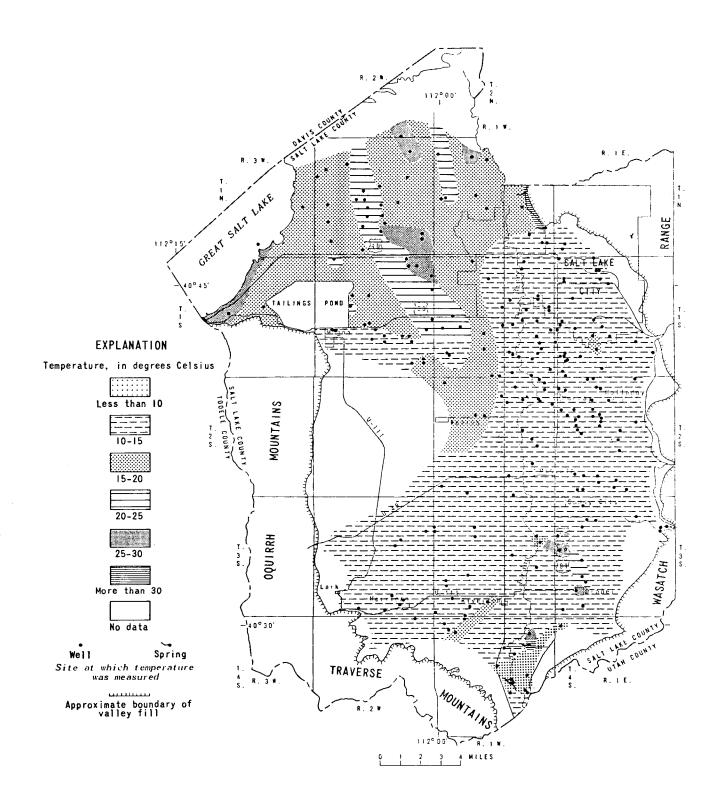


Figure 8. Map showing areal distribution of water temperature in the principal aquifer in Jordan Valley. (Reprinted from figure 78 of Hely, Mower, and Harr, 1971a)

Pavant Valley - Black Rock Desert

INTRODUCTION

Pavant Valley is in eastern Millard County, in west-central Utah. The area considered covers about 300 square miles and includes the towns of Holden, Fillmore, Meadow, and Kanosh, whose total population is about 4000. The economy depends on agriculture, but tourism and mining of volcanic cinders contribute to the economy (Mower, 1965).

SUMMARY of OCCURRENCES and POTENTIAL of the HOT and WARM WATERS

Warm to hot springs about 5 miles southwest of Meadow yield water of 30°-41°C, and water in a nearby 90-foot well is 67°C. Mundorff (1970) concluded that although some heat may be contributed to the spring by nearby late Tertiary or Quaternary volcanics it is likely that the heating is due to the normal geothermal gradient and therefore the area has "questionable geothermal potential." Later workers, Parry and Cleary, and Rush, have used geothermometers to conclude that deep water temperatures may range from 180° to 230°C, and Parry and Cleary have stated that Pavant Valley is "a prime target for further exploration."

Most well waters in the valley are in the range of $11^{\circ} - 22^{\circ}C$, and the median temperature is $15^{\circ}C$. Thus in most areas where there now are wells, the chance of reaching water of $15.5^{\circ}C$ or higher is almost 1 in 2.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

Pavant Valley is at the eastern border of the Basin and Range Physiographic Province and is bounded on the east and south by the Pavant Range, which is in the Colorado Plateau Province. A low ridge of extinct volcances and flowsseparate the valley from the main part of the Sevier Desert to the west (Mower, 1965, p. 10).

The valley fill consists of the Sevier River(?) Formation, more than 800 feet thick, pre-Lake Bonneville lake beds, from 0 to nearly 800 feet in thickness, basalt flows from two extinct volcances in parts of the area, and intertonguing alluvial fans and lacustrine deposits of Lake Bonneville (Mower, 1965, p. 19). Water flows from the creeks of the Pavant Range into the valley-fill deposits and has saturated them so thoroughly that extensive evapotranspiration occurs over an area of about 35,000 acres in the lower western parts of the valley (Mower, 1965).

Irrigation wells pumped about 82,000 acre-feet each year from 1966-75, with general declines in water levels of less than 1 foot per year.

OCCURRENCE of WARM and HOT WATERS

Warm to hot water occurs in two spring areas and in a well about 5 miles southwest of Meadow, and warm water occurs in 7 wells scattered around the valley (Table 12-A), but these occurrences can be appreciated better from the background of Mower's interpretation (1965, p. 72).

"TEMPERATURE

The temperature of water from 178 wells in Pavant Valley ranged from 52° to 85° F (11^o- 29.5^oC). The temperature of the shallowest water is about the same as the mean annual air temperature of 52° F (11^oC). Ground-water temperature increases an average of 1^oF for each 80 feet of depth in the sediments in the valley. The temperature also increases westward from the mountains toward areas of

recent volcanic activity. Near the mountains along the east side of the valley, the temperature of the ground water ranges from 52° to 57° F (11^o - 14^oC); along the west side of the valley, the temperature ranges from about 60^o to 85° F (15.5^o - 29.5^oC), except that the temperature of water from wells in the basalt aquifer ranges from 54^o to 57^o (12^o - 14^oC). A temperature of 143^oF (61.5^oC) was measured for springs along Devil's Ridge west of Hatton, but the rate of flow is only 1 or 2 gpm. Wells in Pavant Valley have not been known to tap water warmer than 85° F (29.5^oC). (Well (C-22-6)35ddb, was drilled after Mower wrote his report).

"The temperature of ground water, in general, increases 1° - $3^{\circ}F$ (0.5°- 1.5°C) through the irrigation season. This temperature rise is caused principally by excess irrigation water that has been warmed at the land surface and has returned to the aquifer and by upward migration of warmer water from lower depths."

Next, a comment on and a couple of additions to Mower's interpretation by making reference to his Basic-Data Report No.5 (1963) which records temperatures of 239 wells. As Mower says above, the temperatures range from $11^{\circ} - 29.5^{\circ}C$, but only one is at 29.5°C and the rest range from $11^{\circ} - 22^{\circ}C$. The median temperature is 15.5° , 94 wells have slightly warm water with temperatures between $15.5^{\circ} - 19.5^{\circ}C$, and 7 have warm water with temperatures of $20^{\circ} - 29^{\circ}C$. The pattern formed by plotting the slightly warm to warm water simply shows a scattering among the other wells that yield slightly cooler water. Appreciably warmer water occurs in the warm or hot springs and hot-water wells southwest of Meadow (Table 12-A), but conflicting reports of the temperatures require some explanation. Meadow "Hot" Spring was measured in the summer of 1970 by Rush (1978) at $30^{\circ}C$. Dennis, Maxey, and Thomas (1946) report a temperature of $35^{\circ}C$ from "Warm Spring" which they locate on a map in the same place, (C-22-6)27ddc, as the Meadow spring measured by Rush.

Hatton Hot Spring, (C-22-6)35ddc, was measured in the summer of 1976 by Rush (1978) at 36°C. Dennis, Maxey, and Thomas (1946) show a Winepa Hot Spring at (C-22-6)35dca, but do not give a temperature. As quoted above, Mower (1965) reports a temperature of 63°C for Devil's Ridge Spring, for which Dennis, Maxey, and Thomas give a temperature of 13°C, and Rush also reports a temperature of 13°C at the site, (C-22-6)34baa, where Dennis, Maxey, and Thomas plotted Devil's Ridge Spring. Probably Mower measured a temperature at Hatton Hot Spring and erroneously reported it as Devil's Ridge. This explanation seems to be confirmed by the 67°C temperature that Rush measured in a 90-foot well, (C-22-6)35ddb, close to Hatton Hot Spring.

Mundorff (1970, p. 40-41) also has reported on Meadow and Hatton Hot Springs and his statements are worth repeating:

"Meadow...and Hatton...Hot Springs...issue from valley-fill deposits of Tertiary or Quaternary age. Basalt flows of Quaternary age are only about three miles north of the springs; basalt flows of late Tertiary age are about three miles west of the springs and in the vicinity of Black Rock Volcano about three miles south of the springs...

"Temperature of the water of Meadow Hot Springs was $84^{\circ}F(29^{\circ}C)$ in May 1966 and was 106°F (41°C) in May 1967; a discharge of 60 gpm was estimated in 1957. Hatton Hot Springs have not flowed for several years; the temperature of the water was 100°F (38°C) in 1957.

"Chemical data obtained during the past 25 years at Meadow Hot Springs show that the dissolved-solids content has ranged from 4,690 to 4,900 ppm and that the water is of the sodium chloride type. In equivalents per million, calcium is about half that of sodium, and sulfate is about half that of chloride. The germanium content of a sample obtained in May 1966 was fairly high (571 mg/l) but the germanium content of two other samples obtained during 1966 and 1967 was not especially high in a sample obtained in May 1967. Silica concentration did not exceed 50,000 mg/l in any sample analyzed.

"Some heat undoubtedly is furnished by the nearby volcanic flows of later Tertiary and Quaternary age. The dissolved solids content of water at Meadow and Hatton Hot Springs (4,670 - 4,900 ppm) is somewhat similar to that of the ground water in the general area of the springs. Water from a well about five miles northeast of the springs has dissolved-solids content of 8,050 ppm. The depths of these wells range from 100 to 527 feet. If ground water similar to that found in the described wells were in contact with the volcanic flows or were circulated to a depth of 3,000 feet, water having the chemical and thermal characteristics of the hot springs would result.

"Despite the proximity of volcanic rocks of late Tertiary and Quaternary age, the immediate area of the springs appears to be of questionable geothermal potential. The relatively low temperature of the spring water, the low silica content, and the similarity in chemical quality of the spring water and the ground water in a fairly large surrounding area are not favorable indicators of a large increase in temperature at fairly shallow dpeth."

In contrast to Mundorff's opinion (1970, p. 41) that the Meadow and Hatton spring areas have "questionable geothermal potential," Parry and Cleary (1978, p. 1), who computed Na-K-Ca and SiO₂ temperatures for many springs and wells in the Pavant Valley, conclude that "the combination of water chemistry, young silicic volcanics, and proximity to known geothermal areas make Pavant Valley a prime target for further exploration". They computed mixing models to explain the low silica content of the water from Meadow Hot Spring; "those models suggest a hot water temperature of 190° to 230°C and a cold water fraction of 86% to 90% (Parry and Cleary, 1978, p. 26).

Rush also studied Meadow and Hatton Hot Springs and concluded that "the temperature of the hydrothermal reservoir, estimated with geothermometers is about 180° C or less" (1978, written commun.). Rush outlined an elongate area of about 3 sq. mi. surrounding Hatton Hot Spring where he reports that high heat flow results in rapid snowmelt, and goes on to say that "subsurface temperatures of 70° C can be expected at depths of as little as 10 m under these snowmelt areas" (1978, written commun.).

Cited References

- Dennis, P.E., G.B. Maxey, and H.E. Thomas, 1946, Ground water in Pavant Valley, Millard County, Utah: Utah State Engineer Tech. Pub. No. 3, 96 p.
- Lee, W.T., 1908, Water resources of Beaver Valley, Utah: U.S. Geol. Survey Water-Supply Paper 217, 57 p.
- Mower, R.W., 1965, Ground-water resources of Pavant Valley, Utah: U.S. Geol. Survey Water-Supply Paper 1794, 78 p.

, 1963, Selected hydrologic data, Pavant Valley, Millard County, Utah: U.S. Geol. Survey Basic-Data Report No. 5, 20 p.

Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p. Parry, W.T., and M. Cleary, 1978, Na-K-Ca and SiO₂ temperature estimates for Utah spring and well waters: U.S. Geol. Survey, Geothermal Research Program, Contract 14-08-0001-G-341, 51 p.

Sevier Desert

INTRODUCTION

The Sevier Desert occupies about 3000 square miles in Juab, Millard, and Tooele counties in central Utah. The center of population is Delta, and the principal activities are agriculture and raising of livestock. Beryllium ore that is mined in Juab County west of the Sevier Desert is processed at a plant near Lynndyl. Probably about 10,000 people live in the area under consideration.

SUMMARY of OCCURRENCES of HOT and WARM WATER

The only hot water in the area is reported from Abraham (Crater) Hot Springs, which issue from a tufa mound near a Quaternary basalt flow. Temperatures to 82°C have been measured and total solids content ranges from 3200 to 3800 ppm. The area has been designated as a KGRA (Energy Resources Map of Utah, 1975) and thus is deemed to be worthy of further investigation.

All well water in the Sevier Desert is in the 11° - 28° C range (Table 12-A and B). The lowest reported temperature is 1° above the reported mean annual air temperature of 10° C (Mower and Feltis, 1968, p. 10). Water south of Delta is apparently slightly warmer than water north of Delta. Although no strong pattern can be developed from the occurrences, a well south of Delta appears to have 5 chances in 6 of reaching water of 15.5° or higher, whereas a well north of Delta has only 1 chance in 3.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The Sevier Desert of this report includes Tintic Valley and the northern portion of a huge closed intermontane structuralbasin that extends southward into the Sevier Lake basin and Pavant Valley. The Sevier River drains the High Plateaus to the southeast of the basin and would flow, if not fully diverted in the vicinity of Delta, into the Sevier Lake basin. The Sevier Desert is bounded by, clockwise from the southwest, the Cricket, Little Drum, Drum, and McDowell Mountains on the west, Simpson, Sheeprock, and West Tintic Mountains on the north, and East Tintic, Gilson, and Canyon Mountains on the east. All are typical fault-block ranges of the Basin-range Physiographic Province.

The valley floor is underlain principally by lake-bottom deposits of silt and clay that were laid down in Pleistocene Lake Bonneville. The continuity of the lake-bottom deposits in several places is interrupted by Plio-Pleistocene volcanic rocks that stand above the lake plain. Along the eastern side of the valley are extensive sand dunes. Interfingering with the lake deposits are stream-laid deposits brought in by the Sevier River and by streams from the surrounding mountains during dry climatic cycles when the basin was not filled with a lake. Altogether, the valley-fill deposits probably aggregate more than 6000 feet.

The complex interfingering of fine-grained and coarser-grained deposits has formed two principal artesian aquifers in much of the basin and multiaquifer artesian system "from the Leamington-Oak City area west and southwest toward Sevier Lake" (Mower and Feltis, 1968, p. 15). The unconsolidated deposits of the basin are probably more than 1000 feet thick in much of the basin and "in excess of 8000 feet near the center of the basin" (Mower and Feltis, 1968, p. 35). By using an average saturated thickness of 775 feet for the main part of the desert and 300 feet for the Old River Bed area, Mower and Feltis (p. 36) have computed the volume of ground water in storage at more than 400 million acre-feet. Water is discharged from this closed basin by natural evapotranspiration and by pumpage from wells; recharge comes from streams, irrigation ditches, and irrigated fields and probably by underflow from the mountains that border the basin.

OCCURRENCE of HOT and WARM WATER

The only hot water in the Sevier Desert occurs at Abraham(Crater) Hot Springs (C-14-8)10S and 15S which are about 16 miles north-northwest of Delta (Table 13-A). According to Mundorff (1970, p. 37-40), "these springs issue from a tufa mound about 15 feet high and several hundred feet in diameter on the floor of the Sevier Desert along the east side of a Quaternary basalt flow (Fumarole Butte)... Water temperatures near the center of the spring area are about 180°F (82°D)... In July 1967, the total discharge from all springs was estimated to be about 250 gpm" although other estimates have ranged from 700 to 5000 gpm. "Dissolved solids content ranges from about 3,200 to 3,800 ppm... (hence) the water is unsuitable for most uses... The absence of boiling temperatures, the low silica concentrations, and the large water discharge during some periods indicate that test drilling would be necessary to determine if temperature increase with depth is sufficient to sustain an economically feasible geothermal development."

Rush (1978, written commun.) inventoried about 40 orifices at Crater Hot Springs and estimated total flow at about 1400 gpm with additional seepage of about 700 gpm. He believes the water rises along a north northwest-trending fault from a reservoir about 1.3 km deep or "only 200m deeper than the estimated base of the alluvial valley fill...The estimated temperature of the hydrothermal reservoir is only 110° C" (p. 63).

reservoir is only 110°C" (p. 63). Slightly warm (15.5°-19.5°C) and warm (20°-34.5°C) water up to 28° is common in the wells whose temperatures are recorded by Mower and Feltis (1964) (Table 13-B). Basic-Data Report No. 9 lists about 600 wells. Of these, temperatures were measured on 171. The lowest temperature of 11°C, 1° above mean annual air temperature, was recorded on only one well. Eighty other wells have reported temperatures of 12° to 15°, 70 wells of 15.5° to 19.5°, and 20 of 20° to 28°. The wells of 15.5° to 19.5° are scattered all over the mapped area; all eleven wells measured in Juab County are in that temperature range. The wells whose temperatures are 20° to 28° fit no apparent pattern, but 11 of the 20° are south of Delta as are 33 of the 70 that are between 15.5° and 19.5°. Furthermore, only 8 other wells were measured in the area south of Delta: all were 14.5° to 15°.

It therefore appears that a well south of Delta has about 5 chances in 6 of penetrating water above 15.5°, and a well elsewhere about 1 chance in 3.

There is no ready explanation why the water of the Sevier Desert has abovenormal temperature. Possibly there is deep-seated heat near Pavant Butte to the south and certainly there is heat near Fumarole Butte, the source of heat for Abraham Springs; but there is no indication of increase in water temperature toward those possible sources, so the mystery remains.

Cited References

Mower, R.W., 1964, Ground-water data Sevier Desert, Utah: U.S. Geol. Survey Basic-Data Report No. 9, 34 p. Mower, R. W., and R.D. Feltis, 1968, Ground-water hydrology of the Sevier Desert, Utah: U.S. Geol. Survey Water-Supply Paper 1854, 75 p.

Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.

Sevier River Valley

INTRODUCTION

The Sevier River heads on the Markagunt Plateau, and its principal tributary, the East Fork Sevier River, heads on the Pausaugunt Plateau, both in south-central Utah. The two northeastward-dipping plateaus are separated by the north-trending Sevier fault which has raised the Pausaugunt on the east above the Markagunt on the west. Both streams flow generally northward, and the East Fork is joined near Antimony by Otter Creek, which flows southward from the Fish Lake Plateau. The East Fork then flows westward to meet the main Sevier River at Kingston. Beyond Kingston, the Sevier continues northward, past Marysvale, Sevier, Joseph, Richfield, Salina, and Redmond to Gunnison where it is joined by the San Pitch River, which drains the east flank of the Wasatch Plateau and flows southward to meet the Sevier. The river then flows northwestward through Sevier Bridge Reservoir which holds the flow of the river behind Yuba Dam. After passing Yuba Dam, the river continues northwest, then goes through Leamington Canyon to the Sevier Desert.

SUMMARY of OCCURRENCES of HOT and WARM WATER and POTENTIAL for USE

Three hot springs, Monroe $(76^{\circ}C)$, Red Hill $(76.5^{\circ}C)$, and Joseph $(64^{\circ}C)$, yield water that is hot enough for direct space heating and plans are underway by the town of Monroe to develop the nearby hot springs for heating schools and other buildings.

LeFevre spring 10 miles north of Panguitch yields 15 gpm of water at 26^o-32^oC. Possibly development of the spring area could increase the yield for heating a greenhouse. The nearby Tebbs spring yields a greater quantity, 280 gpm, of cooler but still warm water at 20^oC.

The heat from the fresh waters of Johnson Warm Spring, 25°C, 10 gpm, 418 mg/l dissolved solids, and of Richfield Warm Springs, 22°C, 700 gpm, 307 mg/l dissolved solids, is going to waste but might have potential for the future.

The yields and quality of waters of the two warm springs in the San Pitch Valley, Crystal, 22°C, 360-425 gpm, about 600 mg/l dissolved solids, and Peacock 22°C, 346-1260 gpm, 466 mg/l dissolved solids, are adequate for irrigation. These waters could be used to warm greenhouses.

The 5800-ft deep well, (D-14-5)16bdd, that flows nearly 300 gpm of fresh water at 55°C from the Masuk-Emery could be an indicator of a valuable resource. The depth involves a high first cost, but the freshness, temperature, and artesian flow might offset that cost over a long period.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

Both main branches of the Sevier River begin as spring flow from the Tertiary Wasatch Formation. They flow northward and traverse broad exposures of Tertiary volcanics into which they have cut steep canyons, some of the steepest downstream from their confluence at Kingston. Near Richfield the valley is flanked by Tertiary and Mesozoic sedimentary rocks, which contain the river until it reaches the Canyon Range. There the river has cut through Paleozoic and Precambrian rocks as well as Mesozoic rocks. The tributary San Pitch River Valley is flanked principally by Cretaceous and Tertiary sedimentary rocks from the headwaters to the confluence with the Sevier.

The northward course of the Sevier River probably is fault controlled, because many faults are parallel to or sub-parallel to the trend of the valley. The faults are most evident in the Central Sevier area from Sevier to Gunnison where the river valley is a graben and Monroe and Red Hill Hot Springs rise on the eastern flanking fault.

In its course from the High Plateaus to the Sevier Desert, the river flows through many small alluvium-filled basins that are separated by buried bedrock barriers or by exposed bedrock barriers through which the river has cut canyons. These basins are essentially saturated with water, which is drawn on by wells to supplement irrigation water supplied by the river.

The Sevier River is the most highly appropriated river in Utah and, perhaps, in the United States. Much of its flow is probably used for irrigation several times before it finally reaches its last use in the Sevier Desert, about 200 miles from its sources in the High Plateaus.

In the discussions that follow, the warm and hot waters that occur in the Sevier River drainage will be considered under three headings:

> Upper Sevier: Headwaters of Sevier River, East Fork Sevier River, and Otter Creek to Kingston

Central Sevier: Mainstem of the Sevier River from Kingston to Yuba Dam

San Pitch: San Pitch River drainage to its junction with the Sevier

OCCURRENCES of WARM and HOT WATER

Upper Sevier - Headwaters to Kingston

Two springs about 10 miles north of Panguitch yield warm water (Table 14). The LeFevre spring yields about 15 gpm of water that ranges from 26° - 32° C. It rises from a fault zone that cuts the Tertiary Wasatch Formation. The nearby Tebbs spring, (C-33-5)16cdc, yields 280 gpm of water of excellent quality, 218 mg/l dissolved solids, at temperatures from 10° - 20° C. It rises from alluvium. Five other springs and two wells yield water of 15.5 - 18° C. One of these springs is in Panquitch Valley, one in Circle Valley, two in East Fork Valley, and one in Grass Valley.

Central Sevier - Kingston to Yuba Dam

One deep (9638 ft) oil-test well and three spring areas report hot water (Table 15-A). Two other springs and one well yield warm water between $20^{\circ} - 25^{\circ}$ C. Because the oil-test well is so deep its water temperature of 65°C can hardly be considered an asset, but the three hot spring areas, Monroe, (C-25-3)10dda, at 76°, Red Hill, (C-25-3)11cac, at 76.5°, and Joseph, (C-25-4)23aac, at 64° are significant. All three springs rise on faults: Monroe and Red Hill on the Sevier Fault on the east side of the valley and Joseph on the Dry Wash Fault which is west of outcrops of volcanic rock near the center of the valley.

Rush (1978, written commun.) has studied Monroe, Red Hill, and Joseph Hot Springs. He concludes that Monroe and Red Hill are part of the same spring system and are fed by a hydrothermal reservoir about 4 km deep and having a temperature as high as 160°C. He also believes that Joseph Hot Spring is related to a hydrothermal reservoir about 4 km deep at a temperature of about 160°C.

Johnson Warm Springs, (C-25-3)27aba, at $25^{\circ}C$, also issue from the Sevier Fault about 2 miles south of Monroe Hot Springs, and Richfield Warm Springs, (C-23-3)26aca, 20° to $22^{\circ}C$, issues from the Elsinore Fault zone on the west side of the valley about half a mile west of Richfield.

Mundorff (1970, p. 41-42) discusses all these springs in some detail:

Monroe Hot Springs issue from a single tufa mound that extends for about half a mile along the mountain front; the width of the mound is about 600 feet from the mountain front to the base, and the height is 75-100 feet. The springs issue from seepage zones and from fissures and cracks that have been enlarged by local residents to increase the spring yield. Discharge is at two major points-one near the center of the mound and the other at the base. The largest spring on the mound discharges about 50 gpm; water temperature was 148° F on February 13, 1967. The other large spring discharges about 40 gpm from the base of the mound; water temperature was 106° F. Several small springs discharge from the surface of the mound. The total discharge of Monroe Hot Springs was about 150-200 gpm on February 13, 1967. In addition to the visible discharge from the springs, some water evaporates directly from the mound surface; saturated areas high on the mound above the spring areas and extending to the mountain front indicate that artesian pressure is forcing water to the surface of the mound.

Red Hill Hot Spring issues from a tufa mound about 600 feet long, 200-300 feet wide, and about 50 feet high. The only spring that issues from the mound discharges as much as 150 gpm from a crevice in the north-central part of the mound. The water temperature was 167° F on February 13, 1967; a temperature of 169° F was reported for "Monroe Hot Springs" (Carpenter and Young, 1963, p. 17), but this temperature actually was for Red Hill Hot Spring.

Johnson Warm Spring issues along the Sevier fault about two miles south of Monroe Hot Springs. Richardson (1907, p. 58) reported a flow of 180 gpm and a temperature of 80° F. In April 1967, U.S. Geological Survey personnel reported a flow of 10 gpm and a temperature of 77° F.

Both Monroe and Red Hill Hot Springs have dissolved-solids contents ranging from about 2,600 to 2,900 ppm and are of the sodium sulfate chloride type. Johnson Warm Spring has a much lower dissolved-solids content and is of the calcium sulfate type. One of the small springs in the Monroe Hot Springs showed a high manganese content (346 μ g/l). Johnson Warm Spring had one of the highest molybdenum contents (18 μ g/l) of all thermal springs in Utah.

Joseph Hot Springs issue from tufa deposited by the springs over the Dry Wash fault. Extensive areas of volcanic rocks crop out immediately east of the fault. Water temperatures of 145° and 148° F were measured in 1966 and 1967. Discharge of the springs probably averages 30 gpm. Dissolved-solids content of Joseph Hot Springs ranges between about 5,000 and 5,200 ppm-nearly double that of Monroe and Red Hill Hot Springs. The water is of the sodium chloride type. The concentration of calcium is about the same for Monroe, Red Hill, and Joseph Hot Springs; sulfate is somewhat greater in Joseph Hot Springs than in Monroe and Red Hill Hot Springs. In Joseph Hot Springs, chloride (in equivalents per million) is nearly double that of sulfate; but in Monroe and Red Hill Hot Springs, chloride and sulfate are about equal (in equivalents per million).

The presence of volcanic rocks of late Tertiary age along the faults from which Monroe, Red Hill and Joseph Hot Springs issue indicates that these rocks probably contribute to the heating of the water. They may be a direct source of heat for some of the water, and the volcanic activity that resulted in these rocks may have resulted in an abnormally high geothermal gradient. The depth of circulation and the amount of dilution by cool shallow ground water are not known. The major faults certainly furnish the avenues of escape for the water that enters the earth's surface at altitudes much higher than those of the springs, but the depth of circulation in the fault zone is unknown.

Richfield Warm Springs, (C-23-3)26aca-S1, are about half a mile west of Richfield in Sevier County. These springs issue at a fault contact between alluvium and sandstones of Tertiary age in the Elsinore fault zone along the west side of the Sevier River valley (figure 17). Numerous faults occur in the eastern part of the Pavant Range, which is immediately west of the springs. Volcanic rocks of late Tertiary age crop out about two miles south of the springs and extend for many miles southwestward along the west side of the Sevier River valley; similar outcrops are common along the east side of the valley.

Richardson (1907, p. 58) reported that spring discharge was 1.440 gpm and that water temperature was 74° F. In June 1966, discharge was 700 gpm and water temperature was 72° F. Dissolved-solids content of the springs is low-about 300 ppm; the water is of the magnesium calcium bicarbonate type.

The presence of numerous faults in the mountains one to five miles west of the springs, the large discharge of the springs and the low dissolved-solids content indicate that the spring discharge is meteoric water that descends not more than 2,000-3,000 feet and is heated slightly by the geothermal gradient. The altitude in some areas of possible infiltration is more than 2,000 feet higher than that of the springs. The geothermal gradient within the mountains is sufficient to raise the temperature of the water 15° -20° Recent investigations (continuing into 1978) at Monroe Hot Springs by the Department of Geology and Geophysics of the University of Utah probably will lead to the developing of those springs for heating of schools and several other buildings in Monroe (S. H. Ward, pers. commun. 1978).

Slightly warm water $(15.5^{\circ}-19.5^{\circ}C)$ has been reported in 29 wells and ll springs (Table 14-B). Two of these springs yield large quantities of water: Fayette Spring, 1900 gpm at 18°C, and Redmond town spring, 6000 gpm at 19°C. Richardson (1907, p. 58) reported a temperature as high as 70°F (21°C) and a flow of 13.5 cfs for Redmond Springs.

San Pitch River - Headwaters to confluence with Sevier River

Two springs, Crystal (Livingston Warm Spring), (D-18-2)13cad, and Peacock (Nine Mile Warm Spring), (D-19-2)4dca, consistently yield water at 22 - 22.5°C, and one deep well, (D-14-5)16bdd, yields fresh artesian water of 55°C from the Masuk and Emery Sandstone members of the Mancos Shale between the bottom of the casing at 5588 and the plug at 5800-5900 (Table 16-A). Both springs rise along faults so it is likely that they and the deep well derive their heat from the geothermal gradient.

Six wells yield slightly warm water of 15.5° - $19^{\circ}C$ and four springs and a mine tunnel yield water of 15.5° - $18.5^{\circ}C$ (Table 15-B).

Robinson (1968, Tables 1 and 2) measured temperatures of about 350 wells and 51 springs. Except for the deep well that yields water of $131^{\circ}F(55^{\circ}C)$, temperatures ranged from 46°F (8°C) to 66°F (19°C) and averaged 52°F (11°C). Temperatures of water from the springs ranged from 37°F (3°C) to 73°F (22°C) and averaged 52°F (11°C).

Cited References

- Carpenter, C.H., G.B. Robinson, Jr., and L.J. Bjorklund, 1964, Selected hydrologic data, upper Sevier River basin, Utah: U.S. Geol. Survey Basic-Data Report No. 8, 29 p.
- Carpenter, C.H., and R.A. Young, 1963, Ground-water data central Sevier Valley parts of Sanpete, Sevier, and Piute Counties, Utah: U.S. Geol. Survey Basic-Data Report No. 3, 34 p.
- Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.

Robinson, G.B., Jr., 1968, Selected hydrologic data San Pitch River Basin, Utah: U.S. Geol. Survey Basic-Data Release No. 14, 44 p.

Richardson, G.B., 1907, Underground water in Sanpete and Central Sevier Valleys, Utah: U.S. Geol. Survey Water-Supply Paper 199, 63 p.

Uinta Basin

INTRODUCTION

The Uinta Basin includes most of northeastern Utah south of the crest of the Uinta Mountains. It encompasses more than 10,000 square miles including nearly all of Uintah and Duchesne Counties as well as parts of Carbon, Emery, Grand, Utah, and Wasatch Counties. Many oil fields have been developed in the Uinta Basin, beginning with the Ashley Valley field in 1949.

SUMMARY of PRINCIPAL OCCURRENCES, USE, and POTENTIAL

Warm to hot water between 20° and $55^{\circ}C$ is yielded in quantity by wells in the Ashley Valley oil field $(43^{\circ} - 55^{\circ}, 4400 \text{ acre-feet per year, approximately}$ 1500 ppm dissolved solids), by a spring in Split Mountain Canyon (30° , 2700 gpm, 942 ppm), by a water well converted from an oil-test well about 5 miles southeast of Jensen ($43^{\circ}-46^{\circ}$, 200 gpm, 2000 ppm)(this well apparently abandoned December 1977), and by springs that rise along a fault or faults in the Duchesne River valley about 2 miles northwest of Hanna (26° , 2250 gpm, 454 ppm). All the water except that from the spring in Split Mountain is used for irrigation, but without any attempt to make use of the heat.

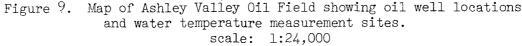
The water that rises with the oil in Ashley Valley is run through settling tanks that separate the oil and water. The water is then disposed of into ponds and ultimately into ditches by which it enters the irrigation system east of the field. Such water could be used for space heating in the immediate vicinity, perhaps even in Naples or Jensen, or for extending the growing season by using large greenhouses.

The warm water from the springs northwest of Hanna similarly might be used in greenhouses.

Slightly warm water, 15.5° - 19.5° C, is yielded by 13 springs and 7 shallow wells that are between 12 and 160 feet deep. One spring yields 117 gpm and another 40 gpm but the rest of the springs and wells all yield 20 gpm or less. These waters are in the temperature range suitable for use in heat pumps, but only the water from the wells might be so used for the springs are generally remote from human habitations. Most of the springs and wells yield water containing less than 1000 ppm dissolved solids but four springs and two wells yield water containing 1000 to 2770 ppm.

GEOLOGIC ENVIRONMENT

"The Uinta Basin is an asymmetric syncline with an axis that is concave southward and generally parallel to the eastward-trending Uinta Mountains that lie to the north. Beds that form the north flank of the basin dip steeply southward away from the Uinta Mountains. Beds that form the south flank dip up to 5 northward toward the axis of the syncline. Rocks of Precambrian, Cambrian, and Mississippian through Tertiary ages are exposed" along the steep north flank of the basin and have been identified in oil wells (Feltis, 1966, p. 9). Only Tertiary rocks are exposed over the rest of the basin; they extend from the foot of the Uinta Mountains to the crest of the Book Cliffs where they have been cut off by the erosion that has exposed Cretaceous rocks at the base of the cliffs. Significant faults parallel the east-west trend of the basin axis along the south flanks of the mountains. In the northeastern part of the basin is the Deep Creek fault zone which trends northwest-southeast about where the trend of the axis of the basin turns southeastward. All these faults cut the Paleozoic as well as Tertiary rocks and therefore probably provide conduits for water from the mountains to get into the deep subsurface. In addition, the rocks along the flank of the mountains have joints that may also act as conduits for water.


Although warm and hot waters are reported in several localities in the Uinta Basin, there appears to be no significant source of heat other than the normal geothermal gradient. A few springs, whose temperatures are all below 32° C, rise along faults and one rises on the Split Mountain anticline. Wells in the Ashley Valley oil field yield water of 43° to 53° C from depths of about 4200 feet, but the water itself may be coming from formations 1000 to 2000 feet below the well bottoms.

OCCURRENCES of HOT to WARM WATER

Ashley Valley Oil Field

The principal occurrence of hot water in the Uinta Basin is in the Ashley Valley oil field in township 5 south, range 22 east, where several wells yield water of 43° to 53°C from depths of about 4200 feet below the land surface (Table 17). Probably all the other wells in the 28-well field yield water of about the same temperature but temperature information on them has not been reported. Total water yield of the oil field in 1963 was nearly 29 million

.

٢

Table 18 - EXPLANATION for Figure 9 and records of water temperature and conductance in the Ashley Valley oil field

· ·

Symbols & measuring points	Ownership or description	Temperature ^O C	Conductance mmho	Date
AV-2,3,4,5,7	Equity Oil Co.			
ER-1,2,4,5, 6,8,10	Energy Reserves (Formerly Pan American)			
Н & Т	Hollandsworth and Travis	56 ⁰	2400	12/7/77
3 & 4 Lacy	R. Lacy			
P-1	Polumbus Corp.	45	2500	do
CG	Crain and Griffith T.E.Hall #1	50	1600	do
5S	Thomas E. Hall 5S	47	1620	do
А	Composite of Equity wells AV-2,3,4,5,7	49	1580	do
В	Composite of Equity wells AV-2,3,4,5,7 below settling ponds; half a mile below A	16	1150	do
С	Composite of Lacy 3 and 4	53	2700	do
D	Composite of ER-1,2,4,5,6,8	50	1800	12/6/77
E	Composite of ditch water and outflow from oil field	20	2900 2940	12/7/77 11/4/60
F	Ashley Creek	2	3700	12/7/77
Prior	measurements, listed for comparison			
AV-1		44	1590	11/3/59
AV-7		45	1330	do
ER-1	(Originally Pan Am. 1 Federal	49	1860	do
ER-2	(Originally Pan Am. 2 Federal)	46	2460	do
ER-10	(Originally Pan Am. 10 Federal)	45	829	do

barrels or 3700 acre-feet of water having about 1500 ppm dissolved solids. In 1977 the yield was 34.6 million barrels or more than 4400 acre-feet. It would seem that so long as pumping continues in the field, water production will remain high; if pumping stops, water production would cease for a while, but artesian pressures would be restored and ultimately, perhaps in a year or less, the wells would begin to flow, although at a rate appreciably less than the present 4400 acre-feet a year. Richard Peterson, of Equity 0il Co., told me that the top-hole pressure on the discovery well, Equity #IAV, was between 500 and 600 pounds when the well was first put into production in 1948. Restoration of that pressure should produce appreciable flow.

By 1952, 30 wells were producing about 900,000 barrels of oil and 600,000 barrels of water. From 1952 to 1960 oil production averaged about 950,000 bbls a year and reached a peak of 1,400,000 bbls in 1960. During the same period, water production steadily increased to about 18,700,000 bbls in 1960. Since 1962, oil production has declined and water production has increased: in the year ending December 1977, about 180,000 bbls of oil and 34,634,000 bbls of water were produced by 28 wells.

In Table 18 are given water temperatures and conductances measured on some wells, a ditch, and a creek on December 6 and 7, 1977, and, where available, reasonably comparable measurements taken in 1959 and 1960 (all temperature measurements were made by Goode, the 1977 conductances were measured by Goode, and the 1959 and 1960 conductances were reported by laboratory personnel).

The 1977 temperatures of the Equity and Energy Reserves wells, although not comparable to the 1959-60 temperatures on a well-to-well basis, suggest that the water may be as much as 2 or 3°C higher now than it was in 1959-60. This rise could be the result of a greater volume of water moving through the plumbing system (34.6 million bbls vs 18.7 million) or it may be due to a general warming of the system by the long-term movement of the hot water through it.

As reported by Goode and Feltis (1962, p. 12) the water "is probably sustained by surface recharge in outcrop areas north and east of the field. Possibly the water comes not only from the oil-bearing strata (the Weber-Phosphoria) but also from a sequence of underlying limestones of Pennsylvanian and Mississippian age." The water probably moves up into the oil-bearing rocks along normal faults that are known to cut those rocks (Peterson, 1957, map).

Other Occurrences

About 7 miles southeast of the Ashley Valley oilfield, in sec. 1, T.6 S., R.23 E., is an oil-test well that was reported as converted to a water well (Table 19-A). It was reported to yield 200 gpm of water containing about 2000 ppm total solids at temperatures of 43° - 46° C from a depth of 2650 feet. In December 1977 it appeared that this well was not longer being used.

In Split Mountain Canyon, one or more springs at (D-4-24)16cddS yield 2700 gpm of water containing 942 ppm total solids at 30°C. This water probably gains its heat from the geothermal gradient as it moves through the subsurface before rising near the center of the Split Mountain anticline.

About $3\frac{1}{2}$ miles east of Ouray an oil-test well, Shell #1 State, (D-8-30)36baa, has recorded temperatures of 43°, 52°, and 57°C from depths of about 3390, 4550, and 4790 respectively. The water is briny and has chloride contents of 11,500, 20,000, and 31,000, respectively, at the above depths. The temperatures suggest a geothermal gradient of 1°C per hundred feet.

In the valley of the Duchesne River about 2 miles northwest of Hanna, a group of warm springs produces about 2250 gpm of water containing 454 ppm total solids at a temperature of 26°. This water evidently is controlled by a cluster of normal faults that trend generally east-west.

In the southeastern part of the Uinta Basin, the U.S. Geological Survey has been monitoring wells and springs as part of a special ground-water study. Information on wells that have reported temperatures of 17° to about 34° are included in Table 19-C. Most of the wells are gas wells or water wells converted from gas wells and are deeper than 5600 feet. Considering that the gas wells are 5600 to 7000 ft deep, the reported temperatures appear to be anomalously low.

OCCURRENCES of SLIGHTLY WARM WATER

Slightly warm water, 15.5 to 19.5°C is yielded by 13 springs and 7 shallow wells that are between 12 and 160 feet deep (Table 19-B). Four of the springs are in Dinosaur National Monument. Another, the one with the highest yield in the group (117 gpm), is just beyond the southern boundary of the monument. Two springs and a well are in the valley of the Duchesne River about 12 miles northwest of Duchesne. Two shallow wells are about a mile southwest of Roosevelt, another is about 9 miles southeast of Roosevelt, and a fourth is about 12 miles southwest of Roosevelt.

In the southern part of the basin, south of the Duchesne and White Rivers, are two very shallow wells, only 22 and 12 feet deep, whose waters likely were warmed to the reported 17° and 18° respectively by the heat of the sun. Similarly, a spring on Flat Rock Mesa, which apparently yields 0.2 gpm from flat-lying rocks, probably has its water warmed by the sun. Other temperature measurements at Flat Rock Mesa spring show among others $3^{\circ}C$ on 2-11-75 and $12^{\circ}C$ on 7-23-75 (Conroy and Fields, 1977, p. 211). Sulphur Spring was plotted by Hood, Mundorff, and Price (1976, Plate 1B) about a quarter mile from a fault shown on the Geologic Map of Utah (Stokes and others, 1963, southeast quarter). Probably there is a relation between the fault and the spring.

Cited References

- Conroy, L.S., and F.K. Fields, 1977, Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976: U.S. Geol. Survey Utah Basic-Data Release No. 29, 244 p.
- Feltis, R.D., 1966, Water from bedrock in the Colorado Plateau of Utah: Utah State Engineer Tech. Publ. No. 15, 79 p.
- Goode, H.D., and R.D. Feltis, 1962, Water production from oil wells of the Uinta Basin, Uintah and Duchesne Counties, Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull.1, 31 p.
- Hood, J. W., J.D. Mundorff, and Don Price, 1976, Selected hydrologic data, Uinta Basin area, Utah and Colorado: U.S. Geol. Survey Basic-Data Release No. 26, 321 p.
- Peterson, V.E., 1957, The Ashley Valley oil field, in Intermountain Assoc. Petroleum Geologists Guidebook 8th Ann. Field Conf., 1957, p. 191-192.

Price, Don, and L.L. Miller, 1975, Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado: Utah Dept. Nat. Resources Tech. Pub. No. 49, 59 p.

Stokes, W.L., L.F. Hintze, and J.H. Madsen Jr., 1961-1963, Geologic Map of Utah: Univ. of Utah.

Utah and Goshen Valley

INTRODUCTION

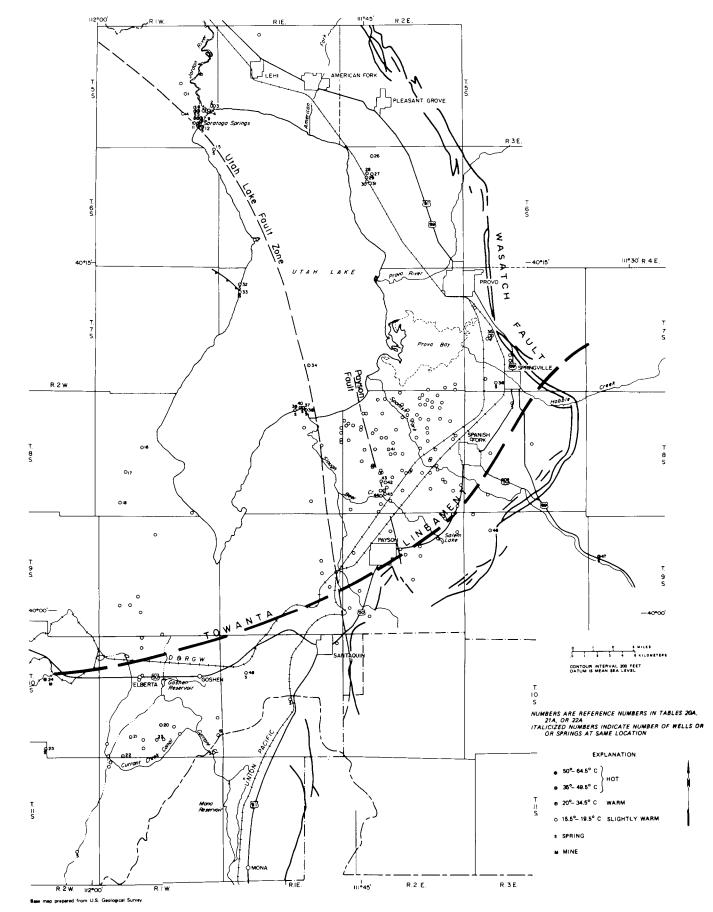
Utah Valley and its neighbor to the southwest, Goshen Valley, encompass about 600 square miles between latitudes 39°50' and 40°30' north and between longitudes 111°32' and 112°01' west. Both valleys are wholly within Utah County (figure 10).

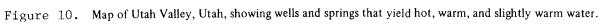
Northern Utah Valley sustains both heavy industry and agriculture whereas southern Utah Valley and Goshen Valley are principally agricultural areas. Provo, the principal city, is the home of Brigham Young University, the largest university in the State.

SUMMARY of OCCURRENCES, USES, and POTENTIAL for USE

Waters of temperatures from 15.5° to 46° C are yielded by springs and wells near Saratoga Springs in northern Utah Valley, and waters of temperatures from 15.5° to 34°C are yielded from wells and springs in southern Utah Valley and in Goshen Valley. In northern Utah Valley the warm and hot water in wells is confined to the area near Saratoga Hot Springs, but in southern Utah Valley water of 20° to 34°C apparently is related to a N-S fault in the Payson area and slightly warm (15.5° - 19.5°C) water has been measured in about 30 percent of the wells in the low valley floor.

In other areas outside Utah, waters in these temperature ranges and of the low salinity of most of the waters of these two valleys are used for space heating, for heating greenhouses, and for extending the growing seasons of certain crops. At present, the only known use of the thermal properties of the waters of the Utah Valley and Goshen Valley is at Saratoga Springs where the moderately saline (1050 to 1600 ppm dissolved solids) warm water from the springs and wells is used to supply swimming pools at the resort.


Some of the wells near Saratoga Springs supply irrigation water, but apparently no attempt is made to use the heat of the water to extend the growing season or to heat greenhouses, a use for which this water would seem to be ideally suited. This water could also be used for space heating, for its fairly low salinity should cause few problems with such use.


With the exception of the springs at Bird Island and at Lincoln Point, whose waters contain 6140 and 6650 ppm total solids, essentially all the warm water so far reported from wells and springs in southern Utah Valley and in Goshen Valley might be used for space heating, for heating greenhouses, or for extending the growing season.

In Utah Valley, neither the chemistry of the warm waters nor the geophysical studies, which provide information to help in the interpretation of the sources of heat, suggest that any source is capable of providing water or steam hot enough to generate electricity.

In Goshen Valley, however, recent studies of the Na-K-Ca and SiO₂ content of the waters of wells and springs by Parry and Cleary (1978) lead them to conclude that hot water as high as 180° C may exist at depth, and therefore the area is worthy of further investigation.

The findings of Parry and Cleary in Goshen Valley may relate that area to the nearby East Tintic district, whose Burgin mine yields saline water of about 60°C. In 1965, Lovering and Morris, after comprehensive studies of geothermal gradients in the Latite Ridge area of the East Tintic mining district suggested that the area "should be explored as a possible source of geothermal power" (p. F-1).

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The major structure of Utah Valley is a NNW-trending graben, bounded on the east by the Wasatch fault zone and on the west by the Utah Lake fault zone (Cook and Berg, 1961, plate 13). The northern end of the graben is marked by faults along the southern margin of the Traverse Range, and the southern end by NE-trending splinter faults of the Wasatch fault zone.

Southern Utah Valley is characterized structurally not only as the southern termination of the Utah Valley graben, but also, as Ritzma (1976, p. 119) points out, Southern Utah Valley is the place where the Wasatch fault is offset to the southwest and his W 72[°]W-trending Towanta lineament bends to the south and crosses from Utah Valley to Goshen Valley in the gap between West Mountain and Long Ridge. Perhaps the bending of the Towanta lineament between Santaquin and Goshen Valley is the reason for the southwestward-trending magnetic nose that is shown on the aeromagnetic map of north-central Utah (Mabey and others, 1964). Certainly southern Utah Valley is disturbed enough to provide conduits for water to circulate deeply enough to become moderately warm.

Goshen Valley is shaped like an arrowhead that points to the SSW and which is bounded on the southeast by a series of NE-trending faults and on the west side by probable faults that separate the valley from the East Tintic Mountains to the west. Northeastward, Goshen Valley merges into Utah Valley.

Utah Lake occupies about 150 square miles in parts of both valleys, and the other parts of the valleys are underlain at the surface by unconsolidated fluvial and lacustrine deposits of Quaternary age. In most of Utah Valley the Quaternary deposits are about 250 to 600 feet in thickness, but are nearly 900 feet thick just east of Long Ridge, and are about 1300 feet thick at West Mountain; in Goshen Valley the Quaternary deposits are 300 feet to more than 500 feet thick (Cordova, 1970, figs. 4 to 11). Below the Quaternary deposits is an unknown thickness of Tertiary deposits. Cook and Berg (1961, p. 82) believe that the Tertiary and Quaternary rocks in the center of the Utah Valley graben "extend to a depth of at least several thousand feet."

The rocks of the mountains surrounding Utah and Goshen Valleys are principally Paleozoic marine sediments with early Tertiary volcanics surrounding the southern tip of the arrowhead of Goshen Valley. Presumably the bedrock underneath the Cenozic deposits of both valleys is of Paleozoic age.

The interbedding of the alluvial sands and gravels from the mountains with the silt and clay deposits that were laid down during the lake cycles provides an artesian environment that is typical of the graben valleys along the Wasatch Front. Thomas (Hunt, Varnes, and Thomas, 1953) identified three artesian (confined) aquifers in northern Utah Valley: A Tertiary(?), a deep Pleistocene, and a shallow Pleistocene. They underlie deposits of the Lake Bonneville Group which contain ground water under water-table or unconfined conditions. Cordova (1970) recognized the same three artesian aquifers in southern Utah Valley, but only the shallow and deep Pleistocene aquifers in Goshen Valley.

OCCURRENCE of THERMAL WATER

Thermal water is reported in several areas in the two valleys (Tables 20-A and B, 21-A and B, 22-A and B), grouped here according to their presumed geologic control, which for each is a fault or fault zone.

Utah Lake Fault Zone

The Utah Lake fault zone parallels the northern portion of the west shore of Utah Lake, probably about a quarter mile offshore. Northward, it passes through Saratoga Springs and probably continues northwestward beneath the volcanics of the Traverse Range. Southward it goes near Bird Island and then east of Lincoln Point at the north end of West Mountain. From there it goes through Holladay Springs and meets the main Wasatch fault zone about one mile northeast of Santaquin. In the vicinity of Lake Mountain and West Mountain, the west side of the fault is up, and near Santaquin the east side is up, which "suggests either a hinge action or east-west cross faulting" north of Santaquin (Cook and Berg, 1961, p. 82).

Along this fault zone in the vicinity of Saratoga Springs are shallow wells 90 to 198 feet deep that produce water from 21° to 46°C. In the same area are two springs at 43.5°C. In the lake southeast of Saratoga Springs are springs that have been measured at 41.5° and 32°C.

"In the summer of 1904, during the survey of Utah Lake by G.L. Swendsen of the Reclamation Service, three groups of springs were found beneath the water of the lake. Their existence was shown by the presence of depressions occupying areas of 100 square feet to 3 acres in extent and having depths of 20 to 80 feet. Since the prevailing depth of the lake is much less and the bottom is composed of slimy mud, a considerable discharge is thus indicated"(Richardson, 1906, p. 49). During the winter when most of Utah Lake freezes over a band of open water marks the location of these springs in the lake.

Farther south, a spring on Bird Island yields water of 21°, and springs on the tip of Lincoln Point have been measured at 31.5°C. About ten miles south of Lincoln Point, east of West Mountain are shallow wells, 55 to 125 feet deep, that yield water of 16.5° to 18.5°. Finally, about two miles west of Spring Lake are the Holladay Springs, which are described as having "warm waters" by Cook and Berg (1961, p.28). I measured the temperature of one of the Holladay Springs at 11° on December 9, 1972.

Chemical Quality and Source of the Warm Water

The warm waters that come from springs and wells along the Utah Lake fault zone can be separated into three groups based on the concentration of dissolved solids. Springs and wells in the northern reach of the Utah Lake fault zone near Saratoga Springs range in total dissolved solids from about 1050 to 1600 ppm. The springs on Lincoln Point and the one on Bird Island range from 6140 to 6650 ppm in total solids. The slightly warm (about 15.5°C) waters in some of the wells that are near the south end of the east face of West Mountain contain less than 500 ppm total solids.

It thus appears that although the Utah Lake fault zone probably is the main conduit by which the water comes to the surface, it is likely that the sources of water, the sources of heat, or both are different in the different parts of the fault zone. Therefore they should be examined separately.

The springs that rise in the lake near Saratoga Springs and the nearby warm springs and warm-water wells are similar chemically and probably therefore are all supplied by a common source. Likely that source is Cedar Valley, west of Lake Mountain, where there are sinks and no surface drainage out of the valley. Feltis (1967, p. 13), in his report on Cedar Valley, suggested that ground water from Cedar Valley might discharge in the bottom of Utah Lake. The principal structure of Lake Mountain is a syncline which, according to cross sections by Bullock (1951, p. 24), would drop the tops of two possible aquifers, the Great Blue Limestone and the Pinyon Peak Limestone, to about 500 feet above sea level and about 3000 feet below sea level, respectively. Either or both of these aquifers could bring water to the fault zone. Probably the normal geothermal gradient is more than sufficient to warm the waters to the 32° to 46° that are reported near Saratoga Springs.

The highly mineralized waters of Bird Island and Lincoln Point must be derived from a different source from the one that supplies the warm water at Saratoga Springs. The salinity of these waters suggests that they are supplied by some deep-seated heat source such as has been postulated for many of the warm and hot springs of Utah that rise along faults or near volcanic area. No known volcanic rocks are close enough to be the source of heat, and the aeromagnetic map that includes the area of the springs (Mabey and others, 1964) shows no anomaly in the area, so it is likely that water penetrates the fault zone to a great depth and then rises to supply the springs.

In contrast to the saline waters of Bird Island and Lincoln Point the warm waters in the wells east of West Mountain are fresh and therefore they probably derive their heat from the normal geothermal gradient, and at rather shallow depth.

Payson Fault

Cock and Berg (1961, p. 82) recognize a "second concealed northward-striking fault, 2 to 3 miles east of" the Utah Lake fault zone, which "apparently begins near Payson and extends north past the mouth of Spanish Fork." Aligned along or close to that fault in the vicinity of Benjamin are five wells, 117 to 675 feet deep, that yield water of 20°, 20°, 26.5°, 31.5° and 34°, including the warmest water in southern Utah Valley. Chemical analyses of the water from two of the wells show 450 or less total solids, so it is likely that the other wells yield water of good quality. Likely the fault is the conduit for the heat, but it is likely that heat rather than hot water is rising from the fault, for the quality of the water is better than it would be if rising from great depth. Futhermore, wells nearly everywhere in southern Utah Valley yield warmer-than-normal water, so it is likely that there is horizontal spreading of warm water through the confined aquifers.

One way to evaluate the occurrence of warm water in southern Utah is to compare temperature measurements of well water in northern Utah Valley with those of southern Utah Valley, as below:

	Northern Utah Valley	Southern Utah Valley
Total wells measured	262	392
15.5° C or higher (warm) 11.1°C to 15.4°C 11°C or less (cool)	23	136
11,1°C to 15.4°C	141	218
ll ⁰ C or less (cool)	98	38

When we recognize that 11 of the wells of 15.5° or higher water temperature in northern Utah Valley are near the Saratoga Hot Springs and that only one of those in southern Utah Valley is near a warm spring, and when we see that 6 of the wells in the north are ones at Geneva that go more than 800 feet to reach 20.5° and 21° water, whereas most wells in the south are much shallower, the high proportion (more than one third of the total) of warm-water wells in southern Utah Valley becomes significant. Evidently, expectable temperatures are 2°C higher in southern than in northern Utah Valley - except for the hot spring areas.

Certainly the Payson fault is a control for some of the heat in southern Utah Valley, but perhaps also the crossing of the Wasatch fault zone by the Towanta lineament has caused an even larger region of disturbance that may permit more water to circulate to great depths. Whatever the control, it is likely that the heat rises and then spreads laterally through the confined aquifers, with the result that pin-pointing the control becomes difficult.

Other areas in southern Utah Valley

Several wells at scattered places in the southeast portion of Utah Valley yield slightly warm water, apparently of good quality.

Coordinates	Location	Temp ^O C	Depth in <u>feet</u>	Total Solids in mg/l	Cl in mg/l
(D-7-3)20bda	Ironton	22	337	259	12
(D-8-2)2cda	NW of Spanish Fork	16	140		
lladb	11	17	204		
12bdc	11	17	199	404	49
26cac	SW of Spanish Fork	18.5	357		
36dbd	South of Spanish Fork	16.5	38		
(D-9-3)19ddb	East of Salem	16.5	112		

Southern Goshen Valley

The springs and principal wells that produce warm water of 18.5° to 22° in southern Goshen Valley line up as a band that trends about N45°E along the southeast flank of the valley. The wells range in depth from 335 feet to 862 feet and yield waters that contain 491 to 1780 ppm total solids. Warm Springs yield $21^{\circ}-22^{\circ}$ water with 1320 ppm total solids, and the spring in the canyon of Currant Creek yields 19° water with 1017 ppm total solids.

The volcanic rocks in the vicinity are of Eocene age and therefore probably too old to be the source of heat. It appears more likely that heat for these moderately warm waters is related to a NE-SW-trending fault system, which may be an expression of the Towanta lineament of Ritzma (1976, p. 119).

Northern Goshen Valley

In northern Goshen Valley, in Township 8 South, Range 1 West, warm water, up to 20.5° C, is reported from four wells 205 to 392 feet deep, but in three of those wells temperatures of 14° and 14.5° have also been reported. There are also inconsistencies in chemical analyses of water collected at different times from two of the wells, (C-8-1)32bdb-1 and (C-8-1)35dcb-1 (B-D 16, p. 25), so it is difficult to speculate on the origin of the water or the source of the heat in these waters.

Springs south of Pelican Point

Two springs on the west shore of Utah Lake about two miles south of Pelican Point yield water of 24° to 25°C. The water contains 1430 to 1570 ppm total solids of which about 500 ppm is chloride. These springs appear to be on line with a northwest-trending thrust fault mapped by Bullock (1951, p. 12) in the Great Blue Limestone on the east side of Lake Mountain. Probably meteoric water sinks deep enough along the fault to be heated to the observed temperature.

Cited References

- Bullock, K.C., 1951, Geology of Lake Mountain, Utah: Utah Geol. and Mineralog. Survey Bull. 41, 46 p.
- Cook, K.L., and J.W. Berg, Jr., 1961, Regional gravity survey along the central and southern Wasatch Front, Utah: U.S. Geol. Survey Prof. Paper 316E, p. 75-89.
- Cordova, R.M., 1969, Selected hydrologic data southern Utah and Goshen Valleys, Utah: U.S. Geol. Survey Basic-Data Release No. 16, 35 p.

, 1970, Ground-water conditions in southern Utah Valley and Goshen Valley, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 28, 74 p.

- Feltis, R.D., 1967, Ground-water conditions in Cedar Valley, Utah County, Utah: Utah State Engineer Tech. Pub. No. 16, 31 p.
- Hunt, C.B., H.D. Varnes, and H.E. Thomas, 1953, Lake Bonneville: Geology of northern Utah Valley, Utah: U.S. Geol. Survey Prof. Paper 257-A, 99 p.
- Lovering, T.S., and H.T. Morris, 1965, Underground temperatures and heat flow in the East Tintic District, Utah: U.S. Geol. Survey Prof. Paper 504-F, p. F1-F28.
- Mabey, D.R., M.D. Crittenden Jr., H.T. Morris, R.J. Roberts, and E.W. Tooker, 1964, Aeromagnetic and generalized geologic map of part of north-central Utah: U.S. Geol. Survey Geophysical Investigations Map GP422.
- Parry, W.T., and M. Cleary, 1978, Na-K-Ca and SiO₂ temperature estimates for Utah spring and well waters: Final Volume 78-1, U.S. Geol. Survey Contract 14-08-0001-G-341.
- Richardson, G.B., 1906, Underground water in the valleys of Utah Lake and Jordan River, Utah: U.S. Geol. Survey Water-Supply Paper 157, 81 p.
- Ritzma, H.R. 1976, Towanta lineament, northern Utah: Proceedings of the First International Conference on the New Basement Tectonics, Utah Geol. Assn. Pub. 5, p. 118-125.
- Subitzky, Seymour, 1962, Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah: U.S. Geol. Survey Basic-Data Report No. 2.

Central Virgin River Basin

INTRODUCTION

The drainage area of the Central Virgin River includes most of Washington County, and one of the Virgin's tributaries, Ash Creek, heads in Iron County just south of Cedar City. The two principal tributaries, the Santa Clara River and Ash Creek, drain most of the Pine Valley Mountains, and the mainstem of the Virgin comes into the area by breaching the Hurricane Cliffs on the eastern margin of the area.

St. George, in the south-central part of the area, is the Hub of "Utah's Dixie," a recreation area that capitalizes on the warm climate in the south-west corner of Utah; in St. George the average annual temperature is $61^{\circ}F$ ($16^{\circ}C$) (Cordova and others, 1972, p. 6).

SUMMARY of OCCURRENCES and POTENTIAL FOR USE

The mean annual air temperature in the vicinity of St. George, in the central Virgin River valley, is 16° C, thus many springs and wells yield slightly warm or warm water of 15.5°C to 24°C. Out of 69 wells and springs whose water temperatures were measured, 23 had temperatures of 15.5°C to 19.5°C and 23 had temperatures of 20°C or higher.

The waters of two spring areas, Veyo Warm Springs, 32°C, and LaVerkin Hot Springs, 38°- 42°C, have been used for bathing but only Veyo continues to be so used. The water at Veyo is of good quality, about 400 mg/l dissolved solids, and may owe its heat to the young basalt from which it issues. The water of LaVerkin Hot Springs, on the other hand, is highly mineralized, about 9,500 mg/l dissolved solids, which makes it unsuitable for most uses; and its high rate of discharge, about 4500 gpm, results in excessive contamination of the Virgin River. The spring probably derives its heat from the geothermal gradient.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The central Virgin River and its tributaries drain an area west of the Hurricane Fault, hence most authorities, such as Hunt (1974), would put the area in the Basin and Range Physiographic Province, but Stokes (1977, p. 13) puts the St. George Basin, which includes most of the area considered here, in the Colorado Plateau Province. Probably the area should be considered transitional between the two provinces.

The topographically lower, southern portions of the area are underlain by gently northward-dipping Mesozoic rocks capped over wide areas by Quaternary and Tertiary volcanics. The northern part of the area is dominated by the laccolith of the Pine Valley Mountains. Lateral spreading by the laccolith intruded the Tertiary Claron Formation, and later erosion has removed whatever sediments may have overlain the Claron (Cook, 1960, map).

The hydrology of such a geologically complex area must also be complex. The river valleys and adjacent low areas, comprising about 20 percent of the total area, are underlain by unconsolidated deposits of variable thickness that are saturated enough to supply 80 percent of the water withdrawn by wells. The other 20 percent of water withdrawn by wells comes from aquifers in consolidated rocks, principally the Navajo Sandstone (Cordova and others, 1972, p. 8).

OCCURRENCES of HOT and WARM WATER

As might be expected in an area where the mean annual air temperature is as high as 16°C, water obtained from many wells and springs is also slightly warm to warm, as is shown in the attached tables (Tables 23-A and B). Most of the slightly warm to warm springs rise along faults and thus owe some or all of their heat to the normal geothermal gradient at moderate depths.

Two spring areas, Veyo Warm Spring at 32°C and LaVerkin Hot Springs at 38°-42°C, are worthy of the discussion given them by Mundorff (1970, p. 44 and 46).

"Veyo Hot Spring, (C-40-16)6cb-S1, is about 18 miles north-northwest of St. George in Washington County. This spring is no longer accessible to direct observation; a swimming pool has been constructed over the spring. In July 1967, the owner reported that the spring discharge was 120 gpm and the water temperature was $90^{\circ}F(32^{\circ}C)$. He also reported that when he started to develop the spring, it discharged horizonatally from sand and gravel. The spring issues along the base of a nearly vertical canyon incised in basalts of Quaternary age and in sedimentary rocks of Cretaceous age that underlie the basalt. The vicinity of the spring is nearly surrounded by basalt flows of Quaternary age...

"The source of the spring discharge may be meteoric water that infiltrates the intensely fractured and thus permeable basalt. The water may be heated by the residual heat of the basalt as it descends to the contact of the basalt with underlying rocks of Cretaceous age. The source of the water also could be meteoric water that infiltrates the Cretaceous rocks beyond the area of basalt flow. The water may be heated as it moves from the Cretaceous rocks through the Quaternary basalt from which it ultimately discharges.

"In 1966 and 1967, two samples of water were obtained that are believed to represent actual spring discharge; the dissolved-solids content was only about 400 ppm, and the water was calcium magnesium bicarbonate in type.

"LaVerkin (Dixie) Hot Springs, (C-42-12)25-S, are about 18 miles eastnortheast of St. George in Washington County. These springs issue from the bed and banks of the Virgin River near the mouth of a canyon. The springs issue from the limestone of Paleozoic age along the Hurricane fault... Basalt flows of Quaternary age are exposed over an area of several square miles west, southwest and southeast of the springs... Gregory (1950, p. 197) reports that LaVerkin Hot Springs 'are related genetically to the nearby Hurricane fault and possibly also to the concealed igneous masses that gave rise to the lavas on the adjoining cliffs. These springs issue from cavities in the Kaibab limestone in the canyon wall and in the stream bed of the Virgin River at places where strong joints and faults of small throw provide outlet for deep-seated water. The water from the several springs ranges in temperature from 108[°] to 132[°]F (42[°] to 55.5[°]C) and flows at the rate of about 1,000 gallons per minute.' The water probably is meteoric in origin.

"On August 1, 1963, the Virgin River was dry immediately upstream from the springs; U.S. Geological Survey personnel measured the water discharge of the Virgin River immediately downstream from the short reach in which the springs issue at 10.2 cfs or about 4,600 gpm. Survey personnel reported discharges of 10.0 cfs in September 1956. Milligan and others (1966, Table 1) reported a discharge of 11.6 cfs on August 21, 1964. The discharge of the springs apparently is much greater than that reported by Gregory (1950).

"Measured temperatures during the period 1960-66 ranged from 100° to 108°F (38°-42°C). Gregory (1950) reported a temperature range of 108°-132° (42°-55.5°C). Thus the minimum temperature reported by Gregory is the maximum temperature observed during 1960-66. The source of the temperature range reported by Gregory is not known, but that range is the same as that reported by Stearns and others (1937, p. 183). The observations that resulted in a reported temperature of $132^{\circ}F(55.5^{\circ}C)$ may have been made as early as the 1880's. Either the original temperature observations were inaccurate or the springs have cooled significantly during the past 80 years. If the interest in the springs were assumed to be restricted to the potential for generation of electric power, however, the difference between 100° and $132^{\circ}F(38^{\circ}-55.5^{\circ}C)$ is of no significance. The large discharge (10 cfs or more), the high dissolved-solids content (9,000-10,000 ppm), and the very low silica content (about 10-30 ppm) indicate a poor potential for geothermal development despite the presence of basalt flows within a few miles of the springs. The source of the heat that warms the water probably is an abnormally high geothermal gradient that resulted from volcanic activity during Quaternary time.

"The major significance of the springs is their adverse effect on the quality of water in the Virgin River, especially during periods of low flow in the stream. The spring discharge has a high dissolved-solids content, is of the sodium chloride type, and has a fairly high boron concentration (about 5 ppm); the source of the dissolved solids is not known. In equivalents per million, calcium and magnesium combined are less than half that of sodium, and sulfate is less than half that of chloride. At the gaging station on the Virgin River at Virgin, which is about five miles upstream from LaVerkin Hot Springs, the average discharge during a 57-year period of record is about 200 cfs; during many years, daily mean discharges of less than 100 cfs are common. Data on the chemical quality of the Virgin River at Virgin indicate that the annual weightedaverage dissolved-solids content is in the 400-600 ppm range. If LaVerkin Hot Springs contribute about 10 cfs of water having a dissolved-solids content of about 10,000 ppm to the Virgin River when the stream has a discharge of 100 cfs and a dissolved-solids content of 500 ppm, the dissolved-solids content of the stream is almost tripled. The average annual dissolved-solids discharge of LaVerkin Hot Springs is about the same as that for the entire Virgin River basin upstream from the springs (a drainage area of about 950 square miles)."

Cited References

- Cook, E.F., 1960, Geologic Atlas of Utah, Washington County: Utah Geol. and Mineralog. Survey Bull. 70, 119 p.
- Cordova, R.M., G.W. Sandberg, and Wilson McConkie, 1972, Ground-water conditions in the central Virgin River basin, Utah: Utah Dept. Nat. Resources Tech. Pub. no. 40, 59 p.
- Gregory, H.E., 1950, Geology and geography of the Zion Park region, Utah and Arizona: U.S. Geol. Survey Prof. Paper 220,200 p.
- Hunt, C.B., 1974, Natural Regions of the United States and Canada: W.H. Greeman and Co., San Francisco, 725 p.
- Milligan, J.H., R.E. Marell and J.M. Bagley, 1966, Mineralized springs in Utah and their effect on manageable water supplies: Utah State Univ., Logan, Utah Water Research Lab. Rept. WG23-6.
- Mundoff, J.C. 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey, Water-Resources Bull. 13, 60 p.
- Stearns, N.D., H.T. Stearns and G.A. Waring, 1937, Thermal springs in the United States: U.S. Geol. Survey Water-Supply Paper 679-B.
- Stokes, W.L., 1977, Subdivision of the major physiographic provinces in Utah: Utah Geology, v. 4, no. 1, p. 1-17.

Areas That Have Warm and Slightly Warm Water

Fifteen areas, all in western or central Utah, yield warm and slightly warm water to wells or springs. One well, more than 5200 feet deep, in Cache Valley, yields 15 gpm of hot water at 49°C. But it is not likely that such a small yield from such a great depth represents an economic resource or an unusual heat source so Cache Valley has been put into this lower category, for the highest temperature recorded for any other well is 28°C, and that from a well 1473 feet deep. Descriptions of these 15 areas follow.

Beaver Valley

Beaver Valley lies wholly within the eastern part of Beaver County. Surface water principally from the Beaver River supplies most of the agricultural water in the valley, so that only about 4000 to 5000 acre-feet of water is pumped from wells (Sandberg, 1966, p. 22).

Three wells, in or near Greenville, (C-29-8)25cac l and 2, and (C-29-8)36aab, report water of 20°, 20°, and 23.5°C respectively (Table 24). The chemical analysis for $(C-29-8)25cac_2$ shows 69 mg/l silica, but only 254 mg/l dissolved solids.

Five other wells and three springs have reported water temperatures of 15.5° to $21^{\circ}C$.

Cited References

- Lee, W.T., 1908, Water resources of Beaver Valley, Utah: U.T. Geol. Survey Water-Supply Paper 217, 57 p.
- Sandberg, G.W., 1963, Ground-water data, Beaver, Escalante, Cedar City, and Parowan Valleys, parts of Washington, Iron, Beaver, and Millard Counties, Utah: U.S. Geol. Survey Basic-Data Report No. 6, 26 p.

, 1966, Ground-water resources of selected basins in south-western Utah: Utah State Engineer Tech. Pub. No. 13, 43 p.

Blue Creek Valley

Blue Creek Valley is in eastern Box Elder County and it heads at the north border of Utah; it drains southward toward Bear River Bay of Great Salt Lake. The drainage area of the valley includes about 250 square miles and is sparsely populated. Most of the land is used for livestock grazing and the growing of small grains and alfalfa. "The only community center in the area is Howell, which had a population of about 200 in 1970. A chemical and rocket-motor plant for the Thiokol Chemical Corp. is located in the southern part of the area" (Bolke and Price, 1972, p. 3)

Three springs and three wells yield warm water of 20^o- 28^oC (Table 25-A) Two of the wells and two of the springs yield fresh water of less than 1000 mg/l; but the warmest (28^o) spring, Blue Springs, yields about 10 cfs of water containing about 1900 mg/l. "Blue springs is the largest source of irrigation water in the Valley" (Bolke and Price, 1972, p. 16) but apparently no direct use is made of its warmth.

Fifteen additional wells and springs yield fresh to moderately saline water (405 to 4860 mg/l dissolved solids) (Table 25-B).

Cited Reference

Bolke, E.L., and Don Price, 1972, Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah: Utah Dept. of Nat. Resources Tech. Pub. No. 37, 31 p.

Cache Valley

INTRODUCTION

The Utah portion of Cache Valley occupies about 365 square miles of the total 1175 square miles of Cache County in northeastern Utah. Nearly all of the total population of 48,500 (1975 estimate) of Cache County live in the valley. "Agriculture, the principal industry, is devoted mostly to livestock, poultry, dairy products, alfalfa, small grains, corn, sugar beets, potatoes, fruits, and garden vegetables" (Bjorklund and McGreevy, 1971, p. 7). Logan, the principal city, is also the site of Utah State University.

SUMMARY of OCCURRENCES, USES and POTENTIAL

In the Utah portion of Cache Valley, temperatures of 20° to 28° are reported from 23 wells, 48 to 1473 feet deep, that have been drilled in three areas: 1) northwest of Logan, 2) west of Benson and Riverside, and 3) south of Amalga (Table 26-A). One oil and gas test well is reported to have water of 49°C from a depth of 5208 feet, a rather low temperature for such a depth; an even deeper well (5,500 ft) has a reported temperature of 21°C. In addition, temperatures of 16° to 19°C are reported from about 50 wells in the same general areas of 1 and 2 mentioned above, and also between Lewiston and Cornish (Table 26-B).

Two wells, $(A-12-1)28baa_3$ and $28baa_5$, about $24-25^{\circ}C$, apparently supply water for a swimming pool, for their owner is listed as Logana Plunge. That appears to be the only use made of the warmth of waters in the valley.

Presumably the heat for the warm water comes from the major N-S faults in the valley, but the low temperatures suggest that these sources have but little potential. Probably some of the water could be used in heat pumps, or for water supply in greenhouses, as well as for swimming pools.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

Cache Valley is a north-trending complex graben the easternmost valley in its part of the Basin and Range physiographic province. The valley floor is underlain by alluvial deposits from the mountains to the east and west, and by lacustrine deposits laid down in Pleistocene Lake Bonneville. Underlying the Quaternary surficial deposits are Tertiary sedimentary rocks and, at depths of about 5000 feet, are pre-Cenozoic rocks of probable Precambrian, Paleozoic, and Mesozoic age.

"Uplifted blocks [of Precambian and Paleozoic rocks] surrounding the valley form mountain ranges. Maximum vertical displacement probably exceeds 10,000 feet in parts of the valley. The Bear River Range [to the east] contains large folds that predate the block faulting. Thrust faults that also predate the block faulting lie east and south of the area, and possibly underlie the area at great depth. Faults with minor displacement are common in the mountain ranges and probably exist in the blocks underlying the valley" (Bjorklund and McGreevey, 1971, p. 12). "Deposits related to Lake Bonneville and earlier lakes play an important role in the occurrence of ground water in Cache Valley. The major aquifers are composed of sand and gravel in fans and deltas; interbedded layers of lakebottom clays and silts confine the aquifers and cause widespread artesian conditions" (Bjorklund and McGreevy, 1971, p. 14).

"Most wells in the area derive water from units of Quaternary age; a few wells tap the Salt Lake Formation of Tertiary age...Most of the Salt Lake Formation is fine grained and well indurated and yields little water; however, some sandstone, conglomerate, and fanglomerate are water bearing." The few wells and springs that tap the formation are mostly in or near outcrops along the margins of the valley (Bjorklund and McGreevy, 1971, p. 15).

Cache Valley is well watered. The water budget of Bjorklund and McGreevy (1971, p. 54) for 1960-68 indicates that each year 1,700,000 acre-feet moves into the valley and 1,700,000 moves out. Ground water in the amount of 280,000 acre-feet per year is discharged by wells, springs, seeps, and drains, and by evapotranspiration. The ground-water discharge that is not consumed in the valley leaves the valley as surface water.

OCCURRENCE of HOT and WARM WATER

The only hot water in the Utah portion of Cache Valley was reported from an oil and gas test well (B-13-1)10acb, "which was drilled to a depth of 5,208 feet and yielded water with a temperature of 49° C (120° F)" (Bjorklund and McGreevy, 1971, p. 43). Warm water between 20° and 28°C or slightly warm water between 16° and 19°C is reached by wells, generally at depths of 150 to 200 feet, in four areas: 1) northwest of Logan, 2) west of Benson and Riverside, 3) south of Amalga, and 4) between Lewiston and Cornish. The warm water of the areas near Logan and Benson may be related to the major faults in the valley but, if so, it is desseminated horizontally from the faults, for in those three areas no warm springs rise along the faults. The only warm spring (B-14-1)33acaS, 31°C, rises along the Dayton fault zone about one mile southwest of Trenton.

Cited References

Bjorklund, L.J., and .L.J. McGreevy, 1971, Ground-water resources of Cache Valley, Utah and Idaho: Utah Dept. Nat. Resources Tech. Pub. No. 36, 66 p.

McGreevy, L.J., and L. J. Bjorklund, 1970, Selected hydrologic data Cache Valley, Utah and Idano: U.S. Geol. Survey Basic-Data Release No. 21, 51 p.

Canyon Lands

INTRODUCTION

The Canyon Lands Section of the Colorado Plateau includes all of southeastern Utah south of the Uinta Basin. The section encompasses about 25,000 square miles including all of Grand and San Juan Counties, more than half of Emery, Wayne, Garfield, and Kane Counties, as well as parts of Carbon and Sevier Counties.

SUMMARY of OCCURRENCES of WARM WATER

If the 38 occurrences of warm water $(20^{\circ} - 31^{\circ})$ and the 98 occurrences of slightly warm water $(15.5^{\circ} - 19.5^{\circ})$ are plotted on a map, it becomes apparent that most plots are in bunches: near Moab, near Loa, in the Henry Mountains,

and in the Navajo Indian Reservation principally south of the San Juan River. This bunching is due to the fact that the areas named above are the principal areas where spring and well temperatures have been measured: by the U.S. Geological Survey near Moab and in the Indian Reservation and by me in the Henry Mountains and in the Indian Reservation. The absence of water warmer than 31° C is probably due to the fact that in the whole of the Canyon Lands so far investigated there are no discernable sources of anomalous subsurface heat; rather it is the sun that raises temperatures of near-surface waters as high as 31° .

Probably there is only limited use for the heat reported in waters in the Canyon Lands. The springs and shallow wells that yield water whose temperature fluctuates with the seasons are certainly not dependable sources of heat. The few reported wells that are deep enough to yield water of reasonably uniform temperature are in the Indian Reservation and near the Henry Mountains. Although it is not likely that these waters will be used in heat pumps, the temperatures of 15.5 C to 24 C from moderate depths of 500 to 800 feet suggest that similar temperatures might be reached at moderate depths elsewhere in the Canyon Lands.

GEOLOGIC ENVIRONMENT

As befits its name, the Canyon Lands Section of the Colorado Plateau is characterized by deep canyons cut into generally flat-lying sedimentary rocks of Mesozoic age. But these generally flat-lying Mesozoic rocks have been upwarped in Utah by the San Rafael Swell, the Momument Upwarp, and the Circle Cliffs Upwarp so that now the Mesozoic rocks that were in the centers of the upwarps have been removed and Paleozoic rocks are exposed. Furthermore, in some places, the originally flat-lying rocks have been domed up by the now well-exposed laccolithic intrusions of the LaSal 24 million years before present (M.Y.B.P.), Henry (44 M.Y.B.P.), and Abajo Mountains (28 M.Y.B.P.) (radiometric ages from Hintze, 1973, p. 81), as well as by the unexposed intrusion that presumably underlies Navajo Mountain. Probably partly as a result of the igneous activity but mostly as a result of epeirogenic uplift, the whole area has been raised as much as 3 miles since Cretaceous time, so that now the Canyon Lands Section is a highland with plateau surfaces at about 5,000 feet and with several peaks above 11,000 feet (Hunt, 1974, p. 425).

The generally high altitude of the Canyon Lands Section has promoted the extensive erosion that has resulted in deep dissection by the Colorado River and its many tributaries. Most of the debris removed from the uplands has been carried away by those streams, but surrounding the LaSal, Henry, and Abajo Mountains are vast pedimented areas that are covered by gravels close to the mountains and by finer alluvial and colluvial deposits away from the mountains. Except for the generally narrow flood plains that fill many valleys, these pedimented areas are the only ones that have unconsolidated surficial materials that can be cultivated.

No water so far reported in the Canyon Lands Section is warmer than 31°C and there is nothing in the geologic environment to suggest that there is any appreciably warmer water that has not been reported. The principal igneous activities occurred about 24 or more million years before present, and, although there must be residual heat at depth, no surface manifestation of hot or warm water around the intrusions has been reported.

OCCURRENCES of WARM WATER

The attached table (Tables 27-A and B) list 136 reported occurrences of warm or slightly warm water in the Canyon Lands:

29	springs	20°- 31°C
8	wells	20 [°] -28 [°] C
56	springs	15.5°- 19.5°C
43	wells	$15.5^{\circ} - 19.5^{\circ}C$

Of the 29 springs with reported temperatures of 20° - 31° I measured 20; of the 56 springs with reported temperatures of 15.5° -19.5°, I measured 41. Most of my reported temperatures were measured during the months of July and August, some of them tens or hundreds of feet below the actual places of issuance. Where water seeps from rocks temperatures normally are measured where there is concentrated flow, commonly at the points where samples are measured for conductance and/or are collected for analyses. This water is warmed by the sun. In addition, springs that rise from thin near-surface aquifers may yield warm water right at the points of issuance, for the aquifers and their contained water are also warmed by the sun. Even the water that comes from high-yield springs such as the one that yields 7300 gpm near Loa may show fluctuations of temperature; it has been measured 11° to 16.5°C.

To test the idea that many of the reported water temperatures are the result of warming of the water by the sun before or after it issues from the ground, I rechecked on December 8, 1977, ten springs and seeps that I had measured in the summers of 1975, 76, or 77. The comparative temperatures for these springs show that all are cold-water springs.

Spring name	Date	Temp	Conductance mmho	<u>Flow*</u>
Cow Wash - fed by return flow from irrigation	8-3-76 12-8-77	21	680	100M Dry
Little Meadow	7-11-75 12-8-77	16 13	595 540	2E 2E
Poison	8–1 – 75 12–8 – 77	15.5 8	1000 980	Drip Drip
Poison Trib	8-1 - 75 12-8-77	19 3	1500 2300	1-2E 1-2E
Drinking Cup	8-9-76 12-8-77	23	625	3E Frozen
Maidenwater	7-25-76 12-8-77	19 8	580 590	1-2E
South Hog	7 - 6-77 12-8-77	19 11.5	625 670	5E 15-20E
Middle Hog	7-6-77 12-8-77		620 ecover seepage low in channel	Seep area-
Saleratus	8-19-75 12-8-77	20. 6.5	2100 1700	1E 1E
Mill Race	8-7-75 12-8-77	25	4000	5E Dry

*Flow in gallons per minute; E= estimated, M = measured

On the basis of these remeasurements of temperature and of personal knowledge of more than half of the springs, I feel that all the temperatures of the warm spring waters recorded in the table are the result of warming by the sun of thin alluvial, colluvial, pediment, and even some sandstone aquifers, or are the result of the temperature being measured at a point other than the point of actual issue of the water from the rock. In summary, then, it is not likely that any of these spring temperatures are indicators of perennially warm subsurface water.

The Garkane Power well that yields 3110 gpm of 24^oC water from the Navajo Sandstone at a depth of 761 feet would seem to be getting heat because the Navajo Sandstone probably plunges several thousand feet between its recharge area west of the Waterpocket Fold and the well site on the Caineville Anticline, yet two other wells that get water from the Navajo on the Caineville Anticline from depths of 1250 and 1350 feet produce water that is only 18^oC. There is no ready answer for the difference in temperatures.

The well that produces the warmest water, 28°C, the Roadside Geyser, is probably driven by CO₂ gas, but the source of the heat is unknown.

A group of four flowing wells in the Navajo Sandstone north of Hovenweep National Monument produce water of 16.5° to 18° from depths of about 300 feet. The wells penetrate a small dome on the eastern edge of the Blanding Basin (Goode, 1958, fig. 8).

Three springs and eight wells a few miles north and west of Loa yield water of 15.5° to 17°C from Tertiary volcanic rocks. The water is of excellent quality, generally about 150 mg/l or less of dissolved solids, and yields are abundant: two wells flow 1150 and 1750 gpm and the largest warm-water spring yields 7300 gpm But even such large yields are no guarantee of constant temperatures for temperatures of 15°, 16°, and 16.5° have been measured at an even higher volume spring, Pine Creek Spring, which flows 7900 gpm.

Cited References

Bjorklund, L.J., 1969, Reconnaissance of the ground-water resources of the upper Fremont River Valley, Wayne County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 22, 49 p.

Feltis, R.D., 1966, Water from bedrock in the Colorado Plateau of Utah: Utah State Engineer Tech. Pub. No. 15, 79 p.

Goode, H.D., 1958 The geology and distribution of aquifers in the southeastern part of San Juan County, Utah: U.S. Geol. Survey Open-file Rept., 9 p., 9 figs.

, 1969, Reconnaissance appraisal of the water resources near Escalante, Garfield County, Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 11, 38 p.

Goode, H.D., and Eric Olson, 1977, Reconnaissance appraisal of the water resources of the Henry Mountains coal field, Wayne and Garfield Counties, Utah: Univ. of Utah, College of Mines and Mineral Industries, 85 p.

Hunt, C.B., 1974, Natural Regions of the United States and Canada: W.H. Freeman and Co., San Francisco, 725 p. Sumsion, C.T., 1971, Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 32, 40 p.

Cedar City and Parowan Valleys

Cedar City and Parowan Valleys are in the eastern part of Iron County at the foot of the Hurricane Cliffs. Both valleys are largely agricultural and depend largely on ground water for their irrigation supplies. Cedar City is the largest community and is also the home of Southern Utah State University.

In Cedar City Valley, two wells yield warm water: (C-37-13)llaaa (21°C). and (C-23-13)36abb (20°C). Seven other wells yield slightly warm water at 15.5°- 19.5°C (Table 28).

In Parowan Valley, one well, (C-32-8)l2bac, yields water of $20^{\circ}C$, and 13 wells yield water of 15.5°- 18.5°C (Table 29).

Cited References

- Bjorklund, L.J., C.T. Sumsion, and G.W. Sandberg, 1977, Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah: U.S. Geol. Survey Basic-Data Release No. 28, 55 p.
- Sandberg, G.W., 1963, Ground-water data, Beaver, Escalante, Cedar City, and Parowan Valleys, parts of Washington, Iron, Beaver, and Milland Counties, Utah: U.S. Geol. Survey Basic-Data Report No. 6, 26 p.

Cedar Valley

Cedar Valley is in a small structural intermontane basin in the northwest corner of Utah County, southeast of the Oquirrh Mountains. The valley portion occupies about 140 square miles of the 300-square-mile basin. The basin is topographically closed except in the northern portion where there is drainage to Utah Valley to the east (Feltis, 1967, p. 6).

One well produced fresh warm water of 27° C, and four others produce fresh or slightly saline water of 15.5° to 18°C (Table 30).

Cited Reference

Feltis, R. D., 1967, Ground-water conditions in Cedar Valley, Utah County, Utah: Utah State Engineer Tech. Pub. No. 16, 31 p.

Northern Juab Valley

Northern Juab Valley lies wholly within the eastern part of Juab County in Central Utah. Northern Juab Valley occupies about 120 square miles of Juab Valley north of Levan. The valley is a structural trough bounded on the east by the Wasatch fault at the base of Mt. Nebo, the southernmost mountain of the Wasatch Range, and at the base of the San Pitch Mountains south of Mt. Nebo. The west side of the valley is bounded by an inferred fault at the base of the West Hills and Long Ridge. The valley fill, consisting of detritus from the mountains and lake deposits of Pleistocene Lake Bonneville, is probably more than 2000 feet thick (Cook and Berg, 1961, p. 82).

One spring in Juab Valley about 2 miles southwest of Mona yields 1.3 gpm of fresh water at 20°C (Table 31). One well near the western margin of the valley about 4 miles southwest of Nephi yields fresh water at 15.5°C. All other springs and wells yield cooler water.

Cited References

Cook, K.L., and J.W. Berg, Jr., 1961, Regional gravity survey along the central and southern Wasatch Front, Utah: U.S. Geol. Survey Prof. Paper 316E, p. 75-89.

Park Valley

The Park Valley area is in northwestern Box Elder County, in the northernmost part of the Great Salt Lake Desert. The drainage basin occupies about 1050 square miles and is the home of about 250 people, principally in the communities of Park Valley and Rosette (Hood, 1971, p. 3). Six springs yield small quantities of fresh water in the 21° to 25°C range

from the south flank of the Raft River Range, and two others, Warm Spring No. 1, 26.5°C and Warm Spring No. 2, 20°, yield 340 and 385 gpm of fresh water from the east flank of the Grouse Creek Mountains (Table 32). Six other springs yield slightly warm water, 16 to 19.5, from the same general areas.

No temperatures have been reported from the few wells in the valley. Potential for any development of warm water appears small.

Cited References

Hood, J. W., 1971, Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 30, 46 p.

Promontory Mountains Area

The Promontory Mountains area of Box Elder County occupies the peninsula between Bear River Bay and the north arm of Great Salt Lake. The land includes about 357 square miles and is used principally for grazing and some dryland agriculture. Few people live in the area, but Thiokol Chemical Corp. withdraws water from wells for use in the plant in Blue Springs Valley to the northeast.

Four springs on the east side of the Promontory range yield saline or slightly saline warm water in the 20°- 25°C range (Table 33). They probably are controlled by faults.

Ten saline springs yield slightly warm water (15.5°- 19.5°C) along the east side of the Promontory Range in T.7 N. Nine of these springs are near or on a concealed fault (Hood, 1972, plate 1). Two other saline springs yield water of 16.5° and 17.0°C in T.7 N. on the west side of the range. One well at Promontory yields fresh water of 21.5° or 22.5°C from a depth

of 423 feet.

The springs along the mountains probably are fed by water that moves through fractures in the carbonate rocks, is heated by the geothermal gradient, and returns to the surface through the faults.

Cited Reference

Hood, J. W., 1972, Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 38, 35 p.

Rush Valley

Rush Valley is a large (about 400 square miles) complex structrual valley in eastern Tooele County that apparently has very little warm water.

The warmest water comes from Morgans Warm Spring (24°- 26.5°C) and from Russels Warm Spring (21.5°C), both of which issue from alluvium near an inselberge of Paleozoic rock in the northern part of the valley (Table 34). As Mundorff (1970, p. 36 reports, "a fault buried beneath the valley fill in the vicinity of the springs probably is the channel through which the water moves upward into the fill." Morgan Warm Spring yields as much as 1000 gpm of water containing 594 mg/l dissolved solids and Russels Warm Spring yields about 450 gpm of water with about 44 mg/l dissolved solids. Another spring, in the valley of Faust Creek, yields about 600 gpm of fresh water at 20°C. And a well about 2 miles southwest of the latter spring yields 4100 gpm of fresh water at 16°C from a depth of 534 feet.

Cited References

Hood, J.W., Don Price, and K.M. Waddell, 1969, Hydrologic reconnaissance of Rush Valley, Tooele County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 23, 58 p.

Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 13, 60 p.

Skull Valley

INTRODUCTION

Skull Valley is in the eastern portion of Tooele County, southwest of Great Salt Lake and west of Tooele Valley. The valley includes about 400 square miles of the total 880 square miles that is in the Skull Valley drainage basin. The Dugway Proving Grounds, a U.S. Army facility, is in the southwest corner of the valley. Except for those stationed at the Proving Grounds, few people live in the valley. Those who do live there are engaged in agriculture, principally raising livestock.

SUMMARY of OCCURRENCES, USE, and POTENTIAL

Warm and slightly warm water, mostly moderately saline, rises as springs along a fault on the northwest flank of the Stansbury Range or along a presumed fault on the north end of the range. The salinity of much of the warm water is too high for use for agriculture but the water probably is useful for wildlife. The temperature at the surface is generally less than 24 °C but probably indicates that higher temperatures would be encountered by drilling.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

Skull Valley is a complex graben that is boomerang-shaped, with the north arm trending about N 20° E and with the south arms trending about N 35-40 W. The graben is flanked on each side by at least two sub-parallel faults that not only separate the valley from the low Cedar Mountains on the west and from the high Stansbury Mountains on the east but also, to some degree, shatter the rocks of the mountains.

The rocks of the bounding mountains include a Paleozoic sedimentary sequence of quartzite, limestone, sandstone, and shale and a few exposures of Tertiary volcanics. Probably the Paleozoic rocks also underlie the valley at depths of 1200 or more feet in the southern part of the valley and to 6000 or 7000 feet in the northern portion (Hood and Waddell, 1968, p. 17). The valley fill consists of thick Tertiary sedimentary and volcanic rocks overlain by thin Quaternary alluvial deposits from the mountains and lacustrine deposits laid down in Pleistocene Lake Bonneville. The Quaternary alluvium provides the principal aquifers of the valley.

Above the valley and covering the bedrock at the base of the flanking mountains are extensive stony alluvial and colluvial deposits that act as a recharge area for the alluvial aquifers in the valley. Faults along the northwestern and northern flanks of the Stansbury Mountains provide conduits for warm saline springs that presumably derive their recharge from the bedrock of the mountains and, to some degree, from the stony alluvium-colluvium.

OCCURRENCES of WARM WATER

About 11 springs or spring areas yield water of temperatures from 20° to $24^{\circ}C$ (Table 35-A). All but two of these rise from a fault along the northwest flank of the Stansbury Range or along a presumed fault at the north end of the Stansburys. Most of the water along the northwest flank is moderately saline (about 3500 to 6000 mg/l dissolved solids), but one spring, (C-3-8)21ddbS yields about 10 gpm of 24° water that contains only 137 mg/l dissolved solids. The three warm springs that rise along the north end of the range are probably very saline (more than 10,000 mg/l) but there are only partial chemical analyses to verify this.

About ten slightly warm springs $(15.5^{\circ} \text{ to } 19.5^{\circ}\text{C})$ also rise along the fault on the northwest flank of the Stansburys and these too are moderately or slightly saline (Table 35-B).

Two wells, both near Delle, have water temperatures of 24° and 26.5° C. The water of both is saline but there is no obvious source for the warmth of the water.

In contrast to the moderate temperatures measured at the surface in Skull Valley, Parry and Cleary (1978, p. 26) have computed for 28 wells and springs Na-K-Ca temperatures that range from 12° C to 179° C, with the highest 20 temperatures averaging 150° C. From their mixing models they concluded, however, that probably "cold water fractions of 90%...prevent accurate estimate of the temperature of any hot water component present."

Cited References

Hood, J.W., and K.M. Waddell, 1968, Hydrologic reconnaissance of Skull Valley, Tooele County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 18, 54 p.

Parry, W.T., and M. Cleary, 1978, Na-K-Ca and SiO₂ temperature estimates for Utah spring and well waters: U.S. Geol. Sruvey, Geothermal Research Program, Contract 14-08-0001-G-341, 51 p.

Snake Valley

Snake Valley is a long (about 135 miles) north-trending well-watered intermontane valley that straddles the Nevada-Utah border. It includes parts of the western portions of Tooele, Juab, Millard, Beaver, and Iron Counties.

The unconsolidated valley-fill desposits underlie about 1.2 million acres and form the principal groundwater reservoir, which has an estimated 12 million acre-feet of recoverable water in the upper most 100 feet of saturated alluvium (Hood and Rush, 1965, p. 1).

Many springs rise from the valley floor and three areas, Warm Springs, Twin Springs, and Knoll Springs, produce water of 19.5° to 27°C (Table 36). Two wells on the west side of the valley produce water of 22°. Although the generalized map of Hood and Rush does not show faults directly related to these areas of warm water it is likely that the warming comes from the geothermal gradient along faults.

Cited References

Hood, J.W., and F.E. Rush, 1965, Water-resources appraisal of the Snake Valley area, Utah and Nevada: Utah State Engineer Tech. Pub. No. 14, 40 p.

Tooele Valley

INTRODUCTION

"Tooele Valley is at the eastern edge of Tooele County in northwestern Utah... and is about 30 miles southwest of Salt Lake City. The valley proper includes approximately 250 square miles bounded by Great Salt Lake" on the north, the Oquirrh Mountains on the east, South Mountain to the south, and the Stansbury Island on the west (Gates, 1965, p. 10). Tooele Valley is the site of the Tooele Army Depot which occupies about 37 square miles in the southern part of the valley. Most of the rest of the valley is devoted to agriculture. Probably about 25,000 people were living in the valley in 1975.

SUMMARY of OCCURRENCES and POTENTIAL for USE

One well, 687 feet deep, produces slightly saline water, 2780 ppm dissolved solids, at 30°C, near Mills Junction. Granstville Warm Springs produces highly saline water, about 25,000 ppm dissolved solids, at 24° to 32°C. Four other wells produce water of 20° to 23°C (Table 37-A).

With only two occurrences of significantly warm water it is not likely that there is a source of high heat at moderate depths, yet a concentration of wells with water of nearly 20° between Grantsville and Erda suggests that in that area there may be heat that is spread laterally through the principal aquifer.

This slightly warm water of good quality could be used in heat pumps.

GEOLOGIC and HYDROLOGIC ENVIRONMENT

The mountains that border Tooele Valley on the east, south, and west "are formed by Paleozoic rocks ranging in age from Lower Cambrian to Pennsylvanian [and Permian] but with the Ordovician and Silurian periods unrepresented. There is no sedimentary record of the interval between Pennsylvanian [Permian] and Tertiary times, and the Tertiary, Quaternary, and Recent sediments are of continental origin. These continental deposits play the dominant role in the groundwater hydrology of the basin,...and give rise to the conditions which yield water by artesian flow in the lower part of the valley" (Thomas, 1945, p. 97).

The topographic axis through the center of Tooele Valley is nearly south to north with a slight turn to the northeast near Great Salt Lake, but the structural axis of the Tooele Valley graben is about N35E through Grantsville. (Cook and others, 1966, fig. 2). "As a result of step faulting of great magnitude, the central part of the [three-step] graben [near the south shore of Great Salt Lake] forms a deep trench whose bottom lies many thousands of feet below the shallower flanks of the graben, so that the total thickness of the Cenozoic rocks is at least 8000 feet" (Cook and others, 1966, p. 65). To emphasize the minimum of 8000 feet, Cook and others (1966, fig. 3) show a cross section in which the deepest part of the graben, about 3 miles wide, is about 12,000 feet below the surface. Possibly the deep inner fault on the southeast side of the central graben is the Box Elder Canyon Fault of Thomas, which is projected from the mouth of Box Elder Canyon in the southwest corner of the valley about N4OE (Thomas, 1946, p. 150 and Plate 1). The Box Elder Canyon Fault of Thomas may be an extension of the Sixmile Creek fault which Gates (1965, fig. 5) has plotted from the same deep well information that Cook and others used to confirm their geophysical evidence for the boundary of the deep inner graben. At any rate the center part of the graben is very deep and the overall pattern of faulting is very complex.

Superposed on these deep faults are thick Tertiary deposits and thin Quaternary alluvium and lake deposits. Some of the deep faults have had movement since the Quaternary deposits were laid down, for springs rise along them -Fishing Creek fault, Warm Springs fault, and Mill Pond fault - or there is a discernable scarp - Occidental(?) fault.

The intertonguing of coarse alluvial and fine lacustrine deposits has produced artesian (confined) conditions in most of the valley, and there are flowing wells in the lower parts of the valley, below about 4400 feet. "A zone of coarse sediments 60 to 125 feet thick, encountered at depths of 90 to 210 feet in the western and 180 to 300 feet in the eastern part of the Grantsville district and at depths of 170 to 230 feet in the western and 100 to 160 feet in the eastern part of the Erda district, constitutes the principal aquifer in the valley. Several flowing wells yield water from strata above this principal aquifer and some wells reach deeper aquifers. In all cases the deeper wells have a greater head than the shallow wells and some differential head has been observed in wells reaching different parts of the principal aquifer" (Thomas, 1946, p. 98).

OCCURRENCE of WARM WATER

Water in the warm range $(20^{\circ} \text{ to } 34.5^{\circ}\text{C})$ has been reported from six wells (out of 142) and one spring, Grantsville Warm Spring, in Tooele Valley (Table

37-A), and water in the slightly warm range (15.5° to 19.5°C) has been reported from 44 wells (Table 37-B); and the median temperature from all 142 wells whose temperatures have been recorded is 14.5°C, appreciably above the mean annual air temperature of 11°C at Tooele (Gates, 1965, p. 12). The warmest water of 30°C comes from a well 687 feet deep in sec. 9,

The warmest water of 30°C comes from a well 687 feet deep in sec. 9, T.2 S., R.3 W. Four other wells produce warm water from moderate depths: two east of Grantsville, 21° and 23° from depths of 380 and 320 respectively, one northwest of Grantsville, 20° from 210 feet, and one near Tooele, 21.5° from 710 feet. An oil test well, (C-2-5)13bca, 3540 feet deep, produces 23° water.

The water of Grantsville Warm Springs is highly saline with 25,800 ppm dissolved solids. Its temperature "ranges from about 75° to about 90°F (24°-32°C). Volcanic rocks of Tertiary age crop out about five miles southwest of the springs but probably are not directly related to the source of heat for the water; the source of heat probably is the geothermal gradient. A buried fault in the vicinity of the springs probably is the escape route of water that infiltrates the faulted rocks of Paleozoic age at altitudes of 5,000 -8,000 feet in the Stansbury mountains. If the water descends to depths of 3,000 - 5,000 feet below the upland surface before moving upward along a fault, the observed temperatures would result" (Mundorff, 1970, p. 34). Slightly warm water (15.5-19.5°C) is common in wells between Grantsville

Slightly warm water $(15.5-19.5^{\circ}C)$ is common in wells between Grantsville and Erda, and nearly all the other wells in that area record temperatures of $14^{\circ}-15^{\circ}C$. Although only two wells in this area report temperatures of 21 and 23°, the virtual absence of water below 14° and the abundance of slightly warm water suggest that there may be a source of moderate heat that is warming the water of the principal aquifer.

Cited References

- Cook, K.L., J.W. Berg, W.W. Johnson, and R.T. Novotny, 1966, Some Cenozoic structural basins in the Great Salt Lake area, Utah, indicated by regional studies in The Great Salt Lake: Utah Geol. Soc. Guidebook No. 20, p. 57-75.
- Gates, J.S., 1963, Selected hydrologic data, Tooele Valley, Tooele County, Utah: U.S. Geol. Survey Basic-Data Report No. 7, 23 p.

. 1965, Reevaluation of the ground-water resources of Tooele Valley, Utah: Utah State Engineer Tech. Pub. No. 12, 65 p.

- Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 13, 60 p.
- Thomas, H.E., 1946, Ground water in Tooele Valley, Tooele County, Utah: Utah State Engineer Tech. Pub. No. 4, 241 p.

Tule Valley

INTRODUCTION

Tule Valley and its tributary drainage area includes about 940 square miles in western Juab and Millard Counties, Utah. The valley has no permanent inhabitants and "the land is used mainly for seasonal livestock grazing... About 530,000 acres...or 88 percent of the land is Federally owned. About 68,000 acres...or 11 percent is owned by the State of Utah. About 1,1000 acres ...or less than 1 percent is privately owned" (Stephens, 1977, p. 2).

GEOLOGIC and HYDROLOGIC ENVIRONMENT

"The Tule Valley drainage basin is a topographically closed basin bounded in part by drainage divides in the House and Fish Springs Ranges on the east and the Confusion Range on the west... The northern boundary is a broad, low divide connecting the Fish Springs and Middle Ranges, Granite Mountain, and the Confusion Range. The southern boundary is likewise a broad, low divide that connects the House and Confusion Ranges" (Stephens, 1977, p. 2).

Tule Valley is a structural basin that is the result of block faulting on the east and eastward tilting and faulting on the west. A rather sinuous fault or fault zone separates the valley from the House Range on the east and a major fault separates the southern part of the valley from the Confusion Range on the west. A branch of this fault trends northward through the middle of the broad northern portion of the valley and is the conduit by which major springs rise.

The valley floor is underlain by alluvium from the adjacent mountains and by lacustrine deposits laid down in Pleistocene Lake Bonneville. These deposits are probably only a few hundred feet thick but are saturated essentially to the surface of the land in the central portion of the valley. Stephens has estimated that the annual recharge from precipitation is about 7,600 acre-feet (1977, p. 10), but he has also estimated that annual discharge by evapotranspiration is 40,000 acre-feet. He believes that the difference between discharge and recharge from precipitation is made up by interbasin underflow, principally from Wah Wah Valley to the south but perhaps also from other sources (1977, p.21). He also feels that some water may move northward out of the valley through the subsurface in Sand Pass (1977, p. 16).

OCCURRENCES of WARM WATER

All springs that discharge on the valley floor - Coyote Spring, Tule Spring, and others - have water temperatures of 19.5° to $28^{\circ}C$ (Table 38), or about $8.5 - 17^{\circ}C$ higher than the mean annual air temperature of $11^{\circ}C$ on the valley floor (Stephens, 1977, p. 22). These springs undoubtedly gain their heat from the geothermal gradient. Probably recharge from the Confusion Range goes several thousand feet below the surface and then rises along the fault in the middle of the valley.

In addition, a well, (C-17-15)25cbb, and a nearby spring also yield warm water a mile or so east of the fault mentioned above. This warm water probably rises along an as yet unidentified fault.

There are few discharge measurements for the warm springs but the abundant evapotranspiration suggests that wells in the vicinity of the springs could pump large quantities of warm water, probably containing less than 1500 mg/l dissolved solids.

Cited Reference

Stephens, J.C., 1977, Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 56, 26 p. Wah Wah Valley

INTRODUCTION

Wah Wah Valley and its tributary drainage area encompass "about 600 square miles in Millard and Beaver Counties in southwestern Utah... Except for a small tract of irrigated land at Wah Wah Ranch, the land in the drainage basin is used mainly for livestock grazing. More than 87 percent -- about 332,000 acres... -- of the land is in Federal ownership, about 11 percent -- 43,000 acres...is owned by the State of Utah, and the remainder -- about 9,000 acres...- is privately owned" (Stephens, 1974, p. 2).

GEOLOGIC and HYDROLOGIC ENVIRONMENT

"The Wah Wah Valley drainage basin is a closed basin bounded by drainage divides in the Wah Wah Mountains on the west and southwest, the Confusion and House Ranges on the north, and the San Francisco Mountains on the east. The northeastern boundary of the basin is a broad, low ridge, which connects the northern end of the San Francisco Mountains with the southern end of the House Range. The ridge rises about 25 feet (7.6m) above the floor of the Wah Wah Valley hardpan and divides the surface drainage of Wah Wah Valley from that of the Sevier Lake basin" (Stephens, 1974, p.5).

"Wah Wah Valley is part of an eastward-tilted fault block that is bounded on the west by a fault along the western side of the Wah Wah Mountains and on the east by a series of faults along the western side of the San Francisco Mountains... In addition to the major structural features, minor folding and extensive faulting, fracturing, and brecciation have accompanied the emplacement of igneous intrusives, especially in the San Francisco Mountains" (Stephens, 1974, p.7).

The alluvial fill in the Wah Wah Valley is estimated to be more than 2000 feet thick, but the water table is more than 200 feet below the surface. Although there is no surface discharge from the valley, subsurface discharge, perhaps toward Tule Valley to the north, is apparently able to remove the estimated annual recharge of 7,000 acre-feet (Stephens, 1974, p. 12,18,19).

The principal source of water in the valley is Wah Wah Springs which discharges about 500 gpm of cool and slightly warm water from many openings. The source of this water is Paleozoic rocks in the Wah Wah Mountains.

OCCURRENCES of WARM and SLIGHTLY WARM WATER

Warm water, at 24.5° C, has been reported from only one source, a test well, (C-28-14)llabb, which was deepened to 1472 feet after the original drilling failed to reach water at 660 feet (Table 39). A temperature log run on this well after deepening showed a nearly straight-line increase in temperature from about 22.3°C at 700 feet to about 28.8°C at 1480 feet, for a geothermal gradient of about 24.6°C/km (Stephens, 1974. p. 17). This gradient is perhaps lower than the general geothermal gradient of 40° - 50°C/km in the Basin and Range Province as reported by Chapman (oral commun. 1978).

Slightly warm water of 16.5° to 19.5°C is reported for Wah Wah Springs, a group of springs that has produced extensive calcareous tufa deposits about

3 miles west of Wah Wah Ranch. The water discharges through the tufa from the limestone of the underlying Orr Formation. Recharge is undoubtedly from the crest of the Wah Wah Mountains and, according to Stephens (1974, p. 22), the water is directed to the discharge area by a northeast-plunging flexure in the limestone.

Cited Reference

Stepehns, J.C., 1974, Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 47, 45 p.

Areas That Have Slightly Warm Water

Six areas of Utah have springs and wells that yield water that is no hotter than slightly warm, 15.5° to 19.5°C. Such water can be used in heat pumps for space heating, so brief descriptions of these areas follow.

Grand Staircase

The Grand Staircase includes all the area from the Pink Cliffs south to the Arizona border. The western boundary is the Hurricane Fault and the eastern boundary is the Coxcomb, the northern extension of the East Kaibab Monocline. The area encompasses most of western Kane County, a part of eastern Washington County, and a small part of Garfield County.

The rocks of the Grand Staircase consist of a great thickness of Mesozoic marine and non-marine shales, sandstones, limestones, and conglomerates exposed as treads and risers of a "staircase" that dips 2[°] to 3[°] to the north-northeast. Capping the Mesozoic sequence is the Eccene Wasatch Formation whose pink cliffs form the northern boundary of the area. The treads of the staircase are formed of the more resistant sandstones or limestones and the risers are commonly shales or soft sandstone or siltstone. The treads are generally rather porous so that they absorb an appreciable portion of the moderate rainfall of 12 to 25 inches. This water tends to move downward until it reaches a less permeable bed where it begins to move downdip toward the north. Presumably the down-dip storage areas are now essentially saturated so that some part of the recharge is rejected and returns to the surface as springs that rise above many slightly permeable horizons, such as clay or siltstone. The springs supply water for the mainstems and tributaries of the Virgin River and Kanab Creek that flow southward toward the Colorado.

The water that issues from the springs normally penetrates only to shallow depths so the only warming of the water is from the heat of the sun (Table 40). Although several spring temperatures are recorded as higher than 20° C, all were measured as discharge from pipes, in a pond, or in a shallow seep. None represents heating by deep circulation.

Cited References

Goode, H. D., 1964, Reconnaissance of water resources of a part of western Kane County, Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 5, 62 p. Goode, H. D., 1966, Second reconnaissance of water resources in western Kane County, Utah: Utah Geol. and Mineralog. Survey Water Resources Bull. 8, 44 p.

Hansel Valley

Hansel Valley is in northeastern Box Elder County and its drainage area of about 240 square miles drains southward into the north arm of Great Salt Lake. The valley is used for grazing and dryland cultivation of small grains, principally by farmers who commute from nearby towns (Hood, 1971, p. 2).

Two wells, 125 and 286 feet deep, produce saline water with 1630 and 7060 mg/l dissolved solids, at temperatures of 16° and 18°C respectively (Table 41). One spring at Monument Point produces about 45 gpm of brine, about 52,000 mg/l dissolved solids, at 17.5°C from the Oquirrh Formation.

Cited Reference

Hood, J. W., 1971, Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 33, 35 p.

Pilot Valley

The Utah portion of Pilot Valley (which extends across the border into Nevada) is an area of about 420 square miles in southwestern Box Elder County and northwestern Tooele County. Pilot Valley is bordered on the west by the Pilot Range and on the east and south by the Silver Island Range. About 85,000 acres of the valley bottom is covered with salt deposits, and less than 300 acres of the valley is cultivated. "The present population of the valley consists of a single family" (Stephens and Hood, 1973, p. 3 and 7).

Four springs and one well yield slightly warm water $(15.5^{\circ} \text{ and } 16.0^{\circ}\text{C})$ in the NE $\frac{1}{2}$ sec. 36, T.4 N., R.19 W. (Table 42). One of the springs, Donner spring, yields about 200 gpm of water that contains about 370 mg/l dissolved solids, and the well also yields fresh water. The other three springs yield slightly saline water.

In 1976 the U.S. Geological Survey put in 14 four-foot test wells along three east-west lines across the floor of Pilot Valley. These wells were spaced 1 to 2 miles apart and water temperatures were measured on September 30 and October 1, 1976. The lowest temperature measured was 18°C at 4.57 ft (or more) below land surface (in a 4-ft well), and the highest temperature, 21.5°C, was measured in two wells at 0.69 and 1.34 ft (or more) below land surface (Lines, 1978, p. 5). Obviously all temperatures were the result of warming by the sun during the previous summer.

Cited References

Lines, G.C., 1978, Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah: U.S. Geol. Survey Basic-Data Release No. 30, 14 p.

Stephens, J.C., and J.W. Hood, 1973, Hydrologic reconnaissance of Pilot Valley, Utah and Nevada: Utah Dept. Nat. Resources Tech. Pub. No. 41, 33 p.

Pine Valley

Pine Valley is a topographically closed basin principally in western Millard and Beaver Counties. One well in the northern part of the valley, (C-15-16)18bdd, yields water of 204 mg/l dissolved solids at a temperature of 16°C from a depth of about 340 feet (Stephens, 1976)(Table 43). All other wells and springs yield appreciably cooler water.

Cited Reference

Stephens, J. C., 1976, Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 51, 31 p.

The Sink Valley Area

The Sink Valley area lies west of Great Salt Lake in Tooele and Box Elder Counties. The area occupies about 330 square miles and includes not only Sink Valley but also a portion of the west shore of Great Salt Lake that is separated from Sink Valley by the Lakeside Mountains. "Most of the land in the Sink Valley area is owned by the Federal Government and is used partly as a military reservation (Hill Air Force Range) and partly as a winter range for sheep. The only residents are the families of several railroad workers at Lakeside and a small detachment of civilian and U.S. Air Force personnel (generally less than 100 men) at the Hill Range test facility about 12 miles southwest of Lakeside" (Price and Bolke, 1970, p. 3-4).

Five wells scattered on the valley floor encountered water of 16° - $17^{\circ}C$ at depths from about 125 to 400 feet (Table 44). This water was slightly to moderately saline, about 1750 to 4500 mg/l dissolved solids. One of these wells, (B-4-10)25bac, had been drilled to 739 feet and sampled during drilling. It reached very saline water below 400 feet and near-brine (29,900 mg/l dissolved solids) at 600 feet.

Cited Reference

Price, Don, and E. L. Bolke, 1970, Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah: Utah Dept. Nat. Resources Tech. Pub. No. 26, 28 p.

Yuba Dam-Leamington Canyon (Including southern Juab, Scipio, Round, and Mill Valleys)

No warm water has been reported from wells or springs between Yuba Dam and Leamington Canyon. However, three prominent springs in Mills Valley yield slightly warm water of 17°C (Table 45). Blue Springs and Molten Springs yield waters of good quality that contain 334 mg/l and 410 mg/l dissolved solids respectively. Chase Springs yields about 3 cfs of 16°C water that contains 1190 mg/l dissolved solids.

Cited Reference

Bjorklund, L. J., and G. B. Robinson, Jr., 1968, Ground-water resources of the Sevier River basin betweenYuba Dam and Leamington Canyon, Utah: U.S. Geol. Survey Water-Supply Paper 1848, 79 p.

Castilla Hot Springs

Castilla Hot Springs, (D-9-4)18baaS, in Spanish Fork Canyon two miles below Diamond Fork, yields moderately saline water of 6360 ppm dissolved solids at a temperature of 40°C. The springs rise near a fault that cuts sandstone of Paleozoic age. Because the spring area is flanked by mountains that rise about 5000 feet above the 4900-foot altitude of the spring, Mundorff (1970, p. 49) believes that water descending "from altitudes of 7,000 to 10,000 feet could be heated (by the geothermal gradient) to the observed temperatures at the altitude of the springs."

A concrete shelter has been built over the orifices of the springs, but its appearance in 1977 suggested that the waters were seldom used.

Como Warm Springs

Como Warm Springs is the only source of warm water in Morgan Valley. According to Mundorff (1970, p. 9, 11):

"Como Warm Springs,(A-4-3)3lcab-S1, rise along a concealed fault that crosses Weber River valley about one mile east of Morgan, Morgan County... The fault cuts limestones of Middle Paleozoic age, and the springs issue from near the base of carbonate rocks of Mississippian age. The source of the water is not known, but the relatively low temperature of the water (25°C), the low dissolved-solids content (about 600 ppm), and the point of discharge suggest that the water is of meteoric origin and is brought to the surface along a conduit formed by the fault.

"The water is calcium sulfate bicarbonate in type; spectrographic analysis for 17 minor elements indicates no high concentrations of any of these elements.

"Part of the water is temporarily used in a swimming pool near the springs, but all the water ultimately enters the Weber River in the vicinity of the springs. Discharges ranging from about 2 to 20 cfs (900 to 9,000 gpm) have been measured or estimated at different times.

"The source of the heat probably is the normal geothermal gradient. Circulation of water to a depth of 1,500-2,000 feet could result in temperatures that are 20° F (10° C) higher than temperatures of shallow ground water in the area. These warm springs, like most other thermal springs in Utah, have no potential for geothermal development for power generation."

Diamond Fork Warm Springs

Mundorff (1970, p. 49) reports:

"Diamond Fork Warm Springs, (D-8-5)]4d-S, are about 17 miles east of Spanish Fork in Utah County. These springs issue from conglomerates of Mesozoic age along Diamond Fork... Temperature of the water was $68^{\circ}F(20^{\circ}C)$ and dissolved-solids content was about 837 ppm on October 20, 1967. The water is of the calcium sodium sulfate type; the odor of hydrogen sulfide is noticeable. The relatively low temperature and dissolved-solids content of these springs suggest that meteoric water enters the surface in the mountains at altitudes 2,000-3,000 feet higher than that of the springs, descends through fractures or voids to about the altitude of the springs, and issues from fissures in the conglomerate along Diamond Fork. The normal geothermal gradient causes the temperature of the spring discharge to be $10^{\circ}-15^{\circ}F(5^{\circ}-8^{\circ}C)$ warmer than that of shallow ground water in the vicinity.

"Reported discharge of the springs has ranged from about 350 to 700 gpm. On October 20, 1967, the discharge of the largest spring was about 450 gpm."

Patio Spring

Patio Spring, (A-7-1)22caaS, is described as rising from Quaternary lake beds 12 miles northeast of Ogden (Waring, 1965, p. 42). Actually the spring is in Ogden Valley about 10 miles northeast of Ogden, and it probably rises from alluvium above exposures of lake beds. The spring "discharges about 220 acre-feet of water per year. Some of the water is used for the swimming pool in the Patio Springs Lodge and the rest is diverted for irrigation" (Doyuran, 1972, p. 71).

Keller Corp. Well #2

The Keller well, (B-5-13)3lacd, yields moderately saline water of 4050 mg/l dissolved solids at a temperature of 22[°]C. The well taps water that is fresher than the surrounding brine of the Great Salt Lake Desert. Probably the freshness is due to recharge that comes from the nearby Newfoundland Mountains.

Cited References

- Cordova, R. M., 1969, Selected hydrologic data, southern Utah and Goshen Valleys, Utah: U.S. Geol. Survey Basic-Data Release No. 16, 35 p.
- Doyuran, Vedat, 1972, Geology and ground-water resources of Ogden Valley, Utah: Univ. of Utah PhD Dissertation, 134 p.
- Mundorff, J. C., 1970, Major thermal springs of Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 13, 60 p.
- Saxon, F. C., 1972, Water-resource evaluation of Morgan Valley, Morgan County, Utah: Unpub. M.S. Thesis, Univ. Of Utah, 116 p.
- Stephens, J. C., 1973, Hydrologic reconnaissance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah: Utah Dept. Natural Resources Tech. Pub. No. 42, 48 p.
- Waring, G. A. (Revised by R. R. Blankenship and Ray Bentall), 1965, Thermal springs of the United States and other countries of the world: U.S. Geol. Survey Prof. Paper 492, 383 p.

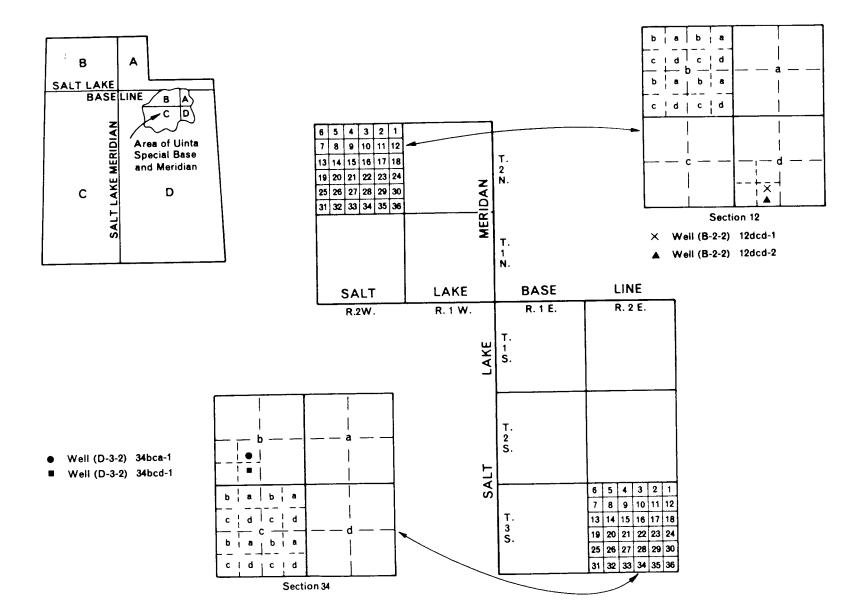
RECORDS OF THERMAL SPRINGS AND WELLS

The tables of records of thermal springs and wells are presented here in the same order as the discussions of the areas in the text: tables of areas that have hot, warm, and slightly warm water are presented first, followed by those that have warm and slightly warm water and then by those that have only slightly warm water. For most areas the records of wells and springs that have hot and warm water (above 20° C) are combined in a table whose number is followed by the letter A, and the records of slightly warm water (15.5° to 19.5° C) are in tables whose numbers are followed by the letter B.

Explanation for Tables in This Report

COORDINATES

The system of numbering springs and wells in this report is based on the cadastral land-survey system of the United States. By this system, Utah is divided into four quadrants by the Salt Lake base line and meridian and these guadrants are designated by the upper case letters A, B, C, and D, indicating the northeast, northwest, southwest, and southeast quadrants, respectively. Numbers designating the township and range (in that order) follow the quadrant letter, and all three are enclosed in parentheses. The number after the parentheses indicates the section, and is followed by three letters indicating the quarter section, the quarter-quarter section, and the quarter-quarter-quartersection - (10 acres); the letters a, b, c, and d indicate, respectively, the northeast, northwest, southwest, and southeast quarters of each subdivision. The number after the letters is the serial number of the well or spring in the 10-acre tract; the letter S preceding the serial number denotes a spring. Thus (B-13-3)23acbS, indicates the first spring in the northwest quarter of the southwest quarter of the northeast quarter of section 23, T13W, R3N, Salt Lake base and meridian. In the Uinta Basin a Uinta baseline and meridian is used (see fig. 1) and these coordinates are preceded by U in this report.


SOURCE

G – gas well	M - mine
0 - oil well	S - spring
0/W - oil and water well	W - water well

GEOLOGIC FORMATION

110 PTOD	Quaternary pediment, terrace, or outwash deposit
111 ALVM	Holocene alluvium
111 CLVM	Holocene colluvium
111 LCST	Holocene Lacustrine deposits
112 PLCN	Pleistocene series
112 PVNT	Pleistocene Pavant Flow
120 TRTR	Tertiary system
121 SLIK	Pliocene Salt Lake Formation
200 MNCS	Mesozoic Mancos Shale

,

۲

-

Figure 11. Well-numbering system used in Utah.

200 SGCF	Mesozoic Straight Cliffs Sandstone
210 DKOT	Cretaceous Dakota Sandstone
211 EMRY	Cretaceous Emery Sandstone Member of Mancos Shale
211 FRRN	Cretaceous Ferron Sandstone Member of Mancos Shale
211 KPRS	Cretaceous Kaiparowits Formation
217 BRCN	Lower Cretaceous Burro Canyon Formation
220 GLCN	Jurassic-Triassic Glen Canyon Formation or Group
220 NVJO	Jurassic-Triassic Navajo Sandstone
221 BLFF	Upper Jurassic Bluff Sandstone of San Rafael Group
221 CRML	Upper Jurassic Carmel Formation of San Rafael Group
221 ENRD	Upper Jurassic Entrada Sandstone of San Rafael Group
221 SMVL	Upper Jurassic Summerville Formation of San Rafael Group
230 MNKP	Triassic Moenkopi Formation
231 CHNL	Upper Triassic Chinle Formation
231 KYNT	Upper Triassic Kayenta Formation of Glen Canyon Group
231 MONV	Upper Triassic Moenave Formation of Glen Canyon Group
231 SRMP	Upper Triassic Shinarump Member of Chinle Formation
231 WNGT	Upper Triassic Wingate Sandstone of Glen Canyon Group
300 PLZC	Paleozoic Erathem
310 CDRM	Permian Cedar Mesa Sandstone Member of Cutler Formation
310 HLGT	Permian Halgaito Tongue of Cutler Formation
310 KIBB	Permian Kaibab Limestone
310 OGRK	Permian Organ Rock Tongue of Cutler Formation
310 OQRR	PermPenna-Miss. Oquirrh Group
310 PRKC	Permian Park City Formation
310 WEBR	Perm-Penna. Weber Quartzite or Sandstone
324 HRMS	Middle Pennsylvanian Hermosa Formation
370 CMBR	Cambrian System
400 ABRG	Precambrian Albion Range Group
400 PCMB	Precambrian Eratherm

YIELD

d	-	Reported by	driller	R	-	reported
Ε	-	estimated		М	-	measured

REFERENCES

References listed in the tables refer to the following:

BD-U.S. Geological Survey Basic-Data Release

Doyuran, Vedat, 1972, Geology and ground-water resources of Ogden Valley, Utah: Univ. of Utah PhD Dissertation, 134 p.

HG - Harry D. Goode, unpublished data.

<u>H Mtn</u> - Goode, H.D., and Eric Olson, 1977, Reconnaissance appraisal of the water resources of the Henry Mountains coal field, Wayne and Garfield Counties, Utah: Univ. of Utah, College of Mines and Mineral Industries, 44 p.

IWM - U.S. Geological Survey, Basic-Data Report No. 4.

Petersen, C.A., 1975, Geology and geothermal potential of the Roosevelt Hot Springs area, Beaver County, Utah: Unpublished M.S. Thesis, Univ. of Utah, 50 p.

PP - U.S. Geological Survey Professional Paper.

Rush, F.E., 1977, Subsurface-temperature data for some wells in western Utah: U.S. Geol. Survey Open-File Report 77-132, 84 p.

Saxon, F.C., 1972, Water-resource evaluation of Morgan Valley, Morgan County, Utah: Unpub. M.S. Thesis, Univ. of Utah, 116 p.

TP - Utah Department of Natural Resources Technical Publication.

<u>Turk</u>, L.J., 1973, Hydrology of the Bonneville Salt Flats, Utah: Utah Geol. and Mineral Survey Water-Res. Bull. 19, 81 p.

UP&L - Utah Power and Light Co.

WRB - Utah Geol. and Mineralog. Survey Water Resources Bulletin.

WSP - U.S. Geological Survey Water Supply Paper.

ANALYSIS

Where the Na value is given and no K value appears then the Na value represents the sum of Na plus K.

	OWNER	빙	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF		ļ,			ANALY	SIS EX	P A E S S	ED AS	11.1	GRAM	S PER LIT	ER					1	
COORDINATES	OR NAME	SOUR	FORMATION	°c	(feet)	(gpm)	SAMPLE	REFERENCE	SiO 2	F.	¢.	Mg	N.	ĸ	нсо,	c0,	so.	CI	F	N0,	DISSOLVED SOLIDS	COND mmhas	pН		OTHER CONSTITUENTS OR REMARKS
-09-03) 27cbal	Chesapeake Duck Club	w	111 ALVM	74.0	502	40d	8-21-53	BD-23			56	62	1,000	110	1,620	0	14	1,100			3,350	5,300			Plugged; produced gas
27cba ₂	Chesapeake Duck Club	w	111 ALVM	42.0	500	50E	8-06-71	BD-23														5,500			Sampled from pool; produces gas
-10-03) 4ddd	S. Jepperson	w	111 ALVM	25.5	510		9-25-70	BD-23	80		94	45	3,900	160	452	0	170	6,200	1.2	.1	10,800	17,100	7.7	в 0.60	
-10-03) 30bbd S	Stinking Hot Spring	s	300 PLZC	47.5 47.5		45E	4-05-58 10-27-51	BD-23	54	.02	920	360	11,000	670	528	0	59	21,000	0		34,600	53,900 48,900	6.4	в 4.6	Other analyses available
-10-03) 33dac	L. Anderson	w		28.0	300	20	3-07-36	BD-23																	Well probably destroyed. Produced gas.
-10-04) 23dad S		s	300 PLZC	24.5		15E	9-13-71	BD-23														46,800		İ	
23dda		s	300 PLZC	26.0		2E	9-13-71	BD-23]					17,400			
24ccc	Little Mtn. Hot Spring	s	Fault	42.0		450E	12-28-71 5-11-71	BD-23	28	.80	630	230	13,000	450	400	0	500	22,000	1.5	1.6	37,000	51,000	7.0	в 4.5	
-11-02) 29dad S	Crystal Hot Spring	s	Fault	53.5 55.5		1600E	12-08-70 10-27-51	BD-23	32		830	230	15,000	790	479		480	26,000	o		43,500	61,800 58,600			Other analyses available
-11-04) 34dbd S		s	310 OQRR	21.0			8-31-71	BD-23				:										5,500			
34dca S		s	310 OQRR	22.0		10E	8-31-71	BD-23														7,400			
-12-03) 15cdc	Louis King	w	300 PLZC	20.0	277	800E	7-20-71	BD-23														1,600			
-13-02) 27dbd S	Cutler Warm Spring	s	300 PLZC	23.0		10E	2-02-68	BD-23	17		84	43	620	22	320	0	65	1,000	1.0	2.1	2,120	3,670	7.6	в 0.22	
-13-03) 11dac	Town of Plymouth	w	120 TRTR	29.0	600	52R	9-09-70	BD-23					5												Date of yield. Abandone
-13-03) 23abc S	River Pools	s		46.0		5000R	9-08-71	BD-23														9,640			
23acb S ₁	Indian Pool	s		43.0		450R	9-08-71	BD-23														15,000			
-13-03) 23acb S ₂	Morning Glory Pool	S		51.0		200R	9-08-71	BD-23	29	.22	220	70	2,900	120	360	0	98	4,800	.4	4.9	8,420	15,000	7.2	B 1.10	
23bad S	Udy Hot Springs	S		43.0 43.0		900R	9-08-71 11-01-66	BD-23	26	.05	210	55	2,700	120	366		90	4,500	1.5	2,6	7,850	13,100 13,600	7.9	B 0.69	
-10-02) 16bcc		w		105.0	11,005	5-7F	June 1974	UP&L													85,000				Water level dropped to 4 ft. below LSD by Aug. 74 P & A
3-08-02) 21aab	Willard Bay Gun Club	w		20.0	567	12	9-13-65	BD-23	53	.01	200	72	340	65	681	1		730	.2	.5	1,980	3,120	7.2		
																								1	

.

•

TABLE 1-A. Lower Bear River Area. Springs and Wells with Water Temperatures of 20° to 105° C.

J) (

.

•

		OWNER	w					·····		T					PECC		Millio	GRAMS	PER LIT				<u> </u>	- 1		
COORDI	NATES	OR	SOURC	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD {gpm}	DATE OF SAMPLE	REFERENCE	5102	Fe.	C.	Mg	Na Na	K		T	TT	CI	F	NO;	DISSOLVED SOLIDS	COND. mmhos	ρН		OTHER CONSTITUENTS OR REMARKS
(B-09-02)	llcda	D. L. Bunderson	w	111 ALVM	16.5	626	10E	9-17-70	BD~23														900			Amber water.
	15daa	Harold Reeder	w	111 ALVM	16.5	465	10	7-30-70 5-17-71	BD-23	19	.28	2	1.2	150	1.8	351	22	5.5	16	.7	.1	395	620 593	B.7		Amber water; lowest hard- ness in area: 10 mg/1.
;	26aab ₂	I. O. Jensen	w	111 ALVM	15.5	330	350d	8-28-70	BD-23														400			
:	26adb	P. R. Parker	w	111 ALVM	15.5	400	10 00d	8-04-70	BD-23														420			
:	26add	Norman Nelson	w	111 ALVM	15.5	353	250d	9-04-70	BD-23														400			
:	35bad	Earl Francia	w	111 ALVM	16.5	363	23	5-26-70	BD-23														420			
:	35cdb S	Porter Spring	s	111 ALVM	16.0		3006	5-03-72	BD-23	ĺ				:									660			
(B-10-03)	32000	B. E. Stallinga	w	111 ALVM	18.0			8-06-71	BD-23														1,400			
(B10-04)	llbab S		s	300 PLZC	18.5		2E	9-18-70	BD-23														10,300			
(B-10-05)	lldaa S		s	310 OQRR	18.0		180E	4-21-71	BD-23														8,930			
(B-11-02)	5dcb	Jeas Earl	w	111 ALVM	16.0.	25	25R	8-30-71	BD-23														790			
		Crystal Cold Springs	s	111 ALVM	16.5 17.0		1600E	12-08-70 9-11-64	BD-23		1.1	76	46	420	31	253	0	57	660			1,920	2,900	7.5	B.2	
(B-11-03)	lcbc	Calvin Kay	w		15.5	12	20	8-12-71	BD-23	(1									
(B-11-03)	5bbb2	John Laws	w	111 ALVM	15.5	238	10d	6-18-71	BD-23														600			
(B-11-03)	6acb	B. Y. Westmoreland	w	300 PLZC	16.0	198	10d	9-03-36	BD-23	ļ																Date of report of yield.
	6dbd	B. Y. Westmoreland	W	300 PLZC	15.5	92		6-18-71	BD-23														1,100			
(B-11-03)		Salt Creek Springs	s	310 OQRR	19.5		р 0°00ам	6-25-71	BD-23	20	.07	52	21	660	29	350		67	960	.2	5.8	1,990	3,700	8.1	1	
(B-11-03)		Keith Barfuss	M	111 ALVM	16.0	410	1		BD-23														5,400			
(8-11-04)		Town of Bothwell	W	111 ALVM	15.5	166		12-10-53	BD-23	42		130	57	170		255	0	280	370	.2	6.0	1,310	2,200E	7.6		
	23bcc	D. Woodward	W	111 ALVM	16.5	393	2	9-17-70	BD-23														1,300			
	34bdb S		s	310 OQRR	18.0			8-31-71	BD-23														4,100			
	34cdd S		S	310 OQRR	18.5		2E		BD-23														14,700			
	34dcc S		s	310 OQRR	18,5		2006	5-14-71	BD-23	37	.01	130	74	1,700	67	329	0	250	2,800	.5	8.4	5 , 23 0	8,840	7.8		
(B-12-02)			S		15.5			8-27-71	BD-23											{			1,400			
(B-12-02)				111 ALVM	16.5	65	20d		BD-23																	Date of yield.
(B-12-04)	2288C	Ralph Udy	ľ	300 PLZC	16.5	680	1,4 50d	3-31-71 7-20-71	BD-23	23	.05	78	35	110	3.6	209	0	52	240	.1	8.0	653	1,100 1,320	8.0	в.06	
	27add	K. H. Fridal	₩	111 ALVM	15.5	500	1,3 50d	8-09-71	BD-23														1,400			
	33дрр	R. Anderson	M	300 PLZC	16.5	460	4d	8-31-53	BD-23																	Date of yield.
	36d ca	R. Holdaway	W	300 PLZC	18.0	118	10d	9-15-70	BD-23														1,700			
(B-13-02)	33add	Don Stubbs	W	300 PLZC	18.0	85	4d	7-21-70	BD-23														1,000			
(B-13-03)	35dda	L D S Belmont Ward	w	111 ALVM	15.5 13.5	237 130 S	470d	8-25-64 263	BD-23	47	.18	66	35	440 700		485 ,240		220	470 510	.9	2.2	1,560	2,390R 3,020			S≂Sample depth.

TABLE 1-B. Lower Bear River Area. Springs and Wells with Water Temperatures of 15.5° to 19.5° C.

,

6 ÷

•

	OWNER				T		r	r—			ANAL	SIS EXI	PRESS		MILLO	GRAM	S PER LI	TEP				T	· · · · · · · · · · · · · · · · · · ·
COORDINATES		GEOLC DFORMA	GIC TEM	P. DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.	1	нсо,	I I		CI	F	NO3	DISSOLVED SOLIDS	COND. mmhai	pМ	OTHER CONSTITUENTS OR REMARKS
14-03) 4dmc			.VM 15.		+	3-12-39														SOLIDS			Dete of yield.
																							·

•

.

TABLE 1-B. Lower Bear River Area. Springs and Wells with Water Temperatures of 15.5° to 19.5° C.

D,

4

	00000	ωT					·	<u> </u>																r	
COORDINATES	OWNER OR NAME	SOURC	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)-	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO ₂	Fe	c.	Mg	Na Na	K	HC03	1		CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONST OR REMA	
(B-01-18) 29ccc	Bonneville Ltd. #24	w	111 ALVM	28	167	25EF	3-29-72	TP-42	41	.03	91	71	2,200	13	0 180	0	240	3,400	1.4	0	£,260	11,000	7.7	B.96, Mn.01	
(C-01-19) 2adb	Bonneville Ltd. #13	w	111 ALVM	24.5	225	24.5M	3-29-72	TP-42	42	.01	79	63	2,000	12	d 212	0	190	3,100	1.8	0	5,700	10,200	7.5	Mn.02	
10bac	Bonneville Ltd. #5 Kaiser FW 5	w	111 ALVM	31 24	216 216	24 500F	9-08-67 2-27-48	TP-42 BD-30			100	80	2,100	10	a		300	3,700						ы 1.2	
23cbc	Bonneville Ltd. DBW 13	w	120 TRTR	24.5	1,496	24.5	9-13-67	TP-42			1,650	1,540	50,800	2,21	a		6,840	80,300						L1 8.8	
34bdc	Bonneville Ltd. DBW 7	w	120 TRTR	25	1,045	1,270	1951	BD-30																Turk: p p. 55,	. 50, DBW7; DBW8
(C-02-19) 14ada	Bonneville Ltd. DBW 1	w	120 TRTR	43	1,200		1-30-48	Turk																	
24cba	Bonneville Ltd. DBW 3	w	120 TRTR	88	2,068			Turk																Tempo	epth 1636
(C-04-19) 6dcd S	Blue Lake Spr 1.	s	FAULT	29			9-14-67	Turk			200	50	1,400	10	q		300	3,700						1.1.4	
3 làcc	BLM (Kaiser well FW 20)	w	111 ALVM	24	295	150F	12-16-47	BD-30																	level at land a 3-29-72.
(C-01-19) 3ddc	Kalser well FW7A	w	111 ALVM	24	171	1,000F	5-16-49	BD-30																	
35bed	Kaiser DBW 9	w	120 TRTR	30	1,418	1,200	1-14-51	BD-30								ĺ									
(C-02-17) 4aac	BLM (Kaiser K65)	w	111 ALVM	21	19	4.1	9-28-76	BD-30			1,200	980	70,000	1,90	G 37		3,600	10,000			196,000			Br 8.4, Bl.5 Li 16.	
(C-02-19) 3bcd	Kaiser DBW 8	w w	120 TRTR	28 28	1,070		11-12-76 9-13-67	BD-30 TP-42					47,000 45,400					77,000 76,800			136,000			Br 33., B 13., Tur Li 21., Li 17.6 p.	
(C-01-19) 10bob	Kaiser TW 3		111 ALVA					Turk																	m sec. 34 to 3.
L																									

TABLE 2. Bonneville Salt Flats. Wells and one spring with water temperatures of 20° to 88° C.

• •

•

٠

	OWNER	RCE							ANALYSIS EXPRESSED AS MILLIGRAMS PER LITER																
COORDINATES	OR NAME	SOUR	GEOLOGIC FORMATION		DEPTH (feet)	YIELD (gpm)		REFERENCE	SiO 2	F.	C.	Mg	Ne	ĸ	нсо,	co1	504	CI	F	N0,	DISSOLVED SOLIDS	COND. mmhos	рH		OTHER CONSTITUENTS OR REMARKS
B-13-12) 30caa S	L. G. Carter	s		25		5E	6-17-66	T P-4 5	10		39	11	44	.6	156	0	19	65	. 2	1.4	274	482	8.0	B.01	
B-14-09) 4bbb	C. Taylor	w	112 PLCN	22	350		5-24-56	TP-45	61		146	35	123		186	o	34	426		3.6	921	1,680	7.2		
4000	Gary Hanna	w	112 PLCN	20.5	360	2,000M	1970-72	TP-45																	This well apparently show as 9bbb in TP-25
B-14-10) 33bcc S	Coyote Spr.	s		43 43.5		20R	5-28-68	TP-45 TP-45	29		87	19	1,070	56	352	0	70	1,620	2.7	4.8	3,240	5,590	7.6	в.8	
B-15-09) 28cbb	J. E. Lee	w		24	400	2,340	8-08-67 8-12-70	TP-45 TP-45	77		369	92	452	32	144	0	35	1,500 1,550	.5	12	2,640	4,700 4,730			
29dbc	C. Taylor	w	112 PLCN	20	480	1,585	1970-72	TP-45																	
3labc	Ethel Taylor	w		21.5	407	2,300	9-69 9-30-69	TP-45 TP-45	63		70	17	31		181	0	20	99		1.6	432	626	7.8		

TABLE 4-A, Southern Curley Valley, Springs and wells with water temperatures of 20° to 43° C.

TABLE 4-B. Southern Curlew Valley.	Springs and wells with	water temperatures of 1	5.5° to 19.5° C.	

	OWNER OR NAME	ы	GEOLOGIC	TEMP.	DEPTH	YIELD (gpm)					ANALYSIS EXPRESSED AS MILLIGRAMS PER LITER COND.											OTHER CONSTITUENTS		
COORDINATES		SOUR	FORMATION	°C	(feet)			REFERENCE	SiO 2	Fa	C.	Mg	Na	к′	нсоз	co3	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рн	OR REMARKS
3-11-11) 6dbb S	Black Butte	s		19		18R	9-23-60	TP-30	14		520	124	6,670	276	206	0	224	11,600		15	20,300	30,400	7.2	
3-12-09) 30cda	Test hole 3	w	112 PLCN	14 15.5	162		7-07-72 9-25-72	TP-45 TP-45			200 120	120 66	660 740		223 173	0 0	170 100	1,500 1,500			2,760 2,660	5,190 4,890		
3-12-11) 5abb	A. Fehlman	w		17	230	250	4-29-72	TP-45			150	76	460	30	206	0	160	960			1,940	3,540	7.3	
-12-11) 5bba	A. Fehlman	w	111 ALVM	15.5 15	300	1,610	7-12-67 3-14-72	TP-45 TP-45	40		72 130	39 58	112 150		222 231	0 0	51 54	255 450	.4	2.6	756 974	1,210 1,870		3.09 Reported drilled to 700 plugged back to about 300
8cda	Jerry Morgan	w	111 ALVM		195		4-03-53 7-11-72				51 68	23 19	69 42		171 205	0 0	58 31	151 110			468 375	760 713	7.6	Warm salty water at 510 plugged back.
-13-08) 10dcc	E. Deakin	w	111 ALVM	15.5	408		9-25-72	TP-45			210	70	260	15	167	0	50	890			1,580	3,000	7.8	
-13-09) 35bbd	Don Rigby	w	112 PLCN	19.5	428	550	12-11-70	TP-45	37	.09	180	140	3,300	180	164	0	460	5,800	.5	.4	10,000	15,600	7.7	31.07
-13-10) 11dcd	Test hole 1	W	112 PLCN	15.5	128		6-16-72	TP-45			72	31	590	.0	255	0	93	970			1,880	3,540	7.5	
34ddc	Test hole 2	w	112 PLCN	19.5	95		6-28-72	TP-45	47	.02	76	48	980	66	193	0	120	1,600	•6	.9	3,040	5,420	7.7	
-13-11) 10cdc	Test hole 4	w	111 ALVM	17	283		9-25-72	TP-45			56	28	74	11	222	0	31	150			459	901	7.5	
-14-07) 7aaa	Bert Eliason	w	111 ALVM	15.5	100		269	TP-45																
-14-08) 5dcc	Chas Taylor	W	300 PLZC	17.5	400	2,050	1065	TP-45								ľ								
-14-09) 5bbb	Gary Hanna	w	111 ALVM	16.5 16.5	300	1,520	7-27-55 7-27-64	TP-45 TP-45	64 50	.00	66 63	16 16	27 35		174 176	0	22 23	90 94	.2 .7	4.4	436 422		7.4 7.4	B.02 Other temps 15.5-17.5.
5cod	Chas Taylor	w	111 ALVM	16	400	2,420	7-13-67	TP-45	51		85	20	53	11	176	0	24	180	.3	3.1	587	889	7.4	B.04
7bbb	LDS Church	w		19	608	2,530	10-15-58	TP-45 TP-45	65		77	20	45		174	0	22	145		2,2	462		7.9	
-14-10) 1bbb	Chas Taylor	w	111 ALVM	16 15.5	420	1,435	5-24-56 8-08-67		60 52		46 65	24 15	28 28		194 188	0	31 27	66 82	.4	.9 .3	352 391		7.6 7.4	B.03
-15-10) 36bbb	Peter Mayo	w	112 PLCN	16.5	613	2,140	5-24-56 556		56		59	17	18		198	0	23	51		2.2	324	502	7.4	

•

.

96

D.

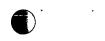
(*Numbers refer	to figure 3) TP-3	5 =	Bolke & W				st Shore A Feth & ot																	-	
	OWNER	ЧСE	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF					ANAL	SIS EX	PRESSE	DAS	ILLI	GRAMS	PER LIT	ER			COND.		[OTHER CONSTITUENTS
COORDINATES	NAME	sou	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	\$i0 ₂	Fe	C.	Mg	Na	ĸ	нсоз	co3	so.	CI	f	NO3	DISSOLVED SOLIDS	mmhos	рН	Ì	OR REMARKS
]* (B-2-1) 2bcdd3	F. Thalman	w	III ALVM	20.0	425	2,250	8-21-61	TP-35			194	61	451	7.8	144	0	112	1,060			2,200	3,640		B. 310	Temps. of 15 ⁰ - 19 ⁰ re- ported at shallower depth
(B-2-1) 27ddd4	A. Thalman	٣	III ALVM	20.0	500		2-21-62	TP-35													375	661	7.7		
(B-3-1) 4cdb4	L. Roueche	w	111 ALVM	20.0	657	50	8-20-68	TP-35	19		27	6.8	46		192	0	1.2	23		6.4	222	368	7.8		
4 (B-3-1) 5ddal	C.D.Smith	w	III ALVM	24.0	918	300	11-14-68	TP-35	30		25	7.3	32		161	0	3.2	18		. 5	195	301	7.8		
(B-3-1) 9aad3	W. Hariis	٣	111 ALVM	20.0	648		9-08-69	TP-35														350			
(B-3-1) 14abb3		w	111 ALVM	20.0	640		9- 09- 54	PP-518	27		17	4.6	88	2.0	240	6.3	4.3	30		. 8	282	486	8.4	B. 43	
(B-3-1) 15bacl	Cen. Davis Co.	w	II] ALVM	22.0 24.0	985	25	11-14-68 9-09-69	TP-35	26		30	3.4	60		232	0	. 5	20		. z	267	400 394	7.9		
8 (B-3-1) 27adal	Wheeler Mach. Co	w	III ALVM	21.0	850	38	12-11-68	TP-35	26		20	3.9	m		301	0	2.O	40		3.2	354	570	7.8	3	
9 (B-3-1) 35abal	Farmington Bay Refuge	w	111 ALVM	33.0 29.0	1,220		10-10-58 11-28-60	TP-35	36 32	. 48	30 26	1.0 4.4	256 250	2.1	88 79	0 0	26 22	380 370	4.4	.9 1.2	773 752	1,400 1,390	7.9 7.6).	
10 (B-4-1) 6dcd1	H111 AFB No. 5	W	III ALVM	11.0 22.0	805	1,000	1-04-56 7-22-69	TP- 35 TP- 35	21 18	1.1	43 41	15 17	33 36	6.7	274 269	0	1.5 1.0	21 21	. 2 . 2	.0 .5	278 272	470 460	7.4 7.2		12 analyses over 13 yr. Period show increase in
11 (B-4-3) 19cam3	GSL Authority	W	III ALVM	24.0 24.0 23.0 21.0	481 150	280M	7-30-69 9-05-69 8-01-69 8-02-69	TP-35	35	.34 .25	51	21	202	4.8	187 216 221	0 0 0	12	350 31 5 61 53	.5 .4	.6	783 758	1, 360 1, 260 516 509	7.6 8.0 7.7	Б.16 7 7	Temperature Shallow Water from this Well is appreciably bet- ter in quality -slightly lower in temperature
12 (B-5-1) 17cbcl	Washington Terr.	w	111 А.L.VM	21.0	910	2, 500	4-20-61	TP-35			53	14	16	2.0	202	5	25	19			2.59	429		B.10	Other similar analyses
13 (B-5-1) 18abbl	WBWCD Riverdale	w	III ALVM	21.0	730	2,500	11-15-60	TP-35			47	10	44	2.0	173	7	54	35			287	478	8.	i	avallable Other similar analyses available
14 (B-5-1) 29bdc	H111 AFB No. 2	w	III ALVM	13.0 20.0	627	750	5-13-48 7-15-66	TP-35	14 11	.03 .03	79 75	20 21	21 15		310 296	0	37 38	20 17	. 1 . 2	4.2 2.5	348 325	587 564	7.	6	18 analyses in 20 yrs. show fluctuations in temp. $13^{\circ} - 20^{\circ}$; 2 near- by wells 900 ft. deep show consistent temps of $11^{\circ} - 14^{\circ} k \ 11^{\circ} - 13^{\circ}$
(B-5-2) 5acb2	C. C. Hawkes	۳	III ALVM	22.0	914	30M	8-30-68	TP-35	24		46	2.4	139	7.6	190	0	1.5	205	.4	. 5	1	939	7.1	B.24	
(B-5-2) 7dab 17	E. Penman		111 ALVM	22.0	1,005	17M	8-29-68	TP-35	18		12	3.9	74	1.5	208	0	1.5	26	. 3	. 2	238	391	8.0	D B.10	
(B-5-3) 11dad2	H. J. Byington		111 ALVM	20.0	525	4M	5-14-69	TP-35	18		39	11	21	2.0	193	0	u	16	. z	. 2	216	360	Į –	в. 06	
(B-5-3) 15aaal 19	R. F. Parker		III ALVM	24.0	657	40	5-14-69	TP-35							133	0		30	j			397	7.	9	
(B-5-3) 15ddal	T. W. Rhead		III ALVM	24.0 22.0	649	26M	5-14-69	TP-35 PP-518			18	6.Z	56	3.1	163 178	31	1.0	29 25		z.4	226	382 386	7,1 8,	7 5 8.31	
(B-5-3) 27c S	Hooper Hot Springs	s	111 ALVM	60.0			9-15-53	WRB-13	35		535	92	2,520	285	234		36	4, 370	. 7	2.0	4 .310	14,900			Five other analyses available:Temp. 118-140
21 (B-5-3) 28d S	Southwest Hooper Warm Springs	s	III ALVM	32.0			9-15-53	WRB-13	48		536	458	8,290	803	304		219	14,400	1.6		27,800	39,400	ĺ		
22 (B-5-4) 21cbb2	H. Richards	w	III ALVM	20.0	172	2	11-2-64	TP-35	7.8		146	68	990	56	132	0	.0	1, 930	1.1	8.1	3,600	5,710	7.	1	Adjacent well 140 ft. deep draws water of 19 ⁰ C
23 (B-6-1) 23ccd S	Ogden Hot Springs	s	400 РСМ В	57.0		75E	11-2-66	WRB-13	47		356	4.9	2,730	359	192		106	4,940	3.7	.4	8,650	15,000	7. '	7 B2.6 L15.4 I.3 Many Minor	Other analyses available: Temps 560, 570
24 (B-6-1) 29cbbl	Utah Byproducts		III ALVM	24.0	842	300	12-27-60	TP-35			96	31	476	41	150	5	8.2	897			1, 760	3,150	1		

· · _ __

TABLE 5-A. East Shore Area. Springs and Wells with Water Temperatures of 20° to 60° C.

. 0

	OWNER		T				<u> </u>	<u> </u>			ANAL	SIS EX	RESSE	DASI	MILLI	GRAM	S PER LIT	ER		· · · · · · · · · · · · · · · · · · ·			T	
COORDINATES	OR NAME	GEOLOGIC		DEPTH (fest)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO ₇	F.	C.	Mg	N.	ĸ	нсоз	coj	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	pН	ļ	OTHER CONSTITUENTS OR REMARKS
25* (B-6-2) 25cccl	G. E. Stratford	III ALVM	22.0 20.0	690	ļ	5-13-43 11-18-59	TP-35 BD-1	18		178 180	43 42	233 231	172 163			.0 3.7	700 700		. 2	1, 240 1, 260	2,400	7.3		Two similar analyses show temperatures of 20°
26 (B-2-2) 27dcd2	L. Defries	III ALVM	20.0	625		11-18-59	TP-35	19		42	10	41		193	0	9.1	48		. 4	2 66	459	7.8		Four similar anal y ses sho temperatures 18 ⁰ - 22 ⁰
27 (B-6-2) 33ddc2	D. Prevedel	111 ALVM	20.0	682		5-07-69	TP-35	17		42	12	20		197	0	9.5	18		.0	216	377	7.7		
(B-6-3) 4dabl	E. J. Wayment	111 ALVM	21.0	540	6м	10-9-68	TP-35	25		4.0	3.4	197	4.8	502	0	4.2	28	2.0	.9	531	816	8.0	в.70	
(B-6-3) 5cccl	R.M. Jacob	III ALVM	25.0	510	8M	5-14-69	TP-35							196	0		44				648	7.7		
(B-6-3) 10acb2	R. M. Jacob	III ALVM	22.0	752	14M	5-14-69	TP-35	19		8.0	2.9	159	2.1	324	0	1.2	84	•6	.4	453	741	8.0	в.40	
(B-6-3) 19aabl	Marguardt ACFT	III ALVM	22.0	229	150	11-05-59	TP-35	35		96	18	340		146	0	18	645		10	1,230	2,290	7.5		Similar analysis a year later shows temp of 19 ⁰
(B-7-2) 10dbd1 33	Wells & Larkin	111 ALVM	24.0	782	943	11-20-68	TP-35	16		75	10	216		169	0	8.5	390		.3	866	1, 480	7.9		
(B-7-2) 14dca S 34	Utah Hot Springs	370 CMBR	58.5			11-13-66	WRB-13	35		1,020	39	6,580	935	182		201	12,700	4.3	. 8	21,600	34 800	7.5	B. 3. 1 I. 24	, Li7.9 Other anaylges Many available: Temps 135
(B-7-2) 16dadl 35	LDS Church	W 111 ALVM	24.0	1, 021		5-07-69	TP-35	61		18	1.5	90		279	0	.8	12		. Z	327	460	7.8	Minor	155
(B-7-2) 16dcd2 36	R. G. Penton	W 111 ALVM	25.0	1, 176	42M	5-07-69	TP-35	28		21	4.4	49	6.8	193	0	4.5	10	.5	. 2	221	333	7.8	в.08	A similar analysis available
(B-7-3) 3laacl	GSLM & C Corp. No. 14	W III ALVM	39.0	806	56M	9-27-68	TP-35	24	[15	4.4	148	9.4	305	0	1.0	104	.7	.3	462	785	8.1	в.20	
37 (B-7-3) 31aac2	GSLM & C Corp. No. 15	W 111 ALVM	38.0	920	1801	9-10-69	TP-35	67		27	5.4	323		571	o	. 5	230		. 2	980	1, 490	8. Z		Bottomed in Bedrock
38 (B-7-3) 31adcl	GSLM & C Corp. No. 11	W 111 ALVM	34.0	712	53M	9-05-68	TP-35													650				
39 (B-7-3) 31daal	GSLM & C Corp. No. 3	W 111 ALVM	25.0	412	29M	9-05-68	TP-35													580				
40 (B-7-3) 31daa2	GSLM & C Corp. No. 4	W 111 ALVM	25.0	415	30M	9-05-68	TP-35					-								500				
41 (B-7-3) 31daa3	GSLM & C Corp. No. 5	W III ALVM	30.0	575	40M	9-05-68	TP-35													725				
42 (B-7-3) 31daa4	GSLM & C Corp. No. 12	W 111 ALVM	34.0	717	69M	9-05-68	TP-35													650				
43 (B-7-3) 31dabl	GSLM & C Corp. No. 6	W 111 ALVM	30.0	590	29M	9-05-68 12-17-69	TP-35	44		14	1.9	157	7.6	339	0	.0	89	.9	. 2	491	710 772	7.7	7 в.19	
(B-7-3) 3ldab2	GSLM & C Corp. No. 7	W III ALVM	34.0	710	72M	9-05-68															690			
45 (B-7-3) 3ldab3	GSLM & C Corp. No. 10	W III ALVM	34.0	705	65M	9-05-68	TP-35														680			
46 (B-7-3) 3ldacl	GSLM & C Corp. No. 8	W III ALVM	30.0	621	28M	9-05-68	TP-35														750			
47 (B-7-3) 3lddal	GSLM & C Corp. No. 9	W III ALVM	30.0 29.0	597	28M	9-05-68 9-10-69	T P- 35	33		14	8.8	147		310	0	.8	96		.0	478	925 750	7.9	,	
48 (B-7-3) 32cbbl	GSLM & C Corp. No. 13	WIII ALVM	34.0	717	90M	9-4-68	TP- 35	36		8.0	5.8	145	6.5	308	0	1.2	87	. 8	. 3	458	713		в.06	
49 (B-7-3) 33cdd	George East #1	W 111 ALVM	20.0	399	18M	12-2-60	BD-1	24	.05	10	3.9	76	8	228		1.4	23	.4	.3	259	409	7.5		Two Other Analyses Available


-

•

TABLE 5-A. East Shore Area. Springs and Wells with Water Temperatures of 20° to 60° C.

.

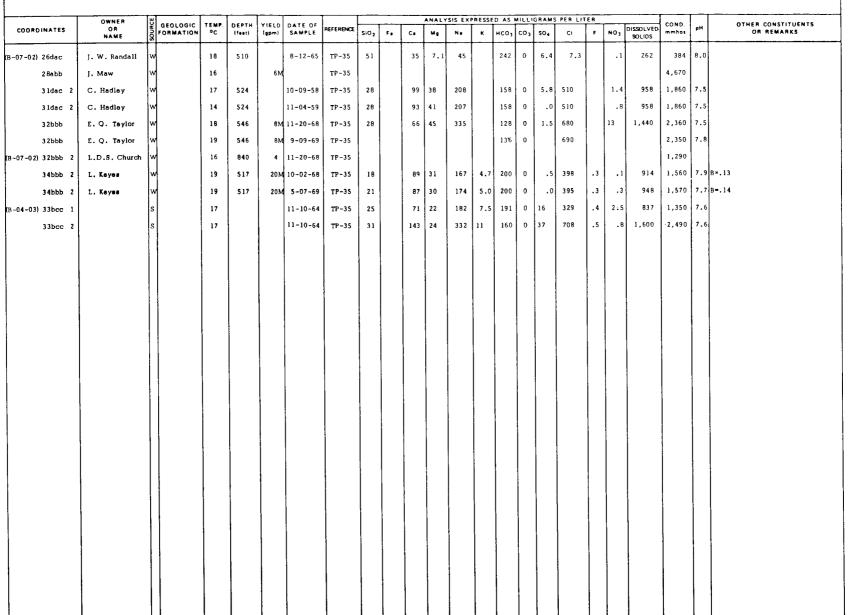
•

	OWNER	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXI	RESSE	DAS	HILLI	GRAMS	PER LI	TER			COND.	_u	OTHER CONSTITUENTS
COORDINATES	NAME	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiOz	Fa	C.	Mg	Ne	к	нсо,	co,	s0₄	C1	F	NO3	DISSOLVED SOLIDS	mmhos	pН	OR REMARKS
-02-01) 7aba 4	J. Bradshaw	w	18	450		10-15-64	TP-35	20		16	7.9	31		129	0	12	14		2.3	162	264	7.4	
7aba 4	J. Bradshaw	w	18	450		10-01-68	TP-35							126	0		17				272	7.5	
-01-01) 10aac	D. B. Holbrook	w	16	231	142/1	12-20-65	TP-35	50		51	17	577		429	0	1.2	778		1.3	1,720	3,080	7.7	
10aac	D. B. Holbrook	w	16	231	14-/	11-13-68	TP-35	48		45	20	570		433	0	6.2	760		.7	1,700	2,970	8.0	
3-02-01) 13aab	L. Napoli	w	16	264		10-10-58	TP-35	21		9.6	2.9	80		192	0	9.5	30		.5	248	395	7.8	
13aab	L. Napoli	w	15	264		5-05-69	TP-35	19		9.6	1.9	80		193	0	8.2	28		. 2	236	393	7.7	
3-02-01) 23add 6	A. V. Eldredge	w	17	331	68M	8-20-68	TP-35	ĺ													464		
23bdd	L. Hepworth	w	18	600	60M	8-29-68	TP-35							220	12		48				522	0.5	
24bad 3	C. Jeppson	w	16	386	sam	8-20-68	TP-35							186	5		32				415	8.4	
25baa 15	Phillips Pet.	w	16	570	650	12-12-58	TP-35	15		55	16	34		208	0	38	42		7.2	309	542	7.8	
26abb 2	D. C. Winegar	W	19	273	2014	8-21-68	TP-35	15		18	6.3	113		218	0	32	72		5.7	373	622	8.1	
26bab 8	W. R. Smith	w	16	584	65	4-17-62	TP-35			23	7.7	119	2.0	145	11	62	103	[388	696	8.9	B=.07
26cdd 4	F. Thalman	w	18	84		5-07-63	TP-35					73		292	0	49	72				753	7.5	
26cdd 4	f. Thalman	w	17	200		5-07-63	TP-35					88		282	0	147	131	1			1,120	7.4	
26dcb	P. E. Burnham	w	17	400	120M	8-20-68	TP-35							222	0		121				820	7.9	
34ada 3	D. Hart	w	16	270		5-09-47	TP-35	8.9		30	10	161		264	0	55	141		10	552	958		
34ada 3	D. Hart	w	17	270		10-10-64	TP-35	17		42	27	242		213	0	88	334		5.3	859	1,510	7.8	
34add 2	D. M. Hunter	w	19	410	7 IM	8-20-68	TP-35	15		143	47	456		136	0	36	988		.3	1,910	3,130	7.7	
34add 2	D. M. Hunter	w	19	410	7 IM	9-08-69	TP-35							140	0		925				3,100	7.9	
36bbc 2	Petro Flex	w	16	501		10-10-58	TP-35	17		93	27	96		314	0	86	140		11	624	1,070	7.5	
36bbc 2	Petro Flex	w	15	501		11-10-60	TP-35	15	0	87	29	105	3.3	310	0	91	152	.1	11	645	1,100	8.0	
B-03-01) 4bca 2	G. W. Webster	w	16	250	151	8-20-68	TP-35														341		
4ddb 5	E. W. Bradley	wi	18	485	14M	11-14-68	TP-35														332		
15acd 1	L.D.S. Church	w	16	260	31⁄	9-11-69	TP-35	41		36	18	68		320	0	.5	33		1.8	349		7.4	
24bca	F. Richards	w	16	176		10-10-58		21		67	15	120		510	0	2.3			.5	509	872		
24bca	F, Richards	W	12	176		11-09-60		20	20	30	14	123	1.3	380	B	2.1	48	• 2	.3	434	711		
B-04-01) 32abb	P. D. Robins	W	17	770		11-14-68							1	194	0		31				345		
B-04-02) 6baa 2	B. Thurgood	M	16	609	300									233	0		20				428		
17cdd	D. H. Wilcox	W	16	583	100									222	0		22	.			385		
B-05-01) 29bdb 3	HILL AFB	w l	18	800	740			13	1	71	18	18	2.4	278	0	32	· 18	.1		314	521		
29bdb 3	HIII AFB	W	12	800	740	4-14-52		12		3 73	19	20	1.7	296	0	30	18	.1	2.2	322	556		
29bdb 3		W	19	800	740	7-15-66		10		2 68	21	14		274		33	17	.2		305	525	1	1
29bdb 3	HIII AFB	M	16	800	740	7-24-69	TP-35	11	1	71	27	2.	1	286	0	31	30	1.3	1.4	314	535	7.7	

TABLE 5-B. East Shore Area. Springs and wells with water temperatures of 15.5° to 19.5° C.

•

	OWNER	ωł											SIS FYP	RESSE	DAS	ALLIC	RAMS	PER LIT	ER					
COORDINATES	OR NAME	SOURC	GEOLOGIC	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SIO 2	F.	C.	Mg	N		- 1	. 1	so4	C1	F	NO3	DISSOLVED SOLIDS	COND. mmhoi	рH	OTHER CONSTITUENTS OR REMARKS
-05-01) 33cda	Hill AFB	w		19	730	1,080	7-23-69	TP-35	22		60	22	38		348	0	2.2	26	. 2	.0	347	586	7.7	
~05-02) 6bdd	J. V. Stoddard	w		16	304		12-10-58	TP-35	33	.28	38	16	45		282	0	.0	18	. 2	. 1	289	471	7.8	
6bdd	J. V. Stoddard	w		16	304	1	11-16-60	TP-35	29	.04	38	15	36	6.7	268	0	2.7	19	.3	• 2	279	452	7.9	
6bdd 3	J. V. Stoddard	w		19	609	25M	8-29-68	TP-35	16		36	9.7	23	3.1	190	0	8.2	18	.3	.8	206	359	8.1	B≃.04
6bdd 3	J. V. Stoddard	w		19	609	2.5M	9-09-69	TP-35							192	0		17			134	362	7.8	
6bdd 4	J. V. Stoddard	w		16	303	7 OM	8-29-68	TP-35							254	U		20				455	7.8	
6bdd 4	J. V. Stoddard	w		16	303	70M	9-09-68	TP-35		ĺ					262	0		18				444	7.0	
-05-03) 25adc 2	J. J. Frew	w		16	616		5-14-69	TP-35	15		45	14	16	1.7	203	0	17	18	.2	.4	240	389	8.0	B≈.05
36dad 2	C. W. Stoddard	w		17	785	2001	7-05-69	TP-35	19		40	12	21	2.3	202	0	8.5	18						
3-05-04) 21cbb	H. Richards	w		19	140	2	1164	TP-35	12		184	80	1140	60	112	0	. 2	2,240	.7	17	4,360	6,870	7.5	
3-06-01) 4bbd 5	WBWCD	w		15	1,133	750	9-19-67	TP-35			9.4	4.6	25	6.6	75	5	19	12			138	194	8.5	
4bbd 5	WBWCD	w		16	1,133	750	8-26-68	TP-35							148	0						243	7.8	
5cdb	H. R. Parker	w		18	1,000	4000	8-30-68	TP-35	16 ·		30	11	9.6	1.6	160	0	6.5	8.5	.1	•7	154	265	7.9	B=.03
-06-01) 6caa	M. Harris	W		16	640		10-08-58	TP-35	20		34	8.5	13		159	0	6.6	7.5		•6	168	269	7.8	
6caa	M. Harris	W		15	640		10-16-64	TP-35	19		31	9.1	15		161	0	5.4	6.6		.0	156	266	7.7	
8-06-02) 5acb 2	T. Knight	W		16	850	120	11-04-59	TP-35	20		19	5.8	92		270	0	2.3	28		1.5	300	493	8.1	
5acb 2	T. Knight	W		20	850	12	9-29-66	TP-35							266	0		29				495	7.8	
20cdd 3	A. Segna	w		16	540	40	11-21-68	TP-35	21		33	8.3	36		195	0	3.2	21		1.0	215	352	7.9	
25ccc 3	G.E. Stratfor	w		16	302		11-04-58	TP-35	20		36	17	68		336	0	.6	24		.3	331	558	7.7	
27bba 2	D. Lucia	W		17	536	A B	11-04-58	TP-35	24		95	22	105		193	0	3.3	278		3.4	626	1,180	7.6	
27bba 2	D. Lucia	w		19	536	8	9-09-69	TP-35	19	ļ					200	0		275				1,190	7.8	
B-06-03) 12bcc	Warren Cemeter	yw		18	550		5-14-69	TP-35	20		14	5.8	79	3.4	240	0	1.8	28	.3	.3	275	446	7.9	B=.21
14dcc 2	L.D.S. Church	w		17	604	18	8-28-68	TP-35	19		20	9.2	47		198	0	. 2	20		.1	220	351	7.9	
19aab	Marquart ACFT	w		17	229	150	12-10-58	TP-35	40	10	104	17	332		146	0	.0	660	.4	1.5	1,230	2,330	7.3	
19abc	Marguart ACFT	W		19	220	1	10-09-58	TP-35	23		9.6	3.9	123		284	0	1.4	52		.4	353	588	7.8	
19abc	Marguart ACFT	W		16	220	1	10-21-66	TP-35	24		7.0	4.9	114		285	0	.4	35		3.0	321	517	7.7	
19abc 2	Marquart ACFT	W		19	295	25	10-09-58	TP-35	32		42	7.8	210		182	0	3.7	310		1.9	696	1,270	7.5	
19abc 2	Marquart ACFT	W		18	295	25	11-16-60	TP-35	33	.0	41	9.2	207	5.5	172	0	3.3	310	.7	5.1	700	1,270	1	
26bbb	D. Wilson	W		18	512	8	8-28-68	TP-35	18		19	9.2	47	3.0	190	0	.8	22	.4	.4	210			B=.11
8-07-01) 31bdb	Ranch Inn	W		18	482	4	10-07-58	TP-35	19		41	6.8	11		164	0	7.6			1.3	176	288		
3 lbdb	Ranch Inn	w		13	482	4	11-08-60	TP-35	18	.0	39	8.8	10	1.5	168	0	7.6	7.	.1	1.9	177	283	1	
B-07-02) 16cbb		W		16		5	5-06-69	TP-35	34		19	10	840		452	0	8.2	1,090		.7	2,220	3,900	1	1
23dbd	V. Hough	W		17	315	200	10-02-68	TP-35	22		34	10	35	4.5	193	0	22	24	.5	.1	245			B≈.03
26dac	J. W. Randall	М		18	510		10-19-64	TP-35	50		30	7.9	52		248	0	5.1	8.		.3	256	379	8.0	


. **e**

.

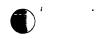
. .

•

TABLE 5-B. East Shore Area. Springs and wells with water temperatures of 15.5 $^{\circ}$ to 19.5 $^{\circ}$ C.

٠

4


. .

BD-6 = Sandberg,	1963; UP & L = U	tah	Power & L	ight Cor	m pa ny																			
COORDINATES	OWNER OR NAME	SOURCE	GEOLOGIC FORMATION		DEPTH (feet)	YIELD (gpm)	DATE OF	REFERENCE	si0 ₂	Fe	C.	MO	SIS EX	R ESSE K	D AS	CO3		CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUENTS OR REMARKS
-34-13) 16ccc	D. Schoppman	w	111 ALVM	18	172		8-09-62	BD-6	30	.12	108	22	32		199	0	212	31	.2	6.4	540	790	7.8	
-35-15) 33cdc	Columbia Iron Mining Co.	w	111 ALVM	19	200	980		BD-6								ľ				0.4	540	750		
C-35-17) 7daa	W. W. Adams	w	111 ALVM	15.5	200	495		BD-6																
14ccc	H. Randall	w	111 ALVM	15.5	300	235		BD-6																
C-36-15) 7dcc	V. Pickerell	w	111 ALVM	18.5		1,580	5-05-59	BD-6	81	.0	7 1	10	315		96		624	118		11	1,280	1,740	7.5	5
0-36-17) 2d	Escalante Mining Co.	W	111 ALVM	18	195		5-05-59	BD-6	104	.0	150	27	28		238		71	187		17	701	1,100	7.5	o Mine Shaft
2d 2	Escalante Mining Co.	W	111 ALVM	17	600		10-20-61	BD-6	46	.0	49	4.6	26		168		16	29		3.3	257	381	7.5	5 Mine Shaft
C-34-16) 18cdc	De Armand #1	w		149	7,000 TD 12,295	1,000F	1976	UP&L													<4 , 000			
C-36-15) 4dcd	Columbia Iron Mining Co.	w	111 ALVM	20	235	925		BD-6																
7dba	S. Tullis	w	111 ALVM	30.5	250		7-07-59	BD-6	76	.01	53	3.4	267		91		492	93		12	1,040	1,580	7.7	7
18acb	V. Pickerell	w	111 ALVM	23.5	400	950		BD-6																
20bbd	Christensen Bros	w	111 ALVM	95.5	500	1,700	1275	Rush	99	.01	58	.4	270	21	64	0	580	52	7.3	.22	1,120	1,550	7.6	B.71, Max temp between 280 & L1.46, 320 feet - 107 [°] C. Mn.7,
																								Sr1.1, Zn.02
												:												
												:												
																			1					
	L			L																	L			

. .

()

.

.

	OWNER	Ш	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME		FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	Fe	C.	Mg	N a	к	нсоз	co,	50 4	сі	F	NO3	DISSOLVED SOLIDS	mmhos	рн	OR REMARKS
-26-09) 34bd S	Salt	s	111 ALVM	24.5			11-08-55	TP-43							264	0		3,200				9,640	7.7	
-26-09) 34dcb 15	McKean, P. B. (Roosevelt)	s		88 85 56		10 1	1906? 11-04-50 9-11-57	WSP-217 WRB-13 WRB-13	101 405 313	5	31 19 22		102 2,080 2,500		30 158 156		90 65 73	87 3,810 4,240	7.1 7.5	1.83 1.9 11	645 7,040 7,800	11,500 12,700	7.9	Geothermal test wells have reached temps of 269⁰ C. B-38., LJ.27, Br3.3, L.3
-27-10) 31dcb	Sullivan Land & Livestock	w	111 ALVM	27	700	770	9-17-70	TP~43	70		20	6.4	74	8.4	220	0	31	17	1.2	.1	316	452	7.9	B.23
-27-09) 16abb	Steam Well	w	111 ALVM	133	275			Petersen																
-28-10) Sdc	E. Tanner	w		21.5	286	8		WSP-217		0					101		<35	38					:	
-28~10} 7adb	Town of Milford	w	111 ALVM	25.5	533	615	2-07-52	TP-43	35		13	5.8	62	2.H	160	0	40	16	.6	.5	253	390	8.2	
14bba	Hanson Land & Livestock	w	111 ALVM	20.5	255		5-20-71	TP-43	27		33	5.7	29	2.2	134	0	25	33	. 6	.7	224	340	8.0	
-28~10) 18ab	John Forgie	w		25.5	357	25		WSP-217							141		Tr.	14						
18aca 2	G. C. Goodwin	w	111 ALVM	21	452		4-03-50	TP-43	34				56		164	0	37	10	1.0			364		
19abc	T. E. Walker	w	111 ALVM	25.5	260	6	11-03-50	TP-43	32	.09	14	7.0	45	3.0	132	8		9.5	.7	• 1	211	328	7.8	в.08
	A. B. Lewis	w		26.5 26.5	750 300	2 37		WSP-217 WSP-217		0 0					283 145		0 0	35 17						Two wells in one 4" to 450', 2' 0-750. Total depth 750. Sulph water from bottom.
	I. D. McCanley	w		20	280	7		WSP-217														ł		
	Milford Town	w		22	425	30		WSP-217 WSP-217	35	0 .1	11.2	6.6	66		162 190		Tr. 53	13 13		.5	248			Hardness 69, 117 gpm pumped
	S.P., LA, & SL	w		21.5	310	30		WSP-217		0				ļ	160		Tr.	12					1	Hardness 49, 270 gpm pumped
-28-11) 12abb	A. W. Winberg Province of the Holy Name	w W	111 ALVM	20 20	326 440	9 590	5-06-71	WSP-217 TP-43	45	0	64	23	72	4.9	130 200	0	< 35 130	24 86	, a	8.3	561	842	7.9	B.23
-28-12) 29dcc S	Woodhouse	s	120 TRTR	22			9-06-63	TP-43	61	.60	80	47	76	1.0	265	0	40	220	.6	1.7	720	1,110	7.7	B.16
0-30-09) 7aca S	Dotsons (Radium)	s		32.5 31.5			8-21-63 7-11-67	TP-43 TP-43	31 32	.02	110 88	24 35	170 170		220 228	3 0	480 440	65 63	9.8 4.5	.2 .0	1,030 1,020	1,420 1,390		
(-30-09) 7adb *	Town of Minersvill	w	120 TRTR	33.5	72	ļ	6-27-62	TP-43	32	.00	110	23	190	1	230	0	480	65	3.3	.5	1,030	1,460	7.7	B.42 BD-6 gives location as
(-30-09) 19bdc S	US BLM	s	120 TRTR	33			8-24-63	TP-43	10	. 19	12	4.1	170	17	228	0	440	63	4.5	.0	1,020	1,390	7.4	B.47
31daa	Willow	s	120 TRTR	21.5			8-22-63	TP-43	40	.01	79	13	160		251	3	69	90	1.4	.8	475	793	8.3	B.18
(−30-10) 19abd 2	Neb Craw	w	111 ALVM	21 21	293 293	1,000	8-08-60 7-06-61	TP-43 TP-43	47 60	.01 .03	34 40	8.8 8.5			144 147	0 0	50 54	25 34	.3	4.8 5.2	291 309		7.5 7.7	B.09 19abd in BD-6.
C-30-11) 22ddc	US BLM	w	111 ALVM	22.5	165	9 5-9-7	9-02-71	TP-43	46		7.3	1.2	65	2.3	117	0	34	36	.9	.6	253	360	8.2	8.16
C-30-12) 21add S	Thermo	s		85		10.8	10-23-39 8-21-63	TP-43 TP-43	110	.13	83	9.7	360	49	370 384	0	460 480	220 210	14	.0 1.0	1,500	2,120	8.	Hardness 220. Dischar B.64 total for 45 openings.
28acb S	Thermo	s		82.5 78 76.5		19.3	11-03-50 5-25-66 7-11-67	TP-43 TP-43 TP-43	120 100 10	.05	72 75 76	9.8 9.7 12		52	360 359 374	0 0 0	470 460 460	220 210 210	6.7 6.7 14.0	.1		2,130	7.1	B.30 Discharge total for 49 c B.05 ings. *Probably should B.85 100.
C-31-09) 3cba	Big Maple	s	120 TRTR	21			8-22-63		35	.09	57	6.8				0	14	30	.5	1			1	2 8.05
									1															

TABLE 7-A. Escalante Valley, Springs and wells with water temperatures of 20° to 99° C.

· •

Table 7-B. Escalante Valley. Springs and Wells with Water Temperatures 15.5° to 19.5° C.

	r	<u>.</u>	T			·····			r					D.f. Co-										
COORDINATES	OWNER OR NAME	SOURCE	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	si02	Fe	C.	Mg	Na Na	K		CO3	SO4	PER LIT	T	N0,	DISSOLVED SOLIDS	COND. mmhoi	рН	OTHER CONSTITUENTS OR REMARKS
(C-28-10) 8mad2	Sullivan L & L	w	111 ALVM	16.0	185	960	9-18-70	TP-43	38		71	22	36	3. Z	133	0	1 10	80	. 9	1, 5	449	682	7.4	B=.04
(C-28-10) 16cda	J. Mayer	w	111 ALVM	19.0	440	900	5-09-71	TP-43	26		65	23	50	2. 6	158	0	160	59	6	2.7	476	712	7.9	B=.01
(C-28-10) 19bcd ₂	D. M. Yardley	w	III ALVM	17.0	210	1,200	5-07-71	TP-43	42		160	60	51	6.0	147	0	370	190	. 4	.6	954	1,350	7.9	B=. 04
(C-28-10) 19ccd4	D. M. Yardley	w	111 ALVM	15.5	102	1, 120	5-07-71	TP-43	49		260	75	66	8.9	170	0	560	290	. 3	3. Z	1,410	2,100	7.9	B=.11
(C-28-10) 20ddd	C. R. Wiseman	w	III ALVM	16.5	410	837		BD-6																
(C-28-10) 28cdd1	Mayer Bros.	w	111 ALVM	16.0 16.0	355 3 5 5	800	8-26-69 5-15-71	TP-43 TP-43	34		99 120	39 67	51 63	3.9	192 186	0 0	190 330	110 170		4.2	673	990 1,300	7.7 8.0	
(C-28-10) 29bcd2	O. R. Williams	w	111 ALVM	17.5	143		5-20-65	TP-43	38		56	17	51		158	0	100	56	. 9	1.9	414	616	7. Z	
(C-28-10) 30bdc3	J. Baldwin	w	111 ALVM	19.0	290	1,100	8-08-68	TP-43	38		120	39	48		132	0	230	150		4.'6	773	1,080	7.6	
		w	111 ALVM	16.0	290		6-25-70	TP-43										83				731		
		w	111 ALVM	16.5	290		6-10-71	TP-43	42		91	24	33	4.4	137	0	160	92	.6	1.6	522	779	7.7	B=, 01
(C-28-10) 30bdd ₂	J. Baldwin	w	III ALVM	16.0	186		5-19-65	TP-43	39		44	11	18		122	0	35	38	. 8	2.3	263	385	7.5	
(C-28-11) 10acd	U.S.B.L.M.	w	111 ALVM	16.5	227	1	11-03-50	TP-43	48	.05	54	40	99	4.2	285	0	170	82	.3	. 1	642	988	8.0	B=. 09
C-28-11) 12dbc	M. Persons	w	111 ALVM	1 7.0	460	784		BD-6																
C-28-11) 13dca	F. Brinkman	w	111 ALVM	15.5	600	1	4-03-50	TP-43							152	0		30				466		
(C-28-11) 25ded	Green Diamond	w	111 ALVM	17.0	431	2, 500	9-04-57	TP-43	40		100	24	36		154	0	160	100		1.5	538	872	7.4	
				20.5	431		5-02-59	TP-43	38	. 00	27	9	40		144	0	44	19		.6	249	373	7.7	
(C-28-10) 20ddd	C. R. Wiseman	w		16.5	410	837		BD-6																
(C-28-11) 25ded	Green Diamond Ranch	w	111 ALVM	19.5	431		5-18-62	TP-43	36	.12	71	16	36	4.0	144	0	120	60	. 3	. 4	44 5	668	7. 7	B=. 08
			111 ALVM	17.5	431		8-10-67	TP-43			520	48	70		186	0	460	190			1,230	1, 540	7.6	
(C-28-10) 35cad	H. Cook	w	111 ALVM	15.5		1	5-14-71	TP-43	54		30	8.8	16	3.9	131	0	25	19	. 7	. 8	226	310	7.8	B=. 02
C-29-10) 6baa2	J. A. Mayer	w	111 ALVM	16.5	190	560	5-20-65	TP-43	37		34	6.1	19		123	0	21	19	. 7	. 7	195	283	7.5	
(C-29-10) 8add	Milford Farms	w	111 ALVM	15.5				BD-6			1													
(C-29-11) 4baa	W. H. Child	W	111 ALVM	15.5	68		6-27-62	BD-6	17	. 01	120	81	356		169		712	372	1.4	3. Z	1,750	2,710	7.4	B=. 63
(C-29-11) 11acc	T. R. Rimpav	W	111 ALVM	16.0	53		5-19-65	TP-43	41		34	9.7	19		118	0	27	23	. 7	9.4	240	329	7.6	
(C-29-11) 19caa	Cook Bros.	w	111 ALVM	16.0	75		6-10-70	TP-43	60		45	28	120	4,4	215	0	160	110	.7	3.8	651	949	8.0	B=. 23
(C-30-13) 8cma	J. Guymon	W	111 ALVM	18.0	263	7	6-09-71	TP-43	43		32	11	47	I. 8	158	0	59	36	.6	2.3	318		7.5	B•. 08
(C-25-12) 35cca	Armstrong	5	120 TRTR	17.5			9-07-63	TP-43		. 13	43	9.0	100	7.2	154	0	51	140	.4	3.8	496		7.8	B=. 21
(C-26-11) 19dbb	West	s	120 TR TR	17.0	ĺ		9-07-63	TP-43	13	. 29	42	28	120	8.7	207	0	50	190	. 9	. 5	547	987	8.0	B=. 25
(C-26-11) 29mac	Smith	5	120 TRTR	17.5		1	9-07-63	TP-43	30	. 31	66	23	90	11	219	0	57	150	. 7	1.6	545	907	7.8	B=. 18
С-26-12) 10ъдъ	Three Kilns	8	120 TRTR	17.0		. 83	9-07-63	TP-43	41	. 08	120	50	69	3.0	197	0	79	290	.4	2.3	948		7.3	B=. 10
(C-26-12) 30dab	South Seep	s	120 TRTR	17.5			9-09-63	TP-43	53	.53	110	25	84	1.7	364	12	51	150	.4	. 6	671	1,100	8.4	B=. 16
(C-27-12) 6cac	Coyote	s	120 TRTR	18.5			9-09-63	TP-43	25	. 22	190	67	87	6,2	150	0	460	Z 50	. 3	1.5	1,290	1,720	7.8	B=. 17

.

• در

),

.

	OWNER	SC.	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF					ANALY	SIS EXI	RESSE	ED AS	MILLIG	GRAMS	PER LIT	ER			COND.	1	
OORDINATES	OR NAME	SOURCE	FORMATION	°c	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.	ĸ	нсо3	C03	so4	Cł	F	NO3	DISSOLVED SOLIDS	COND. mmhos	pН	OTHER CONSTITUENTS OR REMARKS
-29-9) 17bcb	Guyo	s		17.5			8-23-63	TP-43	23	. 07	100	58	39	z. 0	388	0	200	46	. 2	1.8	673	996	7.9	B≃. 09
-29-9) 19666	Oak	s		17.0			8-23-63	TP-43	21	. 04	67	29	18	z. 6	284	0	45	37	. 3	. 7	352	592	8.0	B*. 05
-29-13) 2bdc			120 TRTR	18.5			8-31-63	TP-43	18	. 82	440	110	98	7.4	2 5 6	0	1,200	260	. 5	. 8	z, 480	Z, 760	7.8	B=. 22
31-9) 5bba	Wire Grass	s	120 TRTR	19.5			8-22-63	TP-43	39	. 5 2	7.2	. z	125	1.1	256	0	17	42	. 3	. 7	337	514	8.0	B=. 08
-31-10) 8bda	Dry Willow	s	F29 TRTR	17.5			8-22-63	TP-43	50	. 61	73	14	35	16	244	0	24	74	. 5	2.7	430	635	7. 7	B≖. 11
																				-				
	1							ł																
																							ļ	
															2									
															1									
	1						1		ļ															

Table 7-B. Escalante Valley. Springs and Wells with Water Temperatures 15.5° to 19.5° C.

•

. ♠ }

.

.

•1

	OWNER	18	GEOLOGIC			VIELO	0.475.05					ANAL	SIS EXI	PRESSE	DAS	MILLI	GRAM	S PER LIT	ER					
COORDINATES	OR NAME	SOUR	FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	si02	F.	c.	Mg	N a	к	нсо,	co3	50 4	СІ	F	NO,	DISSOLVED SOLIDS	COND. mmhos	pН	OTHER CONSTITUENTS OR REMARKS
-10-14) 33 S -11-14) 4	Wilson Hot Springs	s	Fault	60.5		38	7-12-67	WRB-13	33	1	741	224	7,090	18	178		1,560	11,900	4.0	0	21,800	31,200	7.4	B 2.6, Li 2.1, Br 23., 1.36 Meinzer says near boilin PP492 says 74 ⁰ -78 ⁰ F.
-11-14) 3d S	Big Sprs	s	Fault			17.5		WRB-13 WSP-277				ł												PP492 says 85 ⁰ F.
-11-14) 23 S 26 S	Fish Sprs	s	Fault	28		24	7-12-67	WRB-13	20		136	26	470	36	312		340	630	2.0	0	1,820	3,050	7.7	B.79, Li.33, Brl.3, I.02 Other orfices range 65 ⁰ - comparable guality.

TABLE 8. Fish Springs Group. Three Springs with water temperatures of 17.5° to 38° C.

TABLE 9. Grouse Creek Valley. Springs and wells with water temperatures of 16° to 42° C.

	OWNER	ы	GEOLOGIC	TEMP.		VIELO	DATE OF					ANALY	SIS EXI	PRESSE	DAS	MILLI	GRAMS	PER LIT	ER					· .
COORDINATES	OR NAME		FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	SiO 2	F.	C.	Mg	N.	ĸ	нсоз	coj	so4	C1	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONSTITUENTS OR REMARKS
3-10-18) 16dac	J. B. & D. Kitt	w		18	60		9-01-56	TP-29																
2leeb	Merlin Tenner	w	111 ALVM	20	62	350M	9-05-56	TP-29																
30bad S	Kimber (Rose) Spring	s	120 TRTR	20		215 M	4-11-68	TP-29	47		50	8.3	25	5.7	154	O	18	50	.4	2.5	304	441	7.6	B.02
33aba	B. C. Kimber	w		20	92	1 ,13 0M	9-20-56	TP-29																
B-11-18) 2ccd 2	H. Paskett	w	120 TRTR	16	605	25 R	4-12-68	TP-29	55		37	5.8	36		192	0	22	10		.4	263	367	7.7	Perf 280-310.
33bdc	R. D. Warburton	w	120 TRTR	16	232	220- 705M	5-17-68	TP-29	64		128	37	61	17	321	0	152	141		•3	844	1,170	7.5	Perf 60-225.
B-11-19) 11dad S	M. Warburton	s	300 PLZC	42		225R	5-16-68	TP-29	24		44	14	13		184	0	29	9.1		. 2	248	373	7.5	

ļ

	OWNER	Ш	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF			_		ANAL	SIS EX	PRESSE	DAS	MILLI	GRAMS	S PER LI	TER					1	
COORDINATES	OR NAME	102	FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	F.	Ca	Mg	Na	ĸ	нсоз	co3	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUT	
-01-04) 33aaa S		s	120 TRTR	21		50E	668	TP-2 7																	
-03-04) 26cca S	Eugene Payne	s		39		50E	9-28-66	TP-27	23		331	68	114	25	674	0	661	108	2.2	.1	1,730	2,200	7.3	B.67	
27baa S		s		45		зм	9-13-67	TP-27	27		345	83	148	16	644	0	742	132	2.5	.4	1,910	2,410	7.5	B.64	
27bad S		s		39 40		150E	9-28-66 5-16-67	TP-27 TP-27	28 28		389 361		151 152	31 32	728 696	0 0	820 853	138 140	2.5 3.1	.1 .0	2,040 2,060	2,560 2,490			
27cbd Sl		s		29 29 30			9-28-66 5-16-67 5-23-67	TP-27 TP-27 TP-27	21 22		353 228	72 95	125 130	28 28	716 476	0 0	702 719	115 115	2.1 2.3	.1 .1		2,330 2,280 2,280			
27cbd S2		s		29 32			9-28-66 5-15-67	TP-27 TP-27	19 17		329 279		111 114	25 26	686 572	0 0	643 611	103 105	2.2	.1 .0	1,710 1,630	2,180 2,120			
27 cbd 83		s		28		16	5-16-67	TP-27	21		329	88	163	33	584	0	805	150	2.7	.0	1,980	2,610	7.7	B.80	
-03-05) 6bab 2	Howard Jensen	w	111 ALVM	16	53		8-15-67	TP-27	14	1	42	9.7	4.4	1.5	128	0	44	5.2	.3	.1	187	303	7:1	B.03	
-04-05) 14aac 1	Robert Clyde	w	111 ALVM	16	104	20R	8-17-67	TP-27	43		89	26	31	1.7	376	0	38	35	.5	4.0	446	705	7.9	в.05	

Ŧ

.

• 1	

•

TABLE 11-A. Jordan Valley. Springs and wells with water temperatures of 20° to 58	<u>.5° C.</u>
--	---------------

• •

	OWNER	हा			1							ANAL	SIS EXP	RESSE	DASM	AILLIO	GRAMS	PER LIT	ER					T	nbers refer to figure 6
COORDINATES	OR NAME	SOURC	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.	ĸ	нсоз	c0,	\$04	CI	F	NO3	SOLIDS	COND. mmhos	рH		OTHER CONSTITUENTS OR REMARKS
(B-1-1) 5ddd 1	C.F.&E.L. Gillmore	w	111 ALVM	28,5	1,000	120 150	9-27-32 8-26-58	IWM	64 63	.04	62 59	14 11	328		214 220		1.6 3.7	535 510	1.3	°.7	1,155 1,080	1,980	7.4	1*	Same as well 5ddd3 in WSP-1029, Methane gas.
6cca	Rudy Gun Club	w	111 ALVM	22	315	12	8-26-58	IWM	28	.15	11	5.4	208		452		1.6	91		.5	567	926	7.6	2	Methane gas.
19baa 5	E. J. jeremy	w	111 ALVM	22.5 20	645	17 1.6M	11-13-31 9-08-65	IWM BD-12							308		2	345				1,460		4	Methane gas.
19bab	E. J. Jeremy	w	111 ALVM	23 24.5	645	58 20 M	11-13-31 2-18-65	1WM BD~12	25		32	18	274		282 256	0	2 3.3	405 382		0	890	1,590	7.4	5	Methane gas. Other temps: 23, 24.5, 26.
(B-1-2) 36baa	E. J. Jeremy	w	111 ALVM	28.5 28	464	29	10-18-57 8-19-58	IWM	41 48			58 56	1,020 1,060		180 166		57 52	1,950 2,020		1.2 8.4	3,420 3,530	6,040 6,290			Methane gas. Other analysis in BD-11.
(B-1-3) 34bcb	Morton Salt	w	111 ALVM	26 25.5	860 884	350 28 M	2-28-36 9-12-67	IWM BD-15	39		1,070	688	3,950		52	0	3 2 7	9,730		.7	15,800	24,300	7.3	22	
(B-2-2) 35cdc	Lakefront Gun Club	w	111 ALVM	22 26.5		9 35	5-19-33 858	IWM	27	.02	13 14	3.6	188 171		226 .270		2.0 2.9	194 140		0 .9	492		7.8	23	
(C-1-1) 18bba	State of Utah	w	111 ALVM	20	3 1 5		6-02-41 10-15-41	IWM							156 180		64 40	455 595			345 318			24	
18ddd 1	L. W. Sudbury	w	111 ALVM	22	400	60	8-04-58	IWM	52		62	35	135		164		44	290		. 4	699	1,270	7.6	5 25	
18ddd 2	L. W. Sudbury	w	111 ALVM	21.5 22	577	30	10-08-57 8-04-58	IWM	37 37		56 58	24 26	169 164		144 144		73 75	290 290		.9 .6	721 722	1,280 1,290			H ₂ S odor. Another analysis in BD-11.
27dda 8	Granger-Hunter Improvement Dist.	w	111 ALVM	21	775	427	5-13-58 8-18-58	IWM	25 23		55 57	15 17	84 73		175 173		131 134	74 63		.2 .1	470 452	736 721			
(C-1-2) 6aaa 3	Morton Salt	w	111 ALVM	21	825	150	756	IWM			ļ													36	
6aaa 4	Morton Salt	w	111 ALVM	22	1,150	100	8-15-58	IWM	24		98	62	\$31		113		44	1,070		10	1,900	3,530	7.	5 37	
12daa l	L. Fox	w	111 ALVM	21.5 25.5	411	21	10-08-31	1WM WSP-1029																	
12daa 2	LDS Church Pioneer Stake	w	111 ALVM	21.5 24	432 385-395	20	347 8-28-58	IWM	8.0		52	24	164		148		106	250		.6	678	1,220	7.3	39	
(C-1-1) 35 caa 2	5. L. Co. Water Conserv. Dist.	w	111 ALVM	21 23	750	490 390 M	5-26-58 9-18-64	IWM BD-11	25 24		51 35		50 57		195 182	0	88 72	30 50		.1 .3	365 372		7.9	5 30	
(C-3-1) 12ccb	A. W. Harrison	w	111 ALVM	20.5	1187	2.4 8.6M	9-11-31 10-11-57 7-08-64	WSP-1029 1WM BD-11	31		63 62		126 86		287 234	0	98 106	120 120		1.2	564 578		7.	2 52	Another analysis in BD-12 Temp, 18,5 plus anaL BD-13
(C-4-1) 2ddb	State Prison	w	111 ALVM	28.5 26.5	825	60 25	3-25-54 3-25-54	IWM	35 35	.08	76 76	25 23		16 15	264 266		191 182	226 218	.8 .8	1.0 1.2	890 870	1,490 1,440			Mn.86, B.41, Mn. 88, B.40
(C-3-1) 23bcc S	East Jordan Canal Co.	s	111 ALVM	23			7-30-58	IWM	23		64	25	40		249		52	66		.8	393	696	7.	5 53	
(D-3-1) 18cbb 1	Sandy City Corp.	w	111 ALVM	27.5	1,150	1280	1-15-59 1-17-59	IWM	27 31		11 (9(352		203 232		115 64	620 390		1.0 .5	1,360 938	2,470 1,690			Other temps 500-30,51093-3 Surface to 600-32 21 ft70 800-32 30,5 ft87 1025-35
(C-2-1) 4dbc S	Gravel pit	s	111 ALVM	20	ç.	60	9-10-58	IWM	23		123	71	276		409		401	312		5.5	1,410	2,200	7.	8 49	
(C-2-2) 588C S	Bacchus Gravel pit	s	111 ALVM	20 9		30	8-04-58 1-07-59	IWM	57 47			105 90	195 207		409 348		284 251	310 290		856 750	2,370 2,100	3,320 2,860			High nitrate from powder plant 1 mi. upslope. Lower nitrate 12, 28, 34 reported in BD-12 & BD-13
(C-4-1) 22add S	Camp Williams R. R.	s	111 ALVM	21		30	7-30-58	IWM	24		6	\$ 23	3:		250		40	57		.	365	639	7.	6 5 6	

	OWNER	۳I		TEMP.	DEPTH	TIELD	DATE OF					ANALY	SIS EXP	AESSE	DAS		GRAMS	PER LIT	ER						
COORDINATES	OR NAME	SOURC	GEOLOGIC	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	F.	C.	Mş	N.	ĸ	нсо,	coj	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	₽Н	011	OR REMARKS
C-1-2) 23 cdd 8	K. W. Young	w	111 ALVM	21	105		8-05-58	IWM	82		30	17	354		284		224	312		13	1,170	1,890	7.94	1	-
23 cdd 17	K. W. Young	w	111 ALVM	21.5	140	60	8-05-58	IWM	81	.01	29	15	347		281		220	300		8.0	1,140	1,880	7.84	2	
8-1-2) 25cad S		s	111 ALVM	29			8-19-58	IWM	6.5	.03	1,120	601	10,200		55		953	18,800		52	31,800	46,400	8.4	6	
C-1-3) 17dcb	ASARCO	w	111 ALVM	29.5 31	502	3000	6-17-55 6-06-55	IWM	17 18	.10 .04	321 303	103 98	3,670 3,490	89 89	325 319		148 152	6,280 6,000	.6 .6	8.7 6.4	10,800 10,300	17,600 16,900	6.9 6.9	8	
8-1-2) 2dac 2	R. L. Irvine	w	111 ALVM	26 26.5	541		2-26-64 7-07-64	BD-11 BD-11					166 169		261 260	0 0	1.9 12	144 138		0.1	485 478	830 836	7.99 7.9		Other temps 79 ⁰ F, 79 ⁰ Other analysis BD-13
36baa	E. J. Jeremy	w	111 ALVM	27 27	464	4 . 3M	2-26-64 7-07-64	BD-11 BD-11					1,070 1,120		168 172	0	53 36	2,050 2,150		7.2 5.1	3,320 4,110	6,160 6,220		1	Another analysis in BD- Other temps 80°F, 81° 82°F.
C-1-1) 18ddd 2	S. A. Sudbury	w	111 ALVM	21 20,5	557	1.8M	7-07-64 2-19-65	BD-11 BD-12	37		51	28	169 169		144 144	0 0	75 86	288 285		.7 1.0	766 771	1,260 1,250		6	Other temps 59 ⁰ F, 70 ⁰ BD-12
19caa	Kennecott Copper	w	111 ALVM	24.5	1,200		6-16-64 7-14-64	BD-11	41	0.37	42 43	13 17	252		162 164	2 0	150	254 308		.5	790 906	1,290 1,500		7	Other temps 77 ⁰ F, 75 ⁰ 77 ⁰ F plus anal, BD-13
C-1-2) 24dba	Kennecott Copper	w	111 ALVM	23	840	B120 М	8-18-64	BD-11	53		72	29	450		168	0	205	658		.1	1,550	2,630	7.84	4	
C-1-3) 15bca 2	Kennecott Copper	w	111 ALVM	28 27.5	886	3550 M	8-15-64 2-03-67	BD-11 BD-15	18 19		435 398	195 166	4,330 3,560		273 275	0 0	254 247	7,650 6,330		16 1,7	13,800 10,900	20,600 18,100		5	
D-3-1) 29cbc	Draper Irrigation	w	111 ALVM	25.5	277	350 R	11-25-64	BD-11	27		51	11	105	15	226	0	68	107	.7	6.0	486	810	7.6	4 B.13	
B-1-1 23bdd 1	SC L	w	111 ALVM	30.5	30	100 E	11-10-65	BD-12	29		668	157	3,660		265	0	919	6,440		2.8	12,000	19,500	7.8		
B-1-2) 2dac	R. L. Irvine	w	111 A LVM	20	440	.41	9-10-65	BD-12												i		855	e		
25cda 1	C. F. Gillmore	w	111 ALVM	25		1 E	8-31-64	BD-12						ĺ								1,890	1	7	
25cda 5	C. F. Gillmore	w	111 ALVM	25.5		1 .2 M	2-17-65	BD-12	23		49	29	297		184	0	3.3	518		. 2	1,010	1,890	7.7	8	
25cdd 1	C, F, Gillmore	w	111 ALVM	20 18.5		.3M	9-03-65 8-31-64	BD-12 BD-12														1,350	1	9	
(C-1-1) 20bdd	Granger-Hunter Improvement Dist.	w	111 ALVM	23.5	916	1400 M	4-08-65	BD-12	29		32	13	84		146	0	103	63	.5	.1	393	628	7.8	8 B.08	
B-1-2) 16caa	Bonneville-on-the Hill	w	111 ALVM	24	636	27 M	6-08-66	BD-13	42		59	18	416		200	0	23	664		. 1	1,320	2,430	7.7	0	Sampled at 626 ft.
2labb	Bonneville-on-the Hill	w	111 ALVM	22 20	747	7.21	5-16-66 5-13-66	BD-13 BD-13	34 22		247 18	64 7.3	873 172		124 280	0 6	101 6.5	1,820 140		6.4 5.6		5,840 888	7.3 8.3	1	Sampled from 420 ft.
2 là cd	Bonneville-on-the Hill	łw	111 ALVM	24	600	28 M	5-16-66	BD-13	26		17	5.7	204		275	0	2,3	200		. 2	635	1,080	7.9	2	Sampled from 590 ft.
21bbb 2	Bonneville-on-the Hill	w	111 ALVM	23	577	26 M	4-13-66	BD-13	30		36	17	315		234	0	1.7	460		1.1	984	1,810	8.0	3	Sampled from 567 ft.
21ded	Bonneville-on-the Hill	łw	111 ALVM	22	561	22 M	4-13-66	BD-13	46		22	15	228		271	0	.7	275		.8	738	1,280	7.8	4	
22bdb	Bonneville-on-the Hill	łw	111 ALVM	23	560	34 M	6-08-66	BD-13	42		16	5.8	193		297	0	6.7	164		.4	572	977	8.0	5	Sampled from 550 ft.
27cce	Bonneville-on-the- Hill	łw	111 ALVM	25	618	29 M	8-31-66	BD-13	28		218	100	1,320		112	0	95	2,580		.9	4,400	8,030	7.2	0	Sampled from 608 ft.
(C-1-2) 1ddd	Utah P & L Co.	w	111 AL√M	20	612	12 M	11-28-66	BD-13	38		55	26	199		158	0	58	345		2.2	831	1,450	7.6	2	
2aba 2	Bonneville-on-the Hill	łw	111 ALVM	25	500	3.3M	4-13-66	BD-13	38		36	23	263		192	0	12	415		2.4	902	1,650	7.8	3	Sampled from 399 ft.

TABLE 11-A. Tordan Valley. Springs and wells with water temperatures of 20° to 58,5° C.

. 1

. . .

-	OWNER	В	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXP	RESSE	DAS		GRAMS	PER LIT	ER			COND.		OTHER CONSTI	IVENTS
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	si02	Fe	C.	Mg	Na	ĸ	нсоз	co,	so₄	СІ	F	N0,	DISSOLVED SOLIDS	mmhos	рн	OR REMAR	
(-1-2) 24aaa 2	F. G. Klein	w	111 ALVM	23	450	45M	10-27-66	BD-13	51		196	98	924		112	0	233	1,820		.2	3,380	5,970	7.84	1	
-3-1) 1cab 2	S.L. Co. Water Conserv. Dist.	w	111 ALVM	24.5	800	728 R	1-25-66	BD-13	14	.78	15	7.3	100	2.8	160	0	1.5	113	.6	.0	343	627	7.55	I B.14	
)-3-1) 20baa	Barros Inc.	w	111 ALVM	23.5	568	349 R		BD-13	,														6	1	
20 cdd	Draper Irrigation Co	w	111 AL'/M	21	510		6-03-66	BD~13	18		42	22	238		243	0	147	254		2.8	855	1,470	81 63	2	
29abc	S. B. Logan	w	111 ALVM	22	168	55M	6-03-66	BD-13	17		53	12	16		212	0	33	5.8		.1	240	400	7.86	3	
"-1-2) 17adc	Kennecott Copper	w	111 ALVM	21	854	350 R	4-26-66	BD~13	29		311	170	1,340		196	0	230	2,820		2.8	5,000	8,900			
-1-2) lbed	Bonneville-on-the- Hill	w	111 ALVM	26	415	20M	5-11-67	BD-15	27		104	95	604		122	0	94	1,250		1.7	2,240	4,040	8.03	1	
2adc	Bonneville-on-the- Hill	w	111 ALVM	26.5	454	20M	5-11-67	BD-15	47		224	88	945		104	0	133	1,950		.5	3,440	6,070	7.33	4	
6aaa 4	Morton Salt Co.	w	111 ALVM	22	835	34M	2~24-67	BD-15	25		95	52	544		114	0	42	1,060		.6	1,870	3,480	7.93	5 See бааа	4 by IWM
-1-3) 15bda 2	Kennecott (opper	w	111 ALVM	21.5	699	3 ,4 00 R	4-17-67	BD-15	16		280	152	2,150		315	0	380	3,790	1.7	2.2	6,930			6 B.44	
15 cbb 2	Kennecott Copper	w	111 ALVM	26	575	3,000 P	4-17-67	BD-15	16		312	139	2,660		292	0	238	4,700	1.5	4.1	8,220			7 B.60	
)-1-1} 19bac 4	M. Schmidt	w	111 ALVM	25.5	105		6-29-67	BD-15	13		111	32	48		304	0	199	38		.7	609		7.85		
0-2-1) 7ded 7	H. A. Towers	w	111 ALVM	20	485		6-28-67	BD-15	13		34	18	67		154	0	146	20		.2	369	1	7.65		
3-1-1) 14dcb S	Becks Hot Spring	s	Fault	54.5 55.5			11-09-66 7-26-67					135 131	4,120 4,250		229 221	0	927 985	7,310 7,470		.6 .7	13,600	21,600 20,800	7.4	B1.2	
8-1-1) 256db S	Wasatch Plunge Inc	s	Fault	42 40.5			11-03-66 7-26-67				565 433	109 90	2,410		220 244		1090 818	4,170 2,820			3,590 6,000	13,700 9,540		B1.2 B.9	
C-4-1} 11ad S	Crystal Hot Spring	s	Fault?	58.5 33			5-22-34 5-27-58		60 50		106 142	25 31	304 330		285 340	-	97 72	598 595	-	- 4.7	1,665 1,390	2,470	7.65 7.2	5	
C-4-1) 23cbb S		s		23			4-08-66	BD-13	21		63	25	24		248	0	30	57		.0	373	629	7.75	7	
																				1					
									1																
													1												
																		1							
																						1			
				1	Ì																				
					1							1	1	1			1				1	1			

TABLE 11-A. Jordan Valley. Springs and wells with water temperatures of 20° to 58.5° C.

r 🗶 i

•

۰**ه** ۸

. 1

	OWNER	μĪ			1	[· ·]			-				SIS FXP	RESSE	DAS	MILLI	GRAM	PER LIT	EB		·			
COORDINATES	OWNEH OR NAME	SOURCE	GEOLOGIC FORMATION	ТЕМР, °С	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO 2	F.	C.	M,	N.	*	нсоз	co3	s0.	CI	*	NO3	DISSOLVED SOLIDS	COND. mmhoi	рН	OTHER CONSTITUENTS OR REMARKS
B-1-1) 9aba	E. J. jeremy	w	111 ALVM	19.5	300	3	8-26-58	IWM	37	.32	138	39	467		305		.8	898		1.6	1,730	3,160	7.2	
19baa 3	E. J. Jeremy	w	111 ALVM	19 18.5	490	8 2.7M	11-13-31 9-08-65	IWM BD-12							433		2	266				1,500		Methane
21dba 2	A. B. Nebecker	w	111 ALVM	18	300	10	8-26-58	IWM	35	.16	142	105	1,050		446		.8	1,920		4.2	3,480	6,300	7.2	Same as 21dba 1 in WSP 1029 Temp. there 60 ⁰ F
27cdd 3	L. W. Allsop	w	111 ALVM	16	500		3-13-33	IWM			58	39	825		700		2	1,080		0	2,349			60 ⁰ F in WSP 1029
(B-1-2) 15bcb 2 bcd 2	C. Gillmore	w	111 ALVM	19.5 19.5	300	5	8-19-58 8-04-66	IWM BD-13	26 23	.13	12 13	8.0 6.8	175 164	2,4	308 290	0	.4 2.1	136 128	1.9	.3 .3	509 489	874 849		BD-13 indicates all reports are on same well.
3laad	E. J. Jeremy	w	111 ALVM	17 20	400	23	8-26-58	IWM	39		73	43	721		231		97	1,160		2.3	2,250	4,120	7.8	Cond. 4230; BD-12
(C-1-1) 21dcb 2	Zions Savings	w	111 ALVM	.18			8-19-58	IWM	58	.04	38	15	61		195		74	38		.5	381	558	7.5	
27dac 2	G. H. Fisher	w	111 ALVM	16	600		3-10-58	IWM																
34dda	E. Tomasini	w	111 ALVM	15.5	435	60	4-25-58	IWM	46		36	8.8	36		156		56	13		.4	273	401	7.6	
(C-1-2) 5bbb	Morton Salt Co.	w	111 ALVM	18	601	48	11-12-31	IWM			188	116	1,032		152		65	2,125			3,600			
8ddd	Utah Copper	w	111 ALVM	15.5	120	7	8-22-58	IWM	50	.04	56	41	735		338		209	1,000		1.9	2,260	3,890	7.6	
21adb	Kennecott Copper	w	111 ALVM	18 20	524	919	849 4-26-66	IWM BD-13	44		64	51	621	ĺ	262	0	347	808		6.5	2,070	3,300	7.7	
(C-1-1) 28dbb 2	N. K. Johnson	w	111 ALVM	19 15	400		8-18-58 3-10-58	IWM	32		36	14	48		192		58	24		1.4	307	483	7.8	Another temp of 61 ⁰ F 10-10-57
33abb	W. D. Hill	w	111 ALVM	15.5 14.5	425		8-18-58 10-08-57	IWM	47 46		40 40	24 22	56 60		195 200		49 46	74 74		4.1 3.8	390 390	632 635	7.5	
(C-2-1) 2bcc 2	J. C. Phillips	w	111 ALVM	15.5 12.5	355		5-27-58 4-03-58	IWM	24		40	12	23		148		58	14		.2	244	394	7.9	
(C-1-1) 13adc	SLC Corp.	w	111 ALVM	15.5	500	6	12-21-31	IWM			109	36	45		263		258	24		.1	602			
13dac	Utah Poultry Producers	w	111 ALVM	17	864	25	3~30-32	IWM			73	18	77		264		148	34		5.4	485			
14dba 4	Lu To Co., Inc.	w	111 ALVM	15.5	168		10-08-57	IWM	25		27	9.7	78		312		2.2	14		0	309	499		H ₂ S odor
24bbb 4	D&RGRR	w	111 ALVM	16.5	660		4-01-32	IWM			135	46	24		236		338	23		.1	682			
25 ca a 2	Granite Sch. Dist.	w		17	641		5-14-58	IWM	20		55	16	38		199		102	12		.4	341	541		
(C-1-2) 29bca 3	Cýprus School	W	111 ALVM		127	32	841	IWM																
(D-1-1) 6cbb	Paris Co. Supply Well	W	111 ALVM	16.5	700	300		IWM																
6 cbb	Paris Co. return well	w	111 ALVM	15.5	670	350		IWM																
20bab	Snelgrove Ice Cream	w	111 ALVM	16.5 18	482	120 F 100 E	4-01-58 6-29-67	IWM BD-15	16 17		109 104	42 40	42 53		244 240	0	277 282	32 36		1.1	639 681	958 932		
30 cod 10 30 oda 10	E. Pinchin	w	111 al√m	16 16	644		10-16-57 5-03-66	IWM BD-13	14 13		59 60	22 19	25		198 198	ò	103 104	14 14		.2 .3		545 545		H ₂ S odor Another similar analysis BD-13
(D-2-1) 14bbc 1	M. S. Sorenson	w	111 ALVM	16.5	132	300	4-14-58	IWM																Drilled well inside dug wel

4

.

TABLE 11-B. Jordan Valley. Springs and wells with water temperatures of 15.5° to 19.5° C.

)

.

- I N	
~	

(

.

.

.

	OWNER	ъ			DEPTH	TIELD	DATE OF					ANALY	SIS EXP	RESSED	AS M	ILLIG	RAMS	PER LITE	EA			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME	SOUR	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	(gpm)	SAMPLE	REFERENCE	SiO2	Fq	C.	Mg	N.	кн	c03	co,	so.	CI	F 1	10, 0	SOLIDS	mmhos	рH	OR REMARKS
D-2-1) 6dbb 10	SL Co. Water Conserv. Dist.	w	111 ALVM	17	865	250 M	9-18-64	8D-11	22		44	16	32	1	56	0	90	17		.1	315	469	7.7	
32cbb 2	SL Co. Water Conserv. Dist.	w	111 ALVM	18	1,007	900 M	9-18-64	BD-11	11		21	9.2	14	1	00	0	20	11		1.7	152	236	7.6	
(B-1-1) 16ccc	C. F. Gillmore	w	111 ALVM	15.5	240	1.2M		BD-12	50		28	22	601	5	84	0	6.6	695		.6	1,680	3,100	7.7	
19baa 2	C. F. Gillmore	w	111 ALVM	16		.4™	9-08-65	BD-12														1,060		
19baa 3	C. F. Gillmore	w	111 ALVM		490	2.7M	9-08-65	BD-12												1		1,500		or
20bab	5.L.Ç.	M	111 ALVM	15.5	274	.SM	2-18-65	BD-12	20		5.6		309		545	0	96	108		3.2	822	1,300		Other temps 60 ⁰ F, 60 ⁰ F
23 bdd 2	S.L.C.	w	111 ALVM	18	30	75 E		BD-12	26		587	127	2,570	3	313	0 1	, 150	4,340		1.7	8,960	14,800	7.9	
(B-1-2) 7ccc	5. T. Gillmore	w	111 ALVM	16.5 16.5	389	2 . 9M	9-02-65 7-26-65	BD-12 BD-12	20		84	72	1,530	2	215	0	312	2,360		. 2	4,480	7,980 8,060	7.3	Other temp, and analysis in BD-13.
7dcb	C. F. Gillmore	w	111 ALVM	16.5	735	4.1M	9-02-65	BD-12	20		108	100	995	2	201	0	108	1,820		.3	3,250	6,000	7.7	
lldca 4	Harrison Duck Club	w	111 ALVM	19 19	607	зм	2-17-65 9-17-65	BD-12 BD-12	23		11	11	210	4	408	0	1.0	138		.7	612	1,020	7.7	
13cca	Harrison Duck Club	W	111 ALVM	19		9.1M	9-07-65	BD-12														1,240		
15daa	C. F. Gillmore	w	111 ALVM	16		1.0M	9-10-65	BD-12														973		
19a.ca	E. J. Jeremy	w	111 ALVM	17 18	450	11.5M	2-11-65 9-01-64		21		13	5.0	471		408	20	107	425		.3	1,260	2,200 2,190		Other temp and analysis BD-13.
22cdb	C. F. & E. L. Gillmore	W	111 ALVM	15.5 17		2 E	9-03-65 2-02-66		22		14	11	224		291	0	.3	232		.9	666	1,600	7.8	
23bbd	C. F. & E. L. Gillmore	w	111 ALVM	16 15.5		1.50	9-09-65 2-10-65		22		14	11	339		388	0	3.3	350		1.4	952	1,600 1,200	7.8	BD-13 temp 61 ⁰ F plus chem Other temp & analysis BD-13.
29daa 1	Bonneville-on-the- Hill	w	111 ALVM	19.5	420	4 E	9-03-65	BD-12														1,710		
29daa 2	Bonneville-on-the- Hill	w	111 ALVM	19	456	2.2	9-03-65	BD-12														2,190		
30abc	E. J. Jeremy	W	111 ALVM	18 18,5	450	7.3N	2-11-65 9-01-64		34		38	29	626		236	0	108	900		.4	1,850	3,270 3,260		
(B-1-3) 24bdd	Morton Salt	W	111 ALVM	19.5 20	502	27 N	9-03-65 2-02-66		28		174	116	1,320		162	0	206	2,440		.9	4,340	7,670		Other temp, and analysis BD-13.
(C-1-1) 24bbd 2	So. S.L.C.	w	111 ALVM	16	772	420 N	6-08-65	BD-12	19		82	25	51		243	0	177	22		.5	496	758	7.8	
(C-1-2) 1 ccc	F. C. Bueter	W	111 ALVM	15.5	170	1.18	9-16-65	BD-12																
24acd	F. C. Bueter	1	.111 ALVM	17		3.8	7-14-64	BD-12														1,630		
24bdc	F. C. Bueter	W	111 ALVM	18 18	280	.6	7-16-64 9-09-65															2,360		
24dad	Kennecott Copper	w	111 ALVM	17	204	9.7	9-09-65	5 BD-12														1,97		
32aab	E. G. Whitaker	-	111 ALVM	16	52	í	3-07-65	5 BD-12	36		63	115	238	1	458	0	388	258		4.1	1,330	2,09	7.9	

TABLE 11-B. Jordan Valley. Springs and wells with water temperatures of 15,5° to 19,5° C.

•

ć

		OWNER	w						r					SIS FY	RESS	ED AS	MIL ()	GRAM	S PER LIT	FP					· · · · · · · · · · · · · · · · · · ·
COOR		OR NAME	SOURC	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	\$10 ₂	F.	C.	Mg	N.	ĸ	нсоз	co,	so.	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рH	OTHER CONSTITUENTS OR REMARKS
(C-1-2)	36abb 5	Sarah Day	w	111 ALVM	15.5 14	265		8-18-58 10-08-57	IWM	42 18		111 110	68 6 5	146 76		296 300		215 37	280 286		14 12	1,020 762	1,680 1,700	7.4 7.1	H ₂ 8 odor
	36abc 1	Martin Perry	w	111 ALVM	15.5	153		8~18~58	IWM BD-04	44		116	67	169		294		243	298		14	1,100	1,810	7.3	
	36abc 6	W. Smith	w	111 ALVM	15.5	125		10-29-58	IWM																
	36acd	Ezra Day	w	111 ALVM	18.5	150		10-29-58	IWM																
(C-2-1)	7ccc 1	U.S. Army Kearns Well	w	111 ALVM	16.5	912	375	3-22-48	IWM	46		58	41	84		219		46	184	.4	9.8	577	979		Other analysis available.
	34acb	West Jordan Sewer Trench	w	111 ALVM	15.5	12	30	8-21-58	IWM	27		160	79	260		488		402	330		7.1	1,510	2,300	7.4	
(C-4-1)	6acb	E. R. Hamilton	w	111 ALVM	15.5	577	600	8-12-58	IWM	58		92	3.6	91		278		33	127		1.4	543	874	7.7	
	26cba S	Lower Beef Hollow	s	111 ALVM	15.5		30	8-15-58	IWM	57	.09	89	28	72		296		91	110		1.8	595	954	7.2	
(C-1-2)	23ddb 2	A. King	w	111 ALVM	17	150	3	8-05-58	IWM	75	.08	38	17	277		241		163	280		7.0	976	1,640	7.9	
	23ddc 1	J. Courtright	w	111 ALVM	18.5	107	30	8-05-58	IWM	75	.01	35	17	298		280	ļ	181	270		8.6	1,020	1,660	7.7	
	26bab 1	F. Schroeder	w	111 ALVM	18.5	156	ļ	8-05-58	IWM	-81		24	13	384		270		240	323		11	1,220	1,970	8.4	
(C-1-1)	13bba 1	Eitel-McCullough	w	111 ALVM	15.5	815		6-08-43	BD~04	22	. 10	59	21			200		171	38	1.2	0	500			
(C-1-2)	22bcd 4	J. Vagenas	w	111 ALVM	16.5 14.5	183	60	8-04-58 3-10-58	IWM	54	.01	30	14	260		260		95	270		4.6	856	1,480	7.5	Another temp. 61 ⁰ F 10-8-53
	22cbb 1	F. Fowler	w	111 ALVM	16 14.5	110	25	8-04-58 3-10-58	IWM	54		27	12	279		272		103	277		4.5	890	1,510	8.2	Temp. 60⁰F plus Chem BD-12.
(D-1-1)	19dbc	So. SLC	w	111 ALVM	17	955	630	856	BD~04																
(C-1-3)	15bdc	Kennecott Copper #4	w	111 ALVM	16.5	524	2700	12-15-37	BD-04	19		287	214	3,230	78	283		147	6,000			10,120		7.3	
	15 cbd	Kennecott Copper #3	w	111 ALVM	16	193	1540	12-15-37	BD-04	12		110	48	760	13	304	-	60	1,330			2,485		7.5	
	15dbb	Kennecott Copper #2	w	111 ALVM	18	520	3000	11-15-37	BD-04	14		250	108	2,380	69	336		110	4,290			7,389			
	15dbd	Kennecott Copper #1	w	111 ALVM	18	437	8000	12-15-37	BD-04	14		147	67	1,060	21	290		231	1,830			3,515		7.4	
(B-1-2)	8abd	C. F. Gillmore	w	111 ALVM	19 19	300	5 M	7-14-64 9-15-65	BD-11 BD-12	24 21		27 11	17 18	291 292		190 57	0 51	1.9	435 425		.5 .2	906 890	1,670 1,690		Other analysis in BD-12, BD-13, Questionable pH.
	15bcb 2	C. F. Gillmore	w	111 ALVM	19 19.5	300	5.21	7-07-64 2-17-65	BD-11 BD-12	22 23		11 11	7.3 8.3	168 165	1.8	298 290	0	7.4 1.4	131 128	2.0	.1 1.0	482 495		7.8 7.6	
	33cca	Hogle Investment	w	111 ALVM	19 19	450	20 M	2-26-64 2-18-65	BD-11 BD-12	50		25	16	562		264	0	56	760		.2	1,600	2,850	7,8	
(C-1-2)	22cbc	F. E. Fowler	w	111 ALVM	15.5	110	8.6M	9-03-64	BD-11																
(C-3-1)	9bcc	J. G. Schmidt	w	111 ALVM	19.5	350	3135 R	461	BD-11																
(C-4-1)	15bdc 1	W. M. Webb	w	111 ALVM	18 18	505	320 M	8-06-64 7-12-65	BD-11 BD-12	62 62		114 150	49 84	112 64		184 208		127 206	310 332		12 6.1	1,060 1,010	1,470 1,740	7.8 7.4	Temp. 62 ⁰ F plus analyses BD-13.
	15bdc 2	W. M. Webb	M	111 ALVM	18 19	607	560 M	8-06-64 7-12-65	BD-11 BD-12	64 63		99 104	38 37	101 77		176 181	0	72 85	280 238		7.4 9.6	902 807	1,280 1,240		Temp, 69 ⁰ F and 65 ⁰ F; analyses BD-13,

s #

.

.

,

r

	OWNER	빙										ANALY	SIS EXP	RESS	D AS N	ALLI	GRAMS	PER LIT	ER					
COORDINATES	OR NAME	SOUR	GEOLOGIC FORMATION	PC	DEPTH (feet)	YIELD (gpm)	DATE OF	REFERENCE	\$i02	Fe	C.	Mg	Na	ĸ	нсоз	C03	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhoi	DH	OTHER CONSTITUENTS OR REMARKS
C-2-1) 24bcd	S.L. Co. Water Conserv. Dist.	w	111 ALVM	18	1,000	1865 R	8-05-65	BD-12	11		28	11	61		95	0	69	68		1.5	296	531	7.0	
C-4-1) 23dbb	S. L. Valley Sand & Gravel	w	111 ALVM	15.5	262	1310 M	11-08-65	BD-12	27		80	41	93		290	0	165	115		1.6	666	1,090	7.8	
D-1-1) 1dbd 4	C. E. Penman	w	111 ALVM	15.5	129		9-10-65	BD-12	11		86	17	24		311	0	44	25		.3	381	611	7.7	
30acc 7	South S.L.C.	w	111 ALVM	16.5 16	955	510 M	6-08-65 2-26-64	BD-12 BD-12	15		72	23	48		222	0	158	23		.3	454	702 646	7.8	
C-1-2) 21abc 2	Kennecott	w	111 ALVM	16.5	404	1190 R	7-14-68	BD-17																
C-4-1) 14ded	Mt. Jordan Corp.	w	111 ALVM	16 16	845	600 R	4-02-65 5-20-68	BD-17 BD-17	25		67	38	123	1	234	0	156	127		6.9	6 \$ 5	1,040	7.8	
D-3-1) 7abb	Sandy City	w	111 ALVM	17	590	1350 R	11-15-68	BD-17	ĺ															
8-1-2) 7dbb 1	C. F. Gillmore	w	111 ALVM	16.5 16.5	735	4.3M	2-03-66 9-01-66	BD-13 BD-13	24		92	108	1,060		190	0	210	1,850		.5	3,410	6,100 6,000	8.2	Sample from 480 ft.
27acb	Bonneville-on-the- Hill	w	111 ALVM	17		.6M	2-02-66	BD-13	23		77	• 5	314		234	0	20	470		.0	1,020	1,850	8.0	
C-2-1) 9ccc	S. L. Co. Water Conserv. Dist.	w	111 ALVM	18	795		3-14-66	BD-13	24		78	73	145		234	0	130	340		3.3	962	1,620	7.6	
14caa	E. F. Burkhardt	w	111 ALVM	18	63	3 E	5-31-66	BD-13	16		134	67	258		200	0	525	315		20	1,430	2,170	7.9	
26add	ASARCO	w	111 ALVM	15.5		76 M	10-20-66	BD-13	11		20	9.2	28		112	0	22	24		.5	160	291	7.5	
C-3-1) 33abd	S. Stefanoff	w	111 ALVM	18	357	620 M	9-09-66	BD-13	30		152	103	190		342	0	385	375		8.5	1,410	2,270	7.7	
D-1-1) 20ddd	S.L.C.	w	111 ALVM	15.5 15.5	-500		7-21~66 7-02~68	BD-13 BD-17	15 17		122 120	40 39	31 40	2.9	254 268	0 0	289 243	27 34	.5 .4	5.0 6.1	691 641		7.7 B. 8.0 B.	
29dba	Interstate Brick Co	w	111 ALVM	17	460			BD-13																
D-4-1) 6bdd	A.G.H111	w	111 ALVM	17	28		10-03-36	BD-13	18		64	43	104		210	0	176	138		13	659	1,080	7.3	
C-1-2) 21aac 5	Kennecott Copper	w	111 ALVM	18.5	420	400 R	12-15-60 4-26-66	BD-11 BD-13	48		136	68	822		246	0	215	1,400		9.1	2,820	4,970	7.7	Ownership from BD-11
C-2-1) 9dcc	Namba & Sons	w	111 ALVM	15.5	376		9-08-66	BD-11 BD-13	43		116	116	288		428	0	422	412		35	1,630	2,420	7.7	
C-4-1) 11cab S		s	111 ALVM	15.5			8-08-66	BD-13	34		102	68	227		382	0	333	260		2.0	1,210	1,930	7.9	
C-1-1) 2bac 2	General Brewing Corp.	w	111 ALVM	17	870	1012 R	8-24-59	BD-15	ļ															
Saad 4	Utah Wool Pulling Co.	w	111 ALVM	18	660	61 M	2-24-67	BD-15	22	ļ	30	17	144		242	0	99	111		.3	527	888	7.7	
25bdb 1	South S.L.C.	w	111 ALVM	18 11.5	1,000	158 M	7-25-67 6-20-67	BD-15 BD-15	19 18		61 46	22 19	44 37		211 305	0 0	133 10	18 11	.4	.1 .1	399 285	611 497		
27bdd 3	G. C. Bills & Sons	w	111 ALVM	19.5	716	235 N	2-21-67	BD-15																
C-1-3) 15bdc 3	Kennecott Copper	w	111 ALVM	18.5	536	2000 E	2-23-67	BD-15	19		347	142	1,750		300	0	449	3,220		1.7	6,080	10.300	7.8	
15dca	Kennecott Copper	w	111 ALVM	18.5	437	2500 R	2-23-67	BD-15	16		278	115	2,100		320	0	354	3,610		2.2	6,630	11,300	8.0	
(C-2-1) labc 1	B, T, Helm	W	111 ALVM	16	256	3 E	6-28-67	BD-15	14	1	38	14	19		162	0	44	12		0	222	357	7.9	
3 <i>e</i> dd 4	Taylorsville~ Bennion Imp. Dist.	w	111 ALVM	19	641	1530 F	2-04-67	BD-15	42		52	33	116		128	0	130	194		2.5	661	1,060	7.7	

TABLE 11-B. Jordan Valley. Springs and wells with water temperatures of 15.5° to 19.5° C.

-1

.

~

,

412

N

COORDINATES	OWNER	З Ц	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF		<u> </u>	· · · · ·		ANAL	SIS EXP	RESSE	ED AS	MILLI	GRAMS	PER LIT	ER	r		COND.		OTHER CONSTITUENTS
COORDINATES	NAME	ŝ	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.	ĸ	нсо,	co 1	s04	CI	F	NO,	DISSOLVED SOLIDS	mmhoi	рH	OR REMARKS
3-1) 5dcb	S. G. Dimond	w	111 ALVM	15.5	373	1425 M	8-08-67	BD-15	23		110	34	63		222	0	193	118		.5	687	1,010	7.9	
13bab	D. H. Greenwood	w	111 ALVM	19	114		2-08-67	BD-15	21		120	46	99		252	0	246	172		.2	908	1,370	7.9	
-4-1) 500b 2	T. A. Gardiner	w	111 ALVM	16.5	158		9-27-67	BD-15			45	14	94		332	0	64	26		7.8	480	709	7.7	
6dad	G. Gardiner	w	111 ALVM	16.5	168		9-27-67	BD-15	53		122	37	153		380	0	319	99	1	8.2	978	1,380	7.6	
-1-1) 28cbb 2	Coombs Enterprises	w	111 ALVM	16	363		9-15-67	BD-15	15		120	46	44		236	0	339	26		0	742	978	7.6	
-2-1) 4bcc	D. O. Wright	w	111 ALVM	15.5	650		9-12-67	BD-15	16		90	44	48		212	0	284	28		.2	642	882	7.9	
																			1					
																				:				
									-															
		$\left[\right]$																						
															1							ł		
									1															
									i i											1				

s **4**

.

TABLE 11-B. Jordan Valley. Springs and wells with water temperatures of 15.5° to 19.5° C.

)

Ŧ

	(A. WED. 315				-		Valley - Bl				unge	andw	ette m			mper	l alui e							
BD-5 = Mower, 19	03: WSP-217 = Le	e, Twl			•			3 = Munde	orff, 1	970			SIS FY	RESS			GRAMS	PER LI						+
COORDINATES	OR	SOURC	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO2	F.	C.	Mg	N.	ĸ	нсо3		TT	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUENTS OR REMARKS
(C-19-5) 21cbb	Frank Badger	w	111 ALVM	22.0	300	80M	3-02-43	BD- 5																
(C-19-5) 31cbd	U.S.B.L.M.	w	111 ALVM	29.5	375	4.2M	2-15-60	BD-5																
(C-20-5) 21dec	E. V. Wilson	w	III ALVM	20.0	420	24M	2-15-60	BD- 5																
(C-20-5) 32cbb	Christensen Bros.	w	111 ALVM	22.0	942	12M	3-8-60	BD-5																
(C-20-5) 33bda	N. McBride	w	111 ALVM	20.0	360	6.5M	11-16-44	BD-5			55	48	77		228		139	121		1.0	553	985		
(C-20-8) 29aad (From AMS Map	Neels RR Well	w	111 ALVM	"Hot"	1,382 1,974	260	1906	WSP-217 WSP-217			284 239	3 6	293 552				658 458	1,065 863			3,336 2,888			Total Depth 1998 *''Siliceous Matter''
(C-21-5) 30dad2	Utley & Starley	w	III ALVM	20.0	900	1,700M	3-24-61	BD-5																
(C-21-6) 9cad2	W.A. Paxton	w	III ALVM	20.5	527	1, 600M	3-16-60	BD-5																
(C-22-6) 25cbb		s	111 ALVM	22.0			Summer 76	Rush Rpt																
(C-22-6) 27ddc 27ddd 26ccc	Meadow Hot Springe	s	111 ALVM	30.0 41.0			Summer 76 5-22-67				433	114	1,020	13.8	408		1, 130	1,800	5.5	1.6	4,900	7,130	7.5	B4.0, L13.2, Br4.0, 1.45
(C-22-6) 27ddc	Warm Spring	s	III ALVM	35.0		35	4-08-43	TP-3			464	95	1,152		392		1,045	1, 830		2. O	4, 810			B0315
(C-22-6) 34abc (From Thomas Map)	Devila Ridge Spring	s	III ALVM	13.0 61.5		0-150		TP-3 WSP-1794			720	169	1, 946		316		1, 951	3,120		1.0	8, 080			B0320 Temp. of 61.5 from WSP 1794 probably meas. at Hatton H.S.
(C-22-6) 35 ddc	Hatton Hot Spring	s		36.0 38.0			Summer 76 6-19-57	Rush Rpt WRB-13	44		465	89	1, 090		427		985	1, 780		z. 4	4,670	7,270	6.7	Yield 25 gpm 8/27/58
(C-22-6)35dd		w		67.0	90		Summer 76	Rush Rpt	-															
																								1
																			1					

Table 12-A. Pavant Valley - Black Rock Desert. Springs and Wells With Water Temperatures of 20° to 67° C.

ş

	OWNER	ы	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	SIS EXP	RESSE	DAS	MILLIC	RAMS	PERLIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	\$10,	F.	C.	Ma	Ne	K	нсо,	c03	504	C1	F	NO3	SOLIDS	mmhos	рH	OR REMARKS
C-18-5) 27bab	R. T. Knight	w	111 ALVM	17.0	397	1, 250M	2-04- 60	BD-5																
C-18-5) 27cba	C. Nielson	w	111 ALVM	16.0	495	1, 150M	2-04-60	BD- 5																
(C-18-5) 28dda	D. Andersen	w	111 ALVM	17.0	550	2,350M	6-07-61	BD-5																
(C-18-5) 34adb	H. Hurst	w	111 ALVM	15.5	354	650M	2-04-60	BD-5															ļ	
(C-18-5) 34baa	L. C. Callister	w	111 ALVM	16.5	667	1,750M	6-02-61	BD- 5	24	. 00	136	22	47	1.5	358		76	116		6.5	605	1,010	7.7	B=, 11
(C-18-5) 34bba	McCornik Well	w	III ALVM	16.0	502	1,300M	Z-04- 60	BD-5																
(C-18-5) 34bca	McCornik Well	w	111 ALVM	16.0	400	1,000M	2-04-60	BD-5																
(C-19-5) 28aaa	H. F. Stevens	w	111 ALVM	18.5	200	15E	2-18-60	BD-5	1													1		
(C-19-5) 28bda	C. C. Nixon	w	111 ALVM	19.0	220	17M	2-18-60	BD-5																
(C-20-5) 1beb	O. T. Hunter	w	111 ALVM	16.5	430	160M	2-16-60	BD-5																
(C-20-5) 16cb2	O. T. Hunter	w	111 ALVM	16.0	500	150M	2-16-60	BD- 5																
(C-20-5) 2ddd	G. V. Kennedy	w	111 ALVM	15.5	197	7M	2-18-60	BD-5																
(C-20-5) 9daa	W. E. Turner	w	111 ALVM	16.0	330	22.5M		BD-5														1		
(C-20-5) 10abb	A. Stevens	w	111 ALVM	16.0	35	2.7M	3-10-60	BD-5																
C-18-5) 27dba	A. Stephenson	w	111 ALVM	16.5	520	1,450M	2-04-60	BD-5																
C-20-5) 10dbd	J. Wood	w	111 ALVM	16.0	196	1.М	3-04-60	BD-5																
C-20-5) llaaa	L. D. Anderson	w	111 ALVM	16.0	198	8M	2-18-60	BD-5					ļ	l									l	
(C-20-5) 11aad	L. D. Anderson	w	111 ALVM	16:0	213	18M	2-18-60	BD-5				1												
(C-20-5) 11baa	C. Wade	w	111 ALVM	16.5	595	L 550M	3-04-60	BD- 5																
(С-20-5) 12bb a 2	C. Johnson	w	111 ALVM	16.5	203	16	8-30-60	BD-5																
(C-20-5) 16dad	B. Stephenson	w	111 ALVM	18.0		2. ZM	3-04-60	BD-5																
C-20-5) 21dbd	R. Fuller	w	111 ALVM	19.5	330	2 3 M	3-04-60	BD-5			l			}										
(C-20-5) 22bcc	J. C. Rowley	w	111 ALVM	18.5	400	6M	10-23-57	BD-5	27		111	82	85		251		430	102		3.1	963	1, 460	7.1	
С-20-5) 22съъ	D. D. Hogan	w	111 ALVM	18.5	352	4.5M	3-04-60	BD-5																
(C-20-5) 27bac	Pavant Dev. Co.	w	111 ALVM	16.5	480	1, 600N	3-19-62	BD-5																
(C-20-5) 27bcb	Rowley	w	111 ALVM	19.5	601	52N	11-04-43	BD-5			178	130	79		248		687	162	. 4	2.6	7,360	1,850		B=. 09
C-20-5) 27bda	Pavant Dev. Co.	W	111 ALVM	15.5	475	1, 200N	3-19-62	BD- 5										1					1	
C-20-5) 27cbb	H. S. Armstrong	W	111 ALVM	17.0	286	2.3M	11-16-44	BD-5			45	42	22		230		70	50		. 4	343	633		
C-20-5) 28acb	E. V. Wilson	w	111 ALVM	17.0	380	4.1M	2-15-60	BD-5																
C-20-5) 28cdd	A. Graff	w	111 ALVM	18.0	354	111	2-12-60	BD-5																
C-20-5) 29abd	E. V. Wilson	w	111 ALVM	16.0	500	1.4M	3-10-61	BD-5																
C-20-5) 31dcd	Christensen	-	III ALVM	18.0	508	1.7M	11-16-44	BD-5			92	657	60		Z 35		189	145	1	1.5	660	1, 130		
C-20-5) 32aaa	Nelson Bros.	₩	111 ALVM	18.5	490	10M	4-08-43	BD-5			34	34	85	1	158		52	160	. z	. 2	443	800		B=.05

. .

Table 12-B. Pavant Valley. Black Rock Desert. Springs and Wells with Water Temperatures of 15.5° to 19.5°C.

()

c

	OWNER	RCE	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	SIS EXI	RESS	DAS	MILLIG	RAMS	PER LIT	ER			COND.		OTHER CONSTITUTION
COORDINATES	OR NAME	20C	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	Fe	C.	Mg	·Na	ĸ	нсо3	CO 3	so₄	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUENTS OR REMARKS
-20-5) 33bba	L. Stott	w	111 ALVM	19.0	325	6м	11-16-44	BD-5			32	29	78		166		55	123		1.0	400	746		
C-21-5) 5dbc	H. J. Mitchell	w	111 ALVM	18.0	565	800M	3-19-62	BD-5																
C-21-5) 6dba	J. Robison	w	III ALVM	16.0	400		10-23-57	BD- 5	18		48	23	21		233		24	32		2.9	284	506	7.3	
C-21-5) 8bdc2	Swallow	w	111 ALVM	16.5	407	1,650м	5-21-61	BD- 5	20	. 01	. 73	20	32	1.3	261		47	52	. 2	3.8	377	642	7.8	B=. 08
C-21-5) 8dbb2	J. C. Moore	w	111 ALVM	16.0	400	1,900м		BD- 5											ĺ					
C-21-5) 18ada	F. G. Johnson	w	III ALVM	16.0	453		5-31-43	BD- 5			58	28	2 6		234		37	59		2.0	325	605		B=. 04
C-21-5) 18ddd	N. Jackson	w	111 ALVM	16.0	493	35M	10-11-57	BD- 5	16		77	30	108		295		121	127		6.9	631	942	7.2	
C-21-5) 19ada	M. J. Palmer	w	111 ALVM	16.5			11-21-44	BD-5			76	38	64		242		120	112		4.8	534	1,010		
C-21-5) 19add	M. J. Palmer	w	111 ALVM	18.0	670	1,050M	6-01-55	BD- 5	22	. 04	214	101	183	7.2	290		561	368	. 0	2.1	1,600	2,420	6.9	B=. 91
C-21-5) 18add	F. G. Johnson	w	III ALVM	16.5	508		11-21-44	BD- 5			61	30	31		Z 34		60	60		4.2	362	704		
C-21-5) 19daa	M. J. Palmer	w	III ALVM	17.0	403	200E	5-31-43	BD- 5			84	46	104		212		209	164		2.5	714	1,210		B≠. 27
C-21-5) 19daa2	M. J. Palmer	w	III ALVM	F6.5	232		5-31-43	BD-5			90	45	90		256		182	145		1.5	580	1,160		B=.16
C-21-5) 19daa3	M. J. Palmer	w	111 ALVM	18.0	650	2. 100M	3-27-62	BD-5									ł							
C-21-5) 19dcd	H. H. Hatton	w	11) ALVM	16.0	330		5-31-43	BD- 5			76	40	88		28 6		149	110		1.5	605	1,020		B=. 27
C-21-5) 19dcd2	W. C. Utley	w	111 ALVM	15.5	334		3-11-60	BD-5																
C-21-5) 19dcd3	H. H. Hatton	w	111 ALVM	18.5	615	220M	12-54	BD-5	19	. 13	138	67	135	5.9	314		270	268		3.0	1,060	1,750	7.2	B≖. 40
C-21-5) 20bba 20bba ₂	J. A. Johnson	w	III ALVM	15.5	445 480		11-21-44	BD-5 BD-5	17	. 48	52 104	22 45	32 91	4.6	262 292		35	23 121	. z	9.0 5.6	303 755	536 1,220		
(C-21-5) 20bdd	Mace & Bushwell	w	111 ALVM		615	950M	3-11-60			. 40	.04		,,,		672		223	121		2.0	135	1,220	7.3	
(C-21-5) 20cbd	Christensen Bros			15.5			3-26-54	BD-5																
(C-21-5) 20cca	Christensen Bros			18.0			5-31-43	BD-5			126	55	150		234		316	244		2.5	1,010	1,550		B≖.18
(C-21-5) 20cca2	Christensen Bros			19.0	631	600M	12-21-53	BD-5	19	. 05	202	86	180	10	306		455	370	. 1	3.4	1,4 80	2,310	7.2	
(C-21-5) 29aac	W. C. Utley	w	111 ALVM	16.0	315	150M	11-20-44	BD-5			54	24	24		226		44	36		3.9	297	630		
(C-21-5) 29mad2	w. C. Utley		111 ALVM	15.5			11-20-44	BD-5			54	20	27		253		31	22		6.9	286	530		
(C-21-5) 29aad3	W. C. Utley		111 ALVM			1,820M		BD-5	18	. 62	146	60		7.9	298		377	182	0	4.6	1,080	1,650	7.1	B=. 41
(C-21-5) 29baa	W. C. Utley	w	111 ALVM	16.0	224	8 5M	9-05-60	BD-5																
(C-21-5) 29bdd	L. Rasmussen	w	111 ALVM	16.5	207		11-18-44	BD-5			63	23	36		265		48	44		.6	345	647		
(C-21-5) 29bdd ₂	L. Rasmussen	w	III ALVM	19.0	632	1, 350M	6-27-58	BD-5	17		305	89	321		332		756	540		2. Z	Z.190	3, 210	7.0	
(C-21-5) 29caa	L. Rasmussen	w	III ALVM	15.5	314	80M	3-11-60	BD-5																
C-21-5) 29cad	L. Rasmussen	w	111 ALVM	17.0	440	100M	5-31-43	BD-5			109	44	115		2 5 2		228	182		2.5	805	1,350		B=. 14
C-21-5) 29cdd	Christiansen Bros	w	III ALVM	16.5	366		5-31-43	BD-5			126	42	124		280		235	200		2.0	867	1,430		B=, 14
(C-21-5) 29cdd ₂	Christiansen Bros	w	111 ALVM	18.0	580	2,100	3-29-54	BD-5	17	. 13	170	54	132	18	288		293	280	. 6	4.1	1,110	1,800	7.2	B=. 55
(C-21-5) 29cdd3	Rasmussen Bros.	w	111 ALVM	16.5	357	1,000M	3-24-61	BD-5	ļ															
C-21-5) 29dcm	J. F. Kelly	_w	111 ALVM	16.5	380	135M	4-08-43	BD-5			181	51	171		302		362	287	. 1	3.0	1,200	1,780		B=. 45

Table 12-B. Pavant Valley. Black Rock Desert. Springs and Wells with Water Temperatures of 15.5° to 19.5° C.

••

+

41

.

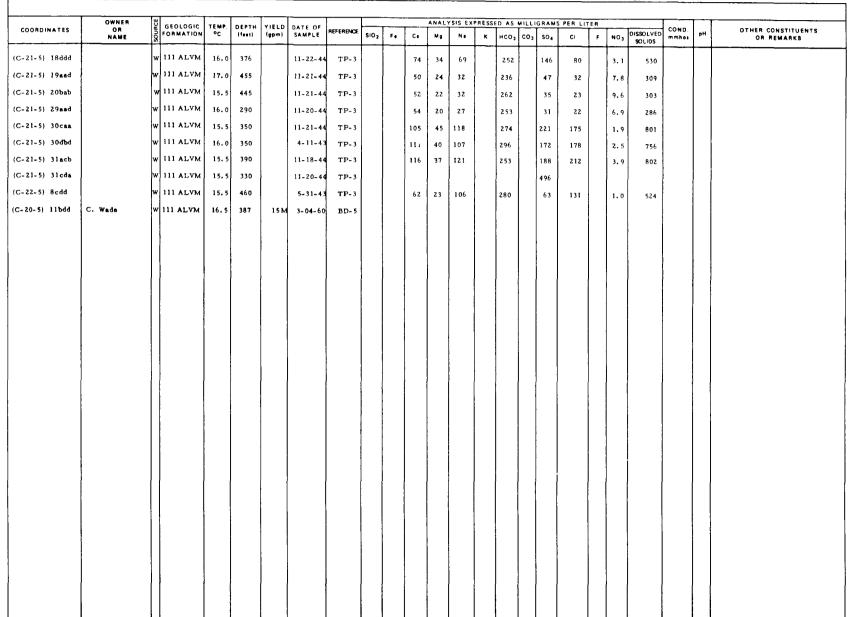
τ.

	OWNER	ų	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXP	RESSE	DAS	ILLIG	GRAMS	PER LIT	ER			COND.		
COORDINATES	OR NAME		FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO 2	Fe	C.	Mg	N a	ĸ	нсоз	co3	s04	CI	F	NO3	DISSOLVED SOLIDS	mmhos	pH .	OTHER CONSTITUENTS OR REMARKS
C-21-5) 29ded	J. F. Kelly	w	111 ALVM	15.5	266	200M	9-05-60	BD-5																
2-21-5) 29ddd	J. F. Kelly	w	111 ALVM	15.5	277	9М	5-31-43	BD-5			56	20	47		234		51	57		4.2	352	632		B≠, 14
C-21-5) 30ada	W. R. Starley	w	111 ALVM	16.5	470		5-31-43	BD-5			80	4 6	101		230		181	163		1.5	686	1,170		B=.14
C-21-5) 30bad	Christensen Bros	w	111 ALVM	15.5	365		11-21-44	BD- 5			105	45	118		274		221	175		1.9	801	1, 340		
C-21-5) 30daa	W. C. Utley	w	111 ALVM	16.5	437		11-18-43	BD-5																
C-21-5) 30dad	W. C. Utley	w	111 ALVM	17.0	420	50M	5-31-43	BD-5			114	52	110		282		208	205		1.0	829	1,400		B=.14
C-21-5) 30dbc	Christensen Bros		1	16.0	304			BD-5																
C-21-5) 30dbc3	Christensen Bros			19.5	787	700M	5-27-60	BD-5	16		141	67	164		229		344	311		1.0			7.6	B=.47
2-21-5) 31cdd ₂	_		111 ALVM	17.0	800	1,150M	3-24-59	BD-5	15		79	23	75		305		80	85		3.1	510	873	7.5	
C-21-5) 32aad	,		111 ALVM	15.5	296		3-11-60	BD-5																
C-21-5) 32acb			111 ALVM	15.5	266	1 1001	5-31-43	BD-5			108	35	63		212		78	208		2.5	599	1,120		B=.13
C-21-5) 32bcb			111 ALVM	15.5	600 285	1, 100M	4-01-60 5-31-43	BD-5 BD-5			7	32			190		98	154				980		
C-21-5) 32bcd2		11	111 ALVM	15.5	254		11-18-44	BD-5			76 124	46	72 130		238		98 212	258		2.5	528 890	980		B=.11
C-21-5) 32bcdy	J. F. Kelly		111 ALVM	16.0	318		5-31-43	BD-5			78	23	70		226		107	102		1.5	493	876		B=.05
C-22-5) 4cbd	F. P. Robison		111 ALVM	15.5	276	850M		BD-5										102			•,3			54105
C-22-5) 4ccd	F. P. Robison	w	111 ALVM	16.5	284			BD-5																
C-22-5) 8aad	W. W. Watts	w	111 ALVM	15.5	325		5-31-43	BD-5			126	36	76		256		118	208		1.5	692	1,240		B=.05
C-22-5) 17abd	G. Stott	w	111 ALVM	15.5	422	290M	3-16-60	BD-5																
C-21-5) 30dbd	Christensen Bros	w	111 ALVM	16.0	350		4-11-43	BD-5			111	40	107		296		172	178	.1	z. 5	756	1,230		
C-22-6) 3mdd2	Edwards & Harding	w	112 PVNT	17.0	339	700M	7-10-57	BD-5	48		114	41	134		276		148	258		Z. 3	881	1,460	7.3	
C-23-6) 9bca	K. Pace	w	112 PVNT	16.5	170	3,350M	8-27-58	BD-5	54		405	114	1,050		486		924	1,700		5.4	4,490	6,750	6.9	
C-23-6) 10ccc	C. A. Kimball	w	112 PVNT	15.5	96	2,550M	6-05-58	BD-5	38		265	69	523		379		495	885		10	2,470	1	7.3	
C-23-6) 15 bbd ₂	G. D. Staples	w	112 PVNT	15.5	141	3,100м	5-25-61	BD-5	62		268	59	563	24	262		577	995	1.1	3.4	Z,680	4, 380	7.5	B=2.5
C-23-6) 17cde	L. Bradshaw	w	111 ALVM	16.0	4 40	1,700M	6-04-58	BD-5	37		146	74	525		287		314	880		11	2,130	3,560	7.5	
С-23-6) 20съь	N. L. Nielson	w	111 ALVM	16.0	430		8-27-58	BD-5	37		257	136	1,140		362		533	2,000		7.8	4,290	6,970	7. Z	
C-20-5) 28daa		w	111 ALVM	16.5	330		11-16-44	TP-3			54	44	14		244		70	52		.4	355			1
C-20-5) 28ddd		w	111 ALVM	16.5	309		11-16-44	TP-3			49	38	28		247		72	43		. 8	352			
C-21-5) 8bab		w	111 ALVM	17.0	455		11-22-44	TP-3			61	28	43		260		74	49		.6	384			
C-21-5) 8bdc		w	111 ALVM	16.5	320		5-31-43	TP-3			48	25	28		248		32	32		1.0	288			
C-21-5) 18add		w	111 ALVM	16.5	508		11-21-44	TP-3			61	30	31		234		60	60		4.2	362			
C-21-5) 18dad2		w	111-ALVM	15.5	400		11-20-44	TP-3									61							
C-21-5) 18dda		₩	111 ALVM	16.5	448		11-21-44	TP-3		1		Į					147					1	ł	

· ·

Table 12-B. Pavant Valley. Black Rock Desert. Springs and Wells with Water Temperatures of 15.5° to 19.5° C.

D


•

tat

. ,

.

Table 12-B. Pavant Valley. Black Rock Desert. Springs and Wells with Water Temperatures of 15,5° to 19.5° C.

•

x.

•

	OWNER	Ω.	GEOLOGIC	TEMP.	DEPTH	VIELD	DATE OF		ļ			ANAL	YSIS EXI	PRESSED AS	MILL	IGRAM	S PEA LIT	ER			COND.	1		
COORDINATES	NAME	ŝ	FORMATION	°c	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.	к нсо	, co,	so,	CI	F	NO3	DISSOLVED SOLIDS	mmhes	рН		ONSTITUENTS REMARKS
C-14-8) 105, 155	Abraham (Crater) Hot Spring	s	III ALVM	82.0		250	7-13-67	WRB-13	59		345	68	816	48 160	0	756	1,450	4.1	.0	3,630	5, 570	7.3		Other Constituents Iso given in WRB-
C-15-5) 33deb	DMAD Irr. Co.	w	112 PLCN	21.0 21.5	825	2,940M	9-27-61 8-21-62	BD-9 BD-9	30 26	.01 .00	31 31	16 20	41 42	166 2.3 152	0	37 56	39 52	. 3	3.7 3.1	280 308	451 513	7.8 7.5	B .07	
C-16-5) 18caa	DMAD Irr. Co.	w	112 PLCN	20.0	935	3,200M	7-08-61	BD-9	29	.00	32	14	22	178	0	10	20		z. 6	209	349	7.7	В .26	
C-16-5) 19cbd	DMAD Irr. Co.	w	112 PLCN	20.0 20.0	830	2,000M	10-03-60 6-02-61	BD-9 BD-9	24 25	.03 .00	24 26	18 18	19 19	1 8 154 1.7 158	0	13 13	24 24		1.8 2.9	202 208			5 B .04 Mn .12 B .08	
C-16-7) 23dad	D. L. Hansen	w	112 PLCN	21.0	300		4-13-55	BD-9	32		11	5.4	154	192	0	82	112		. 2	492	824	7.8	3	
C-16-7) 24bca	J. R. Jones	w	112 PLCN	23.5 23.0	855	1, 370M	5-23-60 6-28-62	BD-9 BD-9	32 27		14 16	4.1 8.0	71 67	153 149	· 0	30 38	36 40		.3 .0	262 269	404 439	8.2 7.9		
C-16-8) 12ddd ₂	L. C. Peck	w	111 PLCN	26.5	954	1, 730M	6-22-62	BD-9	32		n	1.9	119	210	0	39	57		• •	363	6 01	7.9	9	
С-16-8) 216с6	L. B. Ellsworth	w	III PLCN	24.5 29.0	996	1, 045R	12-03-47 11-15-57	BD-9 BD-9	41 41		28 35	11 13	510 605	188 208	14 0		615 770		.2 1.8	1,480 1,760	2,520 3,110	8.0	D	
C-16-8) 26bdb2	Golden Harvest Irr. Company		III PLCN	26.5 26.0			8-22-59 4-23-63	BD-9 BD-9	30 29		9.6 10	2.9 6.8	176 206	230 242	0		115 158		.3 1.1	508 607	841 1,050	8.5 7.8		Perf. 502-842 Other analyses ED
C-17-6) 17aaa	Gardner		111 PLCN	28.0	840		5-03-63	BD-9	29		15	9.2	51	141	0	22	33		1.4	230	379	7.3	3 B.06	
C-17-6) 18bda	, ,		111 PLCN	26.0	820		11-15-57	BD-9	34		14	4.9	80	154	0	40	43		.1	292	448	8.1	1	
С-17-6) 21Ъдъ			111 PLCN	20.5	420		3-03-64	BD-9														1		
C-17-6) 26daa3	L. B. Ellsworth			24.0		1,150М		BD-9	42		22	12	80	253	0	27	32		.1	339	549	7.8		
C-17-6) 28acb C-17-6) 33bcc	P. Theobald C. K. Ross		III PLCN III PLCN	25.0 20.0	895 360	1, 590M 2M	5-08-63 3-04-63	BD-9 BD-9	30		8.0	4.4	75	183	0	16	24		.4	248	400	7.8	8 B.07	
C-17-7) 1ddd ₄			III PLCN	26.5	865		8-17-61	BD-9 BD-9	35	.00	21	2.7	77	160	0	37	42		. 2	281	448	8.2	2	Other analyses B
				26.5			8-20-63	BD-9	13		17	7.1	75	156	0	44	43		. 5	277	456	8.0		
C-17-7) 22adb ₃			111 PLCN	20.5	450		3-06-63	BD-9																
C-17-7) 34cbd2	G. M. Peterson	w	111 PLCN	21.5 18.0	598	5M	6-27-63 5-23-60	BD-9 BD-9	30		4.4	. 2	177	364	23	18	29		. 8	461	722	8.	7 4	Other analyses BI
С-18-5) бър	Union Pacific RR	w	111 PLCN	21.0	547	3E	9-05-61	BD-9	32	. 01	60	22	222	326	0	57	280		1.3	834	1, 500	7.7	7	
C-18-6) 6aba	C. D. Hart	w	111 PLCN	21.5	565	60 M	7-03-62	BD-9																
C-18-8) 24ada2	W. Robison	w	111 PLCN	25.5	601	9M	8-21-61	BD-9	36	. 22	22	16	791	288	0	387	850		2.7	2,250	3, 820	8.0	a	
																						ĺ		

• •

e.

Table 13-A. Sevier Desert. Wells That Yield Water of 20° to 29° C and One Spring At 82°C.

	OWNER	Ш	61010010		DEPTY	V						ANALY	SIS EXP	RESSE	DAS	ILLIC	GRAMS	PER LIT	ER					07458 0040515445
COORDINATES	OR NAME	SOUR	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO2	F.	C.	Mg	Nı	ĸ	нсо,	co3	so4	Cı	F	N0,	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONSTITUENTS OR REMARKS
C-11-8) 33ccc	G. C. Bennion	w	111 ALVM	16.5	376	1,250M	6-24-63	BD-9																
C-11-9) lbca	G. C. Bennion	w	111 ALVM	16.0	448	640м	6-25-63	BD-9																
C-11-9) lcđb	G. C. Bennion	w	111 ALVM	16.0	445	800E	6-24-63	BD-9																
С-12-8) 95аа	W. H. Peterson	w	111 ALVM	18.0	272	470M	5-02-63	BD-9	41		68	27	80		194	0	36	182		.7	530	964	7.2	B0B
C-13-6) 26bac	U. S. B. L. M.	w	111 ALVM	16.0	175	ZOR	8-23-61	BD-9	61	. 00	134	113	424		238	0	547	675		5.9	2,080	3,280	7.7	
C-14-5) 35cdc	J. M. Nelson	w	111 ALVM	15.5	305	2,040M	8-23-61	BD-9										805		ļ		3,520		
C-14-6) 9bab ₂	D. Christensen	w	111 ALVM	16.0	185	4M	8-23-61	BD-9																
C-14-6) 9dda	D. Christensen	w	III ALVM	16.5	143	2м	8-23-61	BD-9																
C-14-6) 21ccc2	E. A. Lyman	w	III ALVM	15.5	185	4M	8-23-61	BD-9																
C-14-6) 21ddd	E. A. Lyman	w	III ALVM	16.0	126			BD-9																
C-14-7) 20ccc	U.S.B.L.M.	w	III ALVM	16.5	194		4- 2 5- 6 3	BD-9	23		82	51	322		90	0	268	540		2.1	1,330	2,340	7. (2
(C-15-4) 17dab	C. Nielson	W	111 ALVM	16.0	350	1,710M	6-26-63	BD-9																
(C-15-4) 18daa	J. Nielson	w	III ALVM	17.0	406	1,510M	6-23-58	BD-9	28		134	68	75		224	0	144	308		11	878	1,540	7.	1
C-15-4) 26dcc	Fool Creek	w	III ALVM	15.5	520	1,040M	9-01-61	BD-9	15	. 00	97	25	21		194	0	76	81	}	46	4 56	776	7.	7
C-15-5) 2ddc	J. Nielson	w	III ALVM	15.5	303	1,840M	9-23-58	BD-9	26		76	42	68		223	0	70	180		1.0	573	1, 020	7.	7
(C-15-5) 26baa	DMAD	w	111 ALVM	18.0 18.0	860	2, 520M	10-28-58 11-03-	BD-9 BD-9	32 25		34 35	17 19	23 26		178 182	0	18 26	27 31		1.8 2.6		382 420	7.8	
C-15-5) 36abb	Taylor Flat	w	111 ALVM	18.0	935	1,280M	8-22-63		1															
(C-15-6) 7ddb	U.S.B.L.M.		111 ALVM	15.5	336	зм	8-23-61																	
(C-15-7) 18cam	W. B. Davis		111 ALVM	18.0	795	690M	8-24-62																	
(C-15-7) 27cab	O. W. Hunsaker		III ALVM	16.0	668	90M	9-28-61	BD-9											1					
(C-15-7) 30bdd	R. J. Jensen		111 ALVM	15.5	170	ім	9-06-43	BD-9	22		12	6	123		137	0	76	91			396			
(C-15-7) 31abb2	Roy Loses	w	III ALVM	16.0	380	12M	3-07-6	BD-9					ł											
(C-15-7) 31bad	A. M. Smith		III ALVM	16.5	405	4M	9-26-61	BD-9										104	ļ		Į	714		
(C-15-7) 31ddd	E. D. Losee	w	III ALVM	16.0		1M	9-26-6	BD-9																
(C-15-7) 36cbb	Chesley & Black	w	111 ALVM	15.5	420		9-27-6	BD-9	38	.00	30	13	62		150		55	58		.	330	524	8.	2
(C-16-4) 18bda	Sinks Irr.	w	111 ALVM	16.5	375	790M	8-01-6	BD-9	40	.00	103	45	89		212	0	129	227		8.9	849	1,290	7.	7
(C-16-6) 18bad	J. A. DeLapp	w	111 ALVM	16.0	225	7M	3-20-6	BD-9													ļ			
(C-16-7) 10bad	H. Done	w	111 ALVM	17.0	919	1,920M	11-14-6	BD-9	23		17	6.	68		142	0	41	39	.5	.	265	434	7.	8
(C-16-7) 12eed	A. Barney	w	111 ALVM	16.0	582	170M	4-23-6	BD-9									ļ							
(C-16-7) 12ded	W. E. Black	-	111 ALVM	17.0	704	270M	5-20-6	BD-9		Į														
(C-16-7) 13cad	J. A. DeLapp	w	111 ALVM	15.5	288		4-13-6	BD-9	25		28	20	31		132	0	44	45		1.	259	438	7.	5
(C-16-7) 33bbaz	L. E. Abbott	-		16.5	245		8-16-6	BD-9	22		8.	4.4	1 13		168	0	51	66			348	594	7.8	3
(C-16-7) 36acb	E. A. Lyman		111 ALVM	16.5	125	4M	3-20-6	3 BD-9	1												ł			

Table 13-B. Sevier Desert. Wells With Water Temperatures of 15, 5° to 19, 5° C.

۰.

•

•

 \cap

7

•

· · · · · · · · · · · · · · · · · · ·							le 13-B. S			<u> </u>							-							······································
COORDINATES	OWNER			TEMP.	DEPTH	VIELD	DATE OF	REFERENCE									·····	PERLI	1		DISSOLVED	COND.	рН	OTHER CONSTITUENTS
		S FO	RMATION	°C	(feet)	(gpm)	SAMPLE	nerenewa	SIO 2	F.	C.	Mg	Na	_K	нсоз	c01	\$04	CI	f	N03	SOLIDS	mmhoi	Pri.	OR REMARKS
(C-16-7) 36cac	E. A. Lyman	w 11	1 ALVM	16.5	145	6м	3-20-63	BD-9																
(C-16-7) 36cbe	M. D. Jones	w 11	I ALVM	16.5	135	2м	11-16-61	BD-9																
(C-16-8) 21cbb	L. B. Elsworth	w 11	1 ALVM	19.0	640	1,130M	6-28-62	BD-9	26		6.4	1.9	145		251	0	40	65		.1	407	685	8.0	
(C-17-6) 6cbd	Delta	w 11	I ALVM	19.0	737	300M	8-17-61	BD-9	30	. 00	19	8.5	56		151	0	24	38	. 2	1.1	241	394	7.7	
(C-17-6) 12dad	U.S.B.L.M.	w 11	I ALVM	15.5			11-27-62	BD-9	56.		34	56	108		335	0	51	151		13	634	1,090	7.3	
(C-17-6) 22dde	H. Farnsworth	w 11	1 ALVM	18.5		7м	3-04-63	BD-9																
(C-17-6) 27baa	P. Theobald	w 11	1 ALVM	17.0		4M	3-04-63	BD-9																
(C-17-6) 28dcb	F. S. Teeples	w 11	1 ALVM	16.5	425	24M	8-30-62	BD-9	ļ														ļ	
(C-17-6) 29aca2	K. C. Ross	w 11	I ALVM	18.0	470	гм	3-05-63	BD-9														ĺ		
(C-17-6) 32bda	R. M. Ross	w 11	1 ALVM	19.5		ім	3-04-63	BD-9											1			1		
(C-17-6) 32daa	D. G. Brush	w 11	I ALVM	18.0	333	IM	3-04-63	BD-9																
(C-17-6) 33abb	L. S. Teeples	w 11	1 ALVM	19.5		3M	8-30-62	BD-9																
(C-17-6) 34cda	C. S. Teeples	W 11	1 ALVM	17.0	370	3M	3-04-63	BD-9			ļ	ļ	ļ	l					ļ					
(С-17-7) 20сьь	D. S. Webb	w 11	1 ALVM	17.0	356	1м	4-15-55	BD-9	29	ł	7:0	4.6	144		314	14	21	23		. 3	407	662	8,4	
(C-17-7) 25cbb	O. Walsh		I ALVM	16.0		5M	8-03-62	BD-9																
(C-17-7) 26dcd	S. J. Dewsnup	w 11	1 ALVM	17.0	220	ZM	8-03-62	BD-9											1				1	
(C-17-7) 29dcd	W. L. Crafts		1 ALVM	15.5	220	ІМ	3-07-63	BD-9																
(C-17-7) 30bcb	B. R. Jackson	W 11	1 ALVM	18.0	388	2М	3-06-63	BD-9		ļ	ļ	l		ļ	ļ			ļ					ļ	
(С-17-7) 36ъъъ	E. M. Stanworth			16.5		5M	9-04-62	BD-9																
(C-18-6) 2bbb2	L. S. Teeples		1 ALVM	16.5	246	9M	3-05-63		Ì															
(C-18-6) 3bbb	Styler Investment	11		16.5	}	2M	3-05-63	BD-9															İ	
(C-18-6) 4bcb	J. M. Webb		1 ALVM	16.5		2M	3-05-63																	
(C-18-6) 4dba	J. M. Webb		1 ALVM	16.5	1	5M	3-05-63				ļ							l						
(C-18-6) 6acd	C. D. Hart		1 ALVM	17.0	1	2M	3-05-63																	
(C-18-6) 6cab	E. S. Gillen		1 ALVM	18.0		7M	7-03-62					1						1						
(C-18-6) 8bcb	E. G. Gardner	11	1 ALVM	17.0		ім	3-05-63											Ì.					1	
(C-18-6) 8cbb (C-18-6) 9dbb	J. M. Webb		1 ALVM	17.0	260	2M	8-21-61		25	. 02	18	4.4	76		224	0	15	20	0	.6	269	440	7.9	
(C-18-6) 9400 (C-18-6) 18bcb	L. Eliason		1 ALVM	16.5	200	3M	3-05-63						1											
(C-18-7) 1cba	A. Jensen		1 ALVM	15.5		5M	3-05-63					1						ĺ						
(C-18-7) 1dcd	Eliason Bros.		1 ALVM	16.0	290	IM IM	3-08-63															1		
(C-18-7) Idea (C-18-7) 2cca	L. Adams		I ALVM		150	1.	3-08-63									'		1						
(C-18-7) 2cdb	L. Adams		1 ALVM	16.5	150 150	6M	8-15-62								1								1	
(C-18-7) 11bba					Į		8-15-62	ł	[l	{			ł			[1	}			
(0-10+1) 1100E	Styler Investment		ALVM	17.0	150	IM	8-15-62	BD-9		_	L	1	1	1		L		L	1	1			Ļ	

• •

Table 13-B. Sevier Desert. Wells With Water Temperatures of 15, 5° to 19, 5° C.

. 1

.

¥

•

•

	OWNER	E GEOLOGIC	TEMP	DEPTH	YIELD	DATE OF					ANALY	SIS EXI	RESSE	DAS	MILLI	GRAMS	PER LIT	ER			COND	1	
COORDINATES	OR NAME	GEOLOGIC	• °C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	Na	ĸ	нсо3	co3	50 ₄	Cl	F	NO3	DISSOLVED SOLIDS	COND. mmhos	₽Н	OTHER CONSTITUENTS OR REMARKS
C-18-7) 11daa	Styler Investment	W 111 ALVM	16.5				BD-9																
C-18-7) 12aab ₂	P. E. Eliason	W 111 ALVM	15,5	173	гм	3-08-63	BD-9							1									
С-18-7) 12666	P. E. Ellason	W III ALVM	17.0	255	ІМ	3-08-63	BD-9																
С-18-7) 12сЪЪ	M. E. Howell	W 111 ALVN	1 15.5	170	4M	3-08-63	BD-9																
C-18-7) 17ccd	W. J. Black	W III ALVM	17.0	463			BD-9																
C-18-7) 20abb	R. C. Skeem	W 111 ALVM	19.0	540	ім	4-15-55 12-04-57	BD-9 BD-9	28 24		5.5 5.2	7.4 2.9			468 487		146 140	181 180		.6 .5	952 955	1,590 1,600		
C-18-8) 13aba	A. Jensen	W 111 ALVM	19.0	330	1M	4-15-55	BD-9	29		119	58	2,130		114	0	820	3,150		1.3	6,360	10, 400	7.8	
					1																		
							ļ																
								1															
																					1		

Table 13-B. Sevier Desert. Wells With Water Temperatures of 15.5° to 19.5° C.

۰ ،

	OWNER	Ш	GEOLOGIC	TEMP	DEPTH	TIELD	DATE OF					ANALY	SIS EXP	RESSE	DAS	AILLI	GRAMS	PER LIT	EA				r	
OORDINATES		SOURCE	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	F.	c.	Mg	N.		нсоз			CI	F	N03	DISSOLVED SOLIDS	COND. mmhoi	pН	OTHER CONSTITUENTS OR REMARKS
-27-1) 21cab2	A. Sorensen	w	111 ALVM	15.5	79	5R	1-11-43	BD-8																
-27-1) 29dba	D. Bagley	w	112 PLCN	15.5	155	5R	2-05-43	BD-8																
-30-1) 5Ъ	Petes 1#	s	120 TRTR.	16.0		225M	10-63	BD-8																
-30-3) 16ъъъ	P. J. Jensen	W	120 TRTR	15.5	407	50R	5-13-59 7-27-57	BD-8 BD-8	113		38	8.5	36		113	0	93	14		0	358	409	7.8	L12.0
-30-4) 3b	Oak Basin	s	120 TRTR			15M	5-62	BD-8																
-30-4) 26dcb	Town of Circleville	w	112 PLCN	15.5 15.5	325	300M	5-13-59 5-09-60	BD-8	117 76		39 41	10 9.5	25 23		155 154	0 0		7.5 6.0		. 4 . 7	330 285	360 380	7.9 7.7	L11.9
-31-2) 23béd	Antimony Lions Club	w	124 WSTC	15.5 1 4. 5	90	25R	5-28-62 5-23-61	BD-8 BD-8	34		85	8.5	17		288	0	31	8.0		6.4	332	509	7.6	
-32-2) 115m	Ant Creek Spring	s	124 WSTC	15.5		340M	8-62	BD-8																
-32-2) 11cd	Gleave	s	124 WSTC	15.5		300м	8-62	BD-8										ĺ						
-33-5) 3bda	E.V. Goff	w	112 PLCN	15.5	66	5R	6-42	BD-8																
-33-5) 17ac	P. LeFevre	s	Fault	26-32		15M	7-62	BD-8																
-33-5) 16cdc	Tebbs	s	111 ALVM	20. 0		280M	5-03-62	BD-8	50	. 00	35	6.3	35		186	0	14	16	. 3	. 9	218	346	8. Z	B = .06
-33-6) 5ccb	Bear Creek	s	120 TRTR	18.0		10E	6-28-62	BD-8	31		17	3.6	27	1.8	116	0	4.5	11	. z	. 6	154	221	7.8	B = .02
- 36-4 1/2)7сьъ	Calvin Wilson	w		15.5		5M	8-61	BD-8										1						

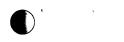

. .

Table 14. Upper Sevier River Valley. Wells and Springs with Water Temperatures of 15, 5° to 32° C.

•

.

Г

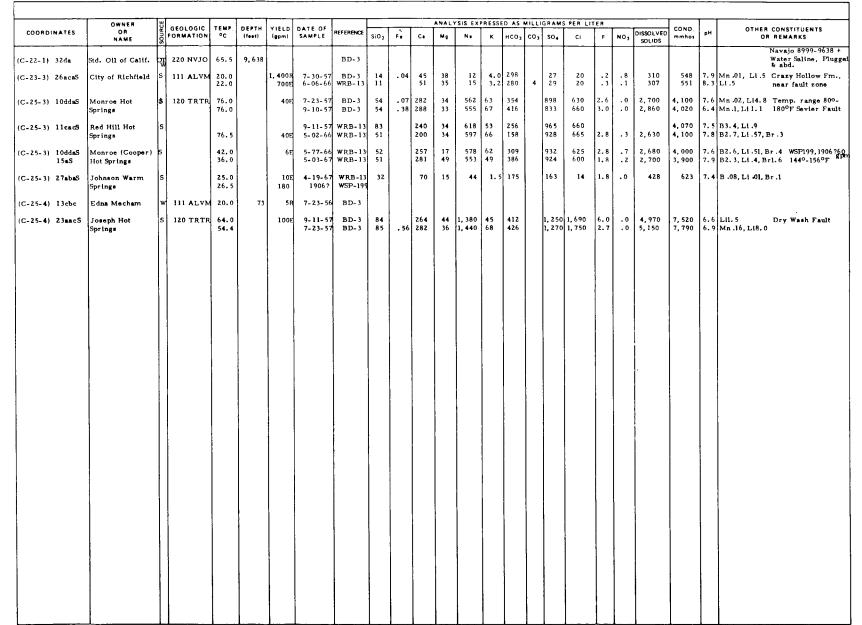


Table 15-A. Central Sevier River Valley. Wells and Springs with Water Temperatures of 20°C to 76.5°C.

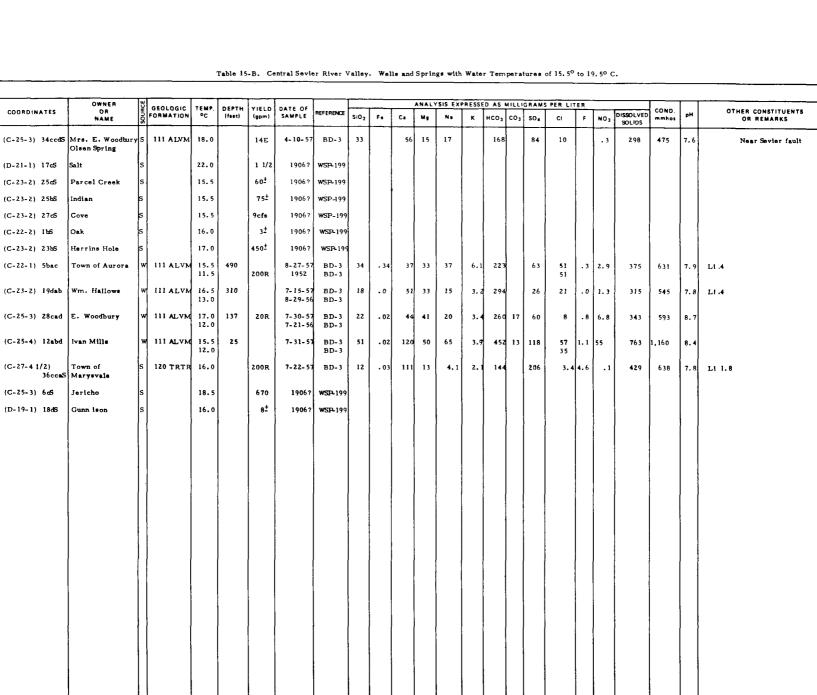
•

e

•

 $\left(\right)$

.


	OWNER	5	EOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	SIS EXP	RESSE	DASN	ILLIG	RAMS	PER LIT	ER			COND.		0	THER CONSTITUENTS
COORDINATES	OR NAME		RMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SIO 2	F.	C.	M g	N 8	ĸ	нсоз	co,	so.	CI	F	N03	DISSOLVED SOLIDS	mmhos	₽Н		OR REMARKS
C-17-1) 34bca	Sanpete Fish & Game	w 1	11 ALVM	15.5	60	15E		BD-3																	
C-17-1) 34bdb1	Sanpete Fish & Game	w I	II ALVM	15.5	60	15F	9-17-58	BD-3																	
C-17-1) 34bdb ₂	Sanpete Fish & Game	w 1	11 ALVM	15.5	60	30E		BD- 3																	
C-17-1) 34bdb3	Sanpete Fish & Game	w 1	11 ALVM	15.5	60	2E	9-17-58	BD-3																	
C-17-1) 346d64	Sanpete Fish & Game	w 1	II ALVM	15.5	60	ZE	9-17-58	BD-3																	
C-17-1) 34cdb	Sanpete Fish & Game	w 1	11 ALVM	15.5 12.0	60	ZE	8-06-56 9-03-57	BD-3 BD-3	34	. 46	51	44	143	8.7	227		48	282	. 5	2.5	731	1,440	81	L1.6	
C-18-1) 35aba3	Wesley Johnson	w		16.5		ιε	8-25-58	BD-3		ĺ															Saline Taste
C-19-1) 27dcd	Marlin Sorensen	w		15,5				BD-3										120							
C-19-1) 35aba	L. E. Nielson	w		18.5	295	5R		BD-3			l							135					1		Perf, 55-58, 75-80
C-19-1) 35bda	J. Stanfield	w		18.5	274	8R	1940	BD-3															Į		
D-20-1) 5dab		W		16.0	93	5R	7-16-58	BD-3																	
C-21-1) 11aba ₁	Town of Redmond	w I	III ALVM	19.0 21.0	41	12R	8-22-57	BD-3 BD-3	40	. 03	34	19	144	6.5	158		95	181	.5	.7	599	1,040	8.0	L1.6	
C-21-1) llada ₂	Town of Redmond	w		19.0	40	16		BD-3				ļ													
C-21-1) 13abd	R. E. Noyes	w I	III ALVM	19.0	291	50M	8-20-58	BD-3	51		35	15	104		147		94	112		. 7	484	758	7.9		
С-21-1) 26ЪдЪ	United Devel. Co.	or 1 W	20 TRTR	15.5	722	4M	7-02-58	BD-3	35	.03	34	18	86		134		92	98		1.2	430	715	7.6		
C-21-1) 33acc	Roland Crane	w		15.5	200		8-08-56	BD-3																	
C-22-1) 9add	F. J. Gurney	w		15.5	300		2-28-58	BD-3																	Water highly mineral
C-23-2) 19aac	Al Helquist	w		15.5	190		8-16-57	BD-3							ł			25							
C-23-2) 19dcc	Owen Ogden	w		16.5	88	.8M	8-14-57	BD-3													1	1	1		
С-23-2) 23ЪдЪ	Venice Pumping Company	w		15.5	12.4	50E	2-25-58	BD-3										260							Developed Spring
C-23-2) 26bcb	Verdon Oldroyd	w		15.5	60	31		BD-3	1									80						ļ	
C-23-3) 25bab	City of Richfield	w		16.0	781		7-06-60	BD-3	12		52	35	27		313		37	29		.4	341	576	7.7		Perf. 212-270, 332-39 420-462
С-25-4) 13ъдъ	W. Wayland	w		16.0	70	5R		BD-3																	
C-25-4) 14add	Leon Taylor	W		19.5	65	5R	1936	BD-3																	
D-22-2) 15aac	Salina Irr. Co.	G.		19.0	Z, 000	675E	8-27-57	BD- 3	1	.28	26	1	47	5.1			43	6.0	.4	.1	245	409		LI.4	Plugged below 620 Perf. at 425 & 600 ft.
D-18-1) 19dabS			124 FLGF	18.0	1	1900M	8-27-57	BD-3	13	.0	49	43	99	1.9	305		43	152	. 3	1.2	553	1,020	7.6	L1.3	
D-19-2) 4daaS C-21-1) 11aS	City of Gunnison Town of Redmond		124 GRRV			450R 6,000M																			
12b 🖶 c5				21.0		13 1/2 cfe	1906	WSP-199	1																

. .

Table 15-B. Central Sevier River Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5° C.

;

.

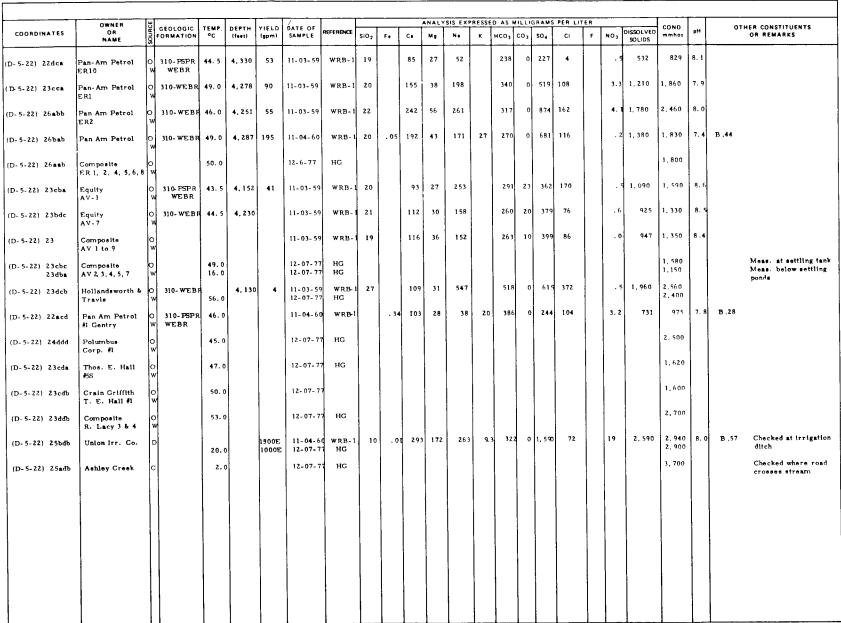
•

· ·

	OWNER	ч			DEPTH	YIELD	DATE OF					ANAL	SIS EX	PRESSE	DAS	MILLI	GRAMS	PER LIT	EA			COND.		OTHER CONSTITUENTS
COORDINATES			GEOLOGIC FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	Nı	ĸ	нсо3	co,	so4	CI	¢	NO3	DISSOLVED SOLIDS	mmhos	рH	OR REMARKS
(D-14-5) 16bdd	FBC Irr.	w	211 EMRY	55.0	9, 108	293M	1-20-62	BD-14	17	. 06	27	13	69	6.0	229	2	10	5	.7	1.1	302	471	8.0	H ₂ S B= .16 Cased to 5588. Plugg ed 5800- 5900. Flow between plug & cast
(D-18-2) 13caðS	Crystal Livingston Warm	s	124 FLGF	22.0 22.0 22.5 22.5 22.5 22.5		374M 382M 360M	4-27-66	BD-14 BD-14 BD-14 BD-14 BD-14		.05	26 25		129 175	6.5	421 410		86 82	55 49	.7	3.0	635 587	893 860 860 880 900 850	7.7	H ₂ S
D-19-2) 4dca	Peacock (Nine Mile Warm)		124 FLGF	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0		460M 346M 428M	12-06-65 2-03-66 4-26-66 7-28-66 11-04-66	BD-14 BD-14 BD-14 BD-14 BD-14		. 02	37	23	81 94	1.7		22	75	42	. 0		466 429	780 690 710 660 650 711	8.1	H ₂ S B=. 21
												- /												

Table 16-A. San Pitch Valley. One Well and Two Springs with Water Temperatures of 20° to 55° C.

Table 16-B. San Pitch Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5° C.


	OWNER	ACE	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EX	RESSE	DAS	HILLI	GRAMS	PER LIT	ER			COND.	ļ	[HER CONSTITUENTS
COORDINATES	OR NAME	SOUR	FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	si02	Fe	C.	Mg	N.	ĸ	нсо,	co,	s0₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рH		OR REMARKS
D-15-3) 16dca	Rock Dam Irr.	w		17-19.0	648	1,070	.7-26-66	BD-14														730	•	н ₂ s	
D-15-5) 10ba	B. E. Peterson	w		17.0	1, 183	3E	10-25-66	BD-14														570		5	
D-16-3) 20bad ₂	N. I. Olsen	w		15.5	120	10M	12-12-66	BD-14														520	ľ		
D-16-3) 23cbc	T. Aagaard	w		16.Ö	208	5R	3=13-43	BD-14																	
D-16-3) 26ccb	P. C. Peterson	w		15.5	800	4M	12-13-66	BD-14														810		н ₂ s	
D-16-3) 27bac	N. Hansen	w		15.5	103	5R	3-16-43	BD-14																2 	
D-15-2) 13bbc	Brewers		Fault	15.5-17		207M	11-07-66	BD-14														420		- - -	Yield 190-234 in 196 Conductance 390-430
D-18-2) 35d	Morrison Coal Mine Tunnel			16-16.5 16.0		1, 130M 5. 64 cf s		BD-14 WSP-199													ł	660		н ₂ s	Yield 1830 10-15-65 yield 930, cond. 600
D-18-2) 23aS	Lowry	s	Fault	16.5		20	1906?	WSP-199															ŀ	1	11-4-66
D-18-2) 13c5	Livingston Sulphur	s		14-16.5		10±	1906	WSP-199																	
D-18-3) 176S	Manti Silver	Б		18.5		12	1906	WSP-199														-			
													1	1									. 		

· ·

,

.

Table 17. Uinta Basin-Ashley	Valley. Temperatures o	Water from Oil Wells,	an Irrigation Ditch,	and Ashley Creek.
------------------------------	------------------------	-----------------------	----------------------	-------------------

.

1

•

Tabl	e 19-A.	Uinta Basin.	Wells and Springs with	Water	Temperatures of 20° to 57.	50
			in and a pringe with	. ator	remperatures of 20 to 57.	<u> </u>

		Luc I			····· ·		·····						SIS EXPRESSED AS MILLIGRAMS PER LITER											
COORDINATES	OWNER OR NAME	SOURCE	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiOz	F.	C.	Mg	N.	K K	HCO3	T 1	GRAMS	CI	F	N03	DISSOLVED SOLIDS	COND. mmhos	pН	OTHER CONSTITUENTS OR REMARKS
(D-6-23) 1bad	U.S.B.L.M. (Orig. Oil Test)	w	310-WEBR	43.5 46.0	2,650	200	6-25-57 7-13-58	BD-26 BD-26		0	367 357	69 75	91 104	23	139 141		1,150 1,150	78 80	1.8	1.1	2,000			
	Spllt Mtn. Warm Spring	s	330-MSSP	30.0		2700E	9-19-48	BD-26			97	32	193		198			291		.4 1.2	1,990 942		7.1	
U(B-1-8) 30ddbS	Warm Spring	s	310-WEBR	26.O		200E		BD-26	16	. 02	85	27	23	4.4	190	0	180	24	. 9	.08	454	704	7.4	
(D-8-20) 36baa	Shell Oll #1 State	w	124- PCCK 124- DGCK		3, 385 4, 783		6-13-66 6-21-66	BD-26 BD-26										11,500 31,000				53, 700 65, 100		Conductances don't agree with CI content
(D-9-20) 36ddc	WOSCO Test Hole	w	124-GRRV	27.5 23.5	1,900- 2,822 1,900-		7-31-69	BD-26			2.8							37, 500		<. I		85,000		
(D-13-19) 8aaS	U.S.B.L.M.		124 DCCK		3,234		7-31-69	BD-26	12		z. 0	1.2	16,600	62	5,940	319	400	21, 500	46	<. I	41,800	54,000	8.6	B 360
(0-13-17) 6440	0.3. D. L. M.	5	124-PCCK 124-EVCK	20.0		. 3E	8-08-72	BD-26														2,200	E8.0	
																				:				
																								2
				Ì																				
						ĺ																		
												-												

•

()

G,

Г

		2	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF		<u> </u>	,		ANALY	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LIT	EA	r		COND.			THER CONSTITUENTS
OORDINATES	0R NAME	sou	FORMATION	°c	(feet)	(gpm)	SAMPLE	REFERENCE	si07	F.	C.	Mg	N.a	ĸ	нсо,	co3	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рН		OR REMARKS
0-3-21) 30ddc1	L. Hullinger	w	310-WEBR	17.0 16.5	2,715	250	10-22-57 10-08-58	BD-26 BD-26			88 95	29 28	13 9		224 224	0	174 176	2.0 3.5		. 2 . 1	425 432	653 654	7.3 7.7		
)-3-21) 30ddc ₂	L. Hullinger	w	310-WEBR	17.0	1,230		5-01-73	BD-26	9.7	0.13	81	31	6.5	3.1	220	o	170	1.5	1. Z		413	648	7.5		
D-6-25) 36cab	State of Utah	w	210- CRCS	17.0	1, 420	0.5	9-26-56	BD-26	7.1		491	26	37	7.4	135	0	1, 240	12		. 00	1,890	2.050	7.6		
0-11-21) 316dd	Golden Hatch	w	124-GRRV	16.5	711	2	8-31-71	BD-26	15	. 03	0.7	0.7	370	.9	56Z	65	220	9.3	. 9		959	1, 490	8.7		
-2-1) 16bbb	L. E. Allred	٣	123- DCRV	16.5	685	10	7-06-58	BD-26		< 0.5					360	34		106							
-3-2) 30cdd	Herbert Murphy	٣	124- UINT	15.5	72		5-11-72	BD-26														1,950			
-4-2) 1 688	Chas. Cox	W	124- UIN T	15.5			5-09-72	BD-26														3. 500			
-4-4) ldam	D. W. Covington	w	112-OTSH	16.0	43	10	5-09-72	BD-26														720			
-11-21) 316dd	Golden Hatch	M	124-GRRV	18.0 15.0	711	2.0 1.4	8-20-74 12-24-74	BD-29 BD-29	17	. 02	1.5	.3	340	1	534	62	210	5.8			951	1,450	9.3		Many trace eleme
4-23) 23ddaS	Dinosaur NM	s	310- PRKC	15.5		4 M	11-18-58	BD-26	11		140	53	15		284	0	345	6		2.1	712	1.000	7.5		
4-23) 26cab5	Dinosaur NM	s	221-ENRD	17.0			5-04-50	BD-26	10	0	78	37	13		272	0	124	13	. 0	. 3	409	752	7.8		
4-23) 27bbaS	Dinosaur NM	s	220- NV JO	16.0		15 M	10-01-58	BD-26	11		67	26	11		223	0	102	5.0		.6	333	529	7.8		
4-23) 27cbdS	Dinosaur NM	s	211-FRNR	15.5			7-12-58	BD-26	16		221	125	426		230		1, 700	20	. 3	2.5	2,770	3,100			
-4-25) 31ccaS	Near Dinosaur	s	310-WEBR	19.0			7-31-68	BD-26	11		51	29	3.9	1.2	Z48	0	44	2.7	<i>.</i> 1	z.7	268	454	7.7		
- 5- 24) 32 S	Morris Ranch	s	310-WEBR	17.0		10 E		TP-15	13								1, 220	80			1,960	2,410			
-6-24) 5acd5	Musket Shot Sp.	s	310- PRKC	16.5		1 IE	5-11-73	BD-26	16	. 03	240	64	88	27	108	0	910	192	1.2		1,420	1,810	7.4		
-6-24) 56	Morris Ranch	s	310-WEBR	18.0		10 E		TP-15	13								485	51			911	1,260			
-7-20) 25bc5	SE of Leota	s	111-ALVM	15.5		40 E	10-06-48	BD-26	24		76	35	89		342	0	166	46		10	614	939			
-9-17) 21dca	U.S.B.L.M. Southern Basin	w	124-UINT	17.5	22	3	9-03-71	BD-26	11	. 06	20	16	510	Z. Z	467		720	91	. 2		1,600	2, 350	8.3		Shallow Well. W probably warmed
-10-24) 2acd	U.S.B.L.M. Southern Basin	٣	111-ALVM	18.5	12		7-13-58	BD-26	13		57	19	44		219		93	30		.8	365	635	7,5		
- 12 - 21) 19bddS	Sulphur Sp.	5	124-PCCK	19.5		20 E	8-30-71	BD-26	15	. 02	1.6	.6	230	• 8	35Z	32	150	6.3	. 2		613	968	8.5		Probably related nearby faults
- 15- 20) 15bbdS	Flat Rock Mesa	s	124-PCCK	17.0		. ZM	8-31-71	BD-26	16	. 01	57	16	24	. 4	242	0	57	7.9	. 1		301	478	7.6	BDR-29 Reports	Probably warmed Temps. of 3 to 12 flows . 75 to 3 gpm
-2-1) 27ЪсЪ	So. of Roosevelt	w	123-DCRV	18.5	160	2	7-06-58	BD-26							462	51		3,184						Reports	tiowa . / s to s gp
(-2-1) 27абъ	So. of Roosevelt	w	112-OTSH	18.5	42	7	7-06-58	BD-26	9		4.0	1.5	147		246	0	77	37		Z.3	383	639			
- 2-6) 14 db d5	Duchesne River	s	123-DCRV	18.0		5 E	7-04-58	BD-26	11		119	107	16		186	0	524	51		. Z	1, 004	1,274			
C-2-6) 14dbc	Duchesne River	w	112-OTSH	17.5	95	20	7-04-58	BD-26	13		90	64	24		457	0	138	16		. 2	570	921			
C-2-6) 14dba6	Duchesne River	s	123-DCRV	17.5			7-04-58	BD-26		<0.5					325			56							
C-3-2) 31bac	SW of Roosevelt	W	112-07SH	15.5	48	1	5-09-72	BD-2														1,400			Shallow Well. Wa probably warmed
D-3-2) 7dda	At Randlett	w	112-OTSH	15.5	40	1	7-07-58		15		128	71	260		460	0	652	78		11	1,470	2,010			

Table 19-B. Uinta Basin. Wells and Springs with Water Temperatures of 15. 5° to 19. 5° C.

	OWNER	ы	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXP	RESSE	DASN	AILLIG	RAMS	PER LIT	ER			COND.	,		R CONSTITUENTS
OORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mą	Ν.	ĸ	нсоз	co3	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhoi	рH		DR REMARKS
0-10-21) 16add	Gas Producing Enterprises	G	124 GRRV	27.0 21.5	5,604	10	8-21-74 6-25-75	BD-29 BD-29	17 16	.1 .13	1.5 3.8	. 2 . 5	900 1,000	3.6 2.8			110 130	380 500	27	. 08 . 01	2,310 2,510			Many Trace Elements	Nitrate + Nitrite Other Temps 21 ⁰
-10-21) Zaca	Depco inc.	G	124 GRRV	17.0	6,479		6-25-75	BD-29	11	.05	1.1	. 5	3,400	11	4, 140	963	58	1,700	120		8,380	12,000	8. 5		
-10-22) 17aad	U.S.B.L.M.	G	124 GRRV	21.5 22.5	7,005	3.2 3.0	8-21-74 6-25-75	BD-29 BD-29	15 15	.09 .06	2.1		2,400 3,100		779 1,950		140 100	3,200 3,300	25	.03 .01	6,190 7,880				Nitrate + Nitrate Other temps 20. 33.
-11-23) 13dcd	Shamrock Oll & Gas Corp.	G	124 GRRV	26.0	5, 857	10 E	6-25-75	BD-29	14	.04	5.8	.7	420	1	602	51	310	36	2.8		1,140	1,770	8.8		Other temps 23. 27.5° Yields 34
-11-24) 6dbc	U.S.B.L.M.	Gy W	124 GRRV	28.5 28.0	5,950	40 50	9-10-74 6-26-75	BD-29 BD-29	15 16	. 02 . 02	1.9 1.7	.8 .5	400 410	1.1 .9	568 510		360 390	33 31	2.0 2.0		1,100 1,150			Many Trace Elements	Other temps 25 Yields 36-60 *
-11-24) 7cac	U.S.B.L.M.	Gy W	124 GRRV	26.5 26.5	5,840	36 37	9-10-74 6-2 6- 75		14 13	. 02 . 04	3.4 1.9	.4 .7	420 430	1:1 1.0	742 693		290 300	23 22	3.8 4.7		1,130 1,150	1,700	8.3 8.8	Many Trace Elements	Other temps 24 Yields 30-39**
-11-24) 8caa	Shamrock Oil & Gas Corp.	G	124 GRRV	26.5 26.0	6,569	18 17	9-10-74 6-26-75		14 14	. 02 . 03	1.9 3.0	. 2 . 2	390 390	1,1 .9	574 498		350 380	27 25	2.0 2.1		1,070 1,110	1,700 1,770	8.3 8.9	Many Trace Elements	Other temps 24 Yields 16-21
-10-20) 35bbc	U.S.B.L.M.	G,	124 GRRV	31.0	5,672	18	8-20-74	BD-29	16		1,6	.8	900	3.4	1,480	165	16	300			2,150	3,250	8.6	Many Trace Elements	Perf. at 2,500 p Plugged below 4
																								2200	-77; Plugged belc 8-1160; 1138-154 elow 2396

Table 19-C. Uinta Basin. Gas and Water Wells with Temperatures of 17° to 34° C. (Monitored by USGS).

) , · · ·

: ,

																							*Numbers refer to figure 8
COORDINATES	OWNER	GEOLOGIC	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO ₂	F.	c.	Mg	Na	RESSI	HCO1	T	GRAMS	CI	E A F	NO3	DISSOLVED	COND.	рН	OTHER CONSTITUENTS OR REMARKS
	NAME	8														301				SOLIDS			
(C-5-1) 23bda	S. J. Shelley	W 112 PLCN	21.0	106		5-05-58	BD-2	26		182	55	213		233		438	352		.6	1,380	2,300	6.9	1*
(C-5-1) 24dcd	V.V.Stake LDS Church	W 112 PLCN	23.0	90		6-05-57	BD-2	36		128	44	156		255		266	218		.0	1,060		7.5	2
(C-5-1) 24ddc	W. D. Ennis	W 112 PLCN	21.0	90			BD-2																3
(C-5-1) 25abc3	Board of Canal Presidents	W 112 PLCN	24.0	198	50	4-21-58	BD-2	34		180	51	204		330		386	302		1.7	1, 320	2,080	7.0	4
(C-5-1) 25bad		W 112 PLCN	22.0	100		4-21-58	BD-2			167	54			328		385				8	2,080	7.2	5
(C-5-1) 25bbcS		S 111 ALVM	43.5			6-04-58	BD-2	28	ļ	191	52	235	i	320		441	338		2.5	1.440	2,230	7.3	6
(C-5-1) 25cba	Sugarhouse Stake LDS	W 112 PLCN	35.0	100		4-25-58	BD-2	33		192	51	277		322		422	338		1.4	1,420	2,240	7.7	7
(C-5-1) 25cbb	Sugarhouse Stake LDS	W 112 PLCN	35.0	147	1 50	8-09-55	BD-2	27	2.8	192	50	246		339		448	338		.0	1,568		7.2	8
(C-5-1) 25cbd ₁	Sugarhouse Stake LDS	W 112 PLCN	35.0	93		4-25-58	BD-2			192	53			352		420				2,280		7. Z	9
(C-5-1) 25ccb2	Wilford Stake LDS	W 112 PLCN	35.0	147	100	4-29-58	BD-2	30		188	52	229		316		426	338		3.1	1, 420	2,230	7.3	10
(C-5-1) 25ccc4	F. Eastmond	W 112 PLCN	46.0	105	125	5-28-53	BD-2	21	. 29	179	55	229		317		413	343	1.8	. 5	1, 506		7. t	11
(C-5-1) 25 cd c5		S III LOST	41.5			5-27-58	BD-2	27		180	49	232		320		425	318		1.3	1, 390	2, 140	7.3	12
(C~5-1) 26 aadS	e e e e e e e e e e e e e e e e e e e	5 III ALVM	43.5				BD-2															ļ	13
(C-5-1) 26bdb	M. Shiba	W 112 PLCN	30.0	500		4-29-58	BD-2	29		158	52	197		310		328	312		1.4	1,230	1,990	7. Z	14
(C-6-1) laabS	Fault-Zone Sprg.	S Fault	32.0			5-04-40	BD-2	25	6.0	124	61	202	12			509	440			1,668		7.8	15 Fe includes Al ₂ 0 ₃
(D-6-2) 5acc4	U.S. Steel	W 120 TRTR	20.5	1,063	2,000	6-29-55	BD-2	11	. 24	29	8.9	19		146		21	6.0	. 25	.0	157		7.9	26
(D-6-2) 8acb	U.S.Steel	W 120 TRTR	20.5	1, 192	3.700		BD-2																27
(D-6-2) 8bca6	U.S.Steel	W 120 TRTR	20.5	1,066	Z, 800		BD-Z																28
(D-6-2) 8bed4	U.S.Steel	W 120 TRTR	21.0	830	2,200	12-07-48	BD-2	15	.3	25	9.4	7.8		168		8.2	14	. 2 9	0	141		8.0	29
(D-6-2) 8cac5	U. S. Steel	W 120 TRTR	20.5	1, 190	2,850		BD-2																30
(D-6-2) 8cda	U.S. Steel	W120 TRTR	20.5	1,090	3,900		BD-2																31
(D-7-1) 5ccb S		s	25.0			9-11-58	BD-2	15		144	58	342		348		325	510		. 8	1, 570	Z, 570	6.9	32
(D-7-1) 8bbc S		S 111 ALVM			1	9-11-58	BD-2	16		88	59	342		196		314	510		.8	1,430	2,430	7.5	33
(D-8-1) 2ccb S		S 111 ALVM			1		BD-2																37
(D-8-1) 2ccd S		S III ALVM					BD-2																38
(D-8-1) 3dcd S		S 111 ALVM	30.5				BD-2																39
																					ł		
															1								
			1	1	1				1									ŀ					

Table 20-A. Northern Utah Valley. Wells and Springs with Water Temperatures of 20° to 46° C.

2 · 1. 2 · 1. 2 · 1.

2

 \mathbb{D}

	OWNER	B										ANALY	SIS EX	RESSE	DAS	MILLIC	GRAMS	PER LIT	ER					
COORDINATES	OR NAME	SOURC	GEOLOGIC FORMATION	°C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	\$iO ₂	Fe	C.	Mg	N a	ĸ		T		CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUENTS OR REMARKS
C-5-1)14caa	0. Godfrey	w	112 PLCN	15.5	250		5-05-58	BD-2	34		58	28	127		206		110	176		4.8	639	1040	7.8	
C-5-1)25abc	Utah P & L Co.	·w	112 PLCN	16.5	90		4-21-58	BD-2			100	31			206		167					1180	7.4	
D-5-1)4bcc	Lehi Irrigation Co.	w	112 PLCN	15.5	655	1200	7-01-58	BD-2	24		42	18	28		188		16	49		1.8	271	468	7.9	
D-6-1)29dab	R. Cederstrom	W	112 PLCN	15.5	165		4-24-58	BD-2	41		29	15	44		263		3	7.5		.2	269	436	7.6	
D-7-3)7dee	LA & SL RR Co.	w	112 PLCN	18.0	270	200	4-21	BD-2																
(D-7-3)32bee	Wood Springs Irr. Co.	W	120 TRTR	16.5	414		2-11-59 9-15-60	BD-2 BD-16	15 15		43 44	15 13	24 24	1.6	246 245		3.1 4.5	10 12	.2	1.6 1.2	233 224	403 387	8.2 8.0	
																						1		
					1																			
														1										
											1													
										1														
					1															ł				
]															4		1		
					1																			
		1																						
																			1					
		1																						
	•	1				1		1			1	1	1	1	1		1					1	1	

, · · ·

I)

۱

Table 20-B. Northern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5° C.

,

ı

•

COORDINATES	OWNER OR	RCE	GEOLOGIC	TEMP.	DEPTH		DATE OF					ANALY	SIS EX	PRESSE	DAS	MILLI	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
LOOHDINATES	NAME	Sou	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO 2	Fe	C.	Mg	No	ĸ	нсо,	c0,	SO4	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рH	OR REMARKS
(С-8-1)16съъ	Del Chipman	w	111 ALVM	20.0	392		6-49	BD-16																16 Abandoned
(C-8-1)20cdb	L.W.Fitzgerald	w	111 ALVM	20.0 14.0	205	15R	11~11~45 5 - 06-66	BD-16 BD-16			77	34	133	18	311	0	96	205			762	1270	8.2	17
(C-8-1)32beb	J.H. Allen	w	111 ALVM	20.0 14.5	265	15R	12-05-45 5-02-66	BD-16 BD-16			45	21	155											18 Other appreciabl
(C-10-1)24ddc	Kearns Stake LDS	w	111 ALVM	22.0	530	216R	9-10-65	BD-16	ļ			£1	199	15	229	0	96	188			647	1040	7.6	different analys BD-16
(C-10-1)28ad a	Elberta Land & Water Co.	w	111 ALVM	20.0 20.0	335	50R	11-23-51 8-07-64	BD-16			81	34	125	18	285	0	126	269			800	1490	8.1	20
(C+10-1)29cdd	Lazy S Cattle Co.	w	111 ALVM	22.0 22.5	862	1642	6-14-66 8-07-64	8D-16 BD-16			62	16	26	9.8		0	46	58			373	585	8.0	21 Other analyses available BD-16
(C-10-1)32000	Lazy S Cattle Co.	w	111 ALVM	20.0 20.0	515	2210	8-07-64 6-15-66	BD-16 BD-16	62		65 73	23 24	38 36	10 9.9	177 190	0	83 55	87 86	.5	29	484 491	702 736	8.0	
(C-10-1)33aba	Max Thomas	w	111 ALVM	20.0	425		8-07-64	BD-16			180	85	185	32			155	686	.,	27	1780	2570	8.4	
(D-7-3)20bda	Reilly Tar & Chem Co.	w	111 ALVM	22.0 22.0	337	<1E	6-10-64 6-21-65	BD-16 BD-16			3.0 36	.2 10	39 50	2.0 •3.5	73 237	2.7	15 26	12 12			115 259	203 431	9.6 8.6	35 It is not likely
(D-8-2)16ccd	Mark Hall	w	120 TRTR	20.0 19.5	675	3	7-09-65 5-19-64	BD-16 BD-16			29 36	24 22	35 34	15 15	188 198	6	51 48	33 36			331 345	480 516	8.3 8.6	from same well.
(D-8-2)28ccc	Oral Bartholomew	w	111 ALVM	34.0 33.0	276	200R	5-28-64 6-16-66	BD-16 BD-16	85 77		35	14 16	83	2.4	196	Ŭ	43 48	34 79	.6	.1 2.8	441 451	625 668	7.7	
(D-8-2)29ada	Newland Hansen	w	111 ALVM	20.0	500	27	3-27-67	BD-16								1	-	.,,	.0	2.0	4/1		8.0	43
(D-8-2)32aad	Ken Young	*	111 ALVM	26.5	117	1.5	9-28-64	BD-16																44
(D-8-2) 33ъъъ	R.T. Herbert	w	111 ALVM	31.5	220		1-20-67	BD-16																45
(D-9-3)5ede	John Koyle	w	111 ALVM	20.0	105	10R	10-11-45	BD-16																46
																ĺ								
														2										
								1																
		ŀ			ļ																		ł	
								1																
				1																				
					1				1	1	1											l.		

Table 21-A. Southern Utah and Goshen Valleys. Wells with Water Temperatures of 20° to 34° C.

· ,

Table 21-B.	Southern Utah Valley.	Wells with Water	Temperatures of 15.5° to 19.5°C.

	OWNER	UUU	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF		L			ANAL	SIS EX	RESSE	DAS	MILLI	GRAMS	PER LIT	ER					
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	si0 ₂	F.	c.	Mg	N a	ĸ	нсо,	C03	s0.	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рH	OTHER CONSTITUENTS OR REMARKS
-7-2) 35ccd2	Angus Hales	s	III ALVM	16.0	420	90 R	5-12-64	BD-16			50	17	18	4.7	268	0	7. Z	9.9			258	436	8.1	
-7-2) 36ccb	W. J. Money	w	III ALVM	18.5	504	170	7-27-64	BD-16																
-7-2) 36 dbc 3	Kolob Farms	w	III ALVM	15.5	450	4.3	3-23-67	BD-16																
-7-2) 36dcc4	C. A. Spafford	w	11 1 AL VM	16.5	522	587	10-27-65	BD-16]		
-7-3) 20acb	Utah Co. Packing Co.	w	111 ALVM	15.5 15.5	315	ZR	5-19-64 6-21-65				54 21	16 17	35 38	3.1 3.5	267 171	4.2 8	19 19	2 4 27			310 228	534 425		
-7-3) 20bcd1	Pacific States Cast Iron Pipe	w	111 ALVM	16.0	325	80 R.	8-10-64	BD-16	3.4		46	11	38	3.1	273	0	3.4	15			253	476	8,0	
-7-3) 20bcd2	Pacific States Cast Iron Pipe	w	III ALVM	16.5	\$ 08	80 R	1-22-47	BD-16																
-7-3) 20bcd3	Pacific States Cast Iron Pipe		III ALVM		635	70 R	1-15-47	BD-16																:
-7-3) 20bcd ₄	Pacific States Cast Iron Pipe	w	111 ALVM		478	75 R																		
- 7-3) 20bdb	Reilly Tar & Chemical Co.	W	111 AL VM	15.5 14.0	560	<1 E	6-10-64 4-20-66				32 46	12 11	51 52	3.5 3.1		15 0	28 0	13 13			266 314	445 528		
-7-3) 28bdb	U.S. Fish & Wildlife	٣	112 PLCN	17.0 18.0	338	1200 R	6-21-63 5-11-64		14		188 191	63 68	69 60	5.1	258 234	0 0	537 562	78 82		.6	1,080 1,140	1,490 1,470		
-7-3) 28cab	Park Ro She Corp	W	111 ALVM	15.5	290	30 R	9-15-64	BD-16												1				
0-8-1) 11cbd	W. J. McClain	w	111 PLCN	16.5 16.0	151	.14	5-19-64 6-25-65				56 49	17 20	48 48	16 15	128 151	5.4 0	48 36	122 121			435 424	676 669		
-8-1) 12dda	W. A. Cornaby	W	111 ALVM	15.5	196	.6	7-06-64	BD-16																
-8-1) 13a aa	R. G. Francis	W	111 ALVM	16.0	358	7.5	7-06-64	BD-16																•
-8-1) 13daa3	D. F. Meecham	w	111 ALVM	19.0 19.0	460	48	5-18-64 6-25-65				40 2G	22 23	18 19	11 10	181 154	9.0 5	51 40	17 16			313 268	431 375	8.6 8.4	
)-8-2) 3ccd	L. M. Banks	w	111 ALVM	15.5 13.0	420	40 R	7-19-65 12-07-61				17	18	23	5.5	154	14	13	8. Z			195	310	8.5	
0-8-2) 4bcb or 4bcc	Lakeside Irr. Co.	w	120 TR T R	16.5 16.5	544	36	5-12-64 4-20-66				24 20	10 11	51 50	3.5 3.1	215 246	8 0	14 0	9.2 8.5			240 246	396 381		I
-8-2) 4dađ	W. M.Sorensen	w	120 TRTR	18.0 18.0	634	70 R	5-19-64 8-19-64		34		31 29	13 12	37 41	3.9	204 234	13 0	15 2.5	7.8 12		. 3	220 230	371 354		
-8-2) 7bcc	I. E. Carlson	w	111 ALVM	17.0	370	30 E	6-10-64	BD-16			35	28	27	9.4	200	19	51	16			316	480	8.8	
-8-2) 7cab	H. L. Brooks	w	111 ALVM	17.0	263	30	8-20-64	BD-16																
-8-2) 7cbd	J. R. Nelson	W	111 ALVM	18.0	167	30	8-20-64	BD-16																
-8-2)7đbc	Mark Hall	w	III ALVM	15.5	550	4	10-10-62	BD-16			28	29	25	9.0	212	12	31	20			300	483	8.4	B.07
)-8-2) 7dda	M. E. Hall	w	111 ALVM	16.0	276	6 R.	6-03-64	BD-16			2 6	24	19	5.9	184	9	26	13			247	391	8.5	
)-8-2) 7ddd	M. E. Hall	w	111 ALVM	16.0	520	5	4-12-40	BD-16																
0-8-2)8 aaa	Elliot Sabey	w	111 ALVM	16.5	131	1	10-10-62	BD-16			28	30	70	7.4	326	29	0	37			355	641	8.7	B.18
D-8-2)8106a	Richard Hunter	w	111 ALVM	15.5	400	10	10-10-62	BD-16			24	19	27	4.7	203	11	2.9	12			209	340	8.6	

•

,

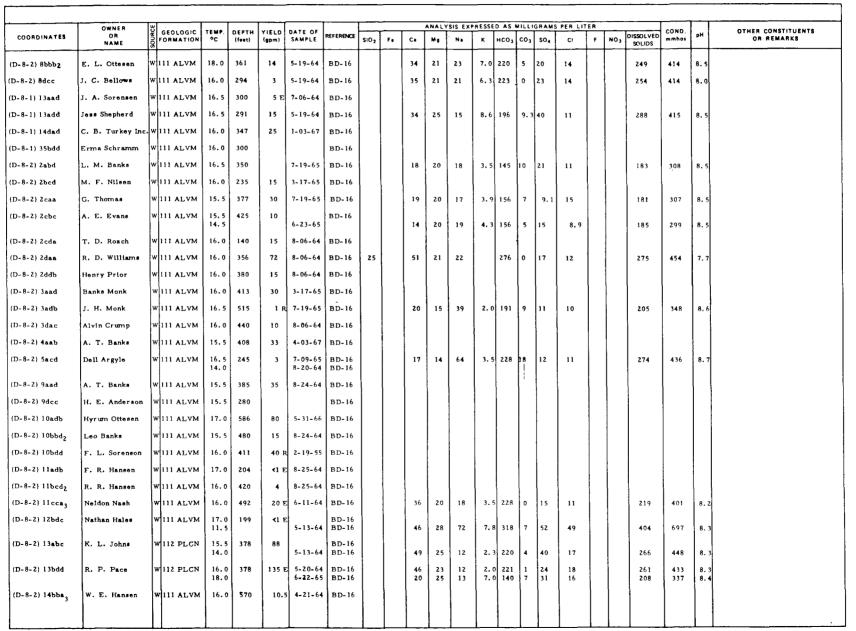


Table 21-B. Southern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5° C.

*

,

	OWNER	1	1			T						ANAL	SIS FY	RESCE	DAS	MILL 14	GRAMS	PER LIT	FR			r		
COORDINATES	OR	SOURCI	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO 2	F.	C.	Mg	N.	ĸ		co3		CI	F	NO3	DISSOLVED SOLIDS	COND. mmhes	рΗ	OTHER CONSTITUENTS OR REMARKS
D-8-2) 10abd2	Palmyra Ward LDS	w	111 ALVM	13.5	445	25 R	11-25-53 7-19-65	BD-16 BD-16			15	20	18	4.7	138	10	19	9.9			185	294	8.6	
0-8-2) 14bcd	Everett Hansen	w	111 ALVM	15.5 17.0	424	7 R	7-20-65	BD-16 BD-16			20	20	17	3.1	150	12	15	11			192	315	8.7	
D+8-2) 14dcc	W. G. Johns	w	111 ALVM	15.0 15.5	377	10	5-19-64 7-09-65	BD-16 BD-16			53 50	21 22	14 15	2.3 2.0	253 262	2 0	24 20	11 9.9			263 264	447 434	8.3	
D-8-2) 15aca	M. J. Hansen	w	111 ALVM	15.5	403	25 R	5-01-46	BD-16																
D-8-2) 15ddb	P. A. Johnson	w	111 ALVM	16.5 16.5	468	20	5-19-64 4-19-66	BD-16 BD-16			40 37	14 14	30 29	2.7 2.3	227 256	8 0	12 0	9.9 9.9			243 239	393 404	8.5	
D-8-2) 16bcb	Florence Barney	w	111 ALVM	16.5	459	3	5-19-64	BD-16		l	31	23	26	7.0	223	9	21	12			2 5 4	412	8.6	
D-8-2) 16caa	W. G. Foster	w	111 ALVM	16.5	640	142	9-02-64	BD-16																
D-8-2) 17ada	Bert Hansen	w	III ALVM	18.5	466	4	9-03-64	BD-16																
D-8-2) 17baa	J. W. Bingham	w	111 ALVM	15.5	380	5.6	4-05-67	BD-16			ļ		ļ									ļ		
D-8-2) 17ccc ₂	Allen Clayson	w	111 ALVM	17.0 18.0	363	60	5-19-64	BD-16 BD-16			37	21	22	7.0	234	o	26	12			278	429	8.2	
D-8-2) 17dcc	B. Shepherd	w	111 ALVM	17.0 18.0	340	20	6-03-64	BD-16 BD-16			35	21	29	7.4	211	12	33	13			278	434	8.4	
D-8-2) 18bdc	Louis Then	w	111 ALVM	18.0	365	12	9-03-64	BD-16																
D-8-2) 19add	A. Beckstrom	W	111 ALVM	18.0	480	20	9-03-64	BD-16																
D-8-2) 20cad1	Ivan HawRins	w	111 ALVM	16.5	450	8.8	3-28-67	BD-16	ļ		ļ	ļ												
(D-8-2) 20cad2	C. E. Hawkins	w	111 ALVM	16.5	420	2	3-28-67	BD-16																
D-8-2) 20ddd2	A. Beckstrom	w	111 ALVM	18.5 19.5	412	5	5-26-64 6-25-65				39 18	11 16	38 39	8.6 8.2	206 154	13 9	28 44	11 12			286 264	434 361	8.6	16.5° BD-16
D-8-2) 21aaa	J. M. Argyle	w	111 ALVM	16.5	498	90 R	7-20-65	BD-16			17	18	29	3.5	168	6	16	9.6			187	306	8.5	
D-8-2) 21abb	Fay Huff	w	111 ALVM	15.5	161	<1 E	9-22-64	BD-16					1											
(D-8-2) 21bab2	Lynn Argyle	w	111 ALVM	16.0	346	6	9-14-64	BD-16																
D-8-2) 21ddd	B. Anderson	w	111 ALVM	16.5 16.0	347	30	5-18-64 6-24-65				37 15	15 16	28 29	3.5 3.5	218 156	5 7	15 17	9.9 9.2			216 189	383 287	8.4 8.6	
D-8-2) 22cdc	Utah Hide & Tallow Co.	w	111 ALVM	18.5 16.5	620	60 R	5-22-35 5-19-64				38	14	28	4.3	209	9	16	9.6			203	378	8.6	
D-8-2) 22cdc ₂	Utah Hide & Tallow Co.	w	111 ALVM	17.0	385	100 R	5-17-57	BD-16																
D-8-2) 23bdc 23bdc ₂	C. Marcuson	w	111 ALVM	16.5 17.0	370	24 R	9-15-64 5-20-64				46	19	12	1.6	228	o	24	8			202	400	8.2	14° 4-19-66 BI
D-8-2) 233bd2	U & I Sugar Co.	w	111 ALVM	16.5	390	275	5-18-64	BD-16			44	22	13	2.0	223	3	27	11			239	409	8.3	
D-8-2) 23dca ₂	U & I Sugar Co.	w	120 TR T R	16.5	569	82	5-27-64	BD-16	25		46	20	25		266	0	16	14		. 1	265	435	7.8	
D-8-2) 25bcc	E. H. Davis	w	111 ALVM	16.0	309	4.7	9-22-64	BD-16															ľ	
D-8-2) 25cdd2	H. C. Snell	w	111 ALVM	15.5	212	20 R	2-26-62	BD-16		1	1						1		}]		

r '1

Table 21-B. Southern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5° C.

۰.

	0.000	ωT	_	T										DOFFC	D 45			PER LIT						
COORDINATES	OWNER OR NAME		GEOLOGIC	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF	Reference	si02	F.	C.	Mg	Na	K	HCO3		SO4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONSTITUENTS OR REMARKS
D-8-2) 25dac3	California Packing	wı	11 ALVM	16.0 16.5	620	513	9-14-64	BD-16 BD-16	24		51	25	8.2		274	0	1.6	13		. 3	282	452	8.1	
D-8-2) 26aad ₃	R. S. Creer	w	II ALVM	16.5	223	10 R	10-13-61	BD-16																
D-8-2) 265ab3	H. J. Thomas	wl	II ALVM	15.5	388	2	7-20-65	BD-16			49	20	14	2.3	249	0	20	11			253	435	8.0	
D-8-2) 26cac	Roy Creer	w	II ALVM	18.5	357	14.1	3-06-36	BD-16																
D-8-2) 27aaa ₂	I. D. Beck	w	II ALVM	16.0	348	١E	9-28-64	BD-16																
D-8-2) 2766a2	R. Anderson	w	III ALVM	15.5	275	1	9-23-64	BD-16																
D-8-2) 28bad 2	T. L. Johnson	w	III ALVM	18.0 20.5	500	4 R		BD-16 BD-16			21	16	44	1.3	210	13	9.1	18			285	420	8.6	
D-8-2) 28bcc5	A. G. Hone	w	111 ALVM	15.5	160	1.5	9-25-64	BD-16																
D-8-2) 28cca2	S. L. Thornton	w	III ALVM	18.0	200	<1 E	9-25-64	BD-16											Ì					
D-8-2) 28ddd	Ralphy Balzly	w	III ALVM	16.0	242	. 5	9-25-64	BD-16																
D-8-2) 29.887	R. L. Hickman	w	III ALVM	15.5	390	5	9-25-64	BD-16																
D-8-2) 29a aa g	Rex Steele	w	III ALVM	15.5	175	4	9-25-64	BD-16																
D-8-2) 29ddd	H. Clayson	w	III ALVM	17.0	171	6	9-28-64	BD-16																
D-8-2) 31cdb2	S. Scharrer & D. Tanner	w	III ALVM	19.0	230	30	8-04-64	BD-16	63		34	17	40		230	0	29	15	0	.1	300	428	7.7	
D-8-2) 32d aa	Benjamin Cemetery	w	III ALVM	15.5	247	50 E	9-23-64	BD-16																
D-8-2) 32dde	K. Dixon & A. B. Bayer	w	111 ALVM	19.0	341	2	10-20-64	BD-16																
D-8-2) 33bdc	Ralph Balzly	w	111 ALVM	18.0 17.0	185	10	5-03-65	BD-16 BD-16	62		30	17	59		302	0	7.4	12		.1	331	485	8.0	
D-8-2) 36dbd3	B. E. Cloward	W	III ALVM	16.5	38			BD-16												ĺ				
D-8-3)17dda	Mark Hansen	w	111 ALVM	15.5	125	8 R	5-08-54	BD-16																
D-8-3) 18bdc	J. E. Clark	M	112 PLCN	16.0	368	200 R	5-18-54	BD-16			48	25	11	2.3	234	5	28	16			239	446	8.4	
D-8-3) 20bab	Neil Bona	w	111 ALVM	15.5 15.5	295	16	8-13-64 7-29-65				55 52	21 24	53 52	5.5 5.5	326 362		26 13	19 18			349 366	609 59 4	8.3 8.4	
D-8-3) 22cmc	J. H. Westwood	W	120 TRTR	15.5 15.	541	1500	8-31-64 7-15-64		21		69 41	23 12	49 44	3.5	268 171	0		48 53		.5	428 356	688 581	8.2 8.2	
D-8-3) 32bba	J. C. Holt		111 ALVM	15.5			11-25-53	1	ļ															
D-9-1) 1 4ada	O. G. Stewart		III ALVM	16.5	55	10 R																		
D-9-1) 14ddd	C. W. Nay		111 ALVM	18.5	125	10 R														}				
D-9-1) 24cab	Bliss Hyatt	1.1	111 ALVM	16.5	71	10 R	10-19-61	BD-16																
D-9-2) 15aa2	E. A. Tiffany	w	111 ALVM	16.5	200	4 R	7-27-65	BD-16			66	44	48	11	417	0	70	36			470	808	8.1	Also temp. 15.5° BD-16
D-9-2) 16cb	Spanish Fork Stake, LDS	W	111 ALVM	17.0 19.5	740	480	8-13-66 9-02-66	BD-16 BD-16			41 29	13 13	20 39	3.5 3.5	228 236	0 46	5.8 5.8	9.9 5.7			252 220	385 390	8.1 8.4	

Table 21-B. Southern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5° C.

۰.

1

•

COORDINATES	OWNER	L 2 2 2	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF	REFERENCE								1		PEA LI	T	<u>, </u>		COND.		OTHER CONSTITUENTS
	NAME	ŝ	FORMATION	°C	(feet)	(gpm)	SAMPLE		5102	F.	Ca	Mę.	N.	ĸ	нсо,	co3	504	CI	F	NO;	DISSOLVED SOLIDS	mmhoi	рH	OR REMARKS
D-9-2) 4cdc	Island Ranching Co.	w	111 ALVM	16.5	310	20 R	7-29-43	BD-16																
D-9-2) 7dcc	S. L. Spencer	w	112 PLCN	16.5	310	45 R	6-03-64	BD-16			50	25	42	11	223	13	77	33			372	599	8.3	
D-9-2)9ddb	Jack Spencer	w	111 ALVM	15.5	200	20 R	9-19-64	BD-16												1				
D-9-2) 10dac	D. Christensen	w	111 ALVM	16.5	360	41	8-31-66	BD-16	17		38	27	20		194	0	41	32		4.1	264	463	7.9	
D-9-2) 11aca3	D. C. Cole	w	III ALVM	15.5	285	250 R	12-13-58	BD-16																
D-9-2) 1dcd ₂	D. L. Davis	w	111 ALVM	16.0 15.0	293	18 R	7-27-65 4-10-62				45	23	19	2.3	238	7	22	15			244	446	8.5	
D-9-2) 15mac	J. D. Francom	w	111 ALVM	15.5	75			BD-16																
D-9-2) 19ddb	Orlo Carson	w	111 ALVM	16.5	112	15 R	11-29-51	BD-16																
D-9-2) 22bda	R. B. Allred	W	111 ALVM	19.0	814	40 R	4-19-58	BD-16																
(D-9-2) 32bac	C. Ashton	W	111 ALVM	16.0 15.0	367	325 R	11-12-53 6-01-64	BD-16 BD-16			61	33	13	1.6	289	0	61	13			313	563	7.8	
(D-9-3) 6baa	W. E. Hunt	w	111 ALVM	15.5	260	40 R	6-20-57	BD-16																lacd destroyed in 1965
(D-10-1) lacd	East Santaquin Irr. Co.	w	111 ALVM	16.5	798	520 R	8-03-60	BD-16																
D-9-2) 15666	F. A. Schramim	w	III ALVM	16.5	132		7-27-65	BD-16			36	26	16	2.0	192	3	36	24			259	429	8.3	
D-9-2) 31cdb	Jones Builders Service	w	111 ALVM	16.5	224	67 R	7-29-65	BD-16			16	24	100	5.9	212	15	111	36			418	686	8.6	
	1																							
									l															
		1						1																

*

1

.

Table 21-B. Southern Utah Valley. Wells with Water Temperatures of 15.5° to 19.5° C.

D.

,

COORDINATES

(C-10-1)36dcbS

(C-10-2)15dddM

(C-11-2)3adS

(C-11-2)22badS

(C-11-2)26daS

(D-7-1)26cS

(D-7-3)32dbS

(D-8-1)3ddmS

(D-8-3)4caS

(D-10-1)8cS

OWNER

OR

NAME

Goshen Town

Spring

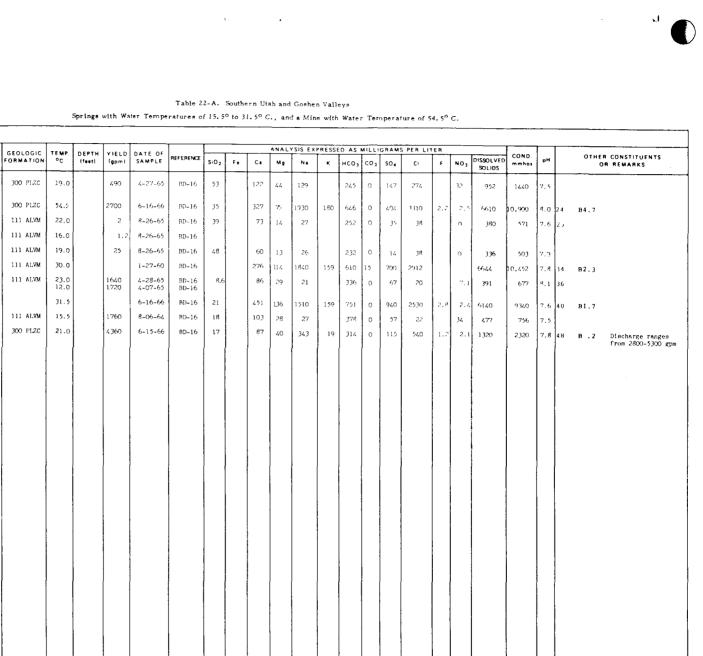
Burgin Mine

Unnamed

Unnamed

Unnamed

Bird Isl.


Wood Springs

Lincoln Pt

Warm Sprs.

Dry Creek Spre

ų

	OWNER	ų Ž	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXI	RESSE	DAS	MILLI	GRAMS	S PER LI	FER					
COORDINATES	OR NAME		ORMATION	°C	(feet)	(gpm)	SAMPLE	RÉFERENCE	SiO ₂	Fe	C.	Mę	N a	к	нсо,	co,	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONSTITUENTS OR REMARKS
C-8-1) 35dcb	S. O. Dixson	w1	11 ALVM	19.5 1 4 .0	212	12 R	6-15-64 4-28-66	BD-16 BD-16			126	43	171	27	248	0	124	400			1,130	1, 590	7.3	
C-9-1) 4ddc	Cooperative Security Corp.	w 1	11 ALVM	16.5 18.5	690	1240	5-28-64 4-28-66	BD-16 BD-16			55 55	16 21	118 126	15 17	149 175	8 0	78 95	186 198			612 662	984 1, 070	8.5 7.6	
C-9-1)20dec	Cooperative Security Corp.	w 1	11 ALVM	16.0 14.0	575	2500	8-19-64 4-27-66	BD-16 BD-16	58		34 34	11 11	112 108	8.2	184 170	0 0	73 84	102 105		1.4	479 462	723 727	8.2 7.5	
C-9-1) 20ddd	Cooperative Security Corp.	w 1	11 ALVM	17.0 16.5	798	2460	6-23-65 5-09-66	BD-16 BD-16	:		32 37	15 14	9 1 90	10 10	133 184	12 0	84 73	98 94			473 475	719 736	8.3 8.0	
C-9-1) 28ccb	Cooperative Security Corp.	w 1	11 ALVM	18.5 14.5	802	2540	6-09-64 4-27-66	BD-16 BD-16			55 64	20 20	104 107	13 15	150 168	15 0	98 118	151 166			601 645	935 956	8.5 7.5	
C-9-1) 29acc	Cooperative Security Corp.	w 1	11 ALVM	15.5 15.0	700	2500	7-12-63 4-27-66	BD-16 BD-16			36	14	103	8.6	171	0	82	111			486	714	7.7	
C-9-1) 29bcc	Cooperative Security Corp.	w 1	11 ALVM	17.0 17.0	800	210	6-19-65 5-06-66	BD-16 BD-16			73 89	26 32	71 71	9 90	82 138	0 0	147 169	167 165			621 680	930 855	8.1 7.5	
C-9-1) 34ccc	Cooperative Security Corp.	wl	11 ALVM	15,5	655		3-08-67	BD-16																
С-10-1) 4666	Cooperative Security Corp.	w 1	11 ALVM	18.5 15.5	882	2853	6-16-65 4-27- 66	BD-16 BD-16			102 100	42 41	101 108	12 14	147 159	0 0	203 199	236 238			896 895	1, 330 1, 340	8.1 7.4	
C-10-1) 4cbb	LDS Church	wI	11 ALVM	19.0 19.5	1,218	2800	6-09-64 4-27-66	BD-16 BD-16			100 101	31 39	120 112	13 15	118 168	0 0	225 214	230 224			867 918	1,300 1,330	8, 2 7,5	
C-10-1) 9ccc	Henry Matarai	w	III ALVM	16.5 18.5	474	1324	8-07-64 4-28-66	BD-16 BD-16			230 212	107 94	101 106	16 18	146 143	0 3	579 512	376 368			1,650 1,640	2, 280 2, 200	8.0 .7.4	
C-10-1) 17aaa	Elberta Water Co.	w	III ALVM	16.5 19.5	517	450 R	4-27-65	BD-16 BD-16	59		84	26	30		177	0	67	99		32	528	771	7.5	
C-10-1) 25aab	Kearns Stake LDS	w	III ALVM	18.0 17.0	645	1350 R	6-01-64	BD-16 BD-16			64	61	192	18	223	0	162	355			990	1,700	8.1	Other Analyses available BD-16
C-10-1) 27dba	L & T. Penrod	w	111 ALVM	15.5	232	5 R.	4-14-61	BD-16	54		125	53	400	56	382	0	115	748	1.1	. 2	1,889	3, 023	7.Z	B .17
C-10-1) 29đđđ	Lazy S Cattle Co.	w :	III ALVM	20.0 17.0	702	760	7-24-64 4-28-66	BD-16 BD-16			243 410	112 166	109 126	24 27	63 112	0	478 950	560 662			2, 190 2, 940	2,710 3,650	8.0 7.1	Other temps. 64, 6 Other analyses BD-
C-10-1) 31bdb	Earl Barney	w	111 ALVM	15.5 16.0	240	10 R	6-19-55 8-07-64	B D- 16 BD-16			83	62	188	13	179	16	249	323			1,040	1,700	8.6	
C-10-1) 31cdd	E. Jordan Stake LDS	w	111 ALVM	19.0 18.5	603	1890	10-08-64 4-28-66	BD-16 BD-16			38 59	20 21	25 26	6.3 5.9	108 191	8 0	47 44	63 67			320 399	473 582	8.3 8.0	
С-10-1) 33bbb	Elberta Land & Water Co.	w :	111 ALVM	18.5	430	28 R	8-20-49	BD-16																
С-10-1) 33сbb	Lazy S Cattle Co.	w	111 ALVM	18.5	395	75 R	5-62	BD-16																
С-10-1) 34666	Elberta Land & Water Co.	w	111 AL.VM	16.5	342	13 R	10-01-49	BD-16																
C-11-1) 6abc	Lazy S Cattle Co.	w	III ALVM	18.0 18.5	682	2329	7-24-64 6-10-65	BD-16 BD-16			42 36	18 16	33 29	7.4 7.0	135 110	3.3 2	50 51	65 58			367 340	519 466	8.1 8.3	
C-11-1) 6bdd	Lazy S Cattle Co.	w	111 ALVM	18.5 19.0	772	2510	8-31-64 6-11-65	BD-16 BD-16			57 43	16 15	32 25	6.6	204 151	g 0	27 29	58 55		. 8	357 332	516 461	7.6 8.2	

. .

Table 22-B. Goshen Valley. Wells with Water Temperatures of 15.5° to 19.5°C.

 \mathbb{D} .

,,

: : :

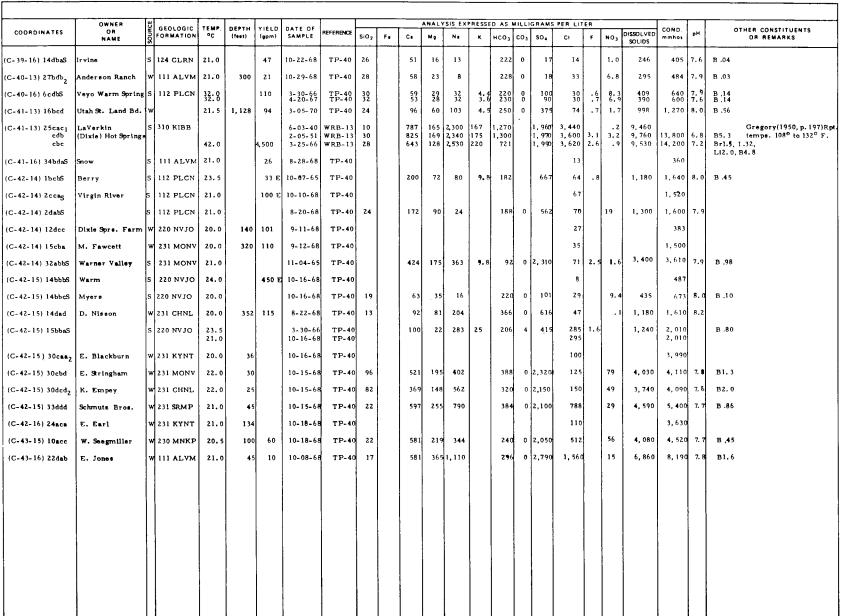


Table 23-A. Central Virgin River Basin. Wells and Springs with Water Temperatures of 20° to 42°C.

•

	OWNER		TEMP.	DEPTH	YIELD	DATE OF					ANAL	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LIT	ER					
COORDINATES	OR NAME	GEOLOGIC	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	F.	C.	Mg	N.	ĸ	нсо3	co3	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	₽Н	OTHER CONSTITUENTS OR REMARKS
C-40-13) 2daa ₁	Pintura	W 112 PLCN	18.0	345		2-20-64	TP-40	44	. 03	64	27	16	z. 6	224	1	109	16	.1	1.1	406	540		B≈0
C-40-16) 35dcc	E. Blake	W 221 CRML	18.0	40	50	10-16-68	TP-40										8.0				363		
C-43-15)16dec	W. Seegmiller	W 111 ALVM	19.5	160	1,570	2-24-70	TP-40			593	141	17		136	0	1,760	68		72	3,200	3,100	7.6	
C-43-15) 25ddd	G. Seegmiller	W111 ALVM	19.0	144	1,572	8-22-68	TP-40	14		573	153	213		90	0	2,140	100		99	3,450	3, 360	7.4	
C-41-13) 4bab	W. Scheuber	w220 NVJO	18.0	115		10-30-68	TP-40	26		35	24	10		232	0	9.2	8.1		.08	227	372	8.0	B=. 02
C-41-13) 5dbb	A. Howard	W220 NVJO	18.0	48		10-30-68	TP-40										14				418		
C-42-15) 19cac	R. Prince	W231 KYNT	18.0	100		10-11-68	TP-40	19		160	63	206		404		660	60		7.7	1,410	1,850	7.8	B≖.62
C-42-16) 24ddd	C. Dean	W231 KYNT	18.0	84		10-11-68	TP-40										115				3,430		
C-39-16) 28dbb	Veyo C. W. A.	S 111 ALVM	17.0		20E	10-24-68	TP-40										19				435		
С-42-16) 5ъъъ	W. Hafen	W231 CHNL	18.0	110	55	10-31-68	TP-40	34		501	292	257		272	0	2,530	90		31	4,070	3,870		B=1.30
C-42-16) 16bcc	St. G.C. Canal	W111 ALVM	15.5	63		5-15-63	TP-40	12		194	45	36		438	0	308	48		5	904	1,240	7.6	
C-42-16) 16 deb	St. G. C. Canal	WIII ALVM	17.0	63	300	10-17-68	TP-40										55				1,420		
C-42-16) 22dca	L. Frei	WIII ALVM	16.5	88		5-19-67	TP-40	33		2.04	83	148	5.0	352	0	706	92	1.1	25	1,530	1,920	7.7	
C-42-16) 35add	R. Barrett	WIII ALVM	18.0	47		10-17-68	TP-40	29		248	63	89		564	0	508	58		.6	1,310	1,680	7.8	B≃. 24
C-42-16) 25dab		W111 ALVM	19.0			10-18-68	TP-40										80				2,550		
C-43-16) lbaa	C. Blake	WIII ALVM	16.0	52	360	8-20-68	TP-40	37		345	185	222		450	0	1,450	158		1.1	2,620	2,950	7.9	
C-43-15) 12ccd ₂	S. Stuki	W230 MNKP	16.5 19.0	172	1,100	5-19-67 8-22-68	TP-40 TP-40			409 417	207 209	143 196	10	96 100		1,930 2,050		1.8	7.0 12	3,100 3,060	3.090 3.080	7.3 7.8	
C-42-15) 34dba1	East Stake	w	17.0	194		10-18-68	TP-40			501	292	548		392		2,100			29	4, 590	5,400		B=. 86
C-42-15) 35baa		WIII ALVM	18.0	45		10-15-68	TP-40				- / -	510		3,0	Ů	5,100	620		2,	1, 570	5,240		500
C-43-15) Zaaa	I. Andrus	WIII ALVM	19.0	160		8-22-68	TP-40	17		467	198	141		120	0	1,900			87	3,200	3, 150	7.3	
C-41-17) 8cca	St. George	W220 NVJO	17.0	500	700	5-05-65	TP-40		.05		14	6.0	.6	233		20		. 3	.5	283	455		B=.2
C-40-13) 35acd	-	S 112 PLCN	17.0			10-25-68	TP-40			78	32	22		220		159		• -	3.1	474	682		B=.06
C-41-13) 11cad		S 112 PLCN	17.0		2700	10-28-68	TP-40			84	43	27		274		180			6.8	544	773		B=. 07
(C-40-16) 35dad	-	S 221 CRML	19.0			10-16-68	TP-40										10				432		5
			- ,																				
							1																
				i																			

Table 23-B. Central Virgin River Basin. Wells and Springs with Water Temperatures of 15, 5° to 19, 5°C.

ν.

I)

.

Table 25-A. Blue Creek Valley. Wells and Springs with Water Temperatures of 20° to 28° C.

	OWNER	SCE.	GEOLOGIC	TEMB	DEPTH	VIELD	DATE OF					ANALY	YSIS EX	PRESSE	ED AS	MILLI	GRAMS	PER LIT	ER					
OORDINATES	OR NAME		FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	\$102	F.	C.	Mg	N.	ĸ	нсоз	co,	50 4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	pH	OTHER CONSTITUENTS OR REMARKS
-12-5) 22dac5	Town of Howell	s	310 OQRR	20/0		1	7-70	TP-37														889		Temp. meas. at pip
-12-6) 33db a S		s	310 OQRR	20.5		<1	7-14-70	TP-37			81	12	54		250	0		100			477	751	8.Z	50 ft. below source Temp. meas. at pip 500 ft. below source
-13-5) 295 29B	Blue Springs	Б	310 OQRR	26.5 28.0		4,680	9-10-64 7-07-70	TP-37 TP-37	19		83 56	24 24		32 22	268 329	0	68 84	886 895	.4	1.0			8.0 7.9	в.2
-13-5) 31daa	L. D. Nessen	w		20.5	405		7-13-70	TP-37			89	41	153		343	4		274			1,010	1, 440	8.4	
-14-6) 9aab	Deloris Stokes	w		20.5	409		7-07-\$0	TP-37			67	25	213		2 5 8			341			870	1,530	8.3	
-15-6) 34ccc	R. W. Tolman	W		20.5	555		7-07-70	TP-37	41		60	25	247	5.7	259	0	40	375	1.0	. 3	938	1,610	7.9	в.06
										ĺ														

	OWNER	۳ ۲	GEOLOGIC	TEMP	DEPTH	VIELO	DATE OF					ANAL	SIS EX	RESSE	DAS	MILLIG	GRAM	S PER LIT	ER			COND.		
OORDINATES	OR NAME	Sour	FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	c.	Mg	N.	ĸ	нсоз	co,	so4	CI	F	NO3	DISSOLVED SOLIDS	mmhoi	рН	OTHER CONSTITUENTS OR REMARKS
3-11-5) 3cacS		s	310 OQRR	17.5		∢ 1	7-70	TP-37														765		
3-11-5) 12ccaS		s	310 OQRR	17.			7-70	TP-37														631		
3-12-5) 10bca	H. C. Kotter	w	r	15.5	138		7-14-70	TP-37			66	37	129		254	3		226			708	1,220	8.5	
3-12-5) 14baaS	North Spring	s	310 OQRR	17.0		<۱	7-14-70	TP-37			79	15	90		243	4		140			543	909	8.5	
3-12-5) 14ccc	Dan Douglas	s	310 OQRR	18.0		<۱	7-14-70	TP-37														798		
3-12-6) 36ada	O. M. Munk	W	r	16.5	212		7-14-70	TP-37	42		77	49	67	7.7	183	0	54	230	.7	2.9	644	1,100	8.Z	в.05
3-13-5) 6aaa2	i. M. Turley	w	r	19.0	235		7-08-70	TP-37			185	70	108		144	0		591			1,230	2,120	7.9	
3-13-5) 16ccc	E. L. Nielson	w	,	18.5			7-07-70	TP-37			572	245	547		142	0		2,380			4,860	7,190	7.8	
B-13-5) 22ccc	T. Roberts	W	r	16.5	180		7-08-70	TP-37			65	24	78		Z69	0		128			501	860	8.2	
8-13-5) 33acc	L. Hawkes	W	r	19.0	180		7-14-70	TP-37			52	23	101		274	3		136			509	901	8.6	
В-13-6) 1ъдъ	R. W. Henrie	N	1	16.5	195		7-06-70	TP-37			149	32	41		144	0		331			818	1,340	7.8	
B-13-6) 1dbb	R. W. Henrie	٧	III ALVM	19.0	704	580 R	7-06-70	TP-37	47		71	19	31	10	160	0	16	127	.4	6.1	405	701	8.Z	B ,04
B-13-6) 12aba	R. W. Henrie	W	r	16.5			7-07-70	TP-37			325	77	62		150	0		551			1,700	2,470	7.9	
B-13-6) 36acc	A. Manning	W	r	17.5	300		7-13-70	TP-37			447	153	143		162	0		1,340			3,450	4,270	8.0	
B-15-6) 35bdb	Deloris Stokes	W	r	18.5			7-07-70	TP-37			88	16	16		2 5 8	0		64			417	634	8.Z	:

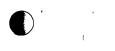
Table 25-B. Blue Creek Valley. Wells and Springs with Water Temperatures of 15.5° to 19.5°C.

146

()

					Та	able 24.
INATES	OWNER OR NAME	SOURCE	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)
) 16mad	L. Bradshaw	w	111 alvm	15.5	370	707
) 9bad	O. & D. Harris	W			150	

i.


Beaver Valley. Wells and Springs with Water Temperatures of 15.5 $^{\rm o}$ to 23.5 $^{\rm o}{\rm C}.$

5

7

•

	OWNER	GEOLO		TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EX	PRESSE	DAS	MILLI	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR S	FORMA	TION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	si0 ₂	F. !	C.	Mg	Nı	ĸ	нсо,	c03	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рн	OR REMARKS
C-28-7) 16mad	L. Bradshaw	111 A	LVM	15.5	370	707		BD-6																
C-29-8) 9bad	O. & D. Harris V	111 A	LVM	18.0	150		8-9-62	BD-6	44	. 11	248	30	63		253		250	292	. 7	. 7	1,050	1,700	7.3	
C-29-8) 23cab	M. Smith	111 A	LVM	17.0	440			BD-6																
C-29-8) 24aaa	J. Morgan	111 A	LVM	16.5		818		BD-6																
C-29-8) 25cac ₂	Greenville Ward LDS	111 A	LVM	20.0	340		9-11-61	BD-6	69	.05	32	5.4	29		128		48	7		.7	254	298	7.9	Drilled in 1905
C-29-8) 35bad	Abandare Canal Co.	111 A	LVM	16.0	514			BD-6																
C-29-9) 36dccS	Minersville Res. & Irr. Co.	5 111 A		21.0 13.0			9-15-61	BD-6 BD-6	69	. 01	107	39	84		498		93	75		.6	713	1,090	7.9	Spring in bottom of Minersville Reser-
C-29-8) 36 aa b	S. R. Barton	W 111 A	LVM	23.5	314	7	1906?	WSP-217		0							Tr	20						volr. Hardness 56 Alkalinity 142
C-29-8) 25cac	Greenville School	/ 111 A	LVM	20.0	244	11	1906?	WSP-217		0							Тт	10						Hardness 90 This may be same Alkalinity 242 well or next to 25cac ₂ above
C-27-8) 105	Beaver Land & S Livestock Co.	5 111 A	LVM	16.5		6		WSP-217																
C-28-6) 335	C. D. White	5 111 A	LVM	16.5		27		WSP-217																

•

	OWNER	шī											(616 6 -		0.46			S PER LI						······································
COORDINATES	OWNER DR NAME	SOURCI	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO2	F.	C.	Mg	Na Na		HC03	r	T	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUENTS OR REMARKS
A-12-1) 16cac ₂	Benson Irr. Co.	w	111 ALVM	21.0	180	19M	8-67	BD-21														570		
A-12-1) 16cdb	Benson Irr. Co.	w	111 ALVM	21.0	48	2 3 M	8-67	BD-21														590		
A-12-1) 16dbc	Don Bodrero	w	III ALVM	20.0	160	60R	6-68	BD-21														490		
A-12-1) 16ddd	Chas. Taylor	w	111 ALVM	22.0	243	36M	4-17-68	BD-21	17		56	26	32		327	0	16	12		16	336	534	7.4	
A-12-1) 17dab	Benson Irr. Co.	w	111 ALVM	21.0	160	58M	8-67	BD-21														480		
A-12-1) 20bdd	C. Wennergren	w	111 ALVM	23.0	117	48M	5-68	BD-21														510		
(A-12-1) 20cma	_		III ALVM	24 <u>.</u> 0	115		5-68	BD-21											1			460		
(A-12-1) 20cac	C. Wennergren			23.0		118M		BD-21														470		
(A-12-1) 21caa	A. A. Beckstead					31M		BD-21														560		
(A-12-1) 21cbd		i	111 ALVM			11M		BD-21														500		
$(A-12-1) 22 ccc_2$ (A-12-1) 27 aab			111 ALVM	27.0 26.0		150R 16R		BD-21 BD-21														450		
(A-12-1) 28baa			111 ALVM				8-67	BD-21														450		
A-12-1) 28baas			111 ALVM				8-67	BD-21														470		
A-12-1) 28bca			ITTALVM				8-67	BD-21														430		
A-12-1) 28bdc	Leonard Kearl	w	111 ALVM	21.0	150	4M	6-68	BD-21														420		
A-12-1) 28cab	C. Lisonbee	w	111 ALVM	21.0	163	7 5M	8-67	BD-21														430		
(A-12-1) 29acc	Gossner Cheese	w	III ALVM	23.0	108	550R	8-67	BD-21														470		
(A-12-1) 29cdb	Ed Gossner	W	111 ALVM	20.0		94M	6-68	BD-21														420		
A-13-1) 19cac	Cache Valley Dairy	w	120 TRTR	21.0	5,500	75R	7-09-57	BD-21	13	. 67	42	36	204	4.9	286	0	1.2	342	.1	.3	789	1,480	6.8	в.4
B-12-1) 2bcd	H. C. Cronquist	W	111 ALVM	21.0	764	24M	4-18-68	BD-21	24		128	53	107		250	0	. 5	400		.0	1,010	1,600	7.9	
B-12-1) 10dcd			111 ALVM	21.0	533	16M	8-67	BD-21														780		
В-13-1) 10асъ			300 PLZC	49.0	5, 208	1 5M	4-17-68	BD-21	81		34	30	1,140	71	622	0	. 8	1,690	4.5	1.3	3, 280	5,820	8.1	B2.7
(B-13-1) 27cdd	N. B. Seamons		111 ALVM	23.0		43M		BD-21														1,200		
(B-13-1) 25bab	W. W. Toombs	W	120 TRTR	28.0 28.0	1,473	300M	8-14-51 6-29-52	BD-21 BD-21	24		44	31	182	6.1	358 357	0	1.1	255	.3	.3	720	1,310 1,320		в.8
B-14-1) 33acaS	D. J. Gancheff	s	Fault	31.0			1-12-68	BD-21	23		132	46	1, 400	110	548	0	71	2, 280	3.2	5.3	4,380	7,230	7.6	В.71
																								-
																	1	1						
															1]							

Table 26-A. Cache Valley. Wells and One Spring with Water Temperatures of 20° to 49°C.

с. — Т

	OWNER	ő	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EX	RESSE	DAS	AILLIC	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME		ORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	si02	F.	C.	Mg	N.	ĸ	нсо,	co,	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рн	OR REMARKS
A-10-1) 16dad		w	III ALVM	19.0	16	80 M	9-68	BD-21										:				570		
A-10-1) 16ddb		w	111 ALVM	16.0	18	80 E	9-68	BD-21														640		
A-12-1) 5dac ₂	G. Chambers	w	III ALVM	16.0	235	4 M	3-68	BD-21														500		
А-12-1) 7ьъь	L. Reese	W	III ALVM	16.0	475	7 M	8-67	BD-21														820		
A-12-1) 8dca	R. Gittins	w	III ALVM	16.0	189	150 M	6-68	BD-21														440		
A-12-1) 10ccc	V. Nielsen	w	111 ALVM	16.0	210	120 R	4-11-63	BD-21	19	. 01	38	16	44	5.3	245	2	13	17	.3	3.4	268	471	8.0	в. 16
A-12-1) 16ada	E. Olsen	w	III ALVM	17.0	202	9 M	8-67	BD-21						1								500		
A-12-1) 16cac	Benson Irr. Co.	w	111 ALVM	16.0	44		2-68	BD-21														540		
A-12-1) 17ada	Logan Airport	w	111 ALVM	18.0	145	425 R	5-27-59 7-13-60	BD-21 BD-21	43 25	.03 .02	43 55	21 15		8.0 9.2	288 281		10 6.6	11 15	.4	4.4 .2	309 289	463 535	7.6	B. 14 B. 14
A-12-1) 17daa	Benson Irr. Co.	w	III ALVM	16.0	144	10 M	8-67	BD-21														560		
A-12-1) 17dcc	S. Bodrero	w	III ALVM	17.0	53	28 M	5-68	BD-21														540		
A-12-1) 20dba	C. Wennergren	w	III ALVM	17.0		20 M	5-68	BD-21																
A-12-1) 20daal	J. W. Quale	w	111 ALVM	19.0		30 M	8-67	BD-21														570		
A-12-1) 20daa ₂	J. W. Quale	w	111 ALVM	19.0	55	14 M	8-67	BD-21											l I			590	1	
A-12-1) 20dcb	E. Wursten	w	111 ALVM	17.0	40	120 M	5-68	BD-21														440		
A-12-1) 20dcd	Wm. Kroptle	w	III ALVM	18.0	60	33 M	8-67	BD-21					ł									490		
A-12-1) 21aaa	L. R. Merrill	W	111 ALVM	19.0	50	ім	8-67	BD-21														590		
A-12-1) 21dca	L. Kearl	w	111 ALVM	17.0	57	11 R		BD-21																
A-12-1) 27cab	Logan City	w	III ALVM	18.0	800	4555 R	1-03-64	BD-21	10	. 01	48	23	5.3	1.8	245	1	6.2	10	. 1	. 8	227	405	8.0	B.00
А-12-1) 286с6	S. Bodrero	w	III ALVM	17.0	72	21 M	2-68	BD-21														480		
A-12-1) 28cab2	L. Andrews	W	111 ALVM	16.0	60	12 M	8-67	BD-21]									510		
A-12-1) 28cca	M. Bodrero	w	III ALVM	16.0	68	100 M	8-67	BD-21														510		
A-12-1) 28cca2	M. Bodrero	w	111 ALVM	16.0	60	150 M	8-67	BD-21														500	1	
A-12-1) 29abaş	E. W. Heaton	w	111 ALVM	18.0	42	16 M	8-67	BD-21														500		
A-12-1) 29aba ₂	E. W. Heaton	w	111 ALVM	18.0	51	86 M	8-67	BD-21														500		
A-12-1) 29cab	E. Gossner	w	111 ALVM	18.0	43		8-40	BD-21													ļ			
A-12-1) 29cba ₁	E. Gossner	W	III ALVM	18.0		ЗМ	6-68	BD-21	Į					l	l		l			ļ				
A-12-1) 29cba2	E. Gossner	w	111 ALVM	18.0	158	375 R	6-68	BD-21														440		
A-12-1) 31dab	R.S. Painter	w	III ALVM	17.0 12.0	132	273 M	4-04-61 8-31-62	BD-21 BD-21	14 7.7	.00	51 54	20 20	11 4.5	2.0 .9			14 14	9.0 5.5	.4	.1 1.9	238 220	427 411		B.1 B.02
A-12-1) 32bba	G. I. Sorensen	w	111 ALVM	16.0	108	50 M	6-68	BD-21					l	ļ		l				ļ		380		
A-13-1) 31ccc2	A. C. Reese	W	111 ALVM	18.0	626	35 R	10-68	BD-21														930		
A-14-1) 6ccc	Fred Karren	w	111 ALVM	18.0	20	3 M	4-17-68	BD-21 BD-21	13		112	112	220		722		239	268		50	1,410	2,220	7.7	

Table 26-B. Cache Valley. Wells and One Spring with Water Temperatures of 16° to 19° C.

,

.

	OWNER	Ш	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF					ANAL	SIS EX	RESSE	DAS	MILLI	GRAMS	PER LIT	ER							
COORDINATES		s	FORMATION	°c	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	c.	Mg	Na	ĸ	нсо,	co,	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	0	THER CONSTITU	
12-12-1) Iccc2	M. J. Ballard	w	111 ALVM	17.0	590	60 R	11-68	BD-21														1, 500				
3-12-1) 2add	Ricks	w	111 ALVM	17.0	587	40 R	11-68	BD-21														1,400				
3-12-1) 3ccc	J. L. Watterson	w	111 ALVM	17.0		10 M	8-67	BD-21														830				
3-12-1) 9ddd	Benson Recr. Area	w	111 ALVM	18.0	576	40 R	1-69	BD-21														920				
3-12-1) 11bba ₂	O. J. Falslev	w	111 ALVM	19.0	437	11 м	5-68	BD-21														1, 500				
3-12-1) 11bcb	N. Johnson	w	111 ALVM	19.0	616	20 D	8-67	BD-21														1,100				
3-12-1) 11ccc3	Wm. Izatt, Jr.	w	111 ALVM	18.0	400	15 M	8-67	BD-21														610				
3-12-1) 11dda	F. B. Snow	w	111 ALVM	17.0	545	66 M	2-69	BD-21														1,500				
3-12-1) 12bdc5	Benson Ward LDS	w	111 ALVM	18.0	569	120 R	12-10-57 2-18-69			3.0	225 149	60 53	104 94	8.0	168 171	0	223 2.1	475 473	.0	.7	1,150 1,180	1,710	7.5 7.6	B.15		
3-12-1) 14aaa	Bert Riggs	w	111 ALVM	16.0	304	7 M	8-67	BD-21														510				
3-12-1) 14aba	Devar Balls	w	111 ALVM	18.0	315	20 R	7-12-48 10-27-49				43	16	43 43		279 292	0	3.5 3.0	21 22	.4	5.8 0	302	481 489	7.3	B.02		
3-12-1) 15adc	Alex Ricks	w	111 ALVM	18.0	418	2 M	8-67	BD-21														820				
A-12-1) 32cbb1	State Fish Dept.	w	111 ALVM	16.0 16.0	107	107 M	8-31-62 2-06-63	BD-21 BD-21	11	.00 .03	55	19	7.5	1.5	246 249	0 0	16	6.5 14	. 1	1.5 1.3	227	418 418	7.7	B.01	Temp 14º 8-6	7 BD-21
3-13-1) 10bba	L. Erickson	w	111 ALVM	18.0	258	100 M	10-67	BD-21														850				
3-13-1) 17dad	O. G. Larsen	w	111 ALVM	16.0	215	5 R	9-67	BD-21														880				
3-13-1) 28dab	J. W. Roundy	w	111 ALVM	17.0	400	9 M	8-67	BD-21														1,200				
3-13-1) 13cdd	E. Cache Stake	w	111 ALVM	18.0	460	3 R		BD-21																		
3-13-1) 36cca	Paul Thain	w	111 ALVM	17.0	723	70 R	10-68	BD-21														1,500				
3-13-1) 36ccd	George Thain	w	111 ALVM	17.0	693	50 R	10-68	BD-21		ļ												1,300				
3-13-1) 36cđb	Marvin Thane	w	III ALVM	16.0	684	20 R	10-68	BD-21														1,300				
3-14-1) 2ddd	Westover Bros.	w	111 ALVM	16.0	8		9-67	BD-21														1,700				
3-14-1) 3cdd	B. O. Hanson	w	111 ALVM	16.0	271		10-68	BD-21														1,500				
A-13-1) 29acbS	Lynn Erickson	s	111 ALVM	16.0			7-6B	BD-21														540			Group Discha 1000 gpm	rge
]												Ì					
									1				ļ		ĺ											
													1													

Table 26-B. Cache Valley. Wells and One Spring with Water Temperatures of 16° to 19° C.

,

	OWNER	빙	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	YSIS EXP	RESSE	DAS	MILLI	GRAMS	S PER LIT	EA					
COORDINATES	OR NAME	SOUR	FORMATION	°c	(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	F.	C.	Mg	N.	ĸ	нсо3	co,	so₄	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONSTITUENTS OR REMARKS
D-18-14) 9dcd	Roadside Geyser	w	200 MNCS	28.0	180		3-14-47	TP-15			908	288	360		2,840	0	1, 540	215		. 0	4,710	5, 640		.4B Water warmed in lo discharge pipe
D-21-16) 34dda	G. Ruby Crystal Geyser	w	221 ENRD	18.0	487	1,200M	3-22-48	TP-15	13		1,000	225	4,070		4,400	0	2,410	4, 370			14, 300	19, 400		Abandoned Oil Well- Drive
D-22-14) 28d	F. J. Hat	w	221 ENRD	16.0	200		10-28-58	TP-15	10		321	246	551		2,020	0	1,120	132	.00	. 1	3, 370	4, 340	7, 1	
D-23-21) 27bcd	Natl. Park Svc.	w	231 WNGT	16.0	900	4E	10-31-62	TP-15	5		28	18	54		163	0	36	62		. 3	283	530	7.3	
D-25-12) 14c	J. Marsing	w	221 CRML	16.5			10-30-58	TP-15	13		481	642	339		408	0	3,900	105	. 2	4 I	6,360		7.0	
D-25-21) 20add	National Park	w	220 NV JO	19.5	124	8M	12-11-58	TP-15	12		55	21	75		218	0	133	49		1.6	454	76 Z	7.4	
D-25-21) 26dec	Suburban Gae	w	111 ALVM	16.0	55	25	9-05-68	TP-32	14	, 04	4 6	23	13	2.3	220	0	38	14	. 5	1.3	256	440	8.0	B = . 04
D-26-22) 7bad	Hecla	w	111 ALVM	16.0	80	36	9-05-68	TP-32	19	. 00	112	57	41	2.4	312	° o	300	20	. 8	9.0	749	714	7.8	B = . 07
D-26-22) 17dbc	Garrett Freight	w	111 ALVM	16.0	153	14	7-09-68	TP-32	10	1.3	98	51	44	2.1	168	0	370	17	.6	2. 8	701	961	7.5	B = . 00
D-26-22) 22ded	G. M. White	w	111 ALVM	16.0	130	90	7-09-68	TP-32	14	. 02	107	38	48	2 . 2	218	0	303	16	. 5	12	664	930	7.6	B = .00
D-27-2) 26cda	B. Chapple	w	120 TRTR	16.5	192	450E	9-20-66	TP-22														200		
D-27-2) 33dda	Los Water Works	w	120 TRTR	16.5	255	143M	9-20-66	TP-22	39	. 01	22	6.3	12		114	0	39	56		1.3	141	211	7.6	Mn=. 00
D-27-2) 34ccb	W. G. Taylor	w	111 ALVM	16.5		5E	10-06-66	TP-22														190		Highest Head in Va
D-27-2) 34ccc	W. G. Taylor	w	111 ALVM	16.5		15M	9-21-66	ТР-22														190		
D-28-2) 3cbc	S. Rees	w	120 TRTR	17.0	198	1, 1 50M	8-04 -66	TP-22														200		
D-28-2) 3ccb	Roads Creek Water Works	w	120 TRTR	17.0	333	1,750M	8-04-66	TP-22	38		24	6.1	12		124	0	3.7	36		. 9	1 52	215	7. 5	Largest flowing we in area
D-28-2) 3ccc	S. Rees	w	120 TRTR	17.0	276	352M	8-04-66	TP-22														200		
D-28-2) 3ccc2	S. Rees	w	120 TRTR	17.0	286	386M	8-04-66	тр-22														210		
D-28-8) 29dcb	Garkane Power	w	220 NVJO	24.0	761	3,110	10-04-74	H. Mtn.	13		284	88	494	4.4			1,070	625	. 4		3,746	4,200	7.8	3
D-28-8) 33ЪЪЪ	IPP - Test	w	220 NVJO	17.5	1,685	2,800	8-30-75	H. Mtn.	9.3		95	28	760	3.7	289		660	800	. 7	.01	2,500	4,050	7.0	B=.53
D-28-8) 33edd	IPP - Colt	w	220 NVJO	17.5	1,400	200	1975	H. Mtn.	9.6		110	52	130	5.6	225		380	130	. z	.01	933	1, 400	7.0	B≂60
D-28-11)16aca	Old CCC Well	w	221 ENRD	16.0	320		3-16-47	TP-15			15	14	115		238	0	130	8	. 7	. 1	400	617		
D-28-11) 16ddb	E. E. Stone	w	221 ENRD	18.0	340	13	6-05-59	ŤP-15	14		17	6.1	137		230	10	144	4.5	. 3	1.8	448	688	8.6	.22 ppm B
D-29-12) 33acd2	U.S.B.L.M.#3	w	220 NVJO	16.5	510	200	8-09-76	H. Mtn.	11		59	31	26	7.5	239		110	15	. 2	.05	378	640	7.5	P=.00 PO4*.00 B=.04. Pb=.01
(D-31-7) 36dad	R. Weaver	w	220 NVJO	17.5	6,648	55	8-29-75	H. Mtn.	9.6		32	20	6.5	2.0	175		27	2.8	. 1	.27	188	350	7.1	Zn=, 02 P=, 01 PO4=, 03 B=, 03
D-31-13) 9		w	231 WNGT	18.0		3R	6-20-57	TP-15	9.1	.01	25	28	46	8.5	275	0	44	12	. 3	3.7	312	528	7.4	в.06
D-33-16) 19		w	324 HRM5	16.0		450R	10-03-48	TP-15	8.6		84	28	12		181	0	163	8		1.0	414	621		
D-33-24) 19dbd	Hall l	W	221 ENRD	15.5	1,085- 1,256	40R	10~30-55	TP-15	21		6,2	2.6	301	5.1	500	80	130	7.5	1.5	. 5	801	1,260	8.8	
			220 NVJO	20.0	1, 313	50R	11-22-55	TP-15	28		19	19	54		199	14	46	5.5		. 3	284	451	8.4	
D-35-11) 16cdd	Shitamar ing Mine	w	221 ENRD	20.0	560	35	1969	H. Mtn.	15		21	12	83	5.5	177		130	8,1	. 3	. 74	369	610	8.4	B=.07 As=.005

4

.

Table 27-A. Canyon Lands. Wells with Water Temperatures of 15.5° to 28° C.

), ,

٠

Table 27-A. Canyon Lands. Wells with Water Temperatures of 15.5° to 28° C.

•

							ble 27-A.	Canyon 1			• with	WATE	r 10mp	beratu	res 01	15.5	0 28	<u>ес.</u>						
	OWNER	۳	GEOLOGIC	TEMP.	DEPTH		DATE OF		(ANAL	SIS EX	PRESSI	EDASI	MILLI	GRAMS	PER LIT	ER			<u> </u>		
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO 2	F.	C.	Mg	Na	ĸ	нсо3	co,	504	CI	F	N0,	DISSOLVED SOLIDS	COND. mmhoi	₽Н	OTHER CONSTITUENTS OR REMARKS
(D-35-11) 16dcd	Shitamaring Mine	w	220 NVJO	21.0	1,000	75	1976	H Mtn	15		13	11	55	4.6	153		60	8.0	. 2	.73	250	400	8.5	P=,01 PO4=,03 B=,07 As=.005 Pb=,004
(D-38-25) 33bcd		w	220 NVJO	17.0		28M	8-06-69	нс	9.0	. 04	16	2 .6	180	19	406		52	16		0	543		8.5	Li=, 08 Zn=, 11
(D-38-25) 35bda		w	220 NV JO	18.0		17M	8-06-69	нg																
(D-38-26) 28aca		w	220 NVJO	18.0		80E	8-07-69	нG	9. Z	. 06	. 51	3.3	110	18	281		44	12		0	408		8.2	
(D-39-24) 13dac	Hatch Trading	w	220 NVJO	17.0	556		8-06-69	нG	3.0	. 04	41	21	47	22	281		49	6	. 5	0	359		8.3	1
(D-39-25) 5aca		w	220 NV JO	16.5		15M	8-06-69	НG	9.9	. 07	20	7.8	150	28	385		65	10		0	544		7.8	
(D-39-26) 21bdb			221 ENRD 220 NVJO	21.0	1,150- 1,200 1,275- 1,425	29	3-10-64	TP-15	9.7		13	7.5	386		644	15	299	28		. 2	1,070	1,630	8.4	
(D-40-22) 30aac	F. A. Nielson	w	220 GLNC	18.5	1,200	100E	10-21-59	TP-15	11		4	1.5	87		165	11	47	2		. 2	245	382	8.7	
(D-40-22) 30bbb	Bluff Irr. Co.	w		20. O	1,200	22R	10-06-64	TP-15	11		3.2	1.5	148		326	0	53	10		. 3	387 -	591	B. 0	
(D-40-24) 11abd	B. I. A. 12T-327		221 MRSN 221 BLFF	17.0	30- 370 370- 520	150R	3-02-56	TP-15	13		33	18	115		426	0	41	8.5	. 8	. z	438	728	7.6	
(D-40-25) 1bcc	B. I. A. 12 T- 312	w	220 NVJO	21.5	1, 402	2R	8-07-52	TP-15	16		54	20	1,390		Z, 300		286	685	.4	4.1	3,550	5, 390		
(D-41-21) 22	B. I. A. 9T-220	w	220 NV JO	16.5	275	3E	1-06-54	TP-15	17		17	4.6	64		194	0	31	6	. 2	.1	235	364		
(D-41-22) 33	В. І. А. 9К-209	w	220 NV.JO	18.0	775	3R	10-27-54	ТР-15	11		7.1	3.3	67		148	0	38	9	. 5	1.6	210	329		
(D-41-25) 16ccc	B. I. A. 12K-308		221 ENRD 220-NVJO 231-WNGT	18.5	1,163	75R	3-10-55	TP-15	10	. 13	105	74	2,940	28	680	0	1, 640	3, 490	. 1	2.5	8,640	12,000	7.9	
(D-41-25) 17ddd	Shot Hole	w	111 ALVM	18.5		<1E	8-11-69	нG	27	. 005	17	4.2	966	16	718		1,200	156		0	Z, 820		8.4	
(D-41-25) 21666	Aneth School	w	III ALVM	18.5		20-25R	8-11-69	нg	22	. 005	105	15	113	10	Z 3 9		300	26	.6	0	754		7.9	
(D-42-22) 14	B.I.A. 9T-214	w	220 NVJO	16.0	590	2R	12-03-53	ŤP-15	14		2.0	. 5	129	1.9	177	29	50	26	. 8	.4	341	565		
D-42-23 26 ть	Shell Oil #1	w	220 NVJO	16.5	460	35R	3-11-55	TP-15	14	. 11	1. 3	. 7	195	. 8	341	45	52	21	. 8	. 5	500	846	9.0	
D-43-3) 32dcc	L. Taylor	w	220 NV JO	19.0		2.5M	10-09-63	TP-15	9.3	1.4	15	15	71		190	0	71	16		.3	292	477	7.4	
D-43-14) 16dcd	B. I. A. 8K432	w	310 CDRM	18.0	451	2E	5-21-55	TP-15	11		44	27	151		306	0	228	37	1.0	7,4	656	1, 030	7.6	
D-43-24) 9	B. I. A. 9¥32	w	231 WNGT	19.0	735	2R	8-30-49	TP-15	17		2.0	1.3	161		242	83	9.5	5.0	1.0	4.9	404	662		

Table 27-B. Canyon Lands. Springs with Temperatures of 15.5° to 31° C.

	OWNER	ж										ANALY	SIS EXI	RESSE	DASM	MILLN	GRAMS	PER LIT	ER					
COORDINATES		SOURCI	GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO2	Fe	C.	Mg	Na	ĸ	нсоз	co,	so.	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рН	OTHER CONSTITUENTS OR REMARKS
D-24-13) 2965	Red Rock Spring	s	221 CRML	16.5		2E	10-28-58	TP-15	9.8		54	50	35		336	16	94	14	. z	2. 1	340	700	7.5	
D-25-17) S	Undine																							Mentioned by Gilbert in Wheeler report (1875) an
D-25-21) 26bdS 26bdc			231 WNGT 231 WNGT				10-09-58 10-08-58	TP-15 TP-32	11 11		33 33	10 10	18 18		132 132	0	36 36	12 12		.8 .8	186 186	298 298	8.1	in PP492, no further records.
D-27-2) 25baaS	Fremont	s	120 TRTR	16.5		7300M	10-10-66	TP-22	35		20	7.3	12		110	0	3.4	7.8		.9	136	203	7.4	
D-27-2) 33dadS	West Spring	s	120 TRTR	17.0		450E	10-20-54	TP-22	38		22	5.1	13	3.6	115	0	3. I	5.5	. 2	2.1	152	212	7.8	
D-28-2) 10bbaS	South Spring	s	120 TRTR	17.0		545M	8-04-66	TP-22	38		24	6.1	12		124	0	3.7	3.6		.9	152	215	7.5	
D-28-22) 1cS	Kane Spring	s		18.5			8-14-69	HG	14	.005	31	15	80	17	177		151	10		0	452		8. Z	
D-26-22) 7ccaS	Jackson Res.	s	231 WNGT	16.0		24	3-07-68	TP-32	11	.03	102	47	46	2.1	168	0	370	18	.7	4.6	448	954	7.9	B=. 03
D-26-22) 14accS	Deep Cut	s	220 NVJO	16.0		90	11-19-68	T P- 32	8.9		35	16	5.3	1.2	184	0	11	2.7	.1	.4	152	306	7.6	B≈. 04
D-29-10) 22cccS	Bert Avery	s	221 FRRN	23.0			7-25-75	H. Mtn														610		End of Collection Pipe
D-30-10) 12ddbS	Sidehill	s	110-PTOD	18.0		1	7-11-75	H.Mtn														690		From thin Pediment Gravel
D-30-10) 13bcb	Dugout Bench	s	110- PTOD	18.0		<1E	8-02-76	H. Mtn														630		From thin Pediment Gravel
0-30-10) 32dac	Spring on Flat	s	111 CLVM	18.0		4-5E	7-26-75	H.Mtn														850		From thin coluvium over shale
D-30-11) 5dbc	Cow Wash	s	110 PTOD	21.0		100м	8-03-76	H. Mtn	21		89	18	39	1.1	210		180	6.1	.9	. 01	459	680		P=,00 PO4=.0 Fed by return flo B=100 AS=.001 from trrigation; Pb=0 Lt=.02 dry on Dec. 8, 77
D-30-11) 19ddb	Little Meadow	s	III CLVM	16.0		2E	7-11-75	H. Mtn														595		Zn=0 13° on Dec 8, 1977
D-30-12) 4caa	Granite Wash	s	111 ALVM	17.0		2E	7-28-75	H. Mtn					1									2, 300		seeps in stream channe
D-31-8) 13bcc	Poison Wash	s	211 EMRY	19.0		IE	8-05-76	H. Mtn														4,400		seeps warmed by sun
D-31-8) 27dab	Blind Trail	s	211 EMRY	19.0		Drip	8-22-75	H. Mtn	10		160	160	240	6.6	383		1,200	19	.2	. 02	1, 990	2, 500		P=.00 P04=.00 At discharge end B=.21 AS=0 of collecting pip Pb=.002 Li=.08 Zn=.35
D-31-9) 7aca	Up.Dry Wash	s	111 ALVM	19.0		5M	8-04-76	H. Mtn														2,200		Rises in stream channe
D-31-9) 15bab	Mud	s	110 PTOD	15.5		26	8-04-76	H. Mtn														1,275		From thin pediment gravel
D-31-9) 17cb a	Dead Cows	s	200 MNCS	25.0		8-10E	7-31-75	H. Mtn	19		150	67	62	. 8	248		520	29	. 5	. 01	971	1,350		P=,01 P04=.03 From stream B:.11 AS=0 channel underflo .Pb=.003 L1=.03 Zu=0
D-31-11) lcab	Poison	s	221 MRSN	16.0		2-3E	8-01-75	H. Mtn	12		170	37	21	2.9	194		420	10	. 3	. 00	769	1, 025		P=, 01 P04=, 03 6.3° on Dec 8, 7 B=.07 As *.007 Pb=.003 Liw.02 Zn=.01
D-31-11) lood	Poison Trib	s	221 MRSN	19.0		1-2E	8-01-75	H. Mtn	1							1				1		1,500		3 ° on Dec 8, 1977
D-31-13) 9bcd		s	231 WNGT	19.0 17.5		3R	7-26-76		8.9 9.1	. 01	25 25	30 28	47 46	9.4 8.5	274		50 44			1.2 3.7	323 312	550 528		P=00 P04=.00 B=.09
0-31-13) 33bad	Arches No.	s	221 CRML	17.		JE	8-29-76	H. Mtn														·	1	
D-31-13) 33badz	Arches So.	s	221 CRML	15.5		. 11	8-29-76	H. Mtn															1	
					ł	[1	1	1		1		1	[1			1		

. .

,

•

 				1	Table 27-B.	Canyon	Lande	a. Sp	rings -	with T	empera	tures	of 15.	5° ta	31° (c.				
ы				[ANAL	SIS EX	RESS	D AS	MILLI	GRAM	S PER LI	TER			Ľ
SOUR	GEOLOGIC	TEMP. °C	DEPTH (feet)	(gpm)	DATE OF SAMPLE	REFERENCE	SiO ₂	f.	C.	Mg	Na	к	нсо3	c03	s04	CI	F	N0,	DISSOLVED SOLIDS	c "
s	210 DKOT	21.0		<1 E	8-19-75	H. Mtn														
s	210 DKOT	17.0		<1 E	8-19-75	H. Mtn							ļ							:

.

ı

sit

.

۲)

N

	OWNER	J CE	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EXP	RESSE	DASN	AILLIC	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME	SOUF	FORMATION	°C	(fest)	(gpm)	SAMPLE	REFERENCE	SiO2	f.	C.	Mg	Na	ĸ	нсо3	co3	s0₄	CI	F	N03	DISSOLVED SOLIDS	mmhos	pΗ	OR REMARKS
(D-35-9) 13cbc	Thompson	s	210 DKOT	21.0		<1 E	8-19-75	H. Mtn														850		Thin sandstone
(D-35-10) 7cbb	Buck	s	210 DKOT	17.0		<1 E	8-19-75	H. Mtn								ŕ						2,500		warmed by sun
(D-35-10) 20aac	Salt	s	210 DKOT	20.0		વદ	8-19 - 75	H. Mtn														4,600		No flow on 12/8
(D-35-10) 21bcc	Saleratus	s	210 DKOT	20.0		<1 E	8-19-75	H. Mtn														1,700		7°, 2100 mmh on 12/8/77
(D-35-10) 33dbc	Four Mile	s	221 MRSN	19.0		1 6	8-31-76	H. Mtn	19	8.3	2 6	23	280	4.0	371		440	12	. 6	. 13	978	1, 460	8.2	P=.00 PO4e.00 Issues from
(D-35-11) 21abb	Shitmaring	s	221 SMVL	22.0		<1 E	8-30-76	H. Mtn														3,600		B=13 AS=.00% cracks in rock Pb=0 Li=.19 Zn=0 in stream
(D-35-12) 9cdd	Four Mile	s]		.1E	8-30-76]													500		
(D=35-12) 9000	i our mine	s	230 MNKF			50 E					150	97	342		259	0	770	356		3. Z	1,860	2,710	7.	5 From large jo
																								with some gas issuing from bottom of wash flow on 5-13-6 400 gpm
(D-36-11) 6 aca	Honey Pot	s	221 M R 51	23.0		2 E	8-17-75	H. Mtn	11		190	260	300	13	405		1800	15	. 4	1.4	2,790	3,000		P=.00 PO4=.00 B:.12 AS=.001 Pb=.001 L1=.17 Zn=.01
(D-36-11) 32cad	Mill Race	s	111 ALVN	25.0		5 E	8-17-75	H. Mtn	16		36 N	130	520	11	152		2200	45	.6	3.4	3, 380	4, 000		P=,00 PO4:.00 From valley f B:,12: AS=.001 Dry on 12/8/7 Pb=.002 L1=.18
D- 35 1/2-12)27cca	Tic A Boo	s	221 CRMI	28.0		<1 E	8-18-75	H. Mtn	17		36	28	20	z. 9	197		38	24	.4	1.1	268	480		Zn=.01
(D-36-12) 8aaa	Mule	s	221 CRM1	23.0		<.1E	8-18-75	H. Mtn														475		
(D-39-26) 33	12R-163 (B1A)	s	210 DKOT	23.0		۲.۱	9-08-54	TP-15	15		25	41	556		822	ο,	673	44	3.1	1.1	1,760	2,500		
(D-40-25) 5bbb	12R-173 (BIA)	s	217 BRCN	20.0	ļ	. 1 R	9-08-54	TP-15	13		27	12	927		380	0	1670	54	1.7	1.5	2,890	3, 930		
(D-41-21) 36	94-25 (BIA)	s	221 BLFF	16.5		.8R	11-03-54	TP-15	16		29	3. 3	58		221	0	17	7	. 8	.8	241	388		
(D-41-22) 13	94-61 (BIA)	s	221 MRSN	19.0		. 2 R	10-27-54	TP-15	17		46	17	37		249	0	21	12	۱. ا	25	298	506		
(D-41-23) 24	94-40 (BIA)	s	221 MRSN	16.5		- 28	10-21-54	TP-15	15		34	7.6	113		261	0	86	33	1.2	11	429	679		
(D-41-24) 18	94-42 (BIA)	s	221 MRSN	17.0		. 2 F	10-21-5	TP-15	14		9, 9	10	58		195	0	16	6	. 4	6.5	216	354	ł	
(D-41-24) 31	94-41 (BIA)	s	221 MRSN	17.0		. 2 F	10-21-5	TP-15	15		70	22	134		199	0	361	11	. 5	.6	712	1,030		
(D-41-25) 23	12R-184A (BIA)	s	221 MRSN	19.5		.25	9-09-5	TP-15	17		64	13	77		190	0	186	19	.6	3.1	473	721		
(D-42-9) 35	2A-104 (BIA)	S	5 220 NVJO	21.0		10.5R	9-11-5	TP-15	29		62	17	6.4		527	0	15	8	· . 2	.9	264	433		
(D-42-10) 32	2A-101 (BIA)	5	5 220 NVJO	18.5		2.5F	9-10-5	TP-15	24		84	22	6.9		366	0	5.4	6	. z	. 8	329	329		
(D-42-12) 19aba	2A-28 (BIA)	5	5 231 KYNT	17.0		₹.1	7-29-5	TP-15	14		30	9. !	5 6.4		128	0	11	5	. 4	4.2	114	240		
(D-42-16) 19	8A-293 (BIA)	5	5 310 CDRM	25.0	1	. 28	9-18-5	TP-15	16		84	13	58		238	0	126	42	. 4	3.1	460	712		
(D-42-16) 30	8A-294 (BIA)	5	5 310 CDRM	19.5	5	. 2E	9-18-54	TP-15	16		64	9.0	26		182	0	75	15	. 4	4.2	298	45		
(D-42-17) 4	8A-193 (BLA)	15	S 310 CDRM	1 19.0		. 25	9-17-5	тр-15	23		69	16	23		252	0	47	19	. 4	6.Z	328	53		
(D-42-17) 14	8A-281 (BIA)	s	310 HLG1	r 23.5	;	2 8	9-17-5	TP-15	19		421	147	119		174	0	1670	20	.7	2.5	2,490	2,76	1	
(D-42-21) 1	94-27 (BIA)	s	ZZI ENRI	18.0		1 8	11-03-5	8 TP-15	18	1	40	111	44		172	0	65	19	. 7	4.3	287	461	'l	1

	OWNER	U U	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	VSIS EX	PAESS	D AS	MILLI	GRAMS	PER LIT	ER				<u> </u>	I	
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.	к	нсо3		so.	CI	F	N03	DISSOLVED SOLIDS	COND. mmhos	рH	OTHER C	ONSTITUENTS REMARKS
(D-32-8) 21dba (D-32-10) 4bcd	Spring Canyon South Fork-B	S	211 EMRY			2E	9-01-76	H. Mtn	13		220	150	270	8.5	479		1400	22	. 4	. 02	2, 320	2,975	7.1	P=, 01 P04=, 03 B=,12 AS=, 002 Pb=0 L1=,13 Zn=,01	Water may come from contact with Masuk, warmed by sun
		5	TH CEVM			1/4E	9-11-75	H. Mtn														410			10°C on 7/10/76
(D-32-10) 18cba	D + DA	s		15.5		1/4E	8-1 4- 75	H. Mtn	8.1		430	460	1000	26	423		4600	40	.3	.06	6, 780	6,500		P=.01 P04=.03 B=.41 AS=0 Pb=.002 Li=1.3 Zn=.02	
(D-32-10) 29bba	Stockseep	s	111 CLVM			<im< td=""><td>8-14-75</td><td>H. Mtn</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,350</td><td></td><td></td><td>From thin colluvium</td></im<>	8-14-75	H. Mtn														1,350			From thin colluvium
(D-32-10) 30aaa	Roadeide	s	, 111 CLVM	18.0		10E	8-14-75	H. Mtn	25		120	42	53	.9	305		240	43	.9	.01	675	1,000		P=.00 PO4=.00 B:15 AS=.001 Pb=.001 Li=.04 Zn=.01	
(D-32-10) 30bba	Buffalo	s	111 CLVM	21.0		2E	8-14-75	H. Mtn														1,600			
(D-32-11) 24aaa	Cottonwood	s	221 MRSN	16.0		2E	8-01-75	H.Mtn	11		62	36	24	3.2	293		88	10	. 3	. 3	380	610		B=.06	From valley fill on Morrison
(D-32-12) lcda	Turkey	s	221 CRML	19.0		no flow	8-29-76	H.Mtn														750		Pb=. 003 Zn=. 03	
(D-32-12) 3abd	Death Canyon	s	221 ENRD	17.0		<1E	8-29-76	H. Mtn														455			Water seeps from
(D-32-12) 16bdb	Drinking Cup	s	221 ENRD	22.5		3E	8-29-76	H. Mtn														625			sandstone in Box Canyon. Frozen on Dec. 8, 1977
(D-33-8) 25dcd	Swap A	s	211 EMRY	22.5		<1E	8-20-75	H. Mtn														1, 500			Thin sandstone warmed by sun
D-33-9) 17ccd	Footbath	s	211 EMRY	25.0		2E	7-28-76	H. Mtn														1,300			Warmed by sun
D-33-9) 17ccc	Muley V	s	211 EMRY	20.0		<1E	7-28-76	H. Mtn														1,800			. ernied by buil
(D-33-12) 27bdb	Maidenwater	s	221 ENRD	19.0		١E	7-25-76	H. Mtn									ļ					580			16° on Dec. 8 '77
(D-33-13) 4cbc	South Hog	s	231 WNGT	19.0		5	7-06-77	H. Mtn	10		44	42	40	9.9	315		94	10	. 4	. 00	406	689		P=.03 P64=09	11° on Dec. 8 '77
D-33-13) 5dbc	Middle Hog	s	231 WNGT	31.0		2-6M	7-06-77	H. Mtn														680		B=.09	Variable from
(D-34-2) 10da	Skull	s	111 ALVM	20.5		1-2E	8-10-67	WRB-11												i					measured down- stream from seep From valley fill
D-34-3) 13dc	D. H. Spurter	s	220 NVJO	16.5		10E	8-16-67	WRBII	12	. 11	34	4.1	39	95			62	20			231		8. Z		on Morrison
D-34-3) 13dc ₂	D. H. Bubbler	s	220 NVJO	15.5		8-10E	8-16-67	WRBII	14	.16	42	6.4	40		125		63	20			257		8.4		
D-34-10) 24bca	Cow Seeps	s	110 PTOD	13:8		1M	8-03-75	H. Mtn														610			Measured at dis-
D-34-11) 7dbc	Indian	s	111 CLVM	17.0		5 qteM <1E	7-05-77 8-02-75	H. Mtn														470			charge pipe.
D-34-11) 8cca	Squaw	s	111 CLVM	16:0 27:0		15M 18M	`8-03-75 7-09-76	H.Mtn														320			From thin pedi- ment. Warmed by
D-34-11) 16ccb	Copper	s	111 CLVM	16.0		2E	8-03-75	H. Mtn														760			sun. Dry in July, Oct. 1977
D-34-11) 18ccb	Papoose W	s	110 PTOD	17.0		.1E	7-09-76	H. Mtn														420			To any dista
D-34-11) 18ccd	Papoose E	s	110 PTOD	19.0		IE	7-09-76	H. Mtn																	From thin pediment
	L	Ш					•,-10															430			From thin pediment

· •

Table 27-B. Canyon Lands. Springs with Temperatures of 15.5° to 31° C.

)

ь.

×

1

\$1

 $\left(\right)$

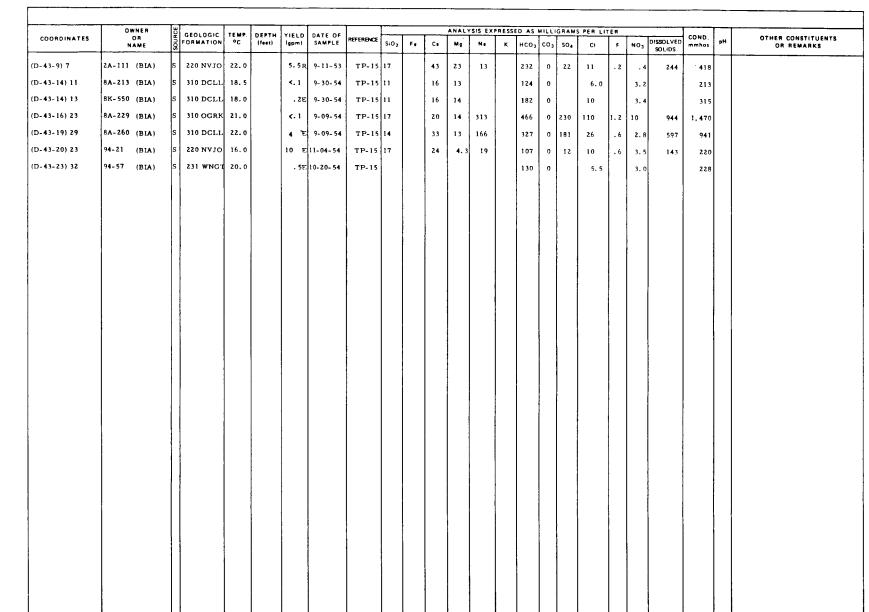


Table 27-B. Canyon Lands. Springs with Temperatures of 15.5° to 31° C.

44

4 T

•

.

٠

×

	OWNER	18		OLOGIC	TEMP.	DEPTH	VIELD	DATE OF					ANALY	SIS EXP	PRESSE	DAS	MILLI	GRAMS	PER LIT	ER			COND.		1	HER CONSTITUENTS
COORDINATES	OR NAME	SOUR		MATION		(feet)	(gpm)	SAMPLE	REFERENCE	si0,	F.	c.	MQ	Na	ĸ	нсоз	co,	s0₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рH		OR REMARKS
C-34-10) 31caa	I. Jones	w	111	ALVM	16.0	365	300	5-23-74	BD-28	34	. 01	55	38	57	6.4	284	0	67	81	. 1	2.6	490	800	7.9	в.09	
C-34-11) 36cdd2	D. Clark	w	111	ALVM	19.5	128	450	8-05-60	BD-6	37	. 01	46	28	26	5.1	234		67	20	. 4	1.8	346	522	7.9	B.11	
C-34-12) 36abb	L. C. Jones	w	111	ALVM	19.0 20.0			9-10-74	BD-28	26	. 04	80	52	50	4.3	139		330	40	. z	.35	653	t, 000	7.9	B.12	
C-35-10) 7abc	H. Glbson	w	11	ALVM	15.5	300	850	8-27-74	BD-28														500			
(C-35-11) 24aab	E. Union Irr. Co.	w	u	ALVM	15.5		1,100	8-15-74	BD-28														650			
(C-37-12) 9acc	J. A. Watson	w	11	I ALVM	15.5 16.0	186		9-11-74	BD-28 BD-28	54	. 02	48	5.8	14	3.8	166		12	21	. 2	. 88	245	360	7.8	B.04	
(C-37-12) 11aab 11aaa	G. Vandenburge	w	11	I ALVM	21.0 21.0	365 365		7-13-59 6-14-74		54 51	. 02 . 02	47 47	28 30	34 31	4.1	178 180	0	137 140	12 12	. 3	3.0 .9	403 408	586 566	7.7 7.8	B.14	BD-28 indicates thes records are same we
C-37-12) 11ddb	Graff Bros.	w	11	I ALVM	19.5		1,200 F	7-24-74	BD-28														550			
(C-37-12) 14abc	A. L. Graff	w	11	ALVM	18.0 16.5	264	600	7-23-74	BD-6 BD-28														650			

	OWNER	3	GEOLOGIC		DEPTH	YIELD	DATE OF					ANALY	SIS EXF	RESSE	DAS	MILLIC	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	Fe	C.	Mg	Ns	ĸ	нсоз	co3	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рН	OR REMARKS
C-31-7) 10dcd	William Cox	w	III ALVM	15.5	323		10-24-73	BD-28														300		
C-31-8) 36ccb		w	112 PLCN	17.0	162		11-14-73	BD-28														370		, , , , , , , , , , , , , , , , , , ,
C-32-8) 12adb	Buckhorn Corp.	w	112 PLCN	18.5	425	2000 E	8-30-73	BD-28														270		
C-32-8) 12bac	Buckhorn Corp.	w	112 PLCN	20.0	440	3490	5-21-74	BD-28	58	0	31	6.8	15	5.3	130	0	11	15	. z	.75	210	260	8.0	B.04
C-32-8) 14adb	Wallace Limb	w	111 ALVM	15.5		58	5-21-74 5-06-74		56	. 02	30	6.7	14	4.5	132	0	9.5	15	. 1	. 83	205	260 330	8.1	B.04 Cond. 9-07-73
C-32-8) 14adc	W. Limb	w	111 ALVM	15.5				BD-6																
C-32-8) 24adb	Buckhorn Corp.	w	112 PLCN	16.5	535		9-30-74	BD-28	54	. 02	28	8.6	20	4.2	138		8.1	16	. 3	. 51	210	280	8.0	B.73
C-33-8) 11666	Patrick Fenton	w	111 ALVM	16.5			10-12-73	BD-28														310		
C-33-8) 11bda	Patrick Fenton	w	111 ALVM	17.0	304	1350 E	10-12-73	BD-28				1										360		
C-33-8) 22bcd	S. Brinkhurst	w	111 ALVM	15.5	511		9-11-74	BD-28														730		
C-33-8) 28cda	F. K. Williamson	w	111 ALVM	15.5	288	815 R	7-06-73	B D- 28														460		
C-33-8) 36b S	"Warm" Spring	s	124 WSTC	14.5		900	5-01-74	BD-28														380		
C-33-9) ldad	Bonneville Inv. Company	w	111 ALVM	15.5	270	15	9-17-73	BD-28	46	.0	11	3.2	30	3.2	108	1	8.1	12	.3	. 61	171	234		B.05
C-33-9) 24cdd	D. W. Adams	w	111 ALVM	16.0	47		3-08-74	BD-28														390		
C-34-10) 35acb	Sawyers Bros.	w		15.5	250		5-22-74 10-02-73		31	. oz	76	42	27	5.7	445	0	47	16	. 2	z. 0	473	730 837	7.9	B.07

• •

Table 29. Parowan. Spring and Wells with Water Temperatures of 14.5° to 20° C.

()

*

•)

•

3

	OWNER	5	GEOLOGIC	TEMP.	DEPTH	VIELD	DATE OF					ANALY	SIS EXF	RESSE	DAS	MILLI	GRAMS	PER LIT	EA			COND.		
COORDINATES	OR NAME	50N	FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	5102	F.	C.	Ma	Na	ĸ	нсо;	c0,	50 a	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рH	OTHER CONSTITUENTS OR REMARKS
C-6-1) 18dca	Cooperative Security Corp.	w	111 ALVM	27.0	235 - 264	12 M	7-01-65	TP-16	21		75	25	35		240	0	70	66		1.4	421	706	7.7	
C-6-1) 31dab	Cooperative Security Corp.	w	111 ALVM	16.0	190 - 223	6м	7-01-65	TP-16	46	İ	82	116	179		324	o	291	355	2. Z	.7	1,230	2,060	7.8	
C-6-2) 14dba	Cooperative Security Corp.	w	111 ALVM	18.0	810	130 M	6-09-65	, TP-16	46		29	13	36		198	0	22	14		•0	. 253	393	8. 1	Perf. 0-556 Feet
C-6-2) 13caa	Cooperative Security Corp.	¥	111 ALVM	16.0	525	400 M	7-01-65	TP-16	55		35	•18	37		208	0	38	21		.4	300	461	в. о	Perf. 0-339 Feet
С-7-2) 356сс	R. J. McKinney	w	111 ALVM	15.5	225	10 R	3-29-66	TP-16	23		42	114	383		487	0	842	94		. 4	1,740	2, 430	7.8	
				I																				
	1				1	· ·									ł									

TABLE 30. Cedar Valley. Wells with Water Temperatures of 15.5° to 27° C.

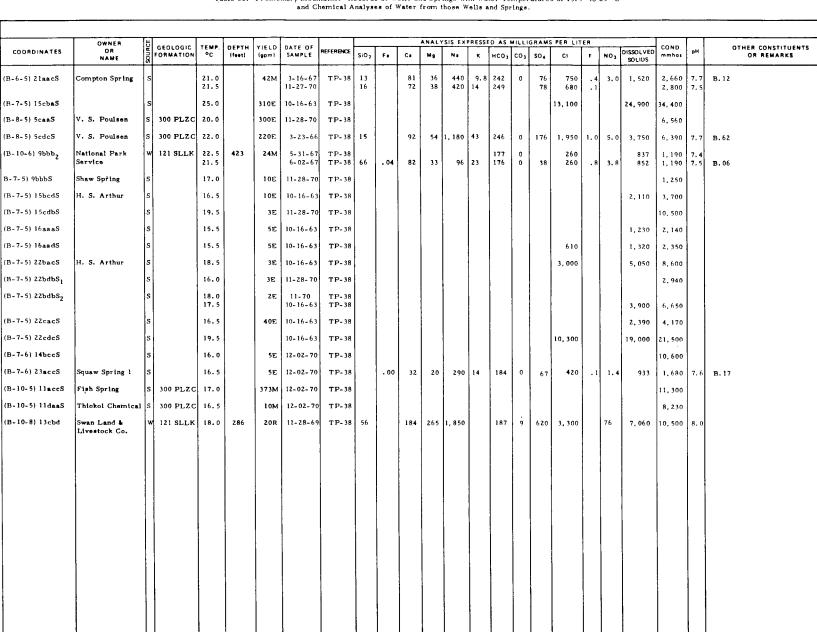
1 a.

Ч	
Л	
-7	

Table 31. Northern Juab Valley. Records of a Spring with Temperature of 20° C and a Well with Water Temperature of 15.5° C, and Chemical Analyses of Water from Both.

	OWNER	١٣	GEOLOGIC									ANAL	SIS EX	PRESSE	DAS	MILLI	GRAMS	PER LIT	ER					
COORDINATES	OR NAME		FORMATION		(feet)	(gpm)	DATE OF SAMPLE	REFERENCE	5102	F.	c.	Mg	N e	к	нсоз	co,	so.	CI	F	NO 3	DISSOLVED SOLIDS	COND. mmhos	pн	OTHER CONSTITUENTS OR REMARKS
C-12-1) 12aacS	Ray Lunt	s	III ALVM	20.0		1. 3M	7-15-65	TP-17	38		69	27	232		222	0	81	368		2. B	962	1,690	7. Z	
-13-1) Z3cdc	J. H. Greenhalgh	w	111 ALVM	15.5	120		8-15-51 6-11-64		36		58 59	36 38	66 59	3.1	210 173	0 14		136 149	. 2	6.5	504 560	869 880	8.7	B. 07
					;																			

Table 32. Park Valley. Records of Springs with Water Temperatures of 16° to 26.5° C and Chemical Analyses of Water from Those Springs


	OWNER	W	T		_ `							ANALY	SIS EXP	RESSFI	A S A	ILLIG	RAM	PER LIT	ER			·····		
COORDINATES	OR	SOURC	GEOLOGIC FORMATION	°C	DEPTH (feet)	YIELD (gpm)	DATE OF	REFERENCE	SiO ₂	F.	C.	Mg	Ns.		нсоз		50 4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhoi	₽Н	OTHER CONSTITUENTS OR REMARKS
-10-15) 6cdbS	Warm Spring No.2	s	400 ABRG	z0.0		386M	11-07-68	TP-30	19		63	21	77		184	0	29	162		1,1	501	860	7.6	
-12-15) 19aabS	Warm Spring No.1	s	400 ABRG	26.5		340E	8-12-66	TP-30	14		36	8	27	1.7	108	2	15	57	. z	. 1	223	406	8.5	B. 02
13-12) 30caaS	L. G. Carter	s	111 ALVM	25.0		5E	6-17-66	TP-30	10		39	11	44	.6	156	0	19	65	. z	1.4	274	482	8.0	B.07 Listed in Curlew Val
13-13) 27dddS	C. D. Larson	s	111 ALVM	21.0			6-17-66	TP-30	15		44	10	250	3.2	588	0	39	125	1.0	3.0	795	1,290	8.0	B.51 Sampled at Pond
3-13) 34cbbS	W. R. Carter	s	111 ALVM	21.0			6-17-66	TP-30	12		24	21	52	1.5	208	0	20	49	. 5	1.1	292	491	8.1	B.15 Sampled at Pond
3-13) 356665	E. M. Richardson	s	III ALVM	23.0	l		6-17-66	TP-30	. 8		28	17	290	3, 2	578	47	31	148	1.1	1.0	918	1, 490	8.9	B. 56 Sampled at Pond
3-14) 24ddcS	R. R. Pugsley	s	111 ALVM	23.0			6-17-66	TP-30	11		45	12	43	29	150	0	20	76	. 5	1.2	314	500	7.2	B. 09 Sampled at Pond
3-16) 23ccdS	Head Spring	s	400 ABRG	21.0		20E	8-12-66	TP-30	10		54	8.3	20	1. 0	187	0	8.8	36	. 1	. 1	240	421	8.0	В. 02
0-15) 6accS	Watercress Sprs.	s	300 PLZC	16.0		29M	11-07-68	TP-30	ļ												530	1,000		
1-11) 6dbbs	Black Butte Sprs.	s		19.0		18R	9-23-60	TP-30	14		520	124	6,670	276	206	0	224	11,600		15	20, 300	30, 400		Belongs in Curlew Va
3-14) 21ddds	R. E. Palmer	s	111 ALVM	19.5		2E	8-12-66	TP-30	11		25	5.4	31		114	0	12	32		. 1	162	304	8.1	
3-14) 24cacS	M.W. Kunzler	s	111 ALVM	17.0		2E	6-17-66	TP-30	11		2 6	8.3	49	. 4	117	0	19	61	. z	. 3	233	414	7.5	B. 07
3- 14) 2633aC	J. R. Kunslei	3	111 AL/VM	17.0			8-12-ńń	77-30	13		35	11	21	2.5	189	S	6.2	20	. 3	1.1	204	362	8. ŭ	в. 04 Sampled at Pond
3-14) 28abcS	E. R. Morris	s	111 ALVM	16.0		ZOE	8-12-66	TP-30	11		14	3.4	23		82	0	6.6	.8		. 1	111	199	7.3	Sampled at Pood

•

d

٠

Table 33. Promontory Mountains. Records of Wells and Springs with Water Temperatures of 15.5° to 25° C

•

٠

¥

.

	OWNER	۳ ۲	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	SIS EX	RESSE	DAS	MILLI	GRAMS	PER LI	ER					
COORDINATES	OR NAME	SOUF	GEOLOGIC FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	c.	Mg	Na	ĸ	нсоз	co3	so,	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	pН	OTHER CONSTITUENTS OR REMARKS
8-5) 6ddb	McFarland & Hullinger	w	111 ALVM	16.0	534	4100M	12-22-64	TP-23	13	. 33	40	27	36	2.8	192	0	28	70	.6	. 0	344	558	7.6	Mn.01 B.09
7-5) 32 aba S	Roy Davis	5	III ALVM	20.0		600	12-22-64	TP-23	14	. 12	46	38	47	Z. 8	237	0	35	106	. 3	1.4	412	725	7.8	Mn .07 B .06
5-5) 9cb aS	Warm Spring Morgans W.S.	s	111 ALVM	24.0 26.5		1000	9-22-64 7-18-67		20 19	. 88	58 48	24 28	110 112	11 11	17 4 162	0	90 98	179 188	1.0	.4 .0	594 586	981	8.0	WRB13 shows 5 Mn.02 B.17 solids this analy B.18, Li.03, Possibly WRB13 Br.3, I.01 error on dissolv solids
5-5) 17amaS	Russells Warm Spring	s	111 ALVM	21.5		450	4-29-66	WRB-13	17		51	21	73	11	170		55	124	1.6	. z	438	779	7.4	B.14, Li .03, Possibly WRB13 Br.3, I.01 Stills on dissol
							7-18-67	WRB-13	19		55	17	71	10	170		65	122	1.5	.0	445	744	7.5	B .14, Lt .02,
				14.0			9-22-64	TP-23	18	. 53	52	20	74	14	176	0	59	135	1.3	.4	463	789	7.8	Br .2, I .02 B .14, Mn .01 Pond Temp?

, ·

Table 34. Rush Valley. Records of One Well and Three Springs with Water Temperatures of 16° to 26.5° C and Chemical Analyses of Water from the Well and Springs

•

•)

	OWNER	Ъ,	GEOLOGIC	TEMP.	DEPTH	THELD	DATE OF					ANALY	SIS EX	RESSE	DASI	MILLI	GRAMS	PER LIT	EA			COND.	1	07460	CONSTITUENTS
COORDINATES	OR NAME	б S	ORMATION	•°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	Fe -	c.	Mg	Na	к	нсоз	co,	so,	CI	F	NO,	SOLIDS	mmhos	рН	OR	REMARKS
1-9) 24cdd	Bertagnole	w	III ALVM	24.0	215	40R	12-29-65	TP-18	24	. 93	78	102	849	39	158	0	146	1, 540	. 8	11	3,070	5,190	7.3	Mn.02, B.46	
1-7) 9caaS	Utah Fish & G ar ne: Dept.	s 1	Fault	22.0		30E	8-27-65	TP-18																	
1-7) 9cadS	Utah Fish & Game Dept.	s	Fault	22.0		30E	8-2 7-6 5	TP-18																	
1-7) 15bdbS		s	Fault	Z3.5			9-05-41	TP-18										6,720							
1-7) 25accS		s	Fault	20.0			9-05-41	TP-18										9,600							
1-8) 6abc	C. Hammond	w	300 PLZC	26.5	64	10R	11-49	TP-18															ļ	F	Water reported saline
2-8) 24ccS2		s	Fault	ZZ.0	ļ	25E,	7-18-63	тр-18	18	. 53	101	46	1,060	25	183	0	133	1,190	.1	2.8	3,490	5,810	7.3	B.3, Mn.0	sattie
2-8) 26dabS	No. Horseshoe Spring	s	111 ALVM	23.0			7-18-63	TP-18	47	. 50	126	47	1,500	47	244	0	190	2,420	. Z	8.7	4, 720	7,720	7.8	B .39, Mn. 0	Estimated total f 30 cfs, 26dba in chem- analysis f
2-8) 26dbcS	So. Horseshoe Spring	s	III ALVM	Z3.0			7-18-63	тР-18	29	. 11	123	49	1,720	59	246	0	227	2,700	.7	6.0	5, 120	8, 570	7.3	B .40, Mn. 0	
2-9) 7cbS	Redium Spring	s	Fault	21.0		2E	7-19-63	TP-18 TP-18	15	. 01	180	96	314	8. 2	232	0	163	840	. 2	3.3	1,930	3, 090	7.7	в.15	Another temp of 10-27-63
3-8) 10cccS	Descret Livestock South Spring	s	Fault	23.0		1800E	7-30-63	TP-18	17	. 09	152	61	1,970	66	241	0	280	3,150	.4	6.9	5, 980	9, 820	7.3	Mn .01, B .47	Discharge is fro springs at north of spring area.
3-8) 15cbaS	Deseret Livestock South Spring	s	Fault	21.5		230E	7-30-63	TP-18	16	, 15	138	55	1,960	66	223	0	260	3,090	. 3	4, 3	5,770	9, 590	7.2		One spring in lar spring area
3-8) 21ddbS	Deseret Livestock	s	Fault	2 4. 0		10E	7-23-63	TP-18	11	1.2	23	5.4	14	.,	90	0	10	26	. z	.1	137	238	7.1	Mn .10, B .02	
															l										
									ļ																
													ļ			'									
															1				Ì						
								1						1	ļ										
															1	ļ						1			
								1																	
						1	I	1	1	i		I	1	1	1	1	1	1	1	1	1	L	1	1	

Table 35-A. Skull Valley. Records of Wells and Springs with Water Temperatures of 20° to 26.5° C and Chemical Analyses of Water from Some of Those Wells and Springs

.

Table 35-B. Skull Valley. Records of Wells and Springs with Water Temperatures of 15,5° to 19,5° C and Chemical Analyses of Water from Some of the Wells and Springs

·····	OWNER	Ш										ANAL	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LIT	ER				г—	T	
COORDINATES	OR NAME	SOURCE	GEOLOGIC	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N 8	ĸ	нсоз	c0,	\$0₄	Cl	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рH		EMARKS
C-1-7) 9cccS	Utah Fish & Game	s	Fault	18.5	1	2390 M	7-18-63	TP-18	14	1.1	134	79	2,630	93	212	0	310	4, 260	. 1	4.1	7,850	12,900	7.7	Mn .04, B .79	
C-1-7) 25dabS	Utah Lime Co.	s	Fault	19.0			8-05-41	TP-18										6,850						,	
C-1-7) 31aad	L. C. Hales	W	III ALVM	15.5	100	100 M	8-30-55	TP-18																	
C-1-7) 31dcd	A. B. Callister & L. C. Hale	W	111 ALVM	16.5	130	10 R	7-18-63	TP-18	29	. 38	62	37	859	34	212	0	118	1,380	. 2	2.1	2,680	4,690	7.3	Mn. 00, B.23	
C-1-7) 326d	A. B. Callister & L. C. Hale	w	III ALVM	19.0 19.0	130	1800 R	7-18-63 9-05-63			.41 .39	107 106		1,220 1,180		234 233	0 0		1,980 1,950	. 2 . 2	3.8 8.1	4,010 3,910			Mn. 00, B .57 Mn .02, B .38	
C-2-7)6caa _l	J. Q. Griffiths	w	111 ALVM	16.5	255	450 R	7-31-53	TP-18																	
C-Z-7) 6caa2	J. Q. Griffiths	w	III ALVM	15.5	130	50 E	4-29-55	TP-18	32		70	41	793	30	206	0	107	1,270	. z	6.0	2,480	4,370	7.7		
C-2-7) 6cdaS	Burnt Spring	s	Fault	19.5		Seep	7-18-63	TP-18	26	. 18	84	45	824	31	207	0	114	1,360	. z	7.4	2,680	4,610	7.3	Mn. 00, B.23	
C-2-8) 13dcbS	Muskrat Spring	s	Fault	179.0		50 E	7-18-63	TP-18	22	.17	85	36	639	25	218	0	87	1,050	.1	5.1	2,060	3,670	7.4	Mn. 00, B .19	
C-2-8) 24bcd	E. R. Flinders	w	111 ALVM	16.0	132	540 M	7-01-54	TP-18	22		70	31	485	16	199		76	825	.1	3.7	1,610	2,910			
C-2-8) 24ccS		s	Fault	18.0		25 E	7-18-63	TP-18	22	. 78	103	44	1,020	32	190	0	126	1, 720	.1	3.4	3,430	5,650	7.1	Mn. 00, B.26	
C-2-8) 25bbd	M. D. Arbon	w	111 ALVM	18.0		355 M	7-01-54	TP-18	22		95	46	993	34	188		128	1,630	.1	4.4	3,090	5,350			
C-3-8) 12abS		s	Fault	19.0		4.6M	7-30-63	TP-18	21	. 03	63	11	60	. 8	203	0	20	102	. 2	1.2	395	678	7.5	Mn. 00, B.04	
С-5-7) 356с65	Sand Spring	s	Fault	17.0		5 E	8-14-63	TP-18	7.3	. 30	51	2.4	13	.7	270	0	11	17	1.1	. z	241	453	7.7	Mn. 00, B.03	
C-6-8) 15cacS	Orr's Ranch	s	Fault	15.5		150 E	8-15-63	TP-18	19	. 70	59	32	142	7.7	238	0	49	245	. 4	1.5	706	1, 220	7.4	Mn. 00, B.12	
C-2-7) 7eec	D. Lawrence	W	111 ALVM	17.0	175	600 R	3-16-54	TP-18	21		78	42	820	30	190	0	95	1,350	1.1	4.5	2,530	4, 590	7.8	B.28	
C-3-7) 30ddbS		s	Fault	16.0		50 E	7-31-63	TP-18	10	. 03	38	9	24	1.1	158	0	10	31	. 1	.3	199	343	7.6	B .02, Mn. 00	
C-3-9) 8ccS	Eight Mile Spring	s	Fault	18.0 18.0		3.6M	7-23-63 9-05-63			. 72 . 48	180 174		268 262	8.5 7.9		0	129 129	855 840	.1 .3	3.7 2.6	1, 940 2, 070			Mn.08, B.17 Mn.01, B.18	100 gpm E from whole spring ar
C-4-8) 33aba	Hatch Bros. Co.	w	111 ALVM	15.5	500	350 M	8-01-63	TP-18	25	. 09	28	23	153	12	190	0	40	222	1.1	12	616	1,090	7.3	Mn. 00, B.08	

. .

.

.

""

.

COORDINATES

(C-15-19) 31bcS

(C-16-18) 95

OWNER OR NAME

2 miles south of

Foote's Ranch

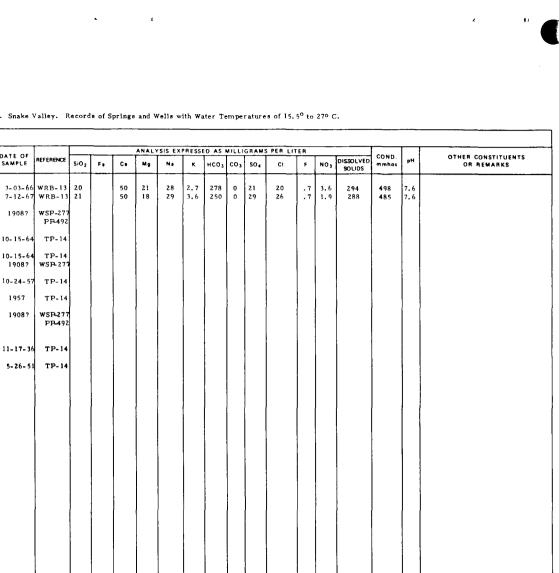
Gandy Warm Sprs 5 370 CMBR

ls

GEOLOGIC TEMP. DEPTH YIELD DATE OF GEORMATION °C (feet) (gpm) SAMPLE

27.0

Z6.5


20.0

4500

9000

1000

1908?

Table 36. Snake Valley. Records of Springs and Wells with Water Temperatures of 15.5° to 27° C.

1(1)-1(1) 1(1)-1(1) 1(1)<	4		11		- 1		1				1			1			1		1		1
10dS 21.0 19087 WSE-277 (G-18-19) 20dd2 J. D. Hill W 22.0 560 75 E 10-24-57 TP-14 (G-18-19) 28bbb J. D. Hill W 22.0 640 1957 TP-14 (G-14-18) 33S Miller's Ranch S 18.0 19087 WSE-277 (G-20-19) 7aab O. S. Quate W 15.5 569 7 11-17-36 (G-20-19) 1bcc BLM W 16.5 1 E 5-26-51 TP-14	(C-16-18) 22cabS	Twin Springs	s	20.	. 0	180	00 E	10-15-64	TP-14												
(C-18-19) 28bbb J. D. Hill W 22.0 640 1957 TP-14 (C-14-18) 33S Miller's Ranch Miles south Tout Creek S 18.0 500 1908? PR492 (C-20-19) 7aab O. S. Quate W 15.5 569 7 11-17-36 TP-14 (C-20-19) 1bcc BLM W 16.5 1 E 5-26-51 TP-14		Knoll Springs	s	19. 21.	.5 .0		3 E	10-15-64 1908?	TP-14 WSP-277												
(C-14-18) 33S Miller's Ranch S 18.0 1908? WSP277 (C-20-19) 7aab O. S. Quate W 15.5 569 7 11-17-36 (C-20-19) 1bcc BLM W 16.5 1 E 5-26-51 TP-14	(C-18-19) 20ddd ₂	J. D. нш	w	22.	. 0	560	75 E	10-24-57	TP-14							ł					
8 Miles south Trout Creek 500 PF492 (C-20-19) 7aab O. S. Quate W 15.5 569 7 11-17-36 TP-14 (C-20-19) 1bcc BLM W 16.5 1 E 5-26-51 TP-14	(С-18-19) 28ъъъ	Ј. Д. НШ	w	22.	. 0	640		1957	TP-14	ļ											
(C-20-19) 1bcc BLM W 16.5 1 E 5-26-51 TP-14	1	8 Miles south	s	18.	. 0	50	00	1908?	WSP-277 PP-492												
	(C-20-19) 7aab	O. S. Quate	w	15	. 5	569	7	11-17-36	TP-14												
	(C-20-19) 1bcc	BLM	w	16	. 5		1 E	5-26-51	TP-14												
]						
															ĺ						
												'									
		1																			
												ļ									
											1										
												1									
												ļ									
																				[]	
	1						ļ										ļ]

	OWNER	JACE	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANAL	SIS EXI	NE 330	LUASI		RAMS	5 PER LIT	ER	_			1	
COORDINATES	OR NAME	SOUR	FORMATION		(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	Fe	C.	Mg	Na	ĸ	нсо,	co3	so₄	CI	f	NO3	DISSOLVED SOLIDS	COND. mmhos	pН	OTHER CONSTITUENTS OR REMARKS
-2-4) 9cda	Kennecott Copper	w	111 ALVM	30.0	687		2-28-63	BD-7	30		112	44	894		231	0	66	1,520		1.2	2, 780	5,200	7.5	Perf. 536-562, 592-666
-2-5) 13bca	Ed Cassity	w		23.0	3540		5-05-61	BD-7							124	0		510				1,910	7.8	Oil Test
C-2-5) 34bca3			111 ALVM			200 E		BD-7							208	0		1,700				5,600	7.6	
2-2-5) 34cbc			111 ALVM	21.0	380		8-18-58	BD-7.	28		74	34	204		252	0	91	332		Z. 1	889	1,580	7.7	
C-2-6) 16aadS	Warm Springs		111 ALVM				3-15-66	WRB-13			584	188	8,910	237	233		66Z	15,000	1.7	1.3	25, 800	40, 400	7.5	B 1.5 Others also from WRB-13
С-2-6) 23съъ	J. R. Worthington	W	III ALVM	20.0 20.0	210	300 E	5-31-61 8-22-62	BD-7 BD-7	62 52	0 .03	46 40	16 16	231 200	19	206 206	0	35 31		0.6	1.9	822 774	1,470 1,360		В.10
C-3-4) 32bcc	Toosle City	w	111 ALVM	21.5	710	325 M	12-09-54 8-24-55	BD-7 BD-7	44 34	.75 .0	62 75	6 12	87 52		219 270	0	30 24	93 66	1.3	32 12	397 418		7.0 7.6	
														-										
													:							-				

Table 37-A. Torrele Valley. Wells and One Spring with Water Temperatures of 20° to 30° C.

•

.

4

Table 37-B. Tooele Valley. Wells and One Spring with W	ater Temperatures of 15,5° to 19,5° C.
--	--

	OWNER	Т _Ш Т	T	I								ANALY	SIS EXP	RESSE	DASM	AILLIC	RAMS	PER LIT	ER					
COORDINATES	OWNER OR NAME		GEOLOGIC FORMATION	TEMP. °C	DEPTH (feet)	YIELD (gpm)	DATE OF	REFERENCE	si02	F.	C.	Mg	N.	к	нсоз		504	Сі		NO3	DISSOLVED SOLIDS	COND. mmhos	рH	OTHER CONSTITUENTS OR REMARKS
C-1-4) 26ddd	Leslie Salt	w	III ALVM	16.0	227	120 R	11-24-61	BD-7	14	. 01	72	57	533	24	230	0	48	960	. 2	2.3	1,820	3, 550	8.1	B=. 22
C-1-6) 22ddd	Solar Salt	w	III ALVM	16.0	630	40 R	1959	BD-7																
C-2-4) 10bcd 15 cac	ксс ксс	w s	111 ALVM 111 ALVM	16.5 18.0	133	6 M 2600 R		BD-7 BD-7	25		76	41	288		242	0	144	638 450		4.6	1,150	2, 590 1, 990	7.6	
C-2-4) 15cdc	S. W. Clark	w	111 ALVM	16.0	305	1200 R	6-27-61	BD-7	19		122	43	321		292	0	277	460	1	2.7	1,390	2, 330	7.5	
C-2-4) 17dad	E. J. Jeremy	w	III ALVM	16.5		6 M	11-29-61	BD-7										26 Z				1, 300		
C-2-4) 31accg	R. Castagno	w	111 ALVM	17.0	180		8-18-58	BD-7	17		56	20	135		273	0	28	182		5.8	578	1,070	8.0	
C-2-4) 31ada	E. Walters	w	111 ALVM	15.5	200	15 M	10-04-60	BD-7	14	. 00	48	18	106	1.8	258	0	2 6	122	. z	12	475	836	7.9	B=.08
C-2-4) 31add ₂	E. Walters	w	111 ALVM	15.5	202		8-18-58	BD-7	17		52	19	96		272	0	28	112		9.7	468	846	7.9	
C-2-4) 31add ₆	E. Walters	w	111 ALVM	16.0	271	660 M	6-05-62	BD-7															ļ	
С-2-4) 316с6	F. Hickman	w	111 ALVM	17.0	343	80 E	12-28-60	BD-7	17	. 01	66	25	119	3.2	262	0	27	198	. 1	5.9	605	1, 080	7.9	
C-2-4) 31bdc	R. Castagno	w	111 ALVM	17.0	260		8-18-58	BD-7	15		52	19	136		244	0	35	180		6.0	569	1,030	8.3	
C-2-4) 31bdc3	R. Castagno	w	111 ALVM	18.5	352	1200 M	6-05-62	BD-7																
C-2-4) 31caa5	E. Walters	w	111 ALVM	16.5	172	1	8-18-58	BD-7	16		43	17	168		270	0	33	200		4.8	615	1, 110	8.1	
C-2-4) 31cda2	E. Walters	w	111 ALVM	16.0	500	1080 M	9-07-62	BD-7																
	H. C. Dillard	w	III ALVM	16.0	174		8-20-58	BD-7	15		54	19	98		280	0	28	112		11	475	863	7.8	8
C-2-4) 31dad	H. C. Dillard	w	III ALVM	16.5	727	300 M	8-20-58	BD-7	14		55	18	107		285	0	30	120		13	497	880	8.0	
C-2-4) 32cac	R. Boyce	w	111 ALVM	16.0	500		9-11-62	BD-7																
C-2-4) 32cad	R. Boyce	w	111 ALVM	16.0	400	50 M	9-07-61	BD-7																
C-2-4) 33aab	J. E. England	w	III ALVM	16.0	403	1760 M	7-28-6Z	BD-7	ł															
C-2-5) 5ccc		w	III ALVM	16.5			4-19-63	BD-7								l		3,620				10,400		
C-2-5) 5dcd4	G. S. Higley	w	111 ALVM	15.5	417		10-11-61	BD-7		l								232				1,030		1
(C-2-5) 6ddd	L. Peasnal	w	III ALVM	16.5	360	1.91	10-10-62	BD-7										1,640				5,150		
(C-2-5) 18dcc	E. M. Clark	w	111 ALVM	15.5	300		3-08-62	BD-7																
(C-2-5) 27add	E. Cassity	w	111 ALVM	18.0	355	150 E	6-20-62	BD-7																
C-2-4) 28bca	C. Higley	w	III ALVM	15.5	335	900 E	10-16-62	BD-7	24		1 3 2	47	152		220	0	86	412		5.1	966	1,800	7.4	, ,
(C-2-5) 32daa	J.M. Fraser	w	111 ALVM	15.5	410	200 E	6-19-62	BD-7							1									
(C-2-5) 33dad	J. C. Palmer	w	111 ALVM	19.5	400	200 E	4-11-61	BD-7	2.8	. 12	91	37	2 5 5	6.0	247	0	86	454	.3	3.5	1,080	1,940	8.	B≂.17
3 C-2-5) 33dba	L. A. Bolinder	w	111 ALVM	17.0	525	200 E	6-19-62	BD-7													ļ			
(С-2-5) ЗЗЛЪЪ	R. Fawson	w	III ALVM	18.5	265		3-07-62								ļ									
(C-2-5) 33dcd	T. McMichall	W	111 ALVM	19.0	285	535 M	8-22-58	BD-7	31		88	34	190		264	0	93	323	4.8		894	1, 530	7.	6
(C-2-5) 34ddd	N. Pantos	w	111 ALVM	18.0	440		7-01-59	BD-7	21		51	26	202		217	0	48	315		. 4	770	1, 390		
(C-2-5) 35add	H. G. Langford		III ALVM	18.5	513		6-28-6		1		1		1									1,460		
(C-2-5) 35addz	S. A. Langford		III ALVM			30 F			17		93	36	298		253	0	39	550		5.7	1, 160	2, 180	1	7
		ľ	1		```				Ľ		Ľ				1	ľ				, <i>'</i> , '	1,100			

CODDINATI Unit Serve field Unit U		OWNER	Ы	GEOLOGIC	TEMP	DEPTH	YIELD	DATE OF					ANAL	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LI	ER					
2-2-5) 36bdd GrantavilleSCD w 111 ALVM 19.0 400 3-06-62 BD-7 17 61 23 124 264 0 25 192 3.8 576 1.070 7.6 -2-5) 36add J. H. Palmer W 111 ALVM 18.5 442 950 N 3-07-59 BD-7 16 58 21 131 262 tr 29 192 2.5 578 1.070 7.6 -2-5) 36add J. H. Palmer W 111 ALVM 18.0 445 500 F 8-18-58 BD-7 16 58 21 131 262 tr 29 192 2.5 578 1.070 7.6 -2-5) 36dad J. H. Salmer W 111 ALVM 18.0 445 500 F 8-18-58 BD-7 21 69 22 161 274 0 33 249 5.8 664 1.240 7.8 3.6 -2-5) 36bdd J. A. Smith W 111 ALVM 19.0 325 1250 E 8-20-58 BD-7 2 88 34	COORDINATES	OR NAME	SOUR	FORMATION	°C			SAMPLE	REFERENCE	si02	F.										NO3	DISSOLVED SOLIDS	COND. mmhos	рн	OTHER CONSTITUENTS OR REMARKS
2-5) 36add J. H. Palmer W 111 ALVM 16.5 310 8-18-58 BD-7 16 58 21 131 262 tr 29 192 2.5 578 1,070 8.2 2-5) 36bdd T. Castagno W 111 ALVM 18.0 445 500 E 8-18-58 BD-7 16 47 21 176 244 0 31 250 2.8 664 1,240 7.7 2-5) 36dad R. J. Nelson W 111 ALVM 15.5 259 8-22-58 BD-7 21 69 22 161 274 0 33 249 5.8 664 1,240 7.7 2-5) 36dad J. A. Smith W 111 ALVM 19.0 325 1250E 8-20-58 BD-7 22 88 34 431 214 0 45 760 5.2 1,490 2,710 7.4 2-6) 14ddd C. H. Worthington W 111 ALVM 18.5 434 100 F 10-03-62 BD-7 - - - - 119 1	2-5) 35cbd	GrantsvilleSCD	w	III ALVM	19.0	400		3-06-62	BD-7																
-2-5) 36bdd T. Castagno W 111 ALVM 18.0 445 500 E 8-18-58 BD-7 16 47 21 176 244 0 31 250 2.8 664 1, 240 7.7 -2-5) 36bdd R. J. Nelson W 111 ALVM 15.5 259 8-22-58 BD-7 21 69 22 161 274 0 33 249 5.8 664 1, 240 7.7 -2-5) 36dad J. A. Smith W 111 ALVM 19.0 325 1250E 8-20-58 BD-7 22 88 34 431 214 0 45 760 5.2 1,490 2,710 7.4 -2-6) 14ddd C. H. Worthington W 111 ALVM 18.5 434 100 E 10-03-62 BD-7 - - - - 80 - - 664 1,220 7.8 - - 604 - - - 604 - - 604 - - 604 - - 7.6 - 604 - - <td>-2-5) 36adc</td> <td>J. H. Palmer</td> <td>w</td> <td>III ALVM</td> <td>18.5</td> <td>442</td> <td>950 M</td> <td>3-07-59</td> <td>BD-7</td> <td>17</td> <td></td> <td>61</td> <td>23</td> <td>124</td> <td></td> <td>264</td> <td>0</td> <td>25</td> <td>192</td> <td></td> <td>3.8</td> <td>576</td> <td>1, 070</td> <td>7.6</td> <td></td>	-2-5) 36adc	J. H. Palmer	w	III ALVM	18.5	442	950 M	3-07-59	BD-7	17		61	23	124		26 4	0	25	192		3.8	576	1, 070	7.6	
-2-5) 36bdd T. Castagno w 111 ALVM 18.0 445 500 E 8-18-58 BD-7 16 47 21 176 244 0 31 250 2.8 664 1, 240 7, 7 -2-5) 36dad R. J. Nelson w 111 ALVM 15.5 259 8-22-58 BD-7 21 69 22 161 274 0 33 249 5.8 6664 1, 240 7, 7 -2-5) 36dad J. A. Smith w 111 ALVM 19.0 325 1250E 8-20-58 BD-7 22 88 34 431 214 0 45 760 5.2 1,490 2,710 7,4 -2-6) 14ddd C. H. Worthington 111 ALVM 18.5 434 100 E 10-03-62 BD-7 - - - - 60 - - 604 - 604 - - 604 - 604 - - 60 - - 60 - - 60 - - 60 - - 60	-2-5) 36 a dd	J. H. Palmer	w	III ALVM	16.5	310		8-18-58	BD-7	16		58	21	131		26Z	tr	29	192		2.5	578	1,070	8. Z	
5-2-5) 36dcd J. A. Smith W 111 ALVM 19.0 325 1250E 8-20-58 BD-7 22 88 34 431 214 0 45 760 5.2 1,490 2,710 7.4 5-2-6) 14dd C. H. Worthington W 111 ALVM 18.5 434 100 E 10-03-62 BD-7 88 34 431 214 0 45 760 5.2 1,490 2,710 7.4 5-2-6) 22dbd Utah Lime & Stone W 111 ALVM 19.0 147 100 R 9-06-62 BD-7 88 34 431 214 0 45 760 5.2 1,490 2,710 7.4 5-2-6) 22dbd Utah Lime & Stone W 111 ALVM 19.0 147 100 R 9-06-62 BD-7 6 26 11 124 198 0 20 139 .5 454 783 7.6 5-2-6) 23cb22 J. R. Worthington W 111 ALVM 16.0 400 1460 M 9-11-62 BD-7 33 39 14 63 170	C-2-5) 366dd	T. Castagno	w	111 ALVM	18.0	445	500 E	8-18-58	BD-7	16		47	21	176		244	o	31	250		2. R	664	1, 240	7.7	
-2-6) 14ddd C. H. Worthington W 111 ALVM 18.5 434 100 F. 10-03-62 BD-7 -2-6) 22dbd Utah Lime & W 111 ALVM 19.0 147 100 R 9-06-62 BD-7 -2-6) 23cbb2 J. R. Worthington W 111 ALVM 16.5 95 2-20-60 BD-7 36 26 11 124 198 0 20 139 .5 454 783 7.6 -2-6) 23cbb2 B. Castagno W 111 ALVM 16.0 400 1460 M 9-11-62 BD-7 33 39 14 63 170 0 20 93 .7 344 604 7.7 -3-5) 4bbb V. P. Fawron W 111 ALVM 15.5 477 1300 14 0 34 (2 DD 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2-5) 36dad	R. J. Nelson	w	111 ALVM	15.5	259		8-22-58	BD-7	21		69	22	161		274	o	33	249		5. B	696	1,220	7.8	
-2-6) 22dbd Utah Lime & W 111 ALVM 19.0 147 100 R 9-06-62 BD-7 16 26 11 124 198 0 20 139 .5 454 783 7.6 -2-6) 23cbb2 J. R. Worthington W 111 ALVM 16.5 95 2-20-60 BD-7 36 26 11 124 198 0 20 139 .5 454 783 7.6 -2-6) 23cdc2 B. Castagno W 111 ALVM 16.0 400 1460 M 9-11-62 BD-7 33 39 14 63 170 0 20 93 .7 344 604 7.7	-2-5) 36dcd	J. A. Smith	w	111 ALVM	19.0	325	1250 E	8-20-58	BD-7	22		88	34	431		214	0	45	760		5. Z	1, 490	2, 710	7.4	
Stone 119 119 715 -2-6) 23cbb2 J. R. Worthington W 111 ALVM 16.5 95 2-20-60 BD-7 36 26 11 124 198 0 20 139 .5 454 783 7.6 -2-6) 23cdc2 B. Castagno W 111 ALVM 16.0 400 1460 M 9-11-62 BD-7 33 39 14 63 170 0 20 93 .7 344 604 7.7 -3-51 4bbb V. P. Fawron W111 ALVM 15.5 407 1300 M 9.7 9.7 9.7 344 604 7.7	-2-6) 14ddd	C. H. Worthington	w	111 ALVM	18.5	434	100 F.	10-03-62	BD-7										80				604		
-2-6) 23 cdc ₂ B. Castagno W 111 ALVM 16.0 400 1460 M 9-11-62 BD-7 33 39 14 63 170 0 20 93 .7 344 604 7.7	- 2- 6) 22dbd		w	111 ALVM	19.0	147	100 R	9-06-62	BD-7										119				715		
2-6) 23cdc2 B. Castagno W 111 ALVM 16.0 400 1460 M 9-11-62 BD-7 33 39 14 63 170 0 20 93 .7 344 604 7.7	2-6) 23cbb2	J. R. Worthington	w	111 ALVM	16.5	95		2-20-60	BD-7	36		26	11	124		198	0	20	139		5	454	79.3	- 4	
-3-5) 4bbb V. P. Fawron Will a vict 15 5 407 1300 4 0 3 (2) PD 7 01 00 00 0 1	- 2-6) 23cdc2	B. Castagno	w	111 ALVM	16.0	400	1460 M	9-11-62	BD-7	33		39	14				1 1								
	(- 3- 5) 4bbb ₂	V. P. Fawson	w	III ALVM	15.5	407	1300 M	8-22-62	BD-7	21	. 00														

.

e b

¢.

Table 37-B. Toosle Valley. Wells and One Spring with Water Temperatures of 15, 5° to 19, 5° C.

_

	OWNER	3	GEOLOGIC	TEMP.	DEPTH	TIELD	DATE OF					ANALY	SIS EX	PRESSE	DAS	MILLI	GRAMS	PER LIT	EA			COND.		
COORDINATES	OR NAME	SOUR	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO2	F.	C.	Mg	Na	ĸ	нсо,	c03	so4	сі	F	NO3	DISSOLVED SOLIDS	mmhos	pН	OTHER CONSTITUENTS OR REMARKS
C-16-15) 13babS	Coyote Spring	s	Fault	28.0 28.0			9-19-74 1-15-76	TP-56 TP-56	23	. 03	71	38	350	37	26 6		330	450	1.1	. 12	1,430	2,400 2,000		В.61
C-16-15) 26cabS		s	Fault	24.5			9-19-74	TP-5 6												:		1,700		
C-17-15) 10aabS		s	Fault	27.5 27.5			9-19-74 1-15-76	TP-56 TP-56														1,600 1,500		
C-17-15) 10abaS	No. Tule Spring	s	Fault	28.0			9-19-74	TP-56																
C-17-15) 10acaS		s	Fault	27.0			9-19-74 9-12-62				72	41	201	20	248	0	262	230			992	1,575 1,590		в.24
(C-17-15) 15abcS	So. Tule Spring	s	Fault	25.0			9-19-74	TP-56														1,750		
(C-17-15) 25bcbS		s	Fault	27.0			9-19-74	TP-56														2,300		
(C-17-15) 25cbb		w	Fault	31.0	42	200	11-20-53	TP- 56																Water only 4 fee below land surfa
(C-16-15) 34dacS	Willow Spring	s	Fault	19.5			9-19-74	TP-56														1,900		odiow iand surfa
(C-17-16) 28dbdS	Skunk Spring	s	Fault	16.0		ЗМ	6-20-73	TP-56	16	.05	240	110	170	2.8	264	0	270	640	. 7	. 43	1,580	2,700		Mn .02, B .44, P .01
(C-22-14) 1cba	IBEX Well #108	w		16.5	493	13.9	1-14-76 9-24-48		22		47	33	180	19	297		200	170	1.1	. 53	821	1, 320		B.34, P.01

Table 39. Wah Wah Valley. Wells and Springs with Water Temperatures of 15.5° to 24.5° C.

TABLE 38. Tule Valley. Wells and Springs with Water Temperatures of 16° to 31° C.

	OWNER	5	GEOLOGIC	TEMP.	DEPTH	YIELD	DATE OF					ANALY	SIS EX	PRESSE	DASI	MILLI	GRAMS	PER LIT	ER			COND.			
COORDINATES	OR NAME		FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	Na	ĸ	нсоз	co3	so4	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рн		CONSTITUENTS REMARKS
(C-24-13) 34ccb	BLM Wah Wah Well	w	•	15.5	294	30	12-17-62 9-25-63	TP-47 TP-47	33 30	. 12 . 21		29 45	366 436	15 18	160 186		179 205	585 670		5.3 4.9	1,380 1,600	2, 380 2, 730			• Older Alluvium
(C-28-14) 11abb	Earth Sciences Inc.	w	*	24.5	1, 472		9-27-73	TP-47	58		21	6.4	86	11	169	0	82	32	1.0	.85	586	985	7.5	P.18, B.12	Older Alluvium
(C-27-15) 11aadS ₁	Wah Wah Ranch No. 2	s	*	19.0		10 E	10-12-72	TP-47																	* Discharge from tufa deposits
(C-27-15) llaadS ₂	Wah Wah Ranch No. 3	s	*	19.0		5 E	10-12-72	TP-47																	* Discharge from tufa deposits
(C=27-15) llabaS ₁	Wah Wah Ranch No. 1	s	300 PLZC	19.5		450 E	9-14-62 5-27-68	TP-47 TP-47	13 13			29 32	22 20	1.5 1.2		0 0	14 14	37 42		5.7 6.9	340 338			B.02 B.02	
(С-27-15) 12ББаS ₁	Wah Wah Ranch No. 6	s	•	18.0			10-12-72	TP-47																	* Discharge from tufa deposits
(С-27-15) 12bbcS ₁	Wah Wah Ranch No. 5	s	*	18.0		10 E	10-12-72	TP-47																	* Discharge from tufa deposits
(C-27-15) 12bcdS ₁	Wah Wah Ranch No. 4	s	•	16.5		20 E	10-12-72	TP-47																	*Discharge from tufa deposits
(C-27-15) llaadS ₁ llaadS ₂ l2bba l2bbc	Wah Wah Ranch 2, 3, 5 & 6	s		19.0			9-14-62	TP-47	13		60	30	20	1.2	298	0	14	36	.1	4.9	324	592	7.9		Total Flow Wah Wal Springs 500gpm E

q

۶,

4

ļ

-1

Table 40. Grand Staircase. Springs with Water Temperatures of 15.5° to 35.5° C.

COORDINATES	ÓWNER OR	Ĕ	GEOLOGIC	TEMP. °C	DEPTH	YIELD	DATE OF SAMPLE	REFERENCE		-				-				PER LI			DISSOLVED	COND,	рΗ	OTHER CONSTITUENTS
	NAME	ŝ	- URMATION		(feet)	(gpm)	SAMPLE		SiO ₂	Fe	С.	Mg	N.	ĸ	нсо,	c03	so₄	CI	f	NO3	SOLIDS	mmhos		OR REMARKS
C-42-6) 17cas	Big Lake Springs	s	220 NVJO	15.5		100- 125 E	8-26-63	WRB-5																
С-39-7) 36ъъъ	Stout Canyon Seep	s	210 CRCS	21.5		1 E	7-25-63	WRB-5																Temp. meas. in seepage area
С-40-7) 11466	Hidden Lake Spring	s	210 CRC5	20.5- 23.5		350 E	7-23-63	WRB-5																Lake Temp.
				11.0		1	3-21-65	WRB-8	6.4	0.52	52	19	47		305		9	47		0	328		7.9	
C-40-7) 34bad	Proposed Town Spring	s	210 CRCS	15.5		Seeps	7-19-63	WRB-5	40	. 02	350	231	46		585	1	1245	28		0	2708			Shallow Aquifer
C-40-7) 28dba	Calf Pasture Hollow	s	210 CRCS	18.0		4 E	8-12-63	WR18-5																
C-43-8) labc	Yellow Jacket #1	s	220 NVJO	35.5		1/8 M	7-19-64	WRB-8																Temp. Meas. at Pipe. Ground Tem 131°F.
C-42-8) 36ddc	Yellow Jacket #2	s	0LVN 022	23.5		.2м	7-19-64	WRB-8	13	0.09	40	11	4.4		145		8.3	6		8.3	191		7.3	Temp. Meas. at
С-43-8) 9dbb 9dbc	Harris Springs	s	220 NVJO	19.5 23.0		3 E	7-19-64	WRB-8	10	.05	51	13	11		185		9.1	8		0	224	r	7.6	discharge pipe
C-42-6) 4cbc	Headwaters Lower Kanab	s	220 NVJO	16.5		25 E	8-01-64	WRB-8																
C-42-6) 9bbd	Red Canyon	s	220 NVJO	22.0		15 E	8-01-64	WRB-8																
C-42-5) 35bdb	Alvin Judd House	s	220 NV JO	18.5		.25E	8-29-64	WRB-8																
C-42-4 1/2)18ccc	East Side Johnson Canyon	s	231 MONV	15.5		3E	8-27-64	WRB-8																
C-42-4 1/2)32dab 32dba	Johnson Lakes Springs	s	220 NVJO	16.5			8-28-64	WRB-8	6.7	.04	37	20	14		185		9.6	11		0	222		7.8	
C-39-4 1/2)16cd	Head of Slide Canyon	s	211 KPRS	16.5		1/8 M	7-30-64	WRB-8																Temp. Meas. 100 yds. below source
C-40-4) 15dd	Findlay Ranch	s	111 ALVM	15.5		. 25E	7-31-64	WRB-8																,
C-37-1) 8ddaS	Henrieville Old	s	220 SGCF	15.5		13 M		НG																
C-40-1) 11 S	Cottonwood #6	s	220 NVJO	16.5		8 M	7-23-64	WRB-8	7.3	.04	37	6.1	6.5		95		21	10		1.0	117		7.3	
C-40-1) 14cbS	Cottonwood #4	s	111 CLVM	15.5		63 M	7-22-64	WRB-8	9.7	. 05	46	7.1	9.5		130		20	10		1.8	194		7.9	
C-40-1) 14cdS	Cottonwood #5	s	111 ALVM	16.0		5 E	7-23-64	WRB-8																
C-40-1) 23baS	Cottonwood #3	s	111 ALVM	15.5		58 M	7-22-64	WRB-8	9.7	.05	39	12	14		145		20	11	. 3	. 0	199		7.6	OAL (Fault in
C-40-1} 23bcS	Cottonwood #2	5	111 CLVM	18,5		ΣE	7-23-64	WRB-8																Navajo?)
C-41-3) 34cbbS	Kitchen Corral Point Spring	s	231 CHNL	23.5 10.5		.25M	7-26-64 3-22-65	WRB-8 WRB-8		.04 .02	15 13		181 195		270 240		216	50 49		. 0	680 691		8.7 8.2	(on fault?) Te meas, at dischar
C-42-3) 3bcdS	Kitchen Corral Wash	s	111 ALVM	19.5			8-26-64	WRB-8																pipe Water probably r on bedrock dam
C-43-7) 21aabS	Water Canyon #1	s	220 NVJO	16,5		10-15 E	8-05-64	WRB-8																on bedrock dam

÷ 1

i3

4

	OWNER	18	65010616	TEMP		VIELD						ANALY	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LIT	ER					OTHER CONSTITUENTS
COORDINATES	OR NAME		GEOLOGIC FORMATION		(feet)	(gpm)	DATE OF SAMPLE	REFERENCE	SiO 2	F.	C.	Mg	N.	ĸ	нсо3	co3	so₄	СІ	F	NO3	DISSOLVED SOLIDS	COND. mmhos	рH	OR REMARKS
-10-8) 13cbd	Swan Co.	w	121 SLLK	18.0	286	20 R	11-28-69	TP-33	56		184	265	1,850		187	0	620	3, 340		76	7,060	10,500	8.0	
3-11-7) 8bdc	Holmgren Land & Livestock Co.	w	121 SLLK	16.0	235	Z	11-28-69	TP-33	52		9.6	53	511		280	0	102	710		18	1,630	2,770	8.2	
3-11-9) 10aaaS	Monument Pt.	5	300 PLZC	17.5		45 E	8-27-63 10-10-67		14		421	796	16,200	564	118	n		28,940 28,200				66,200 61,100		B 5.7, Br 48, 1.32, L1 4.9.

Table 41. Hansel Valley. Spring and Wells with Water Temperatures of 16° to 18° C.

~ .i)

N4

 $\mathbf{y})$

COORDINATES OMAGE S FORMATION oc (feet) (gpm) SAMPLE HereHale SIO2 Fe Ce Mg Ne K HCO3 CO3 SO4 CI F NO3 DISSOLVED mmhox PM OR REMARKS B-4-19) 36abdS1 D. Stephens S 111 ALVM 15.5 5 9-23-71 TP-41 - <td< th=""><th></th><th>OWNER</th><th>5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ANAL</th><th>SIS EX</th><th>PRESS</th><th>DAS</th><th>MILLI</th><th>GRAMS</th><th>PEA LI</th><th>ER</th><th></th><th></th><th></th><th></th><th></th></td<>		OWNER	5										ANAL	SIS EX	PRESS	DAS	MILLI	GRAMS	PEA LI	ER					
B-4-19) 36abd5z D. Stephens S 111 ALVM 15.5 5 9-23-71 TP-41 B-41 D-41 D-41 D-41 D-41 D-41 D-41 D-41 D	COORDINATES		SOUR							SIO 2	Fe	C.	Mg	Na	ĸ	нсоз	co3	so4	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рн	OTHER CONSTITUENTS OR REMARKS
3-4-19) 36acs51 D. Stephens S 111 ALVM 16.0 10 9-23-71 TP-41 1 10 2.650 2.650 3-4-19) 36acs D. Stephens w 111 ALVM 16.0 68 9-22-71 TP-41 17 .04 100 24 180 5.4 115 0 13 520 .0 .36 918 1.640 7.5 Mn .03	3-4-19) 36abdS ₁	D. Stephens	s	111 ALVM	15.5		5	9-23-71	TP-41														2,500	}	
Reed Spring W 111 ALVM 16.0 68 9-22-71 TP-41 17 .04 100 24 180 5.4 115 0 13 520 .0 .36 918 1,640 7.5 Mn . 03	B-4-19) 36abdS ₂	D. Stephene	s	III ALVM	15.5		5	9-23-71	TP-41														2,500		
	B-4-19) 36acaS ₁		s	111 ALVM	16.0		10	9-23-71	TP-41														2,650		
(n-4-19) 36acd5 D. Stephane S 111 ALVM 15.5 200 1911 TP-41 500 85 45 0 <30 105 370 *Ca includes Ca and Mg	(B-4-19) 36acc	D. Stephens	w	111 ALVM	16.0	68		9-22-71	TP-41	17	. 04	100	24	180	5.4	115	0	13	520	.0	. 36	918	1,640	7.5	Mn.03
Donner Spring	(B-4-19) 36acdS		s	111 ALVM	15.5		200	1911	TP-41			50*		85		45	0	<30	105			370			*Ca includes Ca and Mg

Table 42. Pilot Valley. Well and Springs with Temperatures of 15.5° to 16° C.

Table 43.	Pine Valley.	Well with a Water Temperature of 16° C.

	OWNER	3	61010010				DATE OF					ANAL	SIS EXP	RESSE	DAS	MILLI	GRAMS	PER LIT	ER			COND.		OTHER CONSTITUENTS
COORDINATES	OR NAME	SOUR	GEOLOGIC FORMATION		(feet)	(gpm)		REFERENCE	SiO 2	Fa	с.	Mg	N.	к	нсо3	co3	so₄	CI	F	NO3	DISSOLVED SOLIDS	mmhos	рН	OR REMARKS
C-25-16) 18bdd	J. Dearden Guyman Well	w	III ALVM	16.0	340	100 R 30 R	9-13-62 1955	TP-51	31		24	12	27	3.3	124	0	19	30	.7	4.6	204	344	7.6	B.08 Yield 1924
				1																				

.

ŕ

COUNDINATES OM C1 F No OUSSOLVED OM OM OM OM OM K HCO3 CO3 SO4 C1 F NO OSSOLVED OMON OM OM OM OM K HCO3 CO3 SO4 C1 F NO3 OSSOLVED SOLUED OMON PM OMON PM<	OWNER	ើ	CÉOLOCI		DEPTH	VIELD	DATE OF					ANALY	SIS EXP	PRESSE	DAS	MILLI	GRAMS	PER LIT	ER					
Valley Well Valley Well								REFERENCE	SiO ₂	F.	C.	M	N .	к	нсоз	c0,	so4	CI	F	N03	DISSOLVED SOLIDS		рН	OTHER CONSTITUENTS OR REMARKS
Construction Co. Construction Co. <th< td=""><td></td><td>w</td><td>111 ALV</td><td>16.0</td><td>253</td><td></td><td>1-13-66</td><td>TP-26</td><td>40</td><td>. 35</td><td>6.4</td><td>.5</td><td>653</td><td>26</td><td>381</td><td>0</td><td>113</td><td>710</td><td>1. Z</td><td>8.5</td><td>1, 750</td><td>3,110</td><td></td><td>Mn. 00, B .26, Ll .20, Cu. 00 Pb .05, Zn.03, Sr .04, PO₄ .16</td></th<>		w	111 ALV	16.0	253		1-13-66	TP-26	40	. 35	6.4	.5	653	2 6	381	0	113	710	1. Z	8.5	1, 750	3,110		Mn. 00, B .26, Ll .20, Cu. 00 Pb .05, Zn.03, Sr .04, PO ₄ .16
Weili Weili Weili Weili Marker		w	111 ALV	4 16.0	410		8-06-63	T P- 26	43	. 06	22	17	1280	55	204	0	184	1,880	. 8	25	3,610	6,520	7.8	
18.0 399-400 4-04-62 TP-26 28 .02 133 2530 360 0 1260 5,880 1.623 14,000 18,100 7.7 Mn.66 16.0 588-600 4-11-62 TP-26 14 .091170 924 8890 216 0 1810 17,000 1.621 29,900 42,300 6.9 Mn.2.30 17.0 225-275 300 7-08-63 TP-26 40 1.90 80 174 2730 86 432 0 772 3,970 1.4 17 8,280 13,400 8.0 B1.70 B-4-10) 25bcc U.S. Air Force W 111 ALVM 17.0 112-162 8-27-63 TP-26 22 .00 27 55 1540 52 348 6 457 2.060 2.3 55 4.500 7,580 8.3 B1.40, Cu .01, Pb .11.		w	111 ALV	1 16.0	363	20	1-13-66	TP-26	44	1.00	4.4	3.2	932	34	400	4	347	900	1.8	9.0	Z,480	4, 410	8.3	Mn .04, B .70, Cu .02, Pb .02, Zn .34, Li .20, Sr .08, PO4 .86
7, 560 6, 5 D1, 40, 64, 51, 75, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	U.S. Air Force	w	111 ALV	18.0	399-400 588-600))	4-04-62 4-11-62	TP-26 TP-26	28 14	. 02 . 09	133 1170	2530 924	3930 8890	86	360 216	0 0	1260 1810	5,880 17,000	1.6 1.6	23 21	14,000 29,900	18, 100 42, 300	7.7 6.9	Mn .66 Mn 2. 30
	U.S. Air Force	w	111 ALV	17.0	112-162	2	8-27-63	тр-26	22	. 00	27	55	1540	52	348	6	457	2,060	2.3	55	4, 500	7,580	8.3	
												-												
		OR NAME BLM So. Puddle Valley Well Stratton Bros. Construction Co. BLM Bertagnole Well U.S. Air Force	OR S. Puddle W Valley Well Stratton Bros. W Construction Co. BLM Bertagnole W Well U.S. Air Force W	OR SOLUCIE NAME SCIENCE BLM So. Puddle W 111 ALVN Valley Well Stratton Bros. W 111 ALVN Construction Co. BLM Bertagnole W 111 ALVN Well U.S. Air Force W 111 ALVN	OR SECONDER SECONDER SECONDER SECONDER SECONDER SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECONDERSES SECOND	OR NAME GEOLOGIC FORMATION TEMP. CC DEFTH (feet) BLM So. Puddle Valley Well W 111 ALVM 16.0 253 Stratton Bros. Construction Co. W 111 ALVM 16.0 410 BLM Bertagnole Well W 111 ALVM 16.0 363 U.S. Air Force W 111 ALVM 15.0 225-273 16.0 588-600 17.0 225-273	OR NAME GEOLOGIC (FormATION TEMP 9C DEFTH (fort) VIELD (fort) BLM So. Puddle Valley Well W 111 ALVM 16.0 253 Stratton Bros. Construction Co. W 111 ALVM 16.0 410 BLM Bertagnole Well W 111 ALVM 16.0 363 20 Well U.S. Air Force W 111 ALVM 15.0 225-275 300	OR NAME GEOLOGIC FORMATION TEMP. C DEFTH (fest) VIELD (gpm) DATE OF SAMPLE BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 Stratton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 1-04-62 16.0 588-600 17.0 225-275 300 7-08-63	OR NAME Total construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Con	OR NAME Z OF GEOLOGIC FORMATION TEMP C DEFTH (feet) VIELD (gpm) DATE OF REFERENCE REFERENCE SIO2 BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 Stratton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 U.S. Air Force W 111 ALVM 15.0 225-275 300 7-08-63 TP-26 14	OR NAME Tope of Geologic (rest) Temp (rest) (rest) OPE TH (rest) VIELD (rest) DAMPLE SAMPLE REFERENCE SiO2 Fe BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 Stratton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 U.S. Air Force W 111 ALVM 15.0 225-275 30-23-62 TP-26 39 .12 U.S. Air Force W 111 ALVM 15.0 225-275 30 7-08-63 TP-26 39 .12 U.S. Air Force W 111 ALVM 15.0 225-275 30 7-08-63 TP-26 19	OR NAME GEOLOGIC (FORMATION TEM, OC OPPIN (feet) VIELD (gpm) DATE OF SAMPLE REFERENCE SiO2 Fe Ca BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 U.S. Air Force W 111 ALVM 15.0 225-275 300 7-08-63 TP-26 39 .12 18 U.S. Air Force W 111 ALVM 15.0 225-275 300 7-08-63 TP-26 44 .09 II70 17.0 225-275 300 7-08-63 TP-26 40	OR NAME GEOLOGIC (FORMATION TEW (feet) DEFIN (gem) VIELD SAMPLE DATE OF REFERENCE REFERENCE SIO2 Fe Ca Mg BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 U.S. Air Force W 111 ALVM 15.0 225-275 300 7-08-63 TP-26 14 .09 170 924 17.0 <td>OR NAME Geologic (rev) Tem. (rev) Derin (rev) OPED (rev) DATE of SAMPLE REFERENCE SiO2 Fe Cs Mg Ne BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 Stratton Bros. Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 43 .06 22 17 1280 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 1310 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 28 .02 133 2530 3930 16.0 588-600 -1-62 TP-26 14 .09 1070</td> <td>OR NAME GEOLOGIC (Ferminic formation of c TEMP. (feet) OPPIN (gpm) VIELD SAMPLE DATE OF REFERENCE REFERENCE SiO2 Fe Cs Me K BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TF-26 40 .35 6.4 .S 653 26 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TF-26 43 .06 22 17 1280 55 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TF-26 44 1.00 4.4 32 932 34 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TF-26 39 .12 18 29 1310 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TF-26 28 .021133 2530 3930 16.0 588-600 4-11-62 TF-26 14 .09</td> <td>OR NAME GEOLOGIC (FORMATION TEW (feet) DEFIN (feet) TELD (gpm) DATE OF SAMPLE REFERENCE SiO2 Fe Ce Mg Ne K HCO3 BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 1310 578 U.S. Air Force W 111 ALVM 15.0 235-275 300 7-08-63 TP-26 40 .02 133 2530</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>OR Geologic Tew DEFIN VIELD DATE OF REFERENCE SiO2 Fe Ce Me N K HCO3 CO3 SO4 NAME 0 0 C (feet) (gem) SAMPLE NEFERENCE SiO2 Fe Ce Me Ne K HCO3 CO3 SO4 BLM So. Puddle W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 Straton Broe. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 Well U.S. Air Force W 111 ALVM 15.0 225-275</td> <td>OR NAME GEOMATION Temp (feet) DEFIN (feet) VILLD DATE OF REFERENCE REFERENCE SiO2 Fe Ce Mg Ne K HCO3 CO3 SO4 CI BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 Straton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1,880 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 1310 578 0 245 1,600</td> <td>OR NAME GEOLOGIC FORMATION TEMP. oC OEPTH (feet) VIELO (gem) DATE OF SAMPLE REFERENCE SiO2 F. C. M. K HCO3 CO3 SO4 C. F. BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1,880 .8 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 29 1310 578 0 245 1,6</td> <td>OR NAME GEOLOGIC FORMATION IFM. C OEPTH (feet) VIED (feet) DATE OF (feet) REFERENCE SiO2 Fe Ca Me Na K HCO3 CO3 SO4 C1 F NO3 BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 Stratton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1,880 .8 25 Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 9.0 Well U.S. Air Force W 111 ALVM 16.0 225-275 3-23-62 TP-26 39</td> <td>OR NAME GEOLOGIC (FORMATION IEW. OC OEPTH (feet) VIELD (gem) DATE OF SAMPLE REFERENCE SiO2 Fe Ca Mag Ne K HCO3 CO3 SO4 C1 F NO3 DISSOLVED SOLUSS BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 1.750 Straton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1.800 .8 25 3,610 Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 9.0 2.480 Well U.S. Altr Force W 111 ALVM <</td> <td>OR NAME GEORMATION OC IFM. VIEUD DATE OF (set) Nefference SiO2 Fe Ce Mg Ne K HCO3 CO3 SO4 C1 F NO3 DISSOLVED mmbois COMO. BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 1.750 3.110 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1.80 .8 2.5 3.610 6.520 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 9.0 2.480 4.410 4.10 Well</td> <td>OR NAME GEOLOGIC FORMATION TEM. CC OEPTH (feet) VIED (gen) DATE OF (sen) REFERENCE SiO2 Fe Ca Me Ne K HCO3 CO3 SO4 C1 F NO3 DISSOLUED SOLUED CON0. mmho pH BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 1.750 3.110 7.7 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1.880 .8 25 3.610 6.520 7.8 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 39 .12 18 29 1310 578 0 245 1.600 1.6 24 3.550 6</td>	OR NAME Geologic (rev) Tem. (rev) Derin (rev) OPED (rev) DATE of SAMPLE REFERENCE SiO2 Fe Cs Mg Ne BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 Stratton Bros. Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 43 .06 22 17 1280 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 1310 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 28 .02 133 2530 3930 16.0 588-600 -1-62 TP-26 14 .09 1070	OR NAME GEOLOGIC (Ferminic formation of c TEMP. (feet) OPPIN (gpm) VIELD SAMPLE DATE OF REFERENCE REFERENCE SiO2 Fe Cs Me K BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TF-26 40 .35 6.4 .S 653 26 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TF-26 43 .06 22 17 1280 55 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TF-26 44 1.00 4.4 32 932 34 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TF-26 39 .12 18 29 1310 U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TF-26 28 .021133 2530 3930 16.0 588-600 4-11-62 TF-26 14 .09	OR NAME GEOLOGIC (FORMATION TEW (feet) DEFIN (feet) TELD (gpm) DATE OF SAMPLE REFERENCE SiO2 Fe Ce Mg Ne K HCO3 BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 1310 578 U.S. Air Force W 111 ALVM 15.0 235-275 300 7-08-63 TP-26 40 .02 133 2530	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OR Geologic Tew DEFIN VIELD DATE OF REFERENCE SiO2 Fe Ce Me N K HCO3 CO3 SO4 NAME 0 0 C (feet) (gem) SAMPLE NEFERENCE SiO2 Fe Ce Me Ne K HCO3 CO3 SO4 BLM So. Puddle W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 Straton Broe. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 Well U.S. Air Force W 111 ALVM 15.0 225-275	OR NAME GEOMATION Temp (feet) DEFIN (feet) VILLD DATE OF REFERENCE REFERENCE SiO2 Fe Ce Mg Ne K HCO3 CO3 SO4 CI BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 Straton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1,880 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 39 .12 18 29 1310 578 0 245 1,600	OR NAME GEOLOGIC FORMATION TEMP. oC OEPTH (feet) VIELO (gem) DATE OF SAMPLE REFERENCE SiO2 F. C. M. K HCO3 CO3 SO4 C. F. BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1,880 .8 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 Well U.S. Air Force W 111 ALVM 15.0 225-275 3-23-62 TP-26 29 1310 578 0 245 1,6	OR NAME GEOLOGIC FORMATION IFM. C OEPTH (feet) VIED (feet) DATE OF (feet) REFERENCE SiO2 Fe Ca Me Na K HCO3 CO3 SO4 C1 F NO3 BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 Stratton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1,880 .8 25 Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 9.0 Well U.S. Air Force W 111 ALVM 16.0 225-275 3-23-62 TP-26 39	OR NAME GEOLOGIC (FORMATION IEW. OC OEPTH (feet) VIELD (gem) DATE OF SAMPLE REFERENCE SiO2 Fe Ca Mag Ne K HCO3 CO3 SO4 C1 F NO3 DISSOLVED SOLUSS BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 1.750 Straton Broe. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1.800 .8 25 3,610 Construction Co. W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 9.0 2.480 Well U.S. Altr Force W 111 ALVM <	OR NAME GEORMATION OC IFM. VIEUD DATE OF (set) Nefference SiO2 Fe Ce Mg Ne K HCO3 CO3 SO4 C1 F NO3 DISSOLVED mmbois COMO. BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 1.750 3.110 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1.80 .8 2.5 3.610 6.520 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 44 1.00 4.4 32 932 34 400 4 347 900 1.8 9.0 2.480 4.410 4.10 Well	OR NAME GEOLOGIC FORMATION TEM. CC OEPTH (feet) VIED (gen) DATE OF (sen) REFERENCE SiO2 Fe Ca Me Ne K HCO3 CO3 SO4 C1 F NO3 DISSOLUED SOLUED CON0. mmho pH BLM So. Puddle Valley Well W 111 ALVM 16.0 253 1-13-66 TP-26 40 .35 6.4 .5 653 26 381 0 113 710 1.2 8.5 1.750 3.110 7.7 Straton Bros. Construction Co. W 111 ALVM 16.0 410 8-06-63 TP-26 43 .06 22 17 1280 55 204 0 184 1.880 .8 25 3.610 6.520 7.8 BLM Bertagnole Well W 111 ALVM 16.0 363 20 1-13-66 TP-26 39 .12 18 29 1310 578 0 245 1.600 1.6 24 3.550 6

Table 45. Yuba Dam to Learnington Canyon	Springs in Mills Valley with Temperatures of 16.5° to 17° C.
--	--

COORDINATES	OWNER	ВCE	GEOLOGIC	TEMP	DEPTH	THELD	DATE OF			-		ANAL	YSIS EX	PRESS	EDAS	MILLI	GRAM	S PER LI	FER				T	
COORDINATES	NAME	nos sor	FORMATION	°C	(feet)	(gpm)	SAMPLE	REFERENCE	SiO ₂	F.	C.	Mg	N.a	Ķ	нсоз	c03	so4	CI	F	NO3	DISSOLVED SOLIDS	COND. mmhos	pН	OTHER CONSTITUENTS OR REMARKS
(C-16-2) ZaadS	Chase Springs	s	Fault	16.9		1400E	6-13-63	WSP1848	25		130	84	138		268	0	214	370		7.2	1,190	1,910	7.4	
(C-16-2) 27dbd5	Blue Springs	s	Fault	17.0			1-22-63	WSP1848	14		59	34	19		306	0	22	38		1.5	334	607	7.7	
(C-16-2) 34aabS	Molten Springs	s	Fault	16.9			10-23-62 11-19-63				63 57	38 38	33 31		310 309	0 0	35 26	68 60		1.5 2.8	410 381		7.8 7.9	
														ļ									ļ	

ſ

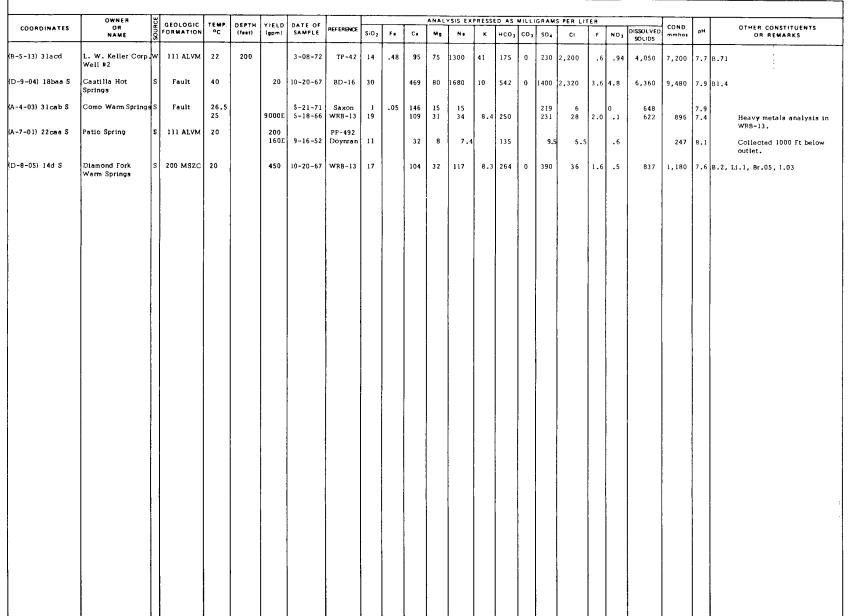


TABLE 46. Records of Castilla, Como, Diamond Fork, and Patio thermal springs and of a well in the Great Sait Lake Desert.

• .. I)

`

۴.

SELECTED BIBLIOGRAPHY

This bibliography contains reports on areas covered by the text that have not been cited as well as some general reports on geothermal energy.

- Anderson, John J., P.D. Rowley, R.J. Fleck, and A.E.M. Nairn, 1975, Cenozoic geology of southwestern High Plateaus of Utah: Geol. Soc. Amer. Spec. Paper 160, 88 p.
- Beer, L.P., 1967, Ground-water hydrology of southern Cache Valley, Utah: Univ. of Utah PhD Thesis, 203 p.

_____, 1967, Ground-water hydrology of southern Cache Valley, Utah: Utah State Engineer Inf. Bull. 19.

- Boyden, T.A., and F.C. Moulton, 1951, Ground water geology of southern and western Utah Valley: The Compass, v. 29, N. 1, p. 10-20.
- Buss, W.R., and N.S. Goeltz, 1974, Bibliography of Utah geology, 1950 to 1970: Utah Geol. and Mineral Survey Bull. 103, 285 p.
- Callaghan, Eugene, and R.L. Parker, 1961, Geologic map of the Monroe quadrangle, Utah: U.S. Geol. Survey Geol. Quadrangle Map GQ155.
- Carpenter, C.H., G.B. Robinson, Jr., and L.J. Bjorklund, 1964, Selected hydrologic data, upper Sevier River basin, Utah: U.S. Geol. Survey Basic-Data Report N. 8, 29 p.
- , 1967, Ground-water conditions and geologic reconnaissance of the upper Sevier River basin, Utah: U.S. Geol. Survey Water-Supply Paper 1836, 91 p.
- Carpenter, Everett, 1913, Ground water in Boxelder and Tooele Counties, Utah: U.S. Geol. Survey Water-Supply Ppaper 333, 90 p.
- Connor, J.G., C.G. Mitchell, and others, 1958, A compilation of chemical quality for ground and surface waters in Utah: Utah State Engineer Tech. Pub. 10, 276 p.
- Cook, K.L., and E. Hardman, 1967, Regional gravity survey of the Hurricane fault area and Iron Springs district, Utah: Geol. Soc. America Bull., v. 78, p. 1063-1076.
- Davis, G.H., and L.A. Wood, 1974, Water demands for expanding energy development: U.S. Geol. Survey Circ. 703, 14 p.
- Dutcher, L.C., W.F. Hardt, and W.R. Moyle, Jr., 1972, Preliminary appraisal of ground water in storage with reference to geothermal resources in the Imperial Valley, area, California: U.S. Geol. Survey Circ. 649, 57 p.

- Eardley, A.J., 1944, Geology of the north-central Wasatch Mountains, Utah: Geol. Soc. Amer. Bull. v. 55.
- Emmons, S.F., 1877, Wahsatch Range in Descriptive Geology: U.S. Geol. Explor. 40th Parallel (King) v. 2, p. 340-392.
- Feltis, R.D., and H.D. Goode, 1961, Production and use of fresh water from the Ashley Valley oil field, Uintah County, Utah: in Geological Survey Research 1961, U.S. Geol. Survey Prof. Paper 424-C, p. C90-C93.
- Fix, P.E., W.B. Nelson, B.E. Lofgren, and R.G. Butler, 1950, Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah: Utah State Engineer Tech. Pub. No. 6, 100 p.
- Gates, J.S., 1962, Geohydrologic evidence of a buried fault in the Erda area, Tooele Valley, Utah: U.S. Geological Survey Research 1962, Prof. Paper 450D, p. D78-D80.

Gilbert, G.K., 1890, Lake Bonneville: U.S. Geol. Survey Mon. 1, 438 p.

Goode, H.D., 1958, The geology and distribution of aquifers in the southeastern part of San Juan County, Utah: U.S. Geol. Survey Open-file Rept. 9 p. 9 figs.

, 1969, Reconnaissance appraisal of the water resources near Escalante, Garfield County, Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 11, 38 p.

- Hague, Arnold, 1877, Northern Wasatch Region in Descriptive Geology: U.S. Geol. Exploration 40th Parallel (King) v. 2, p. 393-419.
- Heylmun, E.B., 1966, Geothermal power potential in Utah: Utah Geol. and Mineralog. Survey Special Studies 14, 18 p.
- Hintze, L.F., 1973, Geologic history of Utah: Brigham Young Univ. Geol. Studies, v. 20, part 3, 181 p.
- Hood, J.W., 1976, Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado: Utah Dept. Nat. Resources Tech. Pub. n. 53, 63 p.

_____, 1977, Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah: Utah Dept. Nat. Resources Tech. Pub. n. 54, 17 p.

, 1977, Hydrologic evaluation of the upper Duchesne River Valley, Northern Uinta Basin, area, Utah: Utah Dept. Nat. Resources Tech. Pub. n. 57, 26 p.

Hood, J.W., and K.M. Waddell, 1969, Hydrologic reconnaissance of Deep Creek Valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada: Utah Dept. Nat. Resources Tech. Pub. n. 24, 49 p.

- Huddle, J.W., and F.T. McCann, 1947, Pre-Tertiary geology of the Duchesne River area, Wasatch and Duchesne Counties, Utah: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map OM75.
- Iorns, W.V., C.H. Hembres, and G.L. Oakland, 1965, Surface-water resources of the San Juan Division: U.S. Geological Survey Prof. Paper 441-E, p. 299-364.
- James, A.H., W.H. Smith, J.E. Welsh, and others, 1971, Surface geology map of the Bingham District, Salt Lake and Tooele Counties, Utah: Kennecott Copper Corp. map.
- King, Clarence, 1878, Systematic Geology: U.S. Geol. Explor. 40th Parallel (King)
 v. 1, 803 p.
- Lee, W.T., Stone, R.W., Gale, H.S., and others, 1915, Guidebook of the western United States, Part B. The overland route with a side trip to Yellowstone Park: U.S. Geol. Survey Bull. 612, 244 p.
- Lines, G.C., 1977, Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley playa, Utah: U.S. Geol. Survey Open-File Report 78-18, 196 p., 47 figs.
- Lipman, P.W., and I. Friedman, 1975, Interaction of meteoric water with magma, an oxygen-isotope study of ash-flow sheets from southern Nevada: Geol. Soc. America Bull., v. 86, p. 695-702.
- Lovering, T.S., and H.D. Goode, 1963, Measuring geothermal gradients in drill holes less than 60 feet deep, East Tintic district, Utah: U.S. Geol. Survey Bull. 1172, 48 p.
- Mabey, D.R., M.D. Crittenden Jr., H.T. Morris, R.J. Roberts, and E.W. Tooker, 1964, Aeromagnetic and generalized geologic map of part of north-central Utah: U.S. Geol. Survey Geophysical Investigations Map GP 422.
- Moore, W.J., 1973, Preliminary geology map of the western Traverse Mountains and Northern Lake Mountains, Salt Lake and Utah Counties, Utah: U.S. Geol. Survey Misc. Field Studies Map MF-490.
- Morey, G.W., R.O. Fournier, and J.J. Rowe, 1962, The solubility of quartz in water in the temperature interval from 25° to 300°C: Geochim, et Cosmochim, Acta, v. 26, p. 1029-1043.
- O'Connell, M.F., and R.F. Kaufman, 1976, Radioactivity associated with geothermal waters in the western United States: U.S. Environmental Protection Agency, Las Vega, Nev., Tech. Note ORP/LY-75-8A, 25 p.
- Olmstead, F.H. and others, 1975, Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada: U.S. Geol. Survey Open-File Rept. 75-56, 267 p.

Peterson, D.L., 1974, Bouguer gravity map of part of the northern Lake Bonneville basin, Utah and Idaho: U.S. Geol. Survey Misc. Field Studies Map MF-627.

- Peterson, D.L., and S.S. Oriel, 1970, Gravity anomalies in Cache Valley, Cache and Box Elder Counties, Utah, and Bannock and Franklin Counties, Idaho, in Geological Survey Research 1970: U.S. Geol. Survey Prof. Paper 700-C, p. Cl14-Cl18.
- Peterson, Wm., 1946, Ground water supply in Cache Valley, Utah, available for domestic use and irrigation: Utah State Agr. Coll. Ext. Service N.S. 133, 101 p.
- Price, Don, and L.L. Miller, 1975, Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado: Utah Dept. Nat. Resources Tech. Pub. n. 49, 59 p.
- Raspet, Rudolph, J.H. Swartz, M.E. Lillard, and E.C. Robertson, 1966, Preparation of thermistor cables used in geothermal investigations: U.S. Geol. Survey Bull. 1203-C, p. C1-C11.
- Robertson, E.C., Rudolph Raspet, J.H. Swartz, and M.E. Lillard, 1966, Properties of thermistors used in goethermal investigations: U.S. Geol. Survey Bull. 1203-B, p. Bl-B34.
- Rowley, P.D., J.J. Anderson, and P.L. Williams, 1975, A summary of the Tertiary volcanic stratigraphy of the southwestern high plateaus and adjacent Great Basin, Utah: U.S. Geol. Survey Bull. 1405-B, p. B1-B20.
- Stewart, J.H., 1977, East-west patterns of Cenozoic igneous rocks, aeromagnetic anomalies, and mineral deposits, Nevada and Utah: Geol. Soc. America Bull., v. 88, p. 67-77.
- Sumsion, C.T., 1971, Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah: Utah Dept. Nat. Resources Tech. Pub. n. 32, 40 p.
- Swanberg, C.A., 1974, The application of the Na-K-Ca geothermometer to thermal areas of Utah and the Imperial Valley, California: Geothermics, v. 3, n.2, p. 53-59.
- Tanner, A.B., 1966, Natural radio-activity of ground water in Feth, J.H., D.A. Barker, and others, Lake Bonneville: Geology and hydrology of the Weber Delta district, including Ogden, Utah: U.S. Geol. Survey Prof. Paper 518, p. 63-66.
- Thomas, H.E., and W.B. Nelson, 1948, Ground water in the East Shore area, Utah: Part I, Bountiful district, Davis County: Utah State Engineer Tech. Pub. no. 5, 152 p.
- Thomas, H.E., W.B. Nelson, B.E. Lofgren, and R.G. Butler, 1952, Status of development of selected ground-water basins in Utah: Utah State Engineer Tech. Pub. n. 7, 96 p.

- Thomas, H.E., and G.H. Taylor, 1946, Geology and ground-water resources of Cedar City and Parowan Valleys, Iron County, Utah: U.S. Geol. Survey Water-Supply Paper 993, 210 p.
- Truesdell, A.H., and R.O. Fournier, 1977, Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy: U.S. Geol. Survey Jour. Research, v. 5, n.1, p. 49-52.
- Waite, H.A., W.B. Nelson, B.E. Lofgren, R.L. Barnell, R.G. Butler, and J.H. Feth, 1954, Progress report on selected ground-water basins in Utah: Utah State Engineer Tech. Pub. n. 9, 128 p.
- White, D.E., 1957a, Thermal waters of volcanic origian: Geol. Soc. America Bull. v. 68, p. 1637-1658.
- . 1957b, Magmatic, connate, and metamorphic waters: Geol. Soc. America Bull. v. 68, p. 1659-1682.
- White, D.E., and W.W. Brannock, 1950, The sources of heat and water supply of thermal springs, with particular reference to Steamboat Springs, Nevada: Am. Geophys. Union Trans., v. 31, p. 566-574.
- White, D.E., W.W. Brannock, and K.J. Murata, 1956, Silica in hot spring waters: Geochim. et Cosmochim. Acta, v. 10, p. 27-59.
- White, D.E., and D.L. Williams, [editors], 1975, Assessment of geothermal resources of the United States - 1975: U.S. Geol. Survey Circ. 726, 155 p.
- Williams, J.S., 1962, Lake Bonneville: Geology of southern Cache Valley, Utah: U.S. Geol. Survey Prof. Paper 257-C, p. 131-152.
- Young, R.A., and C.H. Carpenter, 1965, Ground-water conditions and storage in the central Sevier Valley, Utah: U.S. Geol. Survey Water Supply Paper 1787, 95 p.
- Zietz, Isidore, Ralph Shuey, and J.R. Kirby Jr., 1976, Aeromagnetic map of Utah: U.S. Geol. Survey Geophys. Invest. Map GP-907.

DISTRIBUTION RECORD FOR DOE/ET/28393-7

Internal Distribution

- 1 Chicago Patent Group DOE
 9800 South Cass
 Argonne, IL 60439
- 1 R. L. Blackledge Idaho Operations Office - DOE Idaho Falls, ID 83401
- 1 H. P. Pearson Information Processing - EG&G
- 100 Special Internal

External Distribution

5

ì

2 - Technical Information Center - DOE Box 62 Oak Ridge, TN 37830

Total Copies Printed: 105