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Abstract

Approximate formulas are constructed and numerical simulations are carried out for electric field derivative
probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A
method is introduced to make results from two-dimensional conformal mapping analyses accurately apply

to the three-dimensional axisymmetric probe geometry.
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Figure 1. Probe geometry.

1 INTRODUCTION

This report estimates the capacitance and effective area of an electric field derivative probe. The probe
is a transmission line terminating in a flush mounted monopole antenna as depicted in Figure 1. (Previous
studies on coaxially-driven antennas include [1], [2], and [3].) For the flush mounted probe analyzed in this
study, the outer and inner radii are

b ≈ 0.189 in

a ≈ 0.121 in
.

2 WATER PERMITTIVITY

Water is often used as the dielectric material. The permittivity is found from [4]

ε/ε0 ≈ 88.15− 41.4θ + 13.1θ2 − 4.6θ3
for 0oC < T < 60oC, where

θ = T/ (100o C)
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Figure 2. Antenna gap is modeled as a magnetic current loop.

ε0 ≈ 8.854 pF/m
is the permittivity of free space. At T = 20oC we find ε/ε0 ≈ 80.4. For pure water this value is nearly
frequency independent up to about 1 GHz [4].

3 MAGNETIC CURRENT LOOP

The antenna gap is modeled in this section as a loop of magnetic current as shown in Figure 2.

The electric field is related to the magnetic current by means of

∇×E = −Jm
The electric vector potential is introduced by means of

D = εE = −∇×Ae

Taking the electric vector potential to be divergence free, we obtain

−∇×∇×Ae = ∇2Ae = −εJm
Therefore using the free space static Green’s function, the solution is

Ae (r) =
ε

4π

Z
V

Jm (r
0)

dV 0

|r − r0|
The electric vector potential of a loop of magnetic current

Jmϕ = Imδ (z) δ (ρ− ρe)
with radius ρe is ϕ-directed and given by
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Aeϕ =
εIm
4π

ρe

Z 2π+ϕ

ϕ

cos (ϕ− ϕ0) dϕ0p
z2 + ρ2 + ρ2e − 2ρρe cos (ϕ− ϕ0)

=
εIm
4π (2ρ)

Z π

−π

£¡
z2 + ρ2 + ρ2e

¢
−
¡
z2 + ρ2 + ρ2e

¢
− 2ρρe cosϕ0

¤
dϕ0p

z2 + ρ2 + ρ2e + 2ρρe cosϕ
0

=
εIm
4πρ

Z π

0

" ¡
z2 + ρ2 + ρ2e

¢p
z2 + ρ2 + ρ2e + 2ρρe cosϕ

0
−
p
z2 + ρ2 + ρ2e + 2ρρe cosϕ

0

#
dϕ0

Letting

p
z2 + ρ2 + ρ2e + 2ρρe cosϕ

0 =

q
z2 + (ρ+ ρe)

2 − 2ρρe {1− cosϕ0}

=

q
z2 + (ρ+ ρe)

2 − 4ρρe sin2 (ϕ0/2)
gives

Aeϕ =
εIm
2πρ

Z π/2

0

⎡⎣
n
z2 + (ρ+ ρe)

2 − 2ρρe
o

q
z2 + (ρ+ ρe)

2 − 4ρρe sin2 θ
−
q
z2 + (ρ+ ρe)

2 − 4ρρe sin2 θ

⎤⎦ dθ

=
εIm
π

r
ρe
ρ

1

k

Z π/2

0

" ¡
1− k2/2

¢p
1− k2 sin2 θ

−
p
1− k2 sin2 θ

#
dθ

where

k =
2
√
ρρeq

(ρe + ρ)
2
+ z2

Thus, we find

Aeϕ =
εIm
π

r
ρe
ρ

£¡
1− k2/2

¢
K (k)− E (k)

¤
/k

where the complete elliptic integrals are defined by

K (k) =

Z π/2

0

dθ/
p
1− k2 sin2 θ

and

E (k) =

Z π/2

0

dθ
p
1− k2 sin2 θ

Note that these results can also be found from duality from the electric current loop [5].

4 CAPACITANCE

From the definition of the electric vector potential and Stoke’s law, we can find the surface charge as
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Q =

Z
S

n ·DdS = −
I
C

Ae · d
where the contour C encloses the surface S in a positive sense (counterclockwise) with respect to the normal
n. We want the charge (or electric flux) through the loop from the center out to radius ρe − re, where re
will be found in the next section. (Note that in Figure 2, ρe is the average radius of the magnetic current
loop with thickness 2re.) In this axisymmetric case we have

Q = −2π (ρe − re)Aeϕ (ρe − re, 0)

= −2εIm
p
ρe (ρe − re)

£¡
1− k2e/2

¢
K (ke)−E (ke)

¤
/ke

where

ke =

p
ρe (ρe − re)

(ρe − re/2)
The magnetic current (which includes an image in the ground plane of the actual gap problem) is related
to the gap voltage V (positive on the center electrode) by means of

Im = −2V
The capacitance of the antenna is thus taken as

C = Q/V = 4ε
p
ρe (ρe − re)

£¡
1− k2e/2

¢
K (ke)−E (ke)

¤
/ke

4.1 Thin Gap

The case where the gap is thin re/ (2ρe) << 1 allows us to expand the result by means of

ke = 1 +O
¡
k02e
¢
= 1 +O

£
r2e/

¡
4ρ2e
¢¤

k0e =
p
1− k2e =

re
2ρe − re

<< 1

E (ke) = 1 +O
¡
k02e
¢
= 1 +O

£
r2e/

¡
4ρ2e
¢¤

K (ke) = ln (4/k
0
e) +O

¡
k02e
¢
= ln {4 (2ρe/re − 1)}+O

£
r2e/

¡
4ρ2e
¢¤

Then

C = 2ε
p
ρe (ρe − re) [ln {4 (2ρe/re − 1)}− 2] +O

£
r2e/

¡
4ρ2e
¢¤

∼ 2ερe [ln (8ρe/re)− 2]
Again this expression can be obtained by duality from the inductance of an electric current loop [5].
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φ  = v/2

φ  = 0

Figure 3. Narrow gap with symmetry plane (complex z-plane).

5 CONFORMAL MAPPING SOLUTION FOR A NARROW GAP

To choose the effective radius of the gap re we examine the conformal mapping solution of Figure 3
where the gap is

g = b− a

The Schwarz transformation which maps the upper half of a z1 = x1 + iy1 plane into the region
between the conductors with z = x+ iy (note when two-dimensional conformal mapping solutions are being
considered, z will denote a complex variable rather than the axial coordinate) of Figure 2 is

dz

dz1
= C1z

−1
1 (z1 − 1)1/2

The constant C1 is evaluated by expanding near the singular point z1 = 0
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dz ∼ iC1dz1/z1
and letting z1 = δeiθ

dz ∼ −C1dθ
Thus when integrated near the singular point, we find

g/2 = C1π
Integration of the transformation then gives

z =
g

π

£√
z1 − 1− arctan

√
z1 − 1

¤
+ C2

Let us choose C2 = g/2 so that z = g/2 when z1 = 1. Then the transformation becomes

z = g/2 +
g

π

£√
z1 − 1− arctan

√
z1 − 1

¤
The inverse tangent function is interpreted as

arctanw =
i

2
ln

µ
i+ w

i− w

¶
=

i

2
ln

¯̄̄̄
i+ w

i− w

¯̄̄̄
+
1

2
(θ+ − θ−)

=
i

2
ln

s
u2 + (v + 1)2

u2 + (v − 1)2
+
1

2

∙
π −Arctan

µ
1− v

u

¶¸
− 1
2
Arctan

µ
v + 1

u

¶
, u > 0

where θ+ is the angle made by the vector from the point w to the point i and θ− is the angle made from
the point −i to the point w and

w = u+ iv =
√
z1 − 1

Note that the function Arctan is the principal branch [6] with −π/2 < Arctan(x) < π/2.

The electric field solution can be written in terms of the scalar potential φ

E = −∇φ
Gauss’s law in regions free of electric charge ρv

∇ ·D = ρv = 0
gives Laplace’s equation

∇2φ = 0
The solution to Laplace’s equation is taken as

φ = Im(W )
where the complex potential is
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W =
V

2π
ln z1

and the principal branch is used for the logarithm [6]. It is convenient now to return to the vector potential
to obtain the charge on the conductors. The vector potential can be found as

Aez = −εRe (W )
and the charge per unit length can be written as the unit length charge out to a radius R from the center
and down to a distance R0 from the center minus the charge per unit length at the right corner. Thus, in
terms of the vector potentials,

q = Aez (g/2,−R0)−Aez (R, 0)

= εRe [W (z = R)−W (z = g/2− iR0)]

=
εV

2π
ln

¯̄̄̄
z1 (z = R)

z1 (z = g/2− iR0)

¯̄̄̄
Now let us expand the conformal transformation for large R (z1 = x1 → +∞) and R0 (z1 = x1 → +0)

z1 = x1 ∼ (πR/g)2

z1 = x1 ∼ exp [−2 (1 + πR0/g − ln 2)]
Thus

q ∼ εV

π
[ln (πR/g) + 1 + πR0/g − ln 2]

The total charge from the conformal mapping solution is then

Qcm = 2πρeq ∼ 2εV ρe [ln (πR/g) + 1 + πR0/g − ln 2]
The charge εV 2πρeR0/g results from the capacitance of the thin gap and is already accounted for by
the coaxial capacitance of the transmission line. The charge 2πρeε (V/π) lnR, as R varies, is the charge
accumulated from the field of a magnetic line current at the center of the gap E ∼ V/ (πR). Taking R = re,
and dividing by V we find the capacitive correction from the conformal mapping correction

∆C ∼ 2ερe [ln (πre/g) + 1− ln 2]
This solution tracks the field from its line current form down to the distance where the gap geometry
influences the field and the total charge. Adding this to the previous expression for the loop capacitance
gives

C ∼ 2ερe [ln (4πρe/g)− 1]
Note that this result can also be viewed as taking
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re =
2g

πe
≈ g

4.27
This value is not far from the well known result g/4 for the equivalent radius of a narrow planar slot of
width g in a thin plane [7].

6 AVERAGING APPROXIMATION FOR AXISYMMETRIC
PROBLEM

The effective radius of the loop can be approximated for small gaps by

ρe ≈ (b+ a) /2
An improvement can be made in the preceding capacitance result by noting that for small a/b we would
expect the field to have an overall (aside from the local edge singularities) behavior given by

Eρ ≈
V

ρ ln (b/a)
= −Kmϕ/2 , a < ρ < b

where the magnetic surface current is Kmϕ. This motivates setting the radius of the magnetic current
filament to the average radius of the magnetic surface current

ρe =
1

Im

Z b

a

Kmϕρdρ =
b− a

ln (b/a)
Note that this result approaches (b+ a) /2 as b→ a. It is less than this value otherwise, shrinking to small
values as a→ 0 (which is expected, since the magnetic current is concentrated about the inner electrode for
this limit). Inserting this value into the preceding capacitance formula gives

C ≈ 2ε b− a

ln (b/a)
[ln {4π/ ln (b/a)}− 1] ≈ (0.1604 pF) ε/ε0

where the final numerical value is for the dimensions given previously.

This formula turns out to be remarkably accurate for a wide range of a/b ratios, as will be illustrated
below (it eventually fails for a/b→ 0 and, in fact, becomes negative). A result from [8]

Clp ≈ 8ε
b+ a

ln2 (b/a)

"
E

Ã
2
√
ab

b+ a

!
− 1
#

will also be used for comparison purposes. This result is from a variational expression for the admittance
and a Eρ ≈ V/ {ρ ln (b/a)} trial function. This result becomes C ∼ 4εb (π − 2) / ln2 (b/a) as a/b → 0 and
thus may be more accurate for small values of a.

6.1 Numerical Comparisons

Based on an analysis presented in [9], very accurate numerical computations were performed on the
probe. With an inner and outer radii given by
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a ≈ 0.121 in

and

b ≈ 0.189 in,
the result for the admittance at 1 GHz was

Ya ≈ −i1.005 (ε/ε0) mS at 1 GHz
The capacitance was thus

Ca ≈ Ya/ (−iω) ≈ 0.1600 (ε/ε0) pF
This result is quite close to the value in the preceding formula from the averaging approximation

C ≈ 0.1604 (ε/ε0) pF
Another axisymmetric code, based on a boundary value formulation for the magnetic fields at the antenna
surface (or, equivalently, the transmission line termination)[10], was also run as a check. The value obtained
by this computation was

Cn ≈ 0.1601 (ε/ε0) pF
This code was run at several values of a/b and a comparison between the values obtained versus the
averaging approximations above is shown in Figure 4. Here it is evident that above about a/b > 0.1, the
formula yields quite accurate results. Also shown is the result from the variational expression given in [8].

As an additional check on the analytic result for the capacitance, the computation based on [9] was also
performed for a fifty ohm coaxial antenna with dimensions

a = 0.635 mm

b = 1.462 mm
The accurate computation at 1 GHz [9] gave

Ya ≈ −i0.1878 (ε/ε0) mS at 1 GHz
or

Ca ≈ Ya/ (−iω) ≈ 0.0299 (ε/ε0) pF
The above averaging formula gives

C ≈ 0.0308 (ε/ε0) pF
which is again quite an accurate estimate. The axisymmetric code based on the boundary integral equation
method [10] gave

15
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Figure 4. Comparison of simple logarithmic capacitance formula with “averaged” gap radius and numerical
simulations. The variational expression is also shown.

Cn ≈ 0.0299 (ε/ε0) pF

7 ROUNDED CORNERS

Because of the effectiveness of using the average circumference to normalize two-dimensional quantities
from conformal mapping, we can also treat more detailed features associated with the probe construction
by means of conformal mapping. The actual probe has rounded corners with radius of curvature

ρ0 = 0.031 in
as shown in Figure 5. The method in Smythe [11] or Carrier [12] is used to round the corner. This method
is simply to replace the factor (z1 − 1)α/π−1 in the Schwarz transformation by the sum of two singular point
factors (z1 − λ)

α/π−1
+ κ (z1 − 1)α/π−1 where κ can be used to adjust the shape of the curve between the

points and 0 < λ < z1 = x1 < 1. Thus, in this case the Schwarz transformation becomes

16
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ρ 0

Figure 5. Rounded corner two-dimensional complex z-plane geometry with symmetry plane in middle of
gap.
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dz

dz1
= C1z

−1
1

hp
z1 − λ+ κ

√
z1 − 1

i
The evaluation of the constant C1 proceeds as before with the expansion near the z1 = 0 singular point

dz ∼ iC1

³
λ1/2 + κ

´ dz1
z1

, z1 → 0

Letting z1 = δeiθ and dz1/z1 = idθ gives

dz ∼ −C1
³
λ1/2 + κ

´
dθ

Integration from θ = 0 to θ = π gives

−g/2 = −C1
³
λ1/2 + κ

´
π

or

C1 =
g

2π
³
λ1/2 + κ

´
Integration of the transformation yields

z = C2 +
g

π
³
λ1/2 + κ

´ hpz1 − λ− λ1/2 arctan
p
z1/λ− 1

i

+
gκ

π
³
λ1/2 + κ

´ £√z1 − 1− arctan√z1 − 1¤
Assuming all parameters are real we see that Im (z) = 0 when z1 = x1 > 1.

Now we want to enforce the two equations (so that we return to the original boundary contour outside
of the smoothed region)

g/2 + ρ0 = C2 +
g

π
³
λ1/2 + κ

´ h√1− λ− λ1/2Arctan
p
1/λ− 1

i

g/2− iρ0 = C2 +
gκ

π
³
λ1/2 + κ

´ hi√1− λ− iArctanh
√
1− λ

i
where Arctanh(x) = 1

2 ln
³
1+x
1−x

´
denotes the principal value [6]. Now choosing

C2 = g/2
gives

ρ0 =
g

π
³
λ1/2 + κ

´ h√1− λ− λ1/2Arctan
p
1/λ− 1

i
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−ρ0 =
gκ

π
³
λ1/2 + κ

´ h√1− λ−Arctanh
√
1− λ

i
or

√
1− λ− λ1/2Arctan

p
1/λ− 1 = −κ

h√
1− λ−Arctanh

√
1− λ

i

π
³
λ1/2 + κ

´ ρ0
g
(1 + 1/κ) = Arctanh

√
1− λ− λ1/2Arctan

p
1/λ− 1

Also, for 0 < z1 = x1 < λ, we see that x = g/2 and y < 0. In addition, for z1 = x1 < 0, we see that x = 0.

Thus the transformation is

z = g/2 +
g

π
³
λ1/2 + κ

´ hpz1 − λ− λ1/2 arctan
p
z1/λ− 1

i

+
gκ

π
³
λ1/2 + κ

´ £√z1 − 1− arctan√z1 − 1¤
with equations

κ = −
√
1− λ− λ1/2Arctan

p
1/λ− 1√

1− λ−Arctanh
√
1− λ

and

π
³
λ1/2 + κ

´ ρ0
g
(1 + 1/κ) = Arctanh

√
1− λ− λ1/2Arctan

p
1/λ− 1

Eliminating κ gives the equation

F (λ) =
1p

1/λ− 1−Arctan
p
1/λ− 1

− 1√
1− λ−Arctanh

√
1− λ

=
g

πρ0
≈ 0.6982

where the final numerical value uses the above parameter values. Some values of F (λ) are

F (0.5) = 10.4

F (0.25) = 3.678

F (0.1) = 1.721

F (0.015) = 0.7068

F (0.01) = 0.6184
The proper value is near
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Figure 6. Two-dimensional boundary with “smoothed” conformal transformation corner versus a circular
corner.

F (λ ≈ 0.01448) = 0.6983
which gives

κ ≈ 0.4510
The solution for the probe dimensions to many digits is

λ = 0.0144785898607

κ = 0.450990368302
The boundary of the two-dimensional ”smoothed” corner is compared against a circular corner in Figure 6.
The agreement is reasonable.

The potential solution is found as in preceding section

φ = Im(W )
where
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W =
V

2π
ln z1

and
Aez = −εRe (W )

We need the expansion of the conformal transformation for z1 = x1 near the origin and near infinity.
Near infinity we let x = R

√
x1 ∼

λ1/2 + κ

1 + κ
πR/g

Near the origin we let x = g/2 and y = −R0 to obtain

−R0 =
g

π
³
λ1/2 + κ

´ "pλ− x1 − λ1/2
1

2
ln

Ã
1 +

p
1− x1/λ

1−
p
1− x1/λ

!#

+
gκ

π
³
λ1/2 + κ

´ ∙√1− x1 −
1

2
ln

µ
1 +
√
1− x1

1−
√
1− x1

¶¸

∼ g

π

∙
1 +

1

2
ln (x1/4)

¸
− gλ1/2 lnλ

2π
³
λ1/2 + κ

´
or

−1
2
ln (x1) ∼ 1− ln 2 + πR0/g −

λ1/2 lnλ

2
³
λ1/2 + κ

´
where this minus the charge per unit length on the wall is then

q =
εV

2π
ln

¯̄̄̄
z1 (z = R)

z1 (z = g/2− iR0)

¯̄̄̄

∼ ε
V

π

⎡⎣lnÃλ1/2 + κ

1 + κ
πR/g

!
+ 1− ln 2 + πR0/g −

λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦

The total charge from the rounded corner solution is

Qrc = 2πρeq ∼ 2εV ρe

⎡⎣lnÃλ1/2 + κ

1 + κ
πR/g

!
+ 1− ln 2 + πR0/g −

λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦

Again we drop the 2πρeV R0/g contribution since this is already included in the coaxial capacitance.
Dividing by V and letting R = re, we obtain

∆Crc ∼ 2ερe

⎡⎣lnÃλ1/2 + κ

1 + κ
πre/g

!
+ 1− ln 2− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦
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where adding this to the capacitance of the loop gives the capacitance with the rounded corner

Crc ∼ 2ερe

⎡⎣ln (4πρe/g)− 1 + ln
Ã
λ1/2 + κ

1 + κ

!
− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦

Thus, the correction capacitance for the rounded corner is

Crc − C = 2ερe

⎡⎣ln
⎧⎨⎩
³
λ1/2 + κ

´
(1 + κ)

⎫⎬⎭− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦ ≈ 2ερe (−0.486055)

The value to many digits is

Crc − C = 2ερe (−0.48607428756)

Using the averaged circumference, we have

Crc − C = 2ε
b− a

ln (b/a)

⎡⎣lnÃλ1/2 + κ

1 + κ

!
− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦ ≈ −0.0333 (ε/ε0) pF

and adding this to the previous value of the capacitance with sharp corners, we obtain

Crc ≈ 0.1271 (ε/ε0) pF

7.1 Approximate Solution of Mapping Parameters

It is easy to approximate the transcendental equation in this case. Suppose we approximate F (λ) for
small λ as

F (λ) ∼
√
λ− 1

1 + 1
2 ln (λ/4)

≈ g

πρ0
Solving iteratively, we find

ln (λ/4) ≈ −2πρ0
g

∙
1 +
√
λ
πρ0
g

¸
− 2

≈ −2πρ0
g

µ
1 +

2πρ0
ge1+πρ0/g

¶
− 2

or

λ ≈ 4/ exp
h³
1 + e−1−πρ0/g2πρ0/g

´
2πρ0/g + 2

i
≈ 0.0150

where the final numerical value is for the above probe parameters. The value of κ is then given by
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κ ∼ − 1−
√
λπ/2

1 + 1
2 ln (λ/4)

≈ 0.4505

These results are quite close to the above accurate numerical values. The correction capacitance is then

Crc − C = 2ερe

⎡⎣ln
⎧⎨⎩
³
λ1/2 + κ

´
(1 + κ)

⎫⎬⎭− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦ ≈ 2ερe (−0.4798)

again quite close to the preceding exact values.

7.2 Numerical Comparisons with Rounded Corners

The axisymmetric code mentioned in the preceding section [10] was also run on the circular corner
geometry. This code used a stairstep approximation for the corner profile. Several cases were run and
extrapolation to the limit was used to obtain

C ≈ (0.1271) (ε/ε0) pF
which is very close to the preceding conformal mapping result. In fact this may be too close given the
approximation to the circular corner afforded by the smoothing transformation in the conformal mapping
(more will be said about this in the effective area comparison section presented below).

8 EFFECTIVE AREA

A uniform z - directed field E0 is taken above the ground plane. The received charge, when the
transmission line is short circuited, is written in terms of the effective area Ae by means of

Qr = Ae E0
where the effective area is written in terms of the effective radius by means of

Ae = πρ2e
(Note that this definition is different than the commonly-used effective area definition of an antenna, which
is related to the antenna directivity). The value of the effective radius is taken to be the same as the
average above

Ae ≈ π
(b− a)2

ln2 (b/a)
≈ 0.6509πb2

The short circuit current is thus given by

Isc =
∂Qr

∂t

Note that reciprocity can also be used to derive a result from the Eρ = A/ {ρ ln (b/a)} assumption [13],
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[14]. This gives

Ar
e ≈ π

¡
b2 − a2

¢
2 ln (b/a)

This formula turns out to not be as accurate as the preceding results.

8.1 Numerical Comparisons

From [9], very accurate numerical values were computed for the effective height of the straight-edge
corner antenna (without rounded edges) of dimensions

a ≈ 0.121 in

b ≈ 0.189 in
The result at 1 GHz for the probe geometry was

hae/a ≈ 0.8393
where the effective area is related by

Aa
e = hae (Ca/ε) ≈ 0.6439πb2

Using the average ρe formula, the effective area becomes

Ae ≈ 0.6509πb2
and is quite an accurate estimate. As a check, the boundary-value axisymmetric code [10] was also run for
the effective height of the straight-edge corner antenna. The value obtained by this computation was

An
e ≈ 0.6445πb2

This code was also run for several values of a/b and compared with the above formula as shown in Figure
8. The above formula is an accurate approximation above about a/b > 0.1. The dashed curve is the result
from reciprocity and the Eρ = V/ {ρ ln (b/a)} assumption.

As done with the capacitance results, another check of the effective height was also performed for a
fifty ohm coaxial antenna with dimensions

a = 0.635 mm

b = 1.462 mm
The accurate computation at 1 GHz gave [9]

hae/a = 1.419
or
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Figure 7. Comparison of numerical and averaged formula for effective area. Also shown as the dashed curve
is the reciprocity result using the Eρ = V/ {ρ ln (b/a)} assumption.

Aa
e = hae (Ca/ε) ≈ 0.4530πb2

The above approximate formula gives

Ae ≈ 0.4601πb2
which is again an accurate estimate. The axisymmetric code based on [10] gave

An
e ≈ 0.4536πb2

8.2 Rounded Corner Effective Area

The preceding axisymmetric code [10] was also used to estimate the effective area of the probe with
circular corners. The result was
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Ae ≈ (0.6281)πb2
This result is slightly less (2.5 %) than the numerical result for the flush probe and is also slightly less (3.5
%) than the averaging approximation. Nevertheless the argument (valid in the two-dimensional Cartesian
problem) for retaining approximately the same value of the effective area when the corners are rounded
does seem justified (note in contrast that the capacitance reduction from the rounding is 20.6 %) and the
averaging result is reasonably accurate.

An improvement can be otained by using a modified average radius. Because of the rounding we
would expect the effective radius to be reduced because of charge rearrangement from the inner to outer
conductors. The gap at the z = 0 plane is actually changed from the parameters (a, b) to a larger interval.
Suppose we take this gap to be increased in each direction by half the corner radius to (a− ρ0/2, b+ ρ0/2).
Then

ρ0e =
(b+ ρ0/2)− (a− ρ0/2)

ln [(b+ ρ0/2) / (a− ρ0/2)]
This modification gives

A0e = πρ0e ≈ (0.6264)πb2
which is quite an accurate result.

Note that if we had used this effective radius in the capacitance formulas we would obtain

C0rc ≈ 2ερ0e

⎡⎣ln (4πρ0e/g)− 1 + ln
Ã
λ1/2 + κ

1 + κ

!
− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦ ≈ 0.1233 pF

This is about 3% below the numerical value, however it may be more representative of the value associated
with the profile afforded by the conformal smoothing transformation. If we recalculate the conformal
mapping parameters with a slightly smaller value of ρ0 → ρ1 = 0.028 in, the corner geometry comes closer
to the desired circular geometry as shown in Figure 7. The corresponding conformal mapping parameters
are

λ ≈ 0.0193

κ = 0.4732
and capacitance change

Crc − C ≈ 2ερe (−0.4307)
The above formula with the new average radius gives

Crc ≈ 0.1271 pF
This result is virtually identical to the numerical result.
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Figure 8. Two-dimensional boundary with “smoothed” conformal transformation corner versus a circular
corner. Here the conformal mapping results correspond to two different radii of curvature, with 0.028 in.
representing a ’modified average’ radius between the inner and outer conductors..
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9 PROBE INTERIOR

The interior of the probe is shown in Figure 9. The medium of the half space extends down to height

h ≈ 0.123 in
below the ground plane. Assuming the following parameters for the terminating transmission line (RG214)

C0 = 1/ (vZ0) ≈ 101.08 pF/m

Z0 = 50 ohms

v = 0.66c
we have a lumped capacitance correction for this region of

∆Ccoax =

½
2πε

ln (b/a)
− C0

¾
h ≈ 31.02 pF

Here the capacitance correction accounts for the difference between the capacitance in the water section of
the D-dot probe and the transmission line capacitance. Similarly, the capacitance correction in the plastic
region is estimated to be

∆Cplastic ≈ (4.819− C0 (0.150 + 0.7 + 0.406 + 0.298) 0.0254) ≈ 0.83 pF

Here the value of 4.819 pF for the capacitance in the plastic regions is obtained as the parallel
combinations of the coaxial capacitances from the water/dielectric interface down through the reference
plane on the HN connector (shown in Figure 9). More specifically, the capacitance of the plastic section
can be written in terms of the coaxial capacitances associated with the sylgard narrow and wide sections,
the series combination of sylgard and silicone capacitances, and the silicone end section capacitance:

Cplastic = Csy lg ard,Nar row + Csy lg ard,Wide + CseriesCap + CendSection

Note that corrections resulting from the right angle bends [15] can also be added here but was not done
so since the contribution from the plastic region to the total capacitance was found to be relatively small
in this case. In the case that the upper half space was air filled (instead of water filled), the contributions
from the plastic region and consequently, the right angle bend corrections would be much more significant
(to the extent where a redesign of the D-dot probe would probably be desired).

10 EXPERIMENT

In addition to the analytic and numerical simulations performed for the D-dot capacitance, the
capacitance of the D-dot probe was also measured in a time harmonic experiment at f = 1 MHz . The
total measured capacitance Ctot in these measurements included the C0 of the coax from the connector
reference plane to the ground plane. Mounting the D-dot probe flush into a 2.75 in diameter ground plane
and using distilled water as the half-space medium, the measured total capacitance was recorded as
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Figure 9. A cross-sectional view of the D-dot probe.
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Ctot,Measured = 48.1 pF
The total capacitance is related to the capacitance contributions discussed above as

Ctot = C +∆Ccorn +∆Ccoax +∆Cplastic

where, as given previously,

C = 2ερe [ln (4πρe/g)− 1] ≈ (0.1604 pF) ε/ε0
and

∆Ccorn = Crc − C = 2ε
b− a

ln (b/a)

⎡⎣lnÃλ1/2 + κ

1 + κ

!
− λ1/2 lnλ

2
³
λ1/2 + κ

´
⎤⎦ ≈ −0.0333 (ε/ε0) pF

Thus, using a value of
ε/ε0 ≈ 80.4 at 20oC

for distilled water and

h ≈ 0.123 in
the total calculated capacitance becomes

Ctot = 42.1 pF

Thus, there is approximately a 12% difference between the measured and calculated capacitances.
Here it is important to note that since the capacitance is extremely sensitive to the value of h (recall that
for a water-filled upper half space, the coaxial capacitance correction is the dominant contribution to the
overall capacitance), the height of the probe in the water region must be known to high precision. In this
particular measurement, the distance from the ground plane to the plastic interface (h) was taken as the
average distance measured circumferentially around the inner conductor since for the probe used in this
measurement, the plastic interface was found to be slightly uneven around the circumference.

11 CONCLUSION AND SUMMARY

This report constructs simple models for capacitance and effective area (proportional to charge and
short circuit current) of flush-mounted, monopole-type, low-frequency electric field probes. Conformal
mapping has been used along with the introduction of a technique for choosing an average circumference,
which allows the two-dimensional cross section results to be applied to the axisymmetric three-dimensional
probes. Issues associated with rounded edges have also been addressed. Numerical axisymmetric
calculations have been performed, confirming the accuracy and utility of the models. An experiment to
determine the probe capacitance has also been carried out. The remainder of this section is a summary
of the formulas and a discussion of how the results enter the circuit model for the probes. It is to be
noted that for slowly-varying signals (low frequencies) and resistive loads (such as a fifty-ohm measurement
system), the short- circuit current (which is determined by the effective area alone) dominates the response.
The capacitance then determines the probe time constant and can be used in the circuit model to correct
for rise time distortion.
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Listed below are the steps necessary to compute the circuit-model parameters used to represent the
D-dot probe. Also summarized are the calculations pertaining to the D-dot probe analyzed in this paper.

From the geometry of the antenna, set the effective radius and gap geometry parameters

a ≈ 0.121 in

b ≈ 0.189 in

ρe =
b− a

ln (b/a)
≈ 0.1525 in

g = b− a ≈ 0.068 in
The capacitance is

ε/ε0 ≈ 80.4 at 20oC

C ≈ 2ερe [ln (4πρe/g)− 1] ≈ 12.9 pF
The effective area is

Ae ≈ πρ2e ≈ 4.71× 10−5 m2
The short circuit charge and current are then

Q = AeεE0

Isc =
∂

∂t
Q

The effective height is then

he = Ae/ (C/ε) ≈ 2.60× 10−3 m
where the open circuit voltage Voc is

Voc = heE0
For rounded corners of radius

ρ0 ≈ 0.031 in
add the capacitance

∆Ccorn = 2ερe

⎡⎣lnÃ√λ+ κ

1 + κ

!
−

√
λ lnλ

2
³√

λ+ κ
´
⎤⎦ ≈ −2.68 pF

where
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κ = −
√
1− λ−

√
λArctan

p
1/λ− 1√

1− λ−Arctanh
√
1− λ

≈ 0.451
and

F (λ) =
1p

1/λ− 1−Arctan
p
1/λ− 1

− 1√
1− λ−Arctanh

√
1− λ

=
g

πρ0
≈ 0.698

so that

λ ≈ 0.0145
Or as approximation for λ << 1

λ ≈ 4/ exp
h³
1 + e−1−πρ0/g2πρ0/g

´
2πρ0/g + 2

i
and

κ ≈ − 1−
√
λπ/2

1 + 1
2 ln (λ/4)

To approximately account for the increase in gap dimensions at the plane surface in the case of rounded
corners take

ρ0e =
(b+ ρ0/2)− (a− ρ0/2)

ln [(b+ ρ0/2) / (a− ρ0/2)]
so that

Ae = πρ02e ≈ (0.6264)πb2

Note that it is more consistent to also use this parameter in the capacitance formula. However to
obtain extremely accurate results we must, in addition, also change the corner rounding geometry to
more accurately represent the circular geometry by a very slight reduction in the radius ρ0 → ρ1. This is
discussed in preceding sections.

The total capacitance is thus

Ctot = C +∆Ccorn +∆Ccoax +∆Cplastic ≈ 12.9 pF− 2.7 pF+ 31.02 pF+ 0.83 pF ≈ 42.1 pF
and the effective height to the terminating transmission line is then (using the rounded corner formula)

htranse ≈ Ae/ {(Ctot) /ε} ≈ 7.69× 10−4 m

If the terminating transmission line has characteristic impedance Z0 then the voltage wave on the
transmission line has amplitude

V (t) =

Z t

0

dVoc
dt0

(t0) e−(t−t
0)/τdt0
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Ctot
I  = A dE /dtsc e 0ε

Figure 10. Norton equivalent circuit for probe.

Ctot

V  = h Eoc e 0
trans

+

-
Figure 11. Thévenin circuit for probe.

33



where say Z0 ≈ 50 ohms and

τ = Z0Ctot ≈ 2 ns+ ...
However when times of interest are long compared to τ the capacitive voltage dominates the circuit and the
transmission line voltage and current are found as

V = Z0I ≈ Z0Isc = τ
d

dt
Voc = Z0Aeε

d

dt
E0 ≈ (1.61 ps-m)

d

dt
E0

Since the capacitance is not really needed to find the probe response in this case, given the effective area,
the response will be quite stable if the basic geometrical parameters, such as the coaxial radii near the
ground plane and flush mounting of the center conductor with respect to the ground plane, are stable.
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