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Abstract 

Wireless communication networks are highly resource-constrained; thus many 
security protocols which work in other settings may not be efficient enough for 
use in wireless environments. This report considers a variety of cryptographic 
techniques which enable secure, authenticated communication when resources 
such as processor speed, battery power, memory, and bandwidth are tightly 
limited. 

3 

http://mdtorge}Qsandia.gov


Contents 
1 Introduction .................................................... 7 

1.1 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

2 Key Management Schemes ...................................... 8 
2.1 Group Key Management Protocol (GKMP) . . . . . . . . . . . . . . . . . . . . . . .  10 
2.2 Scalable Multicast Key Distribution (SMKD) . . . . . . . . . . . . . . . . . . . . .  11 
2.3 Complementary Key Scheme (CKS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

2.5 Hierarchical Tree Structure (HTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
2.4 DISEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

3 Special Solutions ................................................ 15 
3.1 On-line/Off-line signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
3.2 Public/Symmetric Hybrid Key Distribution Scheme . . . . . . . . . . . . . . . .  17 
3.3 Identity-based schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 
3.4 Joint Authentication and Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
3.5 Password-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
3.6 HORSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
3.7 The FX Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

4 Experimental Testbed ........................................... 23 
4.1 Key Distribution Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
4.2 HTS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

5 Implementation Performance .................................... 28 
5.1 Cryptographic Benchmark Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
5.2 Enhanced Exponentiation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
5.3 Performance Comparison of Java and C . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

Figures 
1 Star Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
2 Hierarchical Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
3 Plot of the average number encryption/decryptions for leave/join op- 

erations for the KM as a function of the degree of the tree for N = 1000 . 15 
4 The Main Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
5 Edit Node Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
6 Key Distribution Statistics Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
7 Example Script File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

4 



Tables 
1 

2 

The cost of rekeying the entire group under key-oriented and user- 

Average encryption/decryption costs of rekeying different elements of 
a network using key-oriented rekeying with a d-ary tree and N users; 
h = l o g , N + l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

30 
Results of benchmark tests on selected hash, authentication, and digi- 

Results of benchmark tests on selected authenticated encryption algo- 
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
Performance of enhancement algorithms for modular multiple-precision 

oriented rekeying, where n = ZogdN and IC = key size.. . . . . . . . . . . . . . .  14 

3 
4 

5 

6 

7 

Results of benchmark tests on selected encryption algorithms. . . . . . . . .  

tal signature algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . .  30 

integer exponentiation implemented in C. . . . . . . . . . . . . . . . . . . . . . . . .  32 
Running times of Java and C on cryptographic operations. . . . . . . . . . .  33 

5 



6 



Hybrid Cryptography Key 
Management 

1 Introduction 

In general, wireless communication networks are resource constrained. These con- 
straints include bandwidth, battery power, processing power, and memory among 
others. As technology advances, processing power and memory constraints will lessen; 
however, it is likely that there will always be a difference between the resources of 
a wireless and a wired communication device. Security and communication proto- 
cols developed for a wired network may or may not be feasible for use in a wireless 
network. The resources available to the wireless network may not be sufficient to 
facilitate the wired protocols. Further, there are fundamental differences in the phys- 
ical communication media that simply do not allow a direct translation of protocols 
that sit at the lowest levels of the communication stack. 

This report looks at a broad collection of issues and ideas associat,ed with the 
resource constrained nature of wireless networks. In particular, we focus on cryp- 
tographic protocols and ideas that will lead to more efficient security for wireless 
networks. Even though the work was conducted with the resource constraints of 
wireless networks in mind, much of what is presented also applies to wired networks. 

To date the security community has a very large assortment of basic cryptographic 
primitives to draw from. For the most part, proper application of these primitives 
may satisfy the security needs of most wired networks. Because of the large body of 
cryptographic primitives in existence there are not a lot of obvious avenues to pursue 
when attempting to create a system applicable to resource constrained environments. 
We have chosen two paths to examine. The first is to consider networks of a restricted 
type in order to  develop primitives that are tailored to the needs of the network. The 
second is to pursue less known technologies to determine their applicability to the 
needs at hand. 

1.1 Network Models 

We consider several particular types of networks which arise frequently in applica- 
tions. Some of the key-management solutions considered in this report are specific 
to only one type of network. We can minimize resource use by taking advantage of 
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the propert’ies of particular network types, and by not providing services that are 
unnecessary for a particular type. 

0 Star Network: This is a network in which there is a central hub which can 
communicate with all other nodes (of which there may be many), and there 
are no direct communication links between non-hub (or “peripheral”) nodes 
(Figure 1). If two peripheral nodes need to communicate with one another, 
all messages must be routed through the hub. This kind of topology arises 
naturally in many military scenarios, in which there is a central command center 
controlling a collection of subordinate units. Frequently the hub node has far 
more computational power t’han the peripheral nodes. 

0 Hierarchical Network: This may be seen as a generalization of a star network. 
Communication links have the structure of a rooted tree, with a single node 
at the root (Figure 2). The root can communicate with a small number of 
subordinate nodes; each subordinate communicates with a small disjoint set 
of sub-subordinates and so on until “leaves’? or “end-user” nodes are reached. 
Each end-user has a unique path of communication up to the root. 

0 Ad-hoc Network: This is a network in which there is no pre-established 
topology or hierarchy. Individual nodes dynamically enter and leave the net- 
work. Nodes must discover one another’s existence and work out adequate 
communications paths. The lack of structure makes such networks difficult to 
manage; but in many situations it might be too expensive? or simply impossible, 
to determine ahead of time who will be in the network and how they will be 
connected. Note that in an ad-hoc situation there may be an external “trusted 
party” that facilitates communication (by acting as a certificate authority for 
example), but the trusted party does not control how users communicate. 

2 Key Management Schemes 

The development of key management schemes arises from the need to manage keys 
for network communications using symmetric key algorithms, while satisfying the 
following requirements: 

0 Join or Past Secrecy - New members cannot read past messages of the group. 

0 Leave or Forward Secrecy - Leaving members cannot read future group messages. 
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Figure 1. Star Network 

Figure 2. Hierarchical Network 

These requirements imply that the cryptographic network key used by group members 
must be changed both when a new member is added to the group and when a member 
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leaves the group. Multiple key management schemes continue to emerge because 
of the need to minimize bandwidth, storage, and computational costs subject to 
these constraints. Key management schemes also assume a communication ability 
to transmit messages to more than one group member at the same time. In general 
there are three kinds of communications in a network: 

0 Broadcast: A message is sent which can be heard by everyone in the network. 
An example would be a radio signal which can be received by everyone within 
range of the transmitter. 

0 Unicast : A message is sent to one recipient. This is the norm for an IP  packet , 
which has a single destination address. 

0 Multicast: A message is sent to a selected group of recipients. Internet proto- 
cols have been developed which enable a sender to send a message to a single 
IP address and have it delivered to multiple recipients [l]; this is more efficient 
than sending the same message multiple times. In some cases we can achieve 
multicast by broadcasting one message which has been encrypted in such a way 
that all the intended recipients, and only they, can decrypt it. 

Below, we present a few schemes for managing network keys among group mem- 
bers (see [8] for a comparative presentation of key management schemes in multicast 
communication environments). The number of users in the network is denoted by N. 

2.1 Group Key Management Protocol (GKMP) 

One of the simplest key management protocols is called the Group Key Management 
Protocol (GKMP) and it supports a network based on the Star architecture. In this 
architecture, there is a single key manager (KM) for all members of the communica- 
tions network. Each user stores 2 keys: the group key held by all members, and a 
unique key-encryption-key (KEK) held only by a single member and the KM. The 
KM holds the KEK for every member plus the group key for a total of N + 1 keys. 
A user’s unique key is called a KEK because it is used to  securely transmit the group 
key. 

When a member leaves the group, the group key must be updated for the remain- 
ing group members in order to maintain forward secrecy of network communications. 
For GKMP, the leave operation requires N - 1 unicast transmissions of the new group 
key. 
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When a member joins the group, the group key must be updated for the existing 
group members in order to maintain past secrecy of network communications. For 
GKMP, the join operation requires one multicast transmission of the new group key 
to existing members plus a unicast transmission of the new group key to the new 
member. 

The GKMP is very simple, but extremely difficult to manage in large, constantly 
changing groups because of the difficulty of updating the group key when a member 
leaves. 

2.2 Scalable Multicast Key Distribution (SMKD) 

The Scalable Multicast Key Distribution (SKMD) protocol is an attempt to  address 
the problems of scaling to large groups that are inherent with the GKMP. The un- 
derlying topology of SMKD is a hierarchical network; however it has some aspects 
of an ad-hoc network since the tree is built up dynamically. Initially there is just 
the root node, which authorizes other nodes to act as key managers for their own 
groups; these nodes may in turn authorize other key managers and so on until t,he 
end-users are reached. SMKD makes use of internet multicast protocols [l] to build 
this hierarchy. Although better than GKMP, SKMD does not necessarily scale well 
to large groups since there is no limit on the size of a given group. 

2.3 Complementary Key Scheme (CKS) 

The Complementary Key Scheme (CKS) is a key management approach designed to  
minimize the cost of a leave operation at the expense of key storage space. It supports 
the star architecture with a single KM for a group of N network members. In addit’ion 
to its own KEK and the group key, each member stores N - 1 “complimentary 
variables”, one for each of the other group members. In order to implement a leave 
operation, the KM broadcasts a single cleartext message containing the index of the 
leaving member. The new group key will be some known deterministic function of 
the old group key and the complimentary variable of the leaving member. Thus a 
leave operation is very inexpensive, but as the group becomes large, the storage costs 
become prohibitive. 
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2.4 DISEC 

The Distributed Framework for Scalable Secure Many-to-Many Communication (DISEC) 
key management’ scheme distributes key management tasks among the group mem- 
bers, thus avoiding dependency upon a single KM. DISEC uses a virtual binary tree, 
where group members are the leaves of the tree. “Virtual” means that the internal 
nodes of the tree are mathematical abstractions, not actual machines or users. Each 
member generates their own secret key, I C ,  and computes a hash of this secret key, bk,  
which it shares with its sibling. An internal node’s secret key is a function of hashed 
child keys, ICparent = m(bICchildo, bkchildl). Each user must know the blinded keys of the 
siblings of the nodes on its path to the root. Given this information, the user can 
compute all the secret keys along its path to the root. The root key is thus a function 
of all the member’s hashed keys and is used as the group key. Detailed analysis of 
join and leave operations can be found in [9, 191. 

2.5 Hierarchical Tree Structure (HTS) 

The most scalable of the key management approaches presented here uses a hierar- 
chical tree structure (HTS) to organize keys. The HTS approach uses a d-ary key 
management tree, where group members are the leaves of the tree. Each user stores 
h = log, N + 1 keys, the keys on the one path from the leaf to the root of t,he tree. 
Since every user will store the root of the tree, it is used as the group key and the leaf 
keys, being unique to each leaf, are KEKs. The KM stores the entire tree, for a total 
of (dN - l ) / (d  - 1) keys. In the case of a binary tree, the KM stores 2N - 1 keys. 
This approach has acceptable scalabilit’y attributes since the number of keys stored 
by the user scales logarithmically in N ,  as do the join and leave operations, which we 
analyze in section 2.5.1. 

2.5.1 HTS Analysis 

In this section, we take a closer look at the HTS approach to key management, given 
that it is the best of the presented schemes with respect to scalable group key man- 
agement in dynamic multicast environments. There are three primary ways to  deliver 
keys to group members even under t’he same HTS key management architecture. 

0 User-oriented rekeying - In user-oriented rekeying, a key delivery message 
contains the exact information (keys) needed by a specific user or group of users. 
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The KM asks the question of each group member, “What keys do you need?” 
and delivers those set’ of keys to that member. One can see that this approach 
may not take advantage of multicast communication. 

e Key-oriented rekeying - In key-oriented rekeying, a key delivery message 
contains a single key and it is delivered to everyone who needs it. The KM asks 
the question for each key, “Who needs this key?” and delivers it to  those mem- 
bers who need it. One can see how this can potentially require more messages 
than necessary if users share some keys. 

e Group-oriented rekeying - In group-oriented rekeying, a key delivery mes- 
sage contains as many keys as a particular group or subgroup of members needs. 
The KM asks the question, “What keys does this group need as a whole?” and 
delivers the set of keys to the group. 

The key-oriented rekeying approach results in the most, but shortest messages 
and the group-oriented approach results in the fewest, but longest messages. One 
way of measuring the cost of operations within the HTS key management approach 
is to measure 

1. total number of messages sent by the KM, 

2. the size of the group receiving the message, and 

3. the size of the message sent. 

Table 1 shows comparative costs associated with a complete rekey of the group 
from a key-oriented and user-oriented perspective. From the table, it is clear that 
key-oriented rekeying uses more, smaller messages than user-oriented rekeying. 

Another way of measuring the cost of HTS operations is to measure the number 
of encryptions/decryptions required by the KM or a group member [33]. Any time a 
key is communicated, it must be encrypted/decrypted using a key held by the sender 
and all intended recipients. Table 2 presents average encryption/decryption costs of 
rekeying on different elements of the network using the key-oriented approach. 

From Table 2, we can derive the average KM cost of an operation as (recall that 
h = log, N + 1): 

Average KM Cost = (d  + 2)(h - 1)/2 = (d  + 2)(Zog,rV)/2. (1) 
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I Kev-oriented User-oriented 
Group Message Group Message 

N 1 k N 1 (n  + l ) k  
Nld d k 
N/d2 d2 k 

Messages Size Size Messages Size Size 

d2 Nld2 k 
d Nld k 
1 N k 

I I I I I I 

Total I &N L k N  d-1 I N I (n  + 1)kN 

Table 1. The cost of rekeying the entire group under key- 
oriented and user-oriented rekeying, where n = ZogdN and 
IC = key size. 

Requesting Non-requesting Key 
Member Member Manager 

2(d - 1) 
d(h - 1 )  

En(De)cryptions for Join h - 1  d/(d - 1) 
En( De)cryptions for Leave 0 d/(d - 1) 

Table 2. Average encryption/decryption costs of rekeying 
different elements of a network using key-oriented rekeying 
with a d-ary tree and N users; h = logd N + 1. 

A plot of the average KM cost versus the degree, d ,  of the KM tree for N = 1000 
is provided in Figure 3, where one can see that' the cost is minimized for d = 4. 
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Figure 3. Plot of the average number encryp- 
tion/decryptions for leave/join operations for the KM as a 
function of the degree of the tree for N = 1000. 

3 Special Solutions 

Here we describe a variety of schemes that address fundamental cryptographic prob- 
lems and which are tailored for specific types of resource constrained environments. 

3.1 On-line/Off-line signatures 

Digital signatures can take several milliseconds and require considerable power to 
compute. This can be a problem in time-critical situations, when there are a very 
large number of messages to sign in a short time (high throughput), Sor for low-power 
devices. One solution to this problem is an on-line/off-line signature scheme. The 
idea is to save time during the on-line phase of a digital signature by performing the 
time-consuming part of the computation off-line and storing the result for later use. 
When a message needs to be signed, a fast computation is done on-line to finish the 
signature [ 111. 

A disadvantage of on-line/off-line schemes is that message lengths are considerably 
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longer than with usual signature schemes (the following scheme, due to Shamir and 
Tauman [29], approximately doubles the size of the signature). Also, this scheme 
assumes that we have available both considerable storage space (in which to store 
the off-line portion of the signatures) and considerable idle time (in which to do the 
precomputation). 

The scheme makes use of “trapdoor hash functions”. A trapdoor hash function is a 
special type of hash function which is collision resistant unless the user has knowledge 
of a special trapdoor key. More specifically, given a hash function H ( m , r ) ,  it is in 
general computationally infeasible to  find m’ # m,r‘  such that H ( m , r )  = H(m’r’), 
but given a trapdoor key, T K ,  such a pair m’,r‘ can be found easily (polynomial 
time). In particular, suppose m is a message and r is a random number. Given the 
trapdoor key, T K ,  and a second message, m‘, there is a polynomial time algorithm 
to find a second random number r’ such that H ( m , r )  = H(m’,r’). Given such a 
trapdoor hash function, H ,  an on-line/off-line signature scheme works as follows: 

0 Off-line: Precompute a set of random (m, r ) ,  H(m, r )  and signatures on H(m,  r )  
(using any signature algorithm). 

0 On-line: Given a message, m‘ to sign, choose one of the precomputed signatures 
on a random message (m, r )  and compute r’ such that H ( m ,  r )  = H(m’, r’) using 
the trapdoor key, T K .  Transmit r’ and the precomputed signature on H(m,  r ) .  

The time for the on-line portion of the signature depends on how long it takes 
to find r‘. The authors in [29] refer to this as a hash-sign-switch scheme for obvious 
reasons. Their trapdoor hash function is constructed as follows. Choose at random 
two safe primes, p, q (i.e., such that p’ = and q’ = 9 are also prime) of length 
k/2. Set n = pq. Let g be a random element of order 2p‘q‘ in {z/n{z.  Then H(m,  r )  = 
gmlT (mod n) where mlr denotes the concatenation of rn  and r.  The trapdoor to 
this function is the factorization of n: p,q. Given a second message, m’, and the 
trapdoor p ,  q to find a collision, one need only solve the equation 2‘“m + r = 2‘“m’ + r‘ 
(mod 2p’q’), i.e., r‘ = 2’(m - m’) + r (mod 2p’q’). Since r‘ needs to  be sent with 
the signature, the size of the signature is approximately doubled. 

The on-line portion of this signature scheme is very fast: the authors in [29] 
estimate that finding r‘ takes one-tenth as much time as performing a single modular 
multiplication on 1024-bit numbers. This is assuming that n is a 1024-bit number 
and the messages m,m‘  are 160 bits; then r,r’ are about 1024 bits. In comparison, 
a typical RSA signature requires modular exponentiation of a 1024-bit number. The 
scheme does have some drawbacks that may or may not be considered significant 

c 
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depending on the application. In particular, since T’ needs to be sent along with the 
signature, the bandwidth required for the signature is increased. Furthermore, if a 
lot of signatures are required, then either lots of storage space is necessary or there 
is danger of running out of pre-computed signatures. The latt,er problem could be 
mitigated by computing more signatures during system idle time if there is sufficient 
power available. 

3.2 Public/Symmetric Hybrid Key Distribution Scheme. 

One common issue faced in a network of users is distributing keys to subgroups of 
users. The goal is to minimize the number of keys generated, maintained or distrib- 
uted by/to each user, while maximizing the number of subsets with d i s h c t  secret 
keys. We assume that there exists a trusted third party to  manage the keys, as in a 
star network; without one, this problem becomes very cumbersome. 

There are many proposed schemes to solve this problem. The idea presented here 
is still in development, and in its current form does not lead to  a gain in efficiency, 
but we believe is a promising start and an interesting new approach to the problem. 
Our design uses both symmetric and public key techniques. We would like a scheme 
to publicly distribute group keys in such a way that only valid group members could 
deduce the secret group key. In our scheme, we assume there is a Trusted Key 
Generating Authority (TKGA) that shares a unique secret with each member of 
the group of m users (sl, s 2 , .  . . , sm). When a group key for users (ul, u2,. . . , u,) is 
needed, t’he TKGA uses the si to generate a function similar to a trapdoor function in 
the sense that any of the users who know any one of the secrets si can get a common 
output, k ,  from the function, but any user who does not know one of the si ’s cannot. 
The value k will then be the common key. 

Example: The TKGA shares a pair ( s i , p i )  with each user i .  Here pi is a large 
prime number and si is an integer modulo pi .  To distribut,e the key k to a group of 
users U = (u1, .., u,}, the TKGA does the following: 

1. Let xi = ( k  @ si )  + * pi for each i E U (where yi is some random integer and 
we treat k si as an integer as well so xi is an integer). 
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Then to compute k ,  user i computes k = si @ (F( s i )  (mod p i ) )  . Thus k is easy 
to compute for any user who knows some si used in the construction of F (e.g. the 
intended group members), but hard for anyone else. This means F does not have 
to be protected (much like public keys) and hence makes the distribution problem 
easier. 

We believe this is an interesting idea, but the solution example given a,bove does 
not really offer great improvement over existing schemes. For example, the amount 
of data needed to describe t'he public function, F ,  is as great as the amount of data 
that would be needed to encrypt k with a different secret key for each user. It may 
save in transmission costs since F can be posted in some public location instead of 
having to transmit a separate message to all n users. We hope to improve this idea 
by finding a function F that has a simpler description. One idea is to allow some 
information leakage to some of the other users who are non-group members (but not 
to non users of the system). This may be acceptable if the leakage is minimal or only 
to a subgroup of users, especially if there is some degree of trust in the users to whom 
the information is leaked. 

3.3 Identity-based schemes 

Cryptographic schemes based on the mathematics of elliptic curves have proven to 
be a secure way to reduce key size, computation and bandwidth requirements on key 
exchange and digital signatures. Any discrete log based cryptographic algorithm can 
be converted to use elliptic curve arithmetic. Attacks on the usual modular arith- 
metic version of a discrete log problem are not generally effective when elliptic curve 
arithmetic is substituted. Hence, elliptic curve based discrete log systems may use 
smaller key sizes and as a result will generally have lower computation requirements 
and shorter signatures. 

Much effort has gone into devising methods to exploit the attractive features of 
elliptic curve methodologies. For instance, Sandia has developed a highly optimized 
ellipt'ic curve digital signature hardware chip [28]. Other directions of research have to 
do with so called identity-based schemes, for which elliptic curves are ideally suited. 
The most promising make use of bilinear pairings on the curve. Identity based schemes 
exist for key exchange, encryption and digital signature. See [4], [13], [6], [14] for more 
details. 

The fundamental idea of an identity based scheme is that a user's name can be 
that user's public key. In general, a public key is a long, hard-to-remember number. 

18 



In this system, a user’s public key might be j ane-doe@provider . corn - more precisely, 
a combination of such a name with some publicly available information. Hence a user 
of the system, who knows the naming convention for public keys, would be able to  
know t’he public key of a user witJhout needing to consult wit,h a trusted third party 
(TTP). The user, Jane Doe, would get the private key corresponding to the public 
key j me-doe0provider . corn from a TTP that generates the keys for all users of the 
system. The TTP also publishes the aforementioned public information needed to 
transform arbitrary names into public keys. 

Another component of a PKI is a certificate revocation list. The purpose of a CRL 
is to maintain a list of certificates that have been revoked (for example, if keys are 
lost or stolen). Users of a PKI periodically consult a CRL to make sure that public 
keys have not been compromised. Identity-based systems can design in this feature 
to make CRLs less crucial. To do this, a temporal element is included in the public 
key. For example j me-doe-Feb272003@provider. corn would be the public key for 
Jane Doe good on February 27, 2003 only. Jane would have to get a new key from the 
TTP daily. This limits damage if a key is lost or stolen. Without checking a CRL, a 
user knows that a certain key was valid at some point in the very recent past. But 
to guarantee that a key is valid right now, a CRL would still be needed. 

Another useful feature is that messages could be encrypted for later decryption; 
use the key j ane-doe-Dec252003@provider. corn to encrypt a message that couldn’t 
be read until Dee. 25. 

An identity based system requires interaction with a trusted third party, but does 
enable communication between parties who a priori don’t know whether the other 
exists, but know what the identity of a trusted party should be if it was there and in 
the position to communicate. Hence this could be effective in ad-hoc networks or in 
any system where a stable infrastructure may not be readily available or desirable. 

The major disadvantage of identity-based schemes is that far more trust must be 
given to a central authority. In a standard PKI, it is possible to devise the system 
in such a way that the certificate authority (CA) merely verifies the link between 
an entity and a public key, and does not know the private keys of the users. In all 
known identity-based schemes, the TTP generates and hence knows all the private 
keys. This means that if the TTP  does not play fairly it may decrypt all messages 
in the system. Another drawback is that non-repudiation in the strictest sense is 
lost,. We have non-repudiation only to the extent that the TTP is trusted, but not in 
any cryptographic sense. In commercial applications, these weaknesses may render 
such schemes inappropriate. On the other hand, in military applications or high 
consequence commercial systems where end users may not be given the ability to 
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generate their own keys, full trust in the TTP is required. 

3.4 Joint Authentication and Encryption 

In an environment constrained by speed and latency issues, even traditional block 
ciphers may be too slow. Typical block ciphers follow the Feistel structure and may 
require a large number of rounds (e.g. 10 or more) for adequate security. For example, 
DES is quickly broken by linear or differential cryptanalysis [7] if the number of rounds 
is reduced much below the specified sixteen. Several alternatives have been suggested 
to create small round Feistel ciphers (e.g. 3-5 rounds). The reference [16] gives a 
number of attacks that may or may not’ be applicable to low round constructions 
depending on the exact cipher description. In a separate report [?I, we also have 
studied these issues. In particular, we consider the problem of combining encryption 
and authentication into a single, algorithm. The result is a cipher mode that has 
many of the same properties as CBC mode of encryption. However the mode can be 
parallelized and also contains an authentication step that is essentially free. 

3.5 Password-Based Systems 

As multi-user computer systems became more prevalent, a need was realized for secure 
authentica,tion protocols to restrict access to the various servers only to authorized 
users. At the time, a number of authentication protocols were known, however, they 
required the user to memorize a random string that could be hundreds or thousands 
of bits long. As a result, new protocols were developed that only required the user to 
memorize a short, usually text based password. Unfortunately these protocols suffered 
from a number of security flaws, including susceptibility to dictionary attacks and 
sending the users password to the server in the clear, so it could easily be “sniffed’ 
off of the network. In a separate report [23], we survey a number of more recent 
password based authentication protocols that solve this authentication problem in a 
secure and efficient manner. 

3.6 HORSE 

Source authentication of messages is a valuable tool in communication networks where 
the source of a message can easily be spoofed. Often, when two parties are commu- 
nicating, a shared-key message authentication code is sufficient for providing source 
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authentication to both parties. Unfortunately, the utility of a MAC does not extend 
to a broadcast situation involving three or more parties, so public-key digital signa- 
tures have traditionally been used to attain source authentication in group broadcast 
communications. In a separate report [22] we introduce HORSE, an r-time signature 
scheme that yields source authentication in the group setting like a public-key sig- 
nature scheme, only with signature and verification times much closer to those of a 
MAC. Additionally, HORSE makes much more efficient use of its keys than previous 
r-time signature schemes. 

The advantages of r-time signature schemes are very fast signing and verification; 
these operations require just a few hash function evaluations. The disadvantage is 
that such a scheme requires a long key which can be used for only a few messages. This 
r-times-only property turns out to be sufficient for some applications; see [24, 251. 

3.7 The FX Construction 

Let F be a block cipher with block length n and key length m. Encryption with key 
k is denoted by Fk. Rivest proposed a construction for increasing the security of F 
with very little additional computation. The block cipher F X  is defined by 

Obviously k,, k ,  E (0, l}”, giving a key length of 2 n  + rn. The use of exclusive-ors 
before and after encryption is called prewhitening and postwhitening; k ,  and k,  are 
called “whitening keys” to distinguish them from the “central” key I C .  

This is an appealing construction from the standpoint of computational efficiency: 
encryption and decryption with F X  take hardly any more time than with F .  This is 
in sharp contrast to triple encryption, which is the usual method for getting around 
the inadequate key length of DES. Furthermore it would be straightforward to extend 
a hardware implementation of F to F X .  In spite of its simplicity, this construction 
appears to be quite effective, giving a considerable increase in the effective key-length. 
Thus F X  is useful for low-power situations, or any situation in which speed is an issue. 
It can also extend the life of legacy hardware or software with inadequate encryption. 
One disadvantage is key length; we need to add two bits to the overall key in order 
to gain at most one additional bit of security. This is because there is no need to 
search on k ,  and k ,  separately; any possible value of kk ,  uniquely determines k,  since 
k ,  = c CE Fk(p @ k,) (where p ,  c are plaintext and ciphertext). 
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3.7.1 Slide Attack Against FX with Known Central Key 

One plausible way of using the FX construction, which might be appealing in a 
wireless or other tightly resource-constrained environment, is to let the central key k 
be a network key shared by all members of a group; then any two members of the 
group cold communicate using a private (k,, k,) pair. This would be of particular 
interest when F is a cipher such as Blowfish [27], for which the overhead of setting 
up the key-schedule and key-dependent' s-boxes is considerable. In this case k can 
have a relatively long lifetime, while k ,  and k ,  are easy to change and could be 
changed frequently. The best attack known against this construction is the "slide 
attack" of [3]. The idea of this attack is to look for two plaintext/ciphertext pairs 
( p ,  e ) ,  (p* ,  e*) such that c@c*  = k,. Note that for such a pair we have e* = Fk(p@k,); 
so one of the intermediate steps of the process of encrypting p gives an output equal 
to the final result of encrypting p*. Relationships of this kind, equating the i th stage 
of one encryption or decryption with the j t h  stage of another, are the basis of slide 
attacks. 

How can we find such a pair? For any such pair we would have 

p = k ,  @ FL'(c @ IC,) = k ,  @ F i l ( c * )  

and 
p* = k,  €3 FL'(C* @ k,) = k ,  CB F;l(c) 

k ,  = p CE F;I(c*) = p* @ F,-l(c) 

p* e9 F i l ( c * )  = p @ F i l ( e ) .  

thus 

and 
(2) 

Now we can think of p @ FL1 ( e )  as a hash of ( p ,  e ) ;  using well-known collision-finding 
techniques [20], we expect to find ( p ,  e ) ,  (p* ,  e*) satisfying (2) after examining about 
2n/2 p/c pairs. We have just seen that (2) must hold whenever c @ e* = k,; this 
happens with probability 2-" for any randomly chosen e, e*. If c e* # k,, then the 
two sides of (2) are uncorrelated random strings and will be equal with probability 
2-". So if (e ,  e*) is chosen uniformly at random from the set of all pairs of ciphertexts 
satisfying (a), the probability of c @ e* = k,  is given by Bayes' rule: 

1 
2 

M -. 2-" 
22" + (I - 2-")2-" 

Therefore half the collisions we find will satisfy c e* = k,. There is no difficulty in 
identifying these; let kS = p @ Fil(c*)  and kb = c @ e*, then see if encrypting p with 
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k!&'(, produces E for some pair ( F ,  E )  different from ( p ,  e) and (p* ,  e*). We expect to 
find a valid collision given 2("+1)/2 known p/c pairs. Note that this attack requires 
only known (not chosen) plaintexts. 

Thus we conclude that, with k already known, the keys k,,k, provide at most 
(n + 1)/2 bits of security if the lifetime of k is long enough to permit an attacker to 
collect 2("+l)l2) p/c pairs. The level of security might be greater when the lifetime of 
k is shorter. When k is unknown, the attacker can repeat the slide attack for each 
possible value of k .  This may be impractical, but it is a considerable improvement over 
exhaustive search on Ic,kk,. This repeated slide attack comes close to the theoretical 
bounds of [lo] and [15]. Those papers analyze "pure" key-search attacks on the F X  
construction, i.e., attacks which treat F as a black box or a random permutation. 
If it is possible to attack F itself by linear or differential cryptanalysis, then these 
techniques can extend to better attacks on F X .  For a detailed tutorial on linear and 
differential cryptanalysis, with applications to the F X  construction, see [7]. 

4 Experimental Testbed 

The development of an experimental testbed is important for the evaluation of can- 
didate key management protocols. The emphasis here is to gain empirical evidence 
about the communication, computation, and storage costs of various key management 
protocols. We have developed a network benchmarking tool and a key distribution 
simulator using the HTS key management scheme (section 2.5); we have also im- 
plemented several important cryptographic primitives, developed a general software 
architecture that allows incorporation of new algorithms, and implemented a graph- 
ical user interface. 

The Java programming language was chosen as the development language for 
the testbed. Java comes with source code of most of what we have in our crypto 
library and much more source code is available from the public domain. We do have 
some optimizations in our library that are not in the Java package, but they can 
be added if necessary. The advantages of Java are portability, cleaner code without 
explicit pointers, strong object-orientation, and easier development of graphical user 
interfaces and networking. Furthermore, Java appears to be on a high-growth curve 
with respect to its use in military and other applications. The advantage of C is 
speed; but our performance comparisons, described in section 5.3, indicate that the 
difference in speed is not too large. 
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4.1 Key Distribution Simulator 

The key distribution simulator allows a user to describe a hypothetical network and 
to model the communications required for distributing keys in such a network. The 
emphasis is on determining the amount of computation and communication needed 
to set up and maintain such networks. 

There are seven sets of variables that can be selected to set up the simulator: 1) 
network type and size, 2) the message transmission approach used by the network, 3) 
the encryption approach (and key size) for distributing the keys, 4) physical terrain 
type over which the network is distributed 5) node types for each node, 6) processing 
capability for each node, and 7) the transmission frequency and range for each node. 
The simulator was initially intended to model communications in wireless networks. 
As a result, a number of the variables listed above were included as input but were not 
fully implemented. For example, physical terrain types such as mountainous regions 
that could impact wireless transmission are not implemented. However, there are 
“hooks” in the code (in both the input sections and the calculational sections) that 
would allow all of these variables to  be implemented with minimal effort. 

Figure 4. The Main Dialog Box 

The first step for the user in setting up a simulation is to  set the distribution 
technique, key exchange algorithm, and map to be used. This is done using the 
three drop-down lists on the. right side of the main dialog box (Figure 4). The two 

t 
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Figure 5 .  Edit Node Dialog Box 

distribution techniques available are “Unicast” and “Broadcast .” (Note: The only 
map available is for a “Plain.” Any other selection from this list will default to “Plain.” 
The Plain is a flat grassland that is 10,000 meters (10 km) on a side.) 

Next, the user sets up the network. Currently, the star network (Figure 1) is the 
only functioning option. The user clicks on the “Set Up Network” button; this causes 
a dialog box to appear that accepts the number of nodes to  be placed in the network. 
When the “OK” button on this box is pushed, the network is set up. As a part of 
this setup, the individual nodes are created and placed randomly on the map. 

After the network has been set up, nodes can be added, banished (i.e., removed) 
and edited. A node is added by pushing the “Add Node” button on the main dialog 
box. A node can be banished by pushing the “Banish Node” button on the main 
dialog box. This causes a second dialog box to appear; the user enters the number of 
the node to banish in this box. To edit the properties of an individual node, the user 
pushes the “Edit Node” button on the main dialog box. This causes a new dialog 
box to appear; the user enters the number of the node to  edit into this dialog box. 
Upon pushing the “OK” button, the “Edit Node” dialog box appears (Figure 5). 
This box can be used to  edit a node’s location, velocity, mobility, communications 
range, communications frequency, and processor type (the impacts of communications 
frequency are not currently implemented). Any changes to  the nodes properties take 
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Figure 6. Key Distribution Statistics Dialog Box 
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effect when the “OK” button is pressed. 

Once the network is set up, an estimate the work required by a network to dis- 
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tribute cryptographic keys to the nodes on the network is obtained by pressing the 
“Distribute Keys” button on the main dialog box. This creates a dialog box with the 
results of the calculation, using the HTS key management scheme to distribute keys. 
An example of the “Key Distribution Statistics” dialog box is shown in Figure 6. 

A second method for obtaining an estimate of the work required to distribute keys 
across a network is to run a script file that contains all of the information about the 
network. An example script file is shown in Figure 7. To run a script file, the user 
presses the “Run Script” button in the lower right hand corner of the main dialog box. 
This creates a dialog box that requests the name of the script file. The user enters 
the name of the script file and presses the “OK” button. The “Key Distribution 
Statistics” dialog box appears with the results of the calculation. Using script files 
allows the user to create variations on a network and determine the impact of these 
variations on key distribution. 

4.2 HTS Implementat ion 

The HTS key management approach can be implemented with a tree degree of 2 as 
a balanced binary tree. The following characteristics of a balanced binary tree ease 
the implementation: 

0 All leaf nodes are at level h or h - 1. 

0 All leaves at level h are justified left in the tree. 

0 The tree node at index i has children at 22 and 2 i  + 1 and its parent at i / 2 .  

One valuable aspect of using a balanced binary tree is that the tree can be imple- 
mented using a one-dimensional array, where the indexing is determined according to 
the third bullet above. 

One issue that arises in any tree-oriented data structure is balancing the tree 
when leaves are removed during a leave operation. Initially, an approach was used of 
“filling” the hole created in the tree by a member leaving the group. This was done 
to maintain the same structure of the tree after a leave operation and was relatively 
easy to implement. The hole was filled by the last leaf in the tree, the tree was 
restructured, and keys were updated as needed. This technique works just fine if 
used only once or in very limited ways. However, the potential exists for a node to 
be moved around the tree during multiple leave operations such that if that member 
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ever leaves, it will be extremely difficult to determine which keys in the tree need 
updating. 

Subsequently, a new approach of keeping track of holes in the tree is currently 
used in the implementation. During a join operation, holes are filled prior to adding 
new nodes to the tree. The following functions of the HTS multicast key management 
scheme are currently implemented with this approach: 

0 Key Distribution - This operat'ion rekeys the entire group of members and 
populates the KM tree using key-oriented rekeying. 

0 Key Update - This operation rekeys a single group member, updating all the 
necessary keys in the KM tree using key-oriented rekeying. 

0 Leave (Remove) Operation - This operation removes a group member, up- 
dates the necessary keys to preserve forward secrecy of the group, and keeps 
track of the hole left by the leaving member. 

0 Join (Add) Operation - This operation adds a member to the group and 
updates the necessary keys to preserve past secrecy of group communications. 

5 Implementation Performance 

This section discusses three implementation issues. The first is the implementation of 
a benchmark program to compare the relative performance of various cryptographic 
algorit'hms, both encryption and authenticat'ion, on the same hardware platform. The 
second is the implementation and performance of Mark Torgerson's enhanced expo- 
nentiation algorithm (EEA) and how it compares with other enhancement techniques. 
The third issue is the relative performance of the Java and C programming languages 
on operations important to cryptography. All tests were performed on the following 
hardware. 

0 Dell Precision 340 Desktop computer 

0 2.53 GHz Pentium IV Processor 

0 512 KB Processor Cache 

0 512MBRDRAM 

0 133 MHz Bus Speed 
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5.1 Cryptographic Benchmark Tests 

Software benchmarking allows comparative performance evaluations of cryptographic 
algorithms. Performance of algorithms can be measured with respect to speed and 
memory usage (both program memory and data memory). However, precise memory 
usage figures can be difficult to acquire in an automated manner because the code 
used to measure memory usage changes the measurement. In addition, the code 
necessary to perform a particular operat,ion is often dispersed among many functions 
in multiple files. Simply totaling the size of the object, code in an application does 
not give an accurate memory usage figure because much of the code may not ever be 
used by a certain operation being measured. In contrast, speed can be measured in 
a non-invasive manner and test code can be easily wrapped around specific functions 
of interest, even if lower-level calls are made to functions in different files. 

Different compilers provide different optimizations. In particular, in-line assem- 
bly instructions for rotating registers is available in the Microsoft' Visual C++ 6.0 
compiler, but not in BorlandC++ 6.0. Without a rotate instruction, one must use 
two shift instructions, one left and one right, and logically OR the result. Therefore, 
at a minimum, the rotate operation can be executed three times faster with a rotate 
instruction than without. The rotate operation is necessary in both the SHA-1 and 
MD5 hash algorithms as well as in the Advanced Encryption Standard (AES) [12]. 

The benchmark program utilized the following software environment and was 
executed on the previously mentioned hardware. All algorithms were tested with 
10,000 byte messages. 

Software specifics: 

0 Microsoft Visual C++ 6.0 Service Pack 5 with Processor Pack 

0 Crypto++ Library 5.1 [30] 

0 32-bit in-line assembly rotate instructions 

Table 5.1 presents speed measurements of selected encryption algorithms. The 
algorithm expected to be the most secure is also the fastest. The TEA algorithm [31] 
is known for its simplicity and, therefore, its small code size. 

Table 5.1 presents speed measurements of selected hash algorithms and authen- 
t'ication algorithms. The HMAC algorithm [17] uses a hash algorithm to provide 
message authentication with minimal addition cost. 
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Table 5.1 presents speed measurements of selected algorithms for authenticated 
encryption. MTC4, RMTC4, and GCSA are algorithms that use information from 
the internal state of the cipher to provide the authentication [2]. The encryption has 
properties similar to CBC mode, yet the encipherment and authentication mecha- 
nisms can be parallelized and/or pipelined. The authentication overhead is minimal, 
so the computational cost of the authenticated encryption is very nearly that of the 
encryption process. Also, the authentication process remains resistant against some 
IV reuse. OCB [26] is another parallelizable authenticated encryption algorithm that 
operates faster than performing encryption followed by HMAC for authentication. 

3-DES 

Speed 

13 

Algorithm 
MD5 

Table 3. Results of benchmark tests on selected encryption 
algorithms. 

(Mbytes/sec) 
20 1 

Speed 

SHA-1 
HMAC-MD5 

HMAC-SHA-1 
I 

TEA Auth I 21 

Table 4. Results of benchmark tests on selected hash, au- 
thentication, and digital signature algorithms. 

5.2 Enhanced Exponentiation Algorithm 

The enhanced exponentiation algorithm replaces the pseudo-random number genera- 
tor (PRNG) and exponentiation functions required by DSA signature generation. It 
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Speed 
Algorithm 

OCB-AES- 128 
MTC4-SHA- 1 

(Mbytes/sec) 
71 
10 

MTC4-MD5 
RMTC4-SHA-1 
RMTC4-MD5 

GCSA-AES-128-AES 
GCSA-AES-128-SHA- 1 
GCSA-AES-128-MD5 

AES- 128-CBC-HMAC-SHA- 1 
AES-128-CBC-HMAC-MD5 

Table 5. Results of benchmark tests on selected authenti- 
cated encryption algorithms. 

22 
15 
28 
66 
65 
66 
33 
58 

requires approximately 1 kilobyte of precomputed storage space, assuming a 1024-bit 
base and modulus and a 160-bit exponent, and results in an PRNG/exponentiation 
function that is approximately 9 times faster than using Montgomery exponentia- 
tion [21] alone. The speed is comparable to the best fixed-base modular exponenti- 
ation speed-up that we have implemented thus far, the BGMW algorithm [5], at a 
fraction of the storage cost. Table 6 shows the performance of several enhancement 
approaches to modular multiple-precision integer exponentiation implemented in C 
and their impact on DSA signature generation. 

The EEA and BGMW algorithms are both precomputation schemes, where powers 
of the base are computed and stored for later use in exponentiations. This reduces the 
number of multiplications necessary for exponentiations with random exponents. The 
Montgomery algorithm can be used in both EEA and BGMW for the multiplications 
that must be computed during an exponentiation. In Table 6, ”big mps” refers to 
the size of multiple precision integers used for the base and modulus and ”small mps” 
refers to the size of the exponents. The times in the table are based on computations 
using a 1024-bit base and modulus and a 160-bit exponent. 
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Exponentiation Signature RNG + Exp 
Algorithm Time (ms) Time (ms) Storage 

I Montgomery I 41 I 40 I none I 

EEA (m=5) 
EEA (m=6) 

BGMW 
BGMW 

Table 6. Performance of enhancement algorithms for mod- 
ular multiple-precision integer exponentiation implemented 
in C. 

5.6 4.9 6 big mps + 6 small mps 
5.2 4.4 7 big mps + 7 small mps 
8.2 7.4 80 big mps 
4.2 3.6 3400 big rnps 

5.3 Performance Comparison of Java and C 

The Java programming language has a reputation of performing considerably slower 
than the C language. One reason is that it is not a compiled language, but runs 
interpretively on a Java Virtual Machine (JVM), which is a software program im- 
plemented for a particular microprocessor. Java is optimized at run-time, instead of 
compile-time like C. Other reasons are that in Java, bounds-checking is performed 
on all array accesses and dynamic memory allocation is handled through a general 
garbage collector. However, bounds checking, garbage collection, and run-time opti- 
mizations have advantages as well, not the least of which are in the area of security 
(e.g. prevention of buffer overflows). 

We conducted performance comparisons between Java and C on basic arithmetic 
and cryptographic operations and found Java to be very competitive with C. Our 
results are presented in Table 7. In some cases we did not have identical algorithms 
implemented in each language, so we could not make a direct comparison. Never- 
theless it is clear that well-written Java is fast enough to  be a reasonable choice for 
cryptographic operations. The following programs were compared. 

1. Matrix multiplication - This test consisted of identical C and Java code for 
matrix multiplication, which is similar to the kinds of integer operations often 
used in multiple-precision integer arithmetic. 

2. Modular exponentiation - This test consisted of a C and Java implementation of 
modular multiple-precision exponentiation using a 1024-bit base and modulus 
and a 160-bit exponent. The C implementation used a Montgomery enhance- 
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ment [21] and the Java implementation used a sliding window of size 3 as an 
exponentiation enhancement (Algorithm 14.85 in [20]). 

F’unct ion c (ms) 
Matrix Multiply - Identical Code 28 

Modular Exponentiation 40 
(Montgomery) 

DSA Signature Generation 5 
P E A )  

DSA Signature Verification 9 
(BGMW) 

3. DSA signature generation - This test consisted of a C implementation of DSA 
signature generation using EEA for modular exponentiation and a Java imple- 
mentation using a sliding window of size 3 for exponentiation. 

Java (ms) 
40 
24 

(Sliding Window) 
25 

(Sliding Window) 
48 

(Sliding Window) 

4. DSA signature verification - This test consisted of a C implementation of DSA 
signature verification using the BGMW algorithm [5] for modular exponentia- 
tion and a Java implementation using a sliding window of size 3 for exponentia- 
tion. EEA could not be used to speed up the exponentiation because it requires 
a random number generation aspect, which is needed in signature generation, 
but not signature verification. 

Table 7. Running times of Java and C on cryptographic 
operat ions. 
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