
SANDJA REPORT

Key Management

I Collins, Timothy Draelos,
m Neumann, and Mark Torgerson

xiw 871 85 and Livermore. California 94550

ogram laboratory operated by Sandia Corporation,
Company, for the United States Department of Energy's
ecurity Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 3783 1

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: revorts~,adonis.osti.gov
Online ordering: h~:Nwww.doe.eov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22 1 6 1

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@,ntis.fedworld.gov
Online order: ht~://www.ntis.gov/hel~/ordemethods.as~?loc=7-4-0#online

SAND2003-4105
Unlimited Release

Printed November 2003

Hybrid Cryptography Key Management

Cheryl Beaver, Michael Collins, Timothy Draelos,
Donald Gallup, William Neumann, and Mark Torgerson

Cryptography and Information Systems Surety Department
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-0785

{ cbeaver, mjcolli, tjdrael, drgallu, wneuman, mdtorge}Qsandia.gov

Abstract

Wireless communication networks are highly resource-constrained; thus many
security protocols which work in other settings may not be efficient enough for
use in wireless environments. This report considers a variety of cryptographic
techniques which enable secure, authenticated communication when resources
such as processor speed, battery power, memory, and bandwidth are tightly
limited.

3

http://mdtorge}Qsandia.gov

Contents
1 Introduction .. 7

1.1 Network Models . 7

2 Key Management Schemes 8
2.1 Group Key Management Protocol (GKMP) . 10
2.2 Scalable Multicast Key Distribution (SMKD) . 11
2.3 Complementary Key Scheme (CKS) . 11

2.5 Hierarchical Tree Structure (HTS) . 12
2.4 DISEC . 12

3 Special Solutions .. 15
3.1 On-line/Off-line signatures . 15
3.2 Public/Symmetric Hybrid Key Distribution Scheme 17
3.3 Identity-based schemes . 18
3.4 Joint Authentication and Encryption . 20
3.5 Password-Based Systems . 20
3.6 HORSE . 20
3.7 The FX Construction . 21

4 Experimental Testbed ... 23
4.1 Key Distribution Simulator . 24
4.2 HTS Implementation . 27

5 Implementation Performance 28
5.1 Cryptographic Benchmark Tests . 29
5.2 Enhanced Exponentiation Algorithm . 30
5.3 Performance Comparison of Java and C . 32

Figures
1 Star Network . 9
2 Hierarchical Network . 9
3 Plot of the average number encryption/decryptions for leave/join op-

erations for the KM as a function of the degree of the tree for N = 1000 . 15
4 The Main Dialog Box . 24
5 Edit Node Dialog Box . 25
6 Key Distribution Statistics Dialog Box . 26
7 Example Script File . 26

4

Tables
1

2

The cost of rekeying the entire group under key-oriented and user-

Average encryption/decryption costs of rekeying different elements of
a network using key-oriented rekeying with a d-ary tree and N users;
h = l o g , N + l . 14

30
Results of benchmark tests on selected hash, authentication, and digi-

Results of benchmark tests on selected authenticated encryption algo-
rithms . 31
Performance of enhancement algorithms for modular multiple-precision

oriented rekeying, where n = ZogdN and IC = key size.. 14

3
4

5

6

7

Results of benchmark tests on selected encryption algorithms.

tal signature algorithms. : 30

integer exponentiation implemented in C. 32
Running times of Java and C on cryptographic operations. 33

5

6

Hybrid Cryptography Key
Management

1 Introduction

In general, wireless communication networks are resource constrained. These con-
straints include bandwidth, battery power, processing power, and memory among
others. As technology advances, processing power and memory constraints will lessen;
however, it is likely that there will always be a difference between the resources of
a wireless and a wired communication device. Security and communication proto-
cols developed for a wired network may or may not be feasible for use in a wireless
network. The resources available to the wireless network may not be sufficient to
facilitate the wired protocols. Further, there are fundamental differences in the phys-
ical communication media that simply do not allow a direct translation of protocols
that sit at the lowest levels of the communication stack.

This report looks at a broad collection of issues and ideas associat,ed with the
resource constrained nature of wireless networks. In particular, we focus on cryp-
tographic protocols and ideas that will lead to more efficient security for wireless
networks. Even though the work was conducted with the resource constraints of
wireless networks in mind, much of what is presented also applies to wired networks.

To date the security community has a very large assortment of basic cryptographic
primitives to draw from. For the most part, proper application of these primitives
may satisfy the security needs of most wired networks. Because of the large body of
cryptographic primitives in existence there are not a lot of obvious avenues to pursue
when attempting to create a system applicable to resource constrained environments.
We have chosen two paths to examine. The first is to consider networks of a restricted
type in order to develop primitives that are tailored to the needs of the network. The
second is to pursue less known technologies to determine their applicability to the
needs at hand.

1.1 Network Models

We consider several particular types of networks which arise frequently in applica-
tions. Some of the key-management solutions considered in this report are specific
to only one type of network. We can minimize resource use by taking advantage of

7

the propert’ies of particular network types, and by not providing services that are
unnecessary for a particular type.

0 Star Network: This is a network in which there is a central hub which can
communicate with all other nodes (of which there may be many), and there
are no direct communication links between non-hub (or “peripheral”) nodes
(Figure 1). If two peripheral nodes need to communicate with one another,
all messages must be routed through the hub. This kind of topology arises
naturally in many military scenarios, in which there is a central command center
controlling a collection of subordinate units. Frequently the hub node has far
more computational power t’han the peripheral nodes.

0 Hierarchical Network: This may be seen as a generalization of a star network.
Communication links have the structure of a rooted tree, with a single node
at the root (Figure 2). The root can communicate with a small number of
subordinate nodes; each subordinate communicates with a small disjoint set
of sub-subordinates and so on until “leaves’? or “end-user” nodes are reached.
Each end-user has a unique path of communication up to the root.

0 Ad-hoc Network: This is a network in which there is no pre-established
topology or hierarchy. Individual nodes dynamically enter and leave the net-
work. Nodes must discover one another’s existence and work out adequate
communications paths. The lack of structure makes such networks difficult to
manage; but in many situations it might be too expensive? or simply impossible,
to determine ahead of time who will be in the network and how they will be
connected. Note that in an ad-hoc situation there may be an external “trusted
party” that facilitates communication (by acting as a certificate authority for
example), but the trusted party does not control how users communicate.

2 Key Management Schemes

The development of key management schemes arises from the need to manage keys
for network communications using symmetric key algorithms, while satisfying the
following requirements:

0 Join or Past Secrecy - New members cannot read past messages of the group.

0 Leave or Forward Secrecy - Leaving members cannot read future group messages.

8

Figure 1. Star Network

Figure 2. Hierarchical Network

These requirements imply that the cryptographic network key used by group members
must be changed both when a new member is added to the group and when a member

9

leaves the group. Multiple key management schemes continue to emerge because
of the need to minimize bandwidth, storage, and computational costs subject to
these constraints. Key management schemes also assume a communication ability
to transmit messages to more than one group member at the same time. In general
there are three kinds of communications in a network:

0 Broadcast: A message is sent which can be heard by everyone in the network.
An example would be a radio signal which can be received by everyone within
range of the transmitter.

0 Unicast : A message is sent to one recipient. This is the norm for an IP packet ,
which has a single destination address.

0 Multicast: A message is sent to a selected group of recipients. Internet proto-
cols have been developed which enable a sender to send a message to a single
IP address and have it delivered to multiple recipients [l]; this is more efficient
than sending the same message multiple times. In some cases we can achieve
multicast by broadcasting one message which has been encrypted in such a way
that all the intended recipients, and only they, can decrypt it.

Below, we present a few schemes for managing network keys among group mem-
bers (see [8] for a comparative presentation of key management schemes in multicast
communication environments). The number of users in the network is denoted by N.

2.1 Group Key Management Protocol (GKMP)

One of the simplest key management protocols is called the Group Key Management
Protocol (GKMP) and it supports a network based on the Star architecture. In this
architecture, there is a single key manager (KM) for all members of the communica-
tions network. Each user stores 2 keys: the group key held by all members, and a
unique key-encryption-key (KEK) held only by a single member and the KM. The
KM holds the KEK for every member plus the group key for a total of N + 1 keys.
A user’s unique key is called a KEK because it is used to securely transmit the group
key.

When a member leaves the group, the group key must be updated for the remain-
ing group members in order to maintain forward secrecy of network communications.
For GKMP, the leave operation requires N - 1 unicast transmissions of the new group
key.

10

When a member joins the group, the group key must be updated for the existing
group members in order to maintain past secrecy of network communications. For
GKMP, the join operation requires one multicast transmission of the new group key
to existing members plus a unicast transmission of the new group key to the new
member.

The GKMP is very simple, but extremely difficult to manage in large, constantly
changing groups because of the difficulty of updating the group key when a member
leaves.

2.2 Scalable Multicast Key Distribution (SMKD)

The Scalable Multicast Key Distribution (SKMD) protocol is an attempt to address
the problems of scaling to large groups that are inherent with the GKMP. The un-
derlying topology of SMKD is a hierarchical network; however it has some aspects
of an ad-hoc network since the tree is built up dynamically. Initially there is just
the root node, which authorizes other nodes to act as key managers for their own
groups; these nodes may in turn authorize other key managers and so on until t,he
end-users are reached. SMKD makes use of internet multicast protocols [l] to build
this hierarchy. Although better than GKMP, SKMD does not necessarily scale well
to large groups since there is no limit on the size of a given group.

2.3 Complementary Key Scheme (CKS)

The Complementary Key Scheme (CKS) is a key management approach designed to
minimize the cost of a leave operation at the expense of key storage space. It supports
the star architecture with a single KM for a group of N network members. In addit’ion
to its own KEK and the group key, each member stores N - 1 “complimentary
variables”, one for each of the other group members. In order to implement a leave
operation, the KM broadcasts a single cleartext message containing the index of the
leaving member. The new group key will be some known deterministic function of
the old group key and the complimentary variable of the leaving member. Thus a
leave operation is very inexpensive, but as the group becomes large, the storage costs
become prohibitive.

11

2.4 DISEC

The Distributed Framework for Scalable Secure Many-to-Many Communication (DISEC)
key management’ scheme distributes key management tasks among the group mem-
bers, thus avoiding dependency upon a single KM. DISEC uses a virtual binary tree,
where group members are the leaves of the tree. “Virtual” means that the internal
nodes of the tree are mathematical abstractions, not actual machines or users. Each
member generates their own secret key, I C , and computes a hash of this secret key, bk,
which it shares with its sibling. An internal node’s secret key is a function of hashed
child keys, ICparent = m(bICchildo, bkchildl). Each user must know the blinded keys of the
siblings of the nodes on its path to the root. Given this information, the user can
compute all the secret keys along its path to the root. The root key is thus a function
of all the member’s hashed keys and is used as the group key. Detailed analysis of
join and leave operations can be found in [9, 191.

2.5 Hierarchical Tree Structure (HTS)

The most scalable of the key management approaches presented here uses a hierar-
chical tree structure (HTS) to organize keys. The HTS approach uses a d-ary key
management tree, where group members are the leaves of the tree. Each user stores
h = log, N + 1 keys, the keys on the one path from the leaf to the root of t,he tree.
Since every user will store the root of the tree, it is used as the group key and the leaf
keys, being unique to each leaf, are KEKs. The KM stores the entire tree, for a total
of (dN - l) / (d - 1) keys. In the case of a binary tree, the KM stores 2N - 1 keys.
This approach has acceptable scalabilit’y attributes since the number of keys stored
by the user scales logarithmically in N , as do the join and leave operations, which we
analyze in section 2.5.1.

2.5.1 HTS Analysis

In this section, we take a closer look at the HTS approach to key management, given
that it is the best of the presented schemes with respect to scalable group key man-
agement in dynamic multicast environments. There are three primary ways to deliver
keys to group members even under t’he same HTS key management architecture.

0 User-oriented rekeying - In user-oriented rekeying, a key delivery message
contains the exact information (keys) needed by a specific user or group of users.

12

The KM asks the question of each group member, “What keys do you need?”
and delivers those set’ of keys to that member. One can see that this approach
may not take advantage of multicast communication.

e Key-oriented rekeying - In key-oriented rekeying, a key delivery message
contains a single key and it is delivered to everyone who needs it. The KM asks
the question for each key, “Who needs this key?” and delivers it to those mem-
bers who need it. One can see how this can potentially require more messages
than necessary if users share some keys.

e Group-oriented rekeying - In group-oriented rekeying, a key delivery mes-
sage contains as many keys as a particular group or subgroup of members needs.
The KM asks the question, “What keys does this group need as a whole?” and
delivers the set of keys to the group.

The key-oriented rekeying approach results in the most, but shortest messages
and the group-oriented approach results in the fewest, but longest messages. One
way of measuring the cost of operations within the HTS key management approach
is to measure

1. total number of messages sent by the KM,

2. the size of the group receiving the message, and

3. the size of the message sent.

Table 1 shows comparative costs associated with a complete rekey of the group
from a key-oriented and user-oriented perspective. From the table, it is clear that
key-oriented rekeying uses more, smaller messages than user-oriented rekeying.

Another way of measuring the cost of HTS operations is to measure the number
of encryptions/decryptions required by the KM or a group member [33]. Any time a
key is communicated, it must be encrypted/decrypted using a key held by the sender
and all intended recipients. Table 2 presents average encryption/decryption costs of
rekeying on different elements of the network using the key-oriented approach.

From Table 2, we can derive the average KM cost of an operation as (recall that
h = log, N + 1):

Average KM Cost = (d + 2)(h - 1)/2 = (d + 2)(Zog,rV)/2. (1)

13

I Kev-oriented User-oriented
Group Message Group Message

N 1 k N 1 (n + l) k
Nld d k
N/d2 d2 k

Messages Size Size Messages Size Size

d2 Nld2 k
d Nld k
1 N k

I I I I I I

Total I &N L k N d-1 I N I (n + 1)kN

Table 1. The cost of rekeying the entire group under key-
oriented and user-oriented rekeying, where n = ZogdN and
IC = key size.

Requesting Non-requesting Key
Member Member Manager

2(d - 1)
d(h - 1)

En(De)cryptions for Join h - 1 d/(d - 1)
En(De)cryptions for Leave 0 d/(d - 1)

Table 2. Average encryption/decryption costs of rekeying
different elements of a network using key-oriented rekeying
with a d-ary tree and N users; h = logd N + 1.

A plot of the average KM cost versus the degree, d , of the KM tree for N = 1000
is provided in Figure 3, where one can see that' the cost is minimized for d = 4.

14

*

Figure 3. Plot of the average number encryp-
tion/decryptions for leave/join operations for the KM as a
function of the degree of the tree for N = 1000.

3 Special Solutions

Here we describe a variety of schemes that address fundamental cryptographic prob-
lems and which are tailored for specific types of resource constrained environments.

3.1 On-line/Off-line signatures

Digital signatures can take several milliseconds and require considerable power to
compute. This can be a problem in time-critical situations, when there are a very
large number of messages to sign in a short time (high throughput), Sor for low-power
devices. One solution to this problem is an on-line/off-line signature scheme. The
idea is to save time during the on-line phase of a digital signature by performing the
time-consuming part of the computation off-line and storing the result for later use.
When a message needs to be signed, a fast computation is done on-line to finish the
signature [111.

A disadvantage of on-line/off-line schemes is that message lengths are considerably

15

longer than with usual signature schemes (the following scheme, due to Shamir and
Tauman [29], approximately doubles the size of the signature). Also, this scheme
assumes that we have available both considerable storage space (in which to store
the off-line portion of the signatures) and considerable idle time (in which to do the
precomputation).

The scheme makes use of “trapdoor hash functions”. A trapdoor hash function is a
special type of hash function which is collision resistant unless the user has knowledge
of a special trapdoor key. More specifically, given a hash function H (m , r) , it is in
general computationally infeasible to find m’ # m,r‘ such that H (m , r) = H(m’r’),
but given a trapdoor key, T K , such a pair m’,r‘ can be found easily (polynomial
time). In particular, suppose m is a message and r is a random number. Given the
trapdoor key, T K , and a second message, m‘, there is a polynomial time algorithm
to find a second random number r’ such that H (m , r) = H(m’,r’). Given such a
trapdoor hash function, H , an on-line/off-line signature scheme works as follows:

0 Off-line: Precompute a set of random (m, r) , H(m, r) and signatures on H(m, r)
(using any signature algorithm).

0 On-line: Given a message, m‘ to sign, choose one of the precomputed signatures
on a random message (m, r) and compute r’ such that H (m , r) = H(m’, r’) using
the trapdoor key, T K . Transmit r’ and the precomputed signature on H(m, r) .

The time for the on-line portion of the signature depends on how long it takes
to find r‘. The authors in [29] refer to this as a hash-sign-switch scheme for obvious
reasons. Their trapdoor hash function is constructed as follows. Choose at random
two safe primes, p, q (i.e., such that p’ = and q’ = 9 are also prime) of length
k/2. Set n = pq. Let g be a random element of order 2p‘q‘ in {z/n{z. Then H(m, r) =
gmlT (mod n) where mlr denotes the concatenation of rn and r. The trapdoor to
this function is the factorization of n: p,q. Given a second message, m’, and the
trapdoor p , q to find a collision, one need only solve the equation 2‘“m + r = 2‘“m’ + r‘
(mod 2p’q’), i.e., r‘ = 2’(m - m’) + r (mod 2p’q’). Since r‘ needs to be sent with
the signature, the size of the signature is approximately doubled.

The on-line portion of this signature scheme is very fast: the authors in [29]
estimate that finding r‘ takes one-tenth as much time as performing a single modular
multiplication on 1024-bit numbers. This is assuming that n is a 1024-bit number
and the messages m,m‘ are 160 bits; then r,r’ are about 1024 bits. In comparison,
a typical RSA signature requires modular exponentiation of a 1024-bit number. The
scheme does have some drawbacks that may or may not be considered significant

c

16

depending on the application. In particular, since T’ needs to be sent along with the
signature, the bandwidth required for the signature is increased. Furthermore, if a
lot of signatures are required, then either lots of storage space is necessary or there
is danger of running out of pre-computed signatures. The latt,er problem could be
mitigated by computing more signatures during system idle time if there is sufficient
power available.

3.2 Public/Symmetric Hybrid Key Distribution Scheme.

One common issue faced in a network of users is distributing keys to subgroups of
users. The goal is to minimize the number of keys generated, maintained or distrib-
uted by/to each user, while maximizing the number of subsets with d i s h c t secret
keys. We assume that there exists a trusted third party to manage the keys, as in a
star network; without one, this problem becomes very cumbersome.

There are many proposed schemes to solve this problem. The idea presented here
is still in development, and in its current form does not lead to a gain in efficiency,
but we believe is a promising start and an interesting new approach to the problem.
Our design uses both symmetric and public key techniques. We would like a scheme
to publicly distribute group keys in such a way that only valid group members could
deduce the secret group key. In our scheme, we assume there is a Trusted Key
Generating Authority (TKGA) that shares a unique secret with each member of
the group of m users (sl, s 2 , . . . , sm). When a group key for users (ul, u2,. . . , u,) is
needed, t’he TKGA uses the si to generate a function similar to a trapdoor function in
the sense that any of the users who know any one of the secrets si can get a common
output, k , from the function, but any user who does not know one of the si ’s cannot.
The value k will then be the common key.

Example: The TKGA shares a pair (s i , p i) with each user i . Here pi is a large
prime number and si is an integer modulo pi . To distribut,e the key k to a group of
users U = (u1, .., u,}, the TKGA does the following:

1. Let xi = (k @ si) + * pi for each i E U (where yi is some random integer and
we treat k si as an integer as well so xi is an integer).

17

Then to compute k , user i computes k = si @ (F(s i) (mod p i)) . Thus k is easy
to compute for any user who knows some si used in the construction of F (e.g. the
intended group members), but hard for anyone else. This means F does not have
to be protected (much like public keys) and hence makes the distribution problem
easier.

We believe this is an interesting idea, but the solution example given a,bove does
not really offer great improvement over existing schemes. For example, the amount
of data needed to describe t'he public function, F , is as great as the amount of data
that would be needed to encrypt k with a different secret key for each user. It may
save in transmission costs since F can be posted in some public location instead of
having to transmit a separate message to all n users. We hope to improve this idea
by finding a function F that has a simpler description. One idea is to allow some
information leakage to some of the other users who are non-group members (but not
to non users of the system). This may be acceptable if the leakage is minimal or only
to a subgroup of users, especially if there is some degree of trust in the users to whom
the information is leaked.

3.3 Identity-based schemes

Cryptographic schemes based on the mathematics of elliptic curves have proven to
be a secure way to reduce key size, computation and bandwidth requirements on key
exchange and digital signatures. Any discrete log based cryptographic algorithm can
be converted to use elliptic curve arithmetic. Attacks on the usual modular arith-
metic version of a discrete log problem are not generally effective when elliptic curve
arithmetic is substituted. Hence, elliptic curve based discrete log systems may use
smaller key sizes and as a result will generally have lower computation requirements
and shorter signatures.

Much effort has gone into devising methods to exploit the attractive features of
elliptic curve methodologies. For instance, Sandia has developed a highly optimized
ellipt'ic curve digital signature hardware chip [28]. Other directions of research have to
do with so called identity-based schemes, for which elliptic curves are ideally suited.
The most promising make use of bilinear pairings on the curve. Identity based schemes
exist for key exchange, encryption and digital signature. See [4], [13], [6], [14] for more
details.

The fundamental idea of an identity based scheme is that a user's name can be
that user's public key. In general, a public key is a long, hard-to-remember number.

18

In this system, a user’s public key might be j ane-doe@provider . corn - more precisely,
a combination of such a name with some publicly available information. Hence a user
of the system, who knows the naming convention for public keys, would be able to
know t’he public key of a user witJhout needing to consult wit,h a trusted third party
(TTP). The user, Jane Doe, would get the private key corresponding to the public
key j me-doe0provider . corn from a TTP that generates the keys for all users of the
system. The TTP also publishes the aforementioned public information needed to
transform arbitrary names into public keys.

Another component of a PKI is a certificate revocation list. The purpose of a CRL
is to maintain a list of certificates that have been revoked (for example, if keys are
lost or stolen). Users of a PKI periodically consult a CRL to make sure that public
keys have not been compromised. Identity-based systems can design in this feature
to make CRLs less crucial. To do this, a temporal element is included in the public
key. For example j me-doe-Feb272003@provider. corn would be the public key for
Jane Doe good on February 27, 2003 only. Jane would have to get a new key from the
TTP daily. This limits damage if a key is lost or stolen. Without checking a CRL, a
user knows that a certain key was valid at some point in the very recent past. But
to guarantee that a key is valid right now, a CRL would still be needed.

Another useful feature is that messages could be encrypted for later decryption;
use the key j ane-doe-Dec252003@provider. corn to encrypt a message that couldn’t
be read until Dee. 25.

An identity based system requires interaction with a trusted third party, but does
enable communication between parties who a priori don’t know whether the other
exists, but know what the identity of a trusted party should be if it was there and in
the position to communicate. Hence this could be effective in ad-hoc networks or in
any system where a stable infrastructure may not be readily available or desirable.

The major disadvantage of identity-based schemes is that far more trust must be
given to a central authority. In a standard PKI, it is possible to devise the system
in such a way that the certificate authority (CA) merely verifies the link between
an entity and a public key, and does not know the private keys of the users. In all
known identity-based schemes, the TTP generates and hence knows all the private
keys. This means that if the TTP does not play fairly it may decrypt all messages
in the system. Another drawback is that non-repudiation in the strictest sense is
lost,. We have non-repudiation only to the extent that the TTP is trusted, but not in
any cryptographic sense. In commercial applications, these weaknesses may render
such schemes inappropriate. On the other hand, in military applications or high
consequence commercial systems where end users may not be given the ability to

19

generate their own keys, full trust in the TTP is required.

3.4 Joint Authentication and Encryption

In an environment constrained by speed and latency issues, even traditional block
ciphers may be too slow. Typical block ciphers follow the Feistel structure and may
require a large number of rounds (e.g. 10 or more) for adequate security. For example,
DES is quickly broken by linear or differential cryptanalysis [7] if the number of rounds
is reduced much below the specified sixteen. Several alternatives have been suggested
to create small round Feistel ciphers (e.g. 3-5 rounds). The reference [16] gives a
number of attacks that may or may not’ be applicable to low round constructions
depending on the exact cipher description. In a separate report [?I, we also have
studied these issues. In particular, we consider the problem of combining encryption
and authentication into a single, algorithm. The result is a cipher mode that has
many of the same properties as CBC mode of encryption. However the mode can be
parallelized and also contains an authentication step that is essentially free.

3.5 Password-Based Systems

As multi-user computer systems became more prevalent, a need was realized for secure
authentica,tion protocols to restrict access to the various servers only to authorized
users. At the time, a number of authentication protocols were known, however, they
required the user to memorize a random string that could be hundreds or thousands
of bits long. As a result, new protocols were developed that only required the user to
memorize a short, usually text based password. Unfortunately these protocols suffered
from a number of security flaws, including susceptibility to dictionary attacks and
sending the users password to the server in the clear, so it could easily be “sniffed’
off of the network. In a separate report [23], we survey a number of more recent
password based authentication protocols that solve this authentication problem in a
secure and efficient manner.

3.6 HORSE

Source authentication of messages is a valuable tool in communication networks where
the source of a message can easily be spoofed. Often, when two parties are commu-
nicating, a shared-key message authentication code is sufficient for providing source

20

authentication to both parties. Unfortunately, the utility of a MAC does not extend
to a broadcast situation involving three or more parties, so public-key digital signa-
tures have traditionally been used to attain source authentication in group broadcast
communications. In a separate report [22] we introduce HORSE, an r-time signature
scheme that yields source authentication in the group setting like a public-key sig-
nature scheme, only with signature and verification times much closer to those of a
MAC. Additionally, HORSE makes much more efficient use of its keys than previous
r-time signature schemes.

The advantages of r-time signature schemes are very fast signing and verification;
these operations require just a few hash function evaluations. The disadvantage is
that such a scheme requires a long key which can be used for only a few messages. This
r-times-only property turns out to be sufficient for some applications; see [24, 251.

3.7 The FX Construction

Let F be a block cipher with block length n and key length m. Encryption with key
k is denoted by Fk. Rivest proposed a construction for increasing the security of F
with very little additional computation. The block cipher F X is defined by

Obviously k,, k , E (0, l}”, giving a key length of 2 n + rn. The use of exclusive-ors
before and after encryption is called prewhitening and postwhitening; k , and k, are
called “whitening keys” to distinguish them from the “central” key I C .

This is an appealing construction from the standpoint of computational efficiency:
encryption and decryption with F X take hardly any more time than with F . This is
in sharp contrast to triple encryption, which is the usual method for getting around
the inadequate key length of DES. Furthermore it would be straightforward to extend
a hardware implementation of F to F X . In spite of its simplicity, this construction
appears to be quite effective, giving a considerable increase in the effective key-length.
Thus F X is useful for low-power situations, or any situation in which speed is an issue.
It can also extend the life of legacy hardware or software with inadequate encryption.
One disadvantage is key length; we need to add two bits to the overall key in order
to gain at most one additional bit of security. This is because there is no need to
search on k , and k , separately; any possible value of kk , uniquely determines k, since
k , = c CE Fk(p @ k,) (where p , c are plaintext and ciphertext).

21

3.7.1 Slide Attack Against FX with Known Central Key

One plausible way of using the FX construction, which might be appealing in a
wireless or other tightly resource-constrained environment, is to let the central key k
be a network key shared by all members of a group; then any two members of the
group cold communicate using a private (k,, k,) pair. This would be of particular
interest when F is a cipher such as Blowfish [27], for which the overhead of setting
up the key-schedule and key-dependent' s-boxes is considerable. In this case k can
have a relatively long lifetime, while k , and k , are easy to change and could be
changed frequently. The best attack known against this construction is the "slide
attack" of [3]. The idea of this attack is to look for two plaintext/ciphertext pairs
(p , e) , (p* , e*) such that c@c* = k,. Note that for such a pair we have e* = Fk(p@k,);
so one of the intermediate steps of the process of encrypting p gives an output equal
to the final result of encrypting p*. Relationships of this kind, equating the i th stage
of one encryption or decryption with the j t h stage of another, are the basis of slide
attacks.

How can we find such a pair? For any such pair we would have

p = k , @ FL'(c @ IC,) = k , @ F i l (c *)

and
p* = k, €3 FL'(C* @ k,) = k , CB F;l(c)

k , = p CE F;I(c*) = p* @ F,-l(c)

p* e9 F i l (c *) = p @ F i l (e) .

thus

and
(2)

Now we can think of p @ FL1 (e) as a hash of (p , e) ; using well-known collision-finding
techniques [20], we expect to find (p , e) , (p* , e*) satisfying (2) after examining about
2n/2 p/c pairs. We have just seen that (2) must hold whenever c @ e* = k,; this
happens with probability 2-" for any randomly chosen e, e*. If c e* # k,, then the
two sides of (2) are uncorrelated random strings and will be equal with probability
2-". So if (e , e*) is chosen uniformly at random from the set of all pairs of ciphertexts
satisfying (a), the probability of c @ e* = k, is given by Bayes' rule:

1
2

M -. 2-"
22" + (I - 2-")2-"

Therefore half the collisions we find will satisfy c e* = k,. There is no difficulty in
identifying these; let kS = p @ Fil(c*) and kb = c @ e*, then see if encrypting p with

22

c

k!&'(, produces E for some pair (F , E) different from (p , e) and (p* , e*). We expect to
find a valid collision given 2("+1)/2 known p/c pairs. Note that this attack requires
only known (not chosen) plaintexts.

Thus we conclude that, with k already known, the keys k,,k, provide at most
(n + 1)/2 bits of security if the lifetime of k is long enough to permit an attacker to
collect 2("+l)l2) p/c pairs. The level of security might be greater when the lifetime of
k is shorter. When k is unknown, the attacker can repeat the slide attack for each
possible value of k . This may be impractical, but it is a considerable improvement over
exhaustive search on Ic,kk,. This repeated slide attack comes close to the theoretical
bounds of [lo] and [15]. Those papers analyze "pure" key-search attacks on the F X
construction, i.e., attacks which treat F as a black box or a random permutation.
If it is possible to attack F itself by linear or differential cryptanalysis, then these
techniques can extend to better attacks on F X . For a detailed tutorial on linear and
differential cryptanalysis, with applications to the F X construction, see [7].

4 Experimental Testbed

The development of an experimental testbed is important for the evaluation of can-
didate key management protocols. The emphasis here is to gain empirical evidence
about the communication, computation, and storage costs of various key management
protocols. We have developed a network benchmarking tool and a key distribution
simulator using the HTS key management scheme (section 2.5); we have also im-
plemented several important cryptographic primitives, developed a general software
architecture that allows incorporation of new algorithms, and implemented a graph-
ical user interface.

The Java programming language was chosen as the development language for
the testbed. Java comes with source code of most of what we have in our crypto
library and much more source code is available from the public domain. We do have
some optimizations in our library that are not in the Java package, but they can
be added if necessary. The advantages of Java are portability, cleaner code without
explicit pointers, strong object-orientation, and easier development of graphical user
interfaces and networking. Furthermore, Java appears to be on a high-growth curve
with respect to its use in military and other applications. The advantage of C is
speed; but our performance comparisons, described in section 5.3, indicate that the
difference in speed is not too large.

23

4.1 Key Distribution Simulator

The key distribution simulator allows a user to describe a hypothetical network and
to model the communications required for distributing keys in such a network. The
emphasis is on determining the amount of computation and communication needed
to set up and maintain such networks.

There are seven sets of variables that can be selected to set up the simulator: 1)
network type and size, 2) the message transmission approach used by the network, 3)
the encryption approach (and key size) for distributing the keys, 4) physical terrain
type over which the network is distributed 5) node types for each node, 6) processing
capability for each node, and 7) the transmission frequency and range for each node.
The simulator was initially intended to model communications in wireless networks.
As a result, a number of the variables listed above were included as input but were not
fully implemented. For example, physical terrain types such as mountainous regions
that could impact wireless transmission are not implemented. However, there are
“hooks” in the code (in both the input sections and the calculational sections) that
would allow all of these variables to be implemented with minimal effort.

Figure 4. The Main Dialog Box

The first step for the user in setting up a simulation is to set the distribution
technique, key exchange algorithm, and map to be used. This is done using the
three drop-down lists on the. right side of the main dialog box (Figure 4). The two

t

24

Figure 5 . Edit Node Dialog Box

distribution techniques available are “Unicast” and “Broadcast .” (Note: The only
map available is for a “Plain.” Any other selection from this list will default to “Plain.”
The Plain is a flat grassland that is 10,000 meters (10 km) on a side.)

Next, the user sets up the network. Currently, the star network (Figure 1) is the
only functioning option. The user clicks on the “Set Up Network” button; this causes
a dialog box to appear that accepts the number of nodes to be placed in the network.
When the “OK” button on this box is pushed, the network is set up. As a part of
this setup, the individual nodes are created and placed randomly on the map.

After the network has been set up, nodes can be added, banished (i.e., removed)
and edited. A node is added by pushing the “Add Node” button on the main dialog
box. A node can be banished by pushing the “Banish Node” button on the main
dialog box. This causes a second dialog box to appear; the user enters the number of
the node to banish in this box. To edit the properties of an individual node, the user
pushes the “Edit Node” button on the main dialog box. This causes a new dialog
box to appear; the user enters the number of the node to edit into this dialog box.
Upon pushing the “OK” button, the “Edit Node” dialog box appears (Figure 5).
This box can be used to edit a node’s location, velocity, mobility, communications
range, communications frequency, and processor type (the impacts of communications
frequency are not currently implemented). Any changes to the nodes properties take

25

Messages Sent l S 9 8
B @ s S ~ n t 83918
WsMbtmon Time: 590 a ms

Figure 6. Key Distribution Statistics Dialog Box

S NeCWOLk m e
I 1 - S t a r , 2 - Waqon Wheel, 3 - Hubless Uagon Wheel

I Number of Nodes
15
I Tezzain M a p
I 0 - Plain, 2 - Forest, 3 - Houptaxns
0
I Key Exchange Algorithm
I 0 - XC Ri¶ndael 128, 1 - I C Rijndael 256, 2 - Alqorithm3

I D i s t L l b u ~ O n Technique
I o - unicasz, 1 - nuiticest, 2 - Broadcast
0
Node Data
Y X
00001.0
00002 .0
00003.0
00004.0
00005 .0
00006 .0
00007.0
00008.0
00009.0
00010.0
00011.0
00012.0
00013.0
00014.0
00015.0

P 2
00000 .0 00000.0
00000.0 00000.0
0 0 0 0 0 . 0 00000.0

VX
0 0 0 . 0
D O O . 0
000.0
000.0
000.0
000.0
000.0
000.0
000.0
000.0
0 0 0 . 0
0 0 0 . 0
000.0
000.0
0 0 0 . 0

VY
000.0

000.0

VZ
0 0 0 . 0
000.0
000.0
0 0 0 . 0
000.0
0 0 0 . 0
000.0
000.0
000.0
000.0
000.0
000.0
000.0
000.0
000.0

Uobi l i ty
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

c 0mmRanp-e
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
l000000
1000000
l000000
1000000
1000000
1000000
1000000

C o u F r c q
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0

Figure 7. Example Script File

CPU
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

effect when the “OK” button is pressed.

Once the network is set up, an estimate the work required by a network to dis-

26

tribute cryptographic keys to the nodes on the network is obtained by pressing the
“Distribute Keys” button on the main dialog box. This creates a dialog box with the
results of the calculation, using the HTS key management scheme to distribute keys.
An example of the “Key Distribution Statistics” dialog box is shown in Figure 6.

A second method for obtaining an estimate of the work required to distribute keys
across a network is to run a script file that contains all of the information about the
network. An example script file is shown in Figure 7. To run a script file, the user
presses the “Run Script” button in the lower right hand corner of the main dialog box.
This creates a dialog box that requests the name of the script file. The user enters
the name of the script file and presses the “OK” button. The “Key Distribution
Statistics” dialog box appears with the results of the calculation. Using script files
allows the user to create variations on a network and determine the impact of these
variations on key distribution.

4.2 HTS Implementat ion

The HTS key management approach can be implemented with a tree degree of 2 as
a balanced binary tree. The following characteristics of a balanced binary tree ease
the implementation:

0 All leaf nodes are at level h or h - 1.

0 All leaves at level h are justified left in the tree.

0 The tree node at index i has children at 22 and 2 i + 1 and its parent at i / 2 .

One valuable aspect of using a balanced binary tree is that the tree can be imple-
mented using a one-dimensional array, where the indexing is determined according to
the third bullet above.

One issue that arises in any tree-oriented data structure is balancing the tree
when leaves are removed during a leave operation. Initially, an approach was used of
“filling” the hole created in the tree by a member leaving the group. This was done
to maintain the same structure of the tree after a leave operation and was relatively
easy to implement. The hole was filled by the last leaf in the tree, the tree was
restructured, and keys were updated as needed. This technique works just fine if
used only once or in very limited ways. However, the potential exists for a node to
be moved around the tree during multiple leave operations such that if that member

27

ever leaves, it will be extremely difficult to determine which keys in the tree need
updating.

Subsequently, a new approach of keeping track of holes in the tree is currently
used in the implementation. During a join operation, holes are filled prior to adding
new nodes to the tree. The following functions of the HTS multicast key management
scheme are currently implemented with this approach:

0 Key Distribution - This operat'ion rekeys the entire group of members and
populates the KM tree using key-oriented rekeying.

0 Key Update - This operation rekeys a single group member, updating all the
necessary keys in the KM tree using key-oriented rekeying.

0 Leave (Remove) Operation - This operation removes a group member, up-
dates the necessary keys to preserve forward secrecy of the group, and keeps
track of the hole left by the leaving member.

0 Join (Add) Operation - This operation adds a member to the group and
updates the necessary keys to preserve past secrecy of group communications.

5 Implementation Performance

This section discusses three implementation issues. The first is the implementation of
a benchmark program to compare the relative performance of various cryptographic
algorit'hms, both encryption and authenticat'ion, on the same hardware platform. The
second is the implementation and performance of Mark Torgerson's enhanced expo-
nentiation algorithm (EEA) and how it compares with other enhancement techniques.
The third issue is the relative performance of the Java and C programming languages
on operations important to cryptography. All tests were performed on the following
hardware.

0 Dell Precision 340 Desktop computer

0 2.53 GHz Pentium IV Processor

0 512 KB Processor Cache

0 512MBRDRAM

0 133 MHz Bus Speed

28

5.1 Cryptographic Benchmark Tests

Software benchmarking allows comparative performance evaluations of cryptographic
algorithms. Performance of algorithms can be measured with respect to speed and
memory usage (both program memory and data memory). However, precise memory
usage figures can be difficult to acquire in an automated manner because the code
used to measure memory usage changes the measurement. In addition, the code
necessary to perform a particular operat,ion is often dispersed among many functions
in multiple files. Simply totaling the size of the object, code in an application does
not give an accurate memory usage figure because much of the code may not ever be
used by a certain operation being measured. In contrast, speed can be measured in
a non-invasive manner and test code can be easily wrapped around specific functions
of interest, even if lower-level calls are made to functions in different files.

Different compilers provide different optimizations. In particular, in-line assem-
bly instructions for rotating registers is available in the Microsoft' Visual C++ 6.0
compiler, but not in BorlandC++ 6.0. Without a rotate instruction, one must use
two shift instructions, one left and one right, and logically OR the result. Therefore,
at a minimum, the rotate operation can be executed three times faster with a rotate
instruction than without. The rotate operation is necessary in both the SHA-1 and
MD5 hash algorithms as well as in the Advanced Encryption Standard (AES) [12].

The benchmark program utilized the following software environment and was
executed on the previously mentioned hardware. All algorithms were tested with
10,000 byte messages.

Software specifics:

0 Microsoft Visual C++ 6.0 Service Pack 5 with Processor Pack

0 Crypto++ Library 5.1 [30]

0 32-bit in-line assembly rotate instructions

Table 5.1 presents speed measurements of selected encryption algorithms. The
algorithm expected to be the most secure is also the fastest. The TEA algorithm [31]
is known for its simplicity and, therefore, its small code size.

Table 5.1 presents speed measurements of selected hash algorithms and authen-
t'ication algorithms. The HMAC algorithm [17] uses a hash algorithm to provide
message authentication with minimal addition cost.

29

Table 5.1 presents speed measurements of selected algorithms for authenticated
encryption. MTC4, RMTC4, and GCSA are algorithms that use information from
the internal state of the cipher to provide the authentication [2]. The encryption has
properties similar to CBC mode, yet the encipherment and authentication mecha-
nisms can be parallelized and/or pipelined. The authentication overhead is minimal,
so the computational cost of the authenticated encryption is very nearly that of the
encryption process. Also, the authentication process remains resistant against some
IV reuse. OCB [26] is another parallelizable authenticated encryption algorithm that
operates faster than performing encryption followed by HMAC for authentication.

3-DES

Speed

13

Algorithm
MD5

Table 3. Results of benchmark tests on selected encryption
algorithms.

(Mbytes/sec)
20 1

Speed

SHA-1
HMAC-MD5

HMAC-SHA-1
I

TEA Auth I 21

Table 4. Results of benchmark tests on selected hash, au-
thentication, and digital signature algorithms.

5.2 Enhanced Exponentiation Algorithm

The enhanced exponentiation algorithm replaces the pseudo-random number genera-
tor (PRNG) and exponentiation functions required by DSA signature generation. It

30

e

Speed
Algorithm

OCB-AES- 128
MTC4-SHA- 1

(Mbytes/sec)
71
10

MTC4-MD5
RMTC4-SHA-1
RMTC4-MD5

GCSA-AES-128-AES
GCSA-AES-128-SHA- 1
GCSA-AES-128-MD5

AES- 128-CBC-HMAC-SHA- 1
AES-128-CBC-HMAC-MD5

Table 5. Results of benchmark tests on selected authenti-
cated encryption algorithms.

22
15
28
66
65
66
33
58

requires approximately 1 kilobyte of precomputed storage space, assuming a 1024-bit
base and modulus and a 160-bit exponent, and results in an PRNG/exponentiation
function that is approximately 9 times faster than using Montgomery exponentia-
tion [21] alone. The speed is comparable to the best fixed-base modular exponenti-
ation speed-up that we have implemented thus far, the BGMW algorithm [5], at a
fraction of the storage cost. Table 6 shows the performance of several enhancement
approaches to modular multiple-precision integer exponentiation implemented in C
and their impact on DSA signature generation.

The EEA and BGMW algorithms are both precomputation schemes, where powers
of the base are computed and stored for later use in exponentiations. This reduces the
number of multiplications necessary for exponentiations with random exponents. The
Montgomery algorithm can be used in both EEA and BGMW for the multiplications
that must be computed during an exponentiation. In Table 6, ”big mps” refers to
the size of multiple precision integers used for the base and modulus and ”small mps”
refers to the size of the exponents. The times in the table are based on computations
using a 1024-bit base and modulus and a 160-bit exponent.

31

Exponentiation Signature RNG + Exp
Algorithm Time (ms) Time (ms) Storage

I Montgomery I 41 I 40 I none I

EEA (m=5)
EEA (m=6)

BGMW
BGMW

Table 6. Performance of enhancement algorithms for mod-
ular multiple-precision integer exponentiation implemented
in C.

5.6 4.9 6 big mps + 6 small mps
5.2 4.4 7 big mps + 7 small mps
8.2 7.4 80 big mps
4.2 3.6 3400 big rnps

5.3 Performance Comparison of Java and C

The Java programming language has a reputation of performing considerably slower
than the C language. One reason is that it is not a compiled language, but runs
interpretively on a Java Virtual Machine (JVM), which is a software program im-
plemented for a particular microprocessor. Java is optimized at run-time, instead of
compile-time like C. Other reasons are that in Java, bounds-checking is performed
on all array accesses and dynamic memory allocation is handled through a general
garbage collector. However, bounds checking, garbage collection, and run-time opti-
mizations have advantages as well, not the least of which are in the area of security
(e.g. prevention of buffer overflows).

We conducted performance comparisons between Java and C on basic arithmetic
and cryptographic operations and found Java to be very competitive with C. Our
results are presented in Table 7. In some cases we did not have identical algorithms
implemented in each language, so we could not make a direct comparison. Never-
theless it is clear that well-written Java is fast enough to be a reasonable choice for
cryptographic operations. The following programs were compared.

1. Matrix multiplication - This test consisted of identical C and Java code for
matrix multiplication, which is similar to the kinds of integer operations often
used in multiple-precision integer arithmetic.

2. Modular exponentiation - This test consisted of a C and Java implementation of
modular multiple-precision exponentiation using a 1024-bit base and modulus
and a 160-bit exponent. The C implementation used a Montgomery enhance-

32

ment [21] and the Java implementation used a sliding window of size 3 as an
exponentiation enhancement (Algorithm 14.85 in [20]).

F’unct ion c (ms)
Matrix Multiply - Identical Code 28

Modular Exponentiation 40
(Montgomery)

DSA Signature Generation 5
P E A)

DSA Signature Verification 9
(BGMW)

3. DSA signature generation - This test consisted of a C implementation of DSA
signature generation using EEA for modular exponentiation and a Java imple-
mentation using a sliding window of size 3 for exponentiation.

Java (ms)
40
24

(Sliding Window)
25

(Sliding Window)
48

(Sliding Window)

4. DSA signature verification - This test consisted of a C implementation of DSA
signature verification using the BGMW algorithm [5] for modular exponentia-
tion and a Java implementation using a sliding window of size 3 for exponentia-
tion. EEA could not be used to speed up the exponentiation because it requires
a random number generation aspect, which is needed in signature generation,
but not signature verification.

Table 7. Running times of Java and C on cryptographic
operat ions.

References

[11 A. Ballardie, “Scalable Multicast Key Distribution”, Network Working Group
(IETF), RFC 1949, 1996.

[a] C. Beaver, T. Draelos, R. Schroeppel, and M. Torgerson, “ManTiCore: Encryp-
tion with Joint Cipher-State Authentication”, SAND Report 2003-1488C.

[3] A. Biryukov and D. Wagner, “Advanced Slide Attacks”, in proceedings of Euro-
crypt 2000.

33

[4] D. Boneh and M. Franklin, “Identity Based Encryption from the Weil Pairing”,
in Proceedings of Crypto 2001, LNCS 2139, pp. 213-299, 2001.

[5] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentia-
tion with precomputation, in Advances in Cryptology-Proceedings of Eurocrypt
’92, Vol. 658, pp. 200-207, Springer-Verlag, Berlin/New York, 1992.

[6] J. Cha and J. Cheon, “An Identity Based Signature from Gap Diffie-Hellman
Groups”, cryptology e-print archive (eprint.iacr.org), 2002/18.

[7] M. Collins, “Cryptanalysis of the F X Construction”, SAND report 2003-xxxx.

[SI S. Dahlman, “Key Management Schemes in Multicast Environments”, Master’s
Thesis, University of Tampere, November, 2001.

[9] L. R. Doneti, S. Mukherjee, and A. Samal, DISEC: Distributed Framework for
Scalable Secure Many-to-many Communication, in Proceedings of the Fifth IEEE
Symposium on Computers and Communications, 2000.

[lo] S. Even and Y. Mansour, “A Construction of a Cipher from a Single Pseudoran-
dom Permutation”, in J. Cryptology, v. 10 no. 3 (Summer 1997), pp. 151-162
(earlier version in Asiacrypt ’91).

[ll] S. Even, 0. Goldreich, and S. Micali, “On-Line/Off-Line Digital Signatures”, in
Proceedings of Crypto ’89, LNCS 0435, 263-275, 1990.

[la] Department of Commerce/NIST, “Advanced Encryption Standard, “ FIPSPUB
197, November 26, 2001.

[13] C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryptography”, in Pro-
ceedings of ASIACRYPT 2002, LNCS 2501, pp. 548-566, 2002.

[14] F. Hess, “Exponent Group Signature Schemes and Efficient Identity Based Sig-
nature Schemes based on Pairings”, cryptology e-print archive (eprint .iacr.org),
2002/12.

[15] J. Kilian and P. Rogaway, “How to Protect DES Against Exhaustive Key Search
(an Analysis of DESX)”, in J. Cryptology v. 14 No. 1 (Winter 2001) pp. 17-35.

[16] L. Knudsen, “The Security of Feistel Ciphers with Six Rounds or Less”, in Jour-
nal of Cryptology, vol. 15 no. 3 (Summer 2002), pp. 207 - 222.

[17] H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed hashing for message au-
thentication, “ Internet RFC 2104, February 1997.

34

[18] H. Krawczyk and T. Rabin, “Chameleon Hashing and Signatures”, in Proceed-
ings of Network and Distributed System Security Symposium, NDSS 2000, pp.
143-154, 2000.

[19] A. McGrew, A. T. Sherman, ‘Key Establishment in Large Dynamic Groups Using
One-way Function Trees”, IEEE Transactions on software engineering, 1998.

[20] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptogra-
phy , CRC Press, Boca Raton, 1997.

[21] P. L. Montgomery, “Modular Multiplication Without Trial Division” , Mathe-
matics of Computation, Vol. 44, No. 170, April 1995, pp 519-521.

[22] W. Neumann, “HORSE” , SAND report 2003-xxxx.

[23] W. Neumann, “EKE”, SAND report 2003-xxxx.

[24] A. Perrig, “The BiBa one-time signature and broadcast authentication protocol” ,
in Eighth ACM Conference on Computer and Communication Security”, pp. 28-
37, November, 2001.

[25] L. Reyzin and N. Reyzin, “Better than BiBa: Short One-time Signatures
with Fast Signing and Verifying” , Cryptology ePrint Archive, Report 2002/014,
htt p: //eprint .iacr.org/.

[26] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A Block-Cipher Mode
of Operation for Efficient Authenticated Encryption”, In Proc. 8th CCS, pp.
196-205, ACM, 2001.

[27] B. Schneier, “Description of a New Variable-Length Key, 64-bit Block Cipher
(Blowfish)” , R. Anderson, ed. , Fast Software Encryption, Cambridge Security
Workshop (LNCS 809) , pp. 191-204, Springer-Verlag, 1994.

[28] ”A Low Power Design for a Digital Signature Chip” by R. Schroeppel, C. Beaver,
T. Draelos, R. Gonzales, R. Miller in proceedings of Cryptographic Hardware and
Embedded Systems (CHES) 2002.

[29] A. Shamir and Y. Tauman, “Improved Online/Offline Signature Schemes” , in
Proceedings of Crypto 2001, J. Kilian (Ed.), LNCS 2139, pp. 355-367, 2001.

[30] W. Dai, “Crypto++ Library”, http://www.eskimo.com/weidai/cryptlib.html.

[31] D. J. Wheeler and R. M. Needham, “TEA, a Tiny Encryption Algorithm”, B.
Preneel, ed., Fast Software Encryption (FSE) , Second Annual Workshop (LNCS
lOOS), pp. 363-366, 1995

35

http://iacr.org
http://www.eskimo.com/weidai/cryptlib.html

[32] D. Wong and A. Chan, “Efficient and Mutually Authenticated Key Exchange for
Low Power Computing Devices”, in Proceedings of ASIACRYPT 2001, LNCS
2248, pp. 272-289, 2001.

[33] C. Wong, M. Gouda, and S. Lam, “Secure Group Communications Using Key
Graphs”, IEEE/ACM Transactions on Networking, vol. 8, no. 1, Febrary 2000.

36

DISTRIBTUTION:
1 MS 0785
1 0785
1 0785
1 0785
1 0785
1 0785
1 0785
5 0785
2 0899
1 9018
1 0323

W. E. Anderson, 6514
C. L. Beaver, 6514
M. J. Collins, 6514
D. R. Gallup, 6514
A. J. Lanzone, 6514
T. S. McDonald, 6514
W. D. Neumann, 6514
M. D. Torgerson, 6514
Technical Library, 9616
Central Technical Files, 8945-1
D. Chavez, LDRD Office, 1011

37

	1 Introduction
	1.1 Network Models

	2 Key Management Schemes
	2.1 Group Key Management Protocol (GKMP)
	2.2 Scalable Multicast Key Distribution (SMKD)
	2.3 Complementary Key Scheme (CKS)
	2.4 DISEC
	2.5 Hierarchical Tree Structure (HTS)

	3 Special Solutions
	3.1 On-line/Off-line signatures
	3.2 Public/Symmetric Hybrid Key Distribution Scheme
	3.3 Identity-based schemes
	3.4 Joint Authentication and Encryption
	3.5 Password-Based Systems
	3.6 HORSE
	3.7 The FX Construction

	4 Experimental Testbed
	4.1 Key Distribution Simulator
	4.2 HTS Implementation

	5 Implementation Performance
	5.1 Cryptographic Benchmark Tests
	5.2 Enhanced Exponentiation Algorithm
	5.3 Performance Comparison of Java and C

	1 Star Network
	2 Hierarchical Network
	4 The Main Dialog Box
	5 Edit Node Dialog Box
	6 Key Distribution Statistics Dialog Box
	7 Example Script File
	oriented rekeying where n = ZogdN and IC = key size
	h=log,N+l

	Results of benchmark tests on selected encryption algorithms
	tal signature algorithms :
	rithms

	integer exponentiation implemented in C
	Running times of Java and C on cryptographic operations

