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Abstract

A new chemically-oriented mathematical model for the development step of the LIGA process is
presented. The key assumption is that the developer can react with the polymeric resist material
in order to increase the solubility of the latter, thereby partially overcoming the need to reduce
the polymer size. The ease with which this reaction takes place is assumed to be determined
by the number of side chain scissions that occur during the x-ray exposure phase of the process.
The dynamics of the dissolution process are simulated by solving the reaction-diffusion equations
for this three-component, two-phase system, the three species being the unreacted and reacted
polymers and the solvent. The mass fluxes are described by the multicomponent diffusion (Stefan-
Maxwell) equations, and the chemical potentials are assumed to be given by the Flory-Huggins
theory. Sample calculations are used to determine the dependence of the dissolution rate on key
system parameters such as the reaction rate constant, polymer size, solid-phase diffusivity, and
Flory-Huggins interaction parameters. A simple photochemistry model is used to relate the reaction
rate constant and the polymer size to the absorbed x-ray dose. The resulting formula for the
dissolution rate as a function of dose and temperature is fit to an extensive experimental data base
in order to evaluate a set of unknown global parameters. The results suggest that reaction-assisted
dissolution is very important at low doses and low temperatures, the solubility of the unreacted
polymer being too small for it to be dissolved at an appreciable rate. However, at high doses or
at higher temperatures, the solubility is such that the reaction is no longer needed, and dissolution
can take place via the conventional route. These results provide an explanation for the observed
dependences of both the dissolution rate and its activation energy on the absorbed dose.
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Introduction

LIGA (an acronym for the German words Lithographie, Galvanoformung, and Abformung)
is an emerging process for the fabrication of high aspect ratio microstructures. The lithography
step actually involves two separate tasks: A thick film of poly(methyl methacrylate) (PMMA)
resist material is first exposed to synchrotron x-rays through a patterned absorber mask, and the
exposed areas are then developed (dissolved) by immersion in the so-called GG developer, which
is a complex mixture of four liquid chemicals. The resulting trenches are then filled with a suitable
metal or alloy by electrodeposition, the remaining PMMA is dissolved away in a strong solvent,
and the finished metal part is used as a template for mass production. LIGA has great promise for
the efficient fabrication of microparts, but a good deal remains to be done in the areas of process
improvement and optimization. Much of the progress to this point has been achieved through
experimentation and empiricism, and it would clearly be desirable to have a more fundamental
understanding of the physics and chemistry involved. This applies particularly to the polymer
dissolution step, which is the primary focus of this paper.

It has long been known that the process of polymer dissolution involves more than simple mass
transfer at the solid-liquid interface. The complication arises from the fact that a polymer molecule
cannot be released from the solid phase until its entanglements with other molecules have been
relaxed or broken. Furthermore, the polymer generally has a finite capacity to imbibe solvent.
Therefore, the first step in the dissolution process is the penetration of solvent molecules into the
polymer matrix, giving rise to a swollen gel layer in which the polymer fragments are more mobile.
These fragments can then diffuse to the interface and pass into the liquid phase. There may or
may not be a sharp demarcation between the gel and dry polymer (glass) layers; if there is, then of
course one must deal with the existence of three separate phases.

While this qualitative picture of polymer dissolution is generally accepted, attempts to model
the process in any detail have been quite scarce, especially in the context of LIGA. The most
comprehensive model proposed thus far is probably that of Papanu et al.1,2 In their approach,
transport in the gel layer is modeled as simple Fickian diffusion. An effective surface concentration
at the gel-solvent interface is computed by adding an elastic term to the standard Flory-Huggins
expression for the chemical potential, and the movement of this interface is governed by an equation
involving the polymer disentanglement rate as estimated from reptation theory. For so-called Case
II penetration, in which there is a well-defined glass layer, the movement of the gel-glass interface
is assumed to be related to the stress level in the polymer. A somewhat similar model has been
presented by Herman and Edwards,3 who used the reptation model to estimate the stresses brought
about by solvent penetration into the polymer and then argued that the dissolution rate should be
limited by stress relaxation. More recently, Hasko et al.4 formulated a streamlined version of the
Papanu model and used it with some success to describe the dissolution of PMMA in mixtures of
methyl isobutyl ketone and isopropyl alcohol.

The foregoing models treat polymer dissolution as essentially a physical (rather than chemical)
process, and they were not developed with LIGA in mind. Thus, they imply that a polymer will
dissolve more quickly after irradiation simply because its molecular weight has been reduced.
However, Schmalz et al.5 have presented strong evidence that the development step of LIGA is
more complicated than this. First, they noted that an irradiated sample of PMMA will dissolve
more quickly in the GG developer than a non-irradiated sample of the same molecular weight.
They also noted that the dissolution rate is affected by the tacticity of the polymer, everything else
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being equal. In their view, the developer acts as more than just a solvent; it also initiates a chemical
reaction with the polymer that converts the latter to a more soluble form. This reaction is thought to
occur preferentially in irradiated parts of the polymer molecule, where the nucleophilic developer
has easier access due to scission of, or damage to, the ester side chains. If this scenario is correct,
then a purely physical description of the dissolution process will not be adequate.

The purpose of the present work is to formulate and solve a chemically-oriented model for
polymer dissolution that incorporates the ideas just described. First, a thermodynamically consistent
set of governing equations for the multicomponent, multiphase dissolution process is derived. The
equations are then solved numerically for a number of sample cases in order to determine the
dependence of the dissolution rate on the key physical parameters. A simple photochemistry model
is also proposed in order to relate the post-exposure polymer properties to the absorbed radiation
dose. This yields a rather complex expression for the dissolution rate as a function of the dose
and the temperature, and the constants in this formula are evaluated by fitting it to an extensive
experimental data base. The results are analyzed in order to determine the relative importance of
reaction-assisted dissolution under different exposure and development conditions.

Model Formulation

The model of reaction-assisted polymer dissolution to be presented here is based upon two
principal assumptions: (1) The removal or alteration of polymer side chains by x-ray irradiation
during the exposure step leaves the polymer molecule susceptible to chemical attack by the developer
solution; and (2) This chemical reaction serves to convert the polymer to a new form that has greater
solubility. Of course, another effect of the x-rays is to reduce the average molecular weight of the
polymer via main chain scissions, and this in itself can enhance the solubility; however, as has
already been noted, there is compelling evidence that specific chemical effects are also involved.
In any case, the present model will reduce to one of purely physical dissolution if the rate constant
for the chemical reaction is set to zero.

With these assumptions in mind, one can surmise that the first step in the dissolution process
is, as usual, the diffusion or permeation of solvent molecules into the polymer matrix, giving rise
to the gel layer that is a familiar feature in such systems. The volumetric (as opposed to interfacial)
contact between the polymer and the developer then allows the above-mentioned chemical reaction
to take place, at a rate that is determined by the local concentrations of both species. Both the
original and converted forms of the polymer can diffuse across the gel layer and pass into the liquid
phase, although the latter is favored due to its enhanced solubility. Finally, the dissolved polymer of
either type diffuses across the liquid-phase boundary layer and is swept away into the bulk solvent.
The loss of polymer molecules from the solid phase causes the solid (gel)-liquid interface to recede,
and the speed with which it does so is defined to be the development rate.

Although the GG developer that is normally used in LIGA is a mixture of four distinct chemicals,
it will be treated as a single species with suitable average properties in the present model. On the
other hand, the original and converted forms of the polymer will be treated as distinct, since the
differences in their behavior are a crucial feature of the model. Thus, the analysis must describe
multicomponent diffusion with a simultaneous chemical reaction in a three-component, two-phase
system. (There is assumed to be no sharp demarcation between the gel layer and the dry, unreacted
polymer, so they are treated as parts of the same solid phase.) Furthermore, the equations must
account for the highly nonideal nature of polymer-solvent mixtures, and the descriptions of diffusion
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and interfacial equilibrium must be thermodynamically consistent.

The basic governing equations for this system are the transient material balances for the three
species present. As is customary in problems involving polymers, the model will be formulated in
terms of volumetric variables, under the assumption that all processes are volume-conserving. In
one dimension, the mass balances have the form

∂φi

∂t
+

∂Ni

∂z
= V̇i (1)

whereφi is the volume fraction of speciesi, Ni is its volume flux relative to fixed coordinates,V̇i is
its volumetric production rate, andz is the spatial coordinate normal to the interface. The absence
of a convective term is due to the overall continuity equation and the fact that the dry polymer is
assumed to be attached to a stationary substrate. Since the equations for the three species are not
all independent, only two of them need be solved. Letting subscripts 1, 2, and 3 denote the solvent,
unconverted polymer, and converted polymer, respectively, we arbitrarily choose to solve Eq. (1)
for i = 1 andi = 2.

Next it is necessary to relate the fluxesNi to the composition gradients within the system.
Since there are three components and since the mixture is expected to be highly nonideal, Fick’s
law is wholly inadequate; in its place, we use the volumetric version of the general multicomponent
diffusion equation,6 which is the analog of the Stefan-Maxwell equation for gases:

φi
∂µi

∂z
=

RT

c

∑
j

1
VjDij

(
φiNj − φjNi

)
(2)

Hereµi andVi are the chemical potential and molar volume, respectively, of speciesi, Dij is the
true binary diffusion coefficient for speciesi andj, R is the universal gas constant,T is the absolute
temperature, andc is the overall molar concentration of the mixture:

c =
∑

j

φj

Vj
(3)

Equations (2) can be inverted to give explicit expressions for the fluxes; for example,

N1 =
1

RT

(
D12

∂µ2

∂z
+ D13

∂µ3

∂z

)
(4)

where

D12 =
cV1

D
D12φ2

(
1− φ1

V2
D13 +

φ1

V1
D23

)
(5)

D13 =
cV1

D
D13φ3

(
1− φ1

V3
D12 +

φ1

V1
D23

)
(6)

and

D =
φ1

V1
D23 +

φ2

V2
D13 +

φ3

V3
D12 (7)

It should be emphasized that the coefficientsDij , unlike theDij , are not symmetric ini andj.
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In order to complete the formulation, the chemical potentials must now be expressed in terms of
the volume fractions. This can be done by means of the multicomponent Flory-Huggins equations,7

which involve as physical parameters the molar volume ratiosmij ≡ Vi/Vj and a set of interaction
parametersχij . Thus, for example,

µ1 = µ0
1(T ) + RT [ln φ1 + (1− φ1)(1 +χ12φ2 + χ13φ3) − m12φ2 − m13φ3 − m12χ23φ2φ3] (8)

whereµ0
1(T ) is the chemical potential in the pure state. The expressions forµ2 andµ3 can be obtained

simply by permuting the indices. Clearly, sincemji = 1/mij andmjk = mjimik, there are only
two independent values ofm. In addition, the Flory-Huggins theory shows thatχji = mjiχij , so
the number of independentχ values is three. Furthermore, if these binary interaction parameters
can be expressed in terms of individual solubility parameters in the manner indicated by Prausnitz,8

then it is readily shown that

χ23 = m21

(
χ

1/2
12 − χ

1/2
13

)2
(9)

Thus, onlyχ12 andχ13 need be specified.

Substitution of the Flory-Huggins chemical potentials into Eq. (4) for an isothermal system
gives

N1 = K11
∂φ1

∂z
+ K12

∂φ2

∂z
(10)

where

K11 = D13

[
− 1

φ3
+ 1 + (1− φ3 + φ1)χ31 − m31 + χ32φ2 − m32χ21φ2

]
+

D12

[
(1− φ2)(χ21 − χ23) + m23χ31(φ1 − φ3) + m23 − m21

]
(11)

and

K12 = D13

[
− 1

φ3
+ 1 + (1− φ3 + φ2)χ32 − m32 + χ31φ1 − m32χ21φ1

]
+

D12

[
1
φ2

− 1− (1 +φ3 − φ2)χ23 + m23 − χ21φ1 + m23χ31φ1

]
(12)

The corresponding expression forN2 can be obtained by interchanging the indices 1 and 2 in
Eqs. (10), (11), (12), (5), and (6).N1 andN2 are then given in terms of gradients ofφ1 andφ2
alone, as required. Obviously, the flux equations are far more complicated than those that would
have been obtained by simply applying Fick’s law.

In order to complete the system of governing equations, an expression for the homogeneous
reaction ratėVi in Eq. (1) is needed. While the precise nature of the reaction is not known, the rate
of any attack of the solvent on the exposed polymer should depend upon the local concentrations
of both species. In the absence of any information to the contrary, it is simplest to assume that each
dependence is first-order, so that

V̇1 = −kφ1φ2 (13)
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Herek is a rate constant that will presumably depend on both the temperature and the extent of
damage done to the polymer by the x-ray irradiation. SinceV̇1 is a volumetric reaction rate, the
corresponding expression forV̇2 is

V̇2 = −m21kφ1φ2 (14)

The system consisting of Eqs. (1) and (10), written for both species 1 and species 2, can now in
principle be solved. The progressive dissolution of the polymer layer is of course a time-dependent
process; however, we are interested primarily in the situation in which the solid-liquid interface
recedes at a steady rate. In such a case, the governing equations should be time-independent when
written in a coordinate system attached to the interface, as long as there is a significant expanse of
dry polymer between the gel layer and the substrate. This suggests that we introduce a similarity
variableη = z−ut that measures distance from the interface, the assumption being that the volume
fractions and fluxes will depend onη alone and not onz andt individually. The (constant) interfacial
velocityu is not knowna priori and must be determined as part of the solution to the problem. (Of
course, since the interface moves to the left as the polymer dissolves, the computed value ofu will
be negative, so the dissolution rate isv = −u.) It is also useful to introduce fluxesJi = Ni − uφi

relative to the moving interface. In terms of the new variables, the equations to be solved become

dJ1

dη
= −kφ1φ2 (15)

dJ2

dη
= −m21kφ1φ2 (16)

J1 = K11
dφ1

dη
+ K12

dφ2

dη
− uφ1 (17)

and

J2 = K21
dφ1

dη
+ K22

dφ2

dη
− uφ2 (18)

It remains to specify the boundary conditions for the problem. Since there are four first-order
differential equations in each of two phases, it might appear that eight such conditions are required.
However, since the interfacial velocityu is not known, one additional boundary condition is needed
in order to fix its value, andu can be termed an eigenvalue of the problem. Four of the necessary
boundary conditions are obtained by specifying the mixture compositions at the outer edges of the
problem domain. Referring to Figure 1, we must have pure solvent at the right-hand edge of the
liquid-phase boundary layer, so

φ1(δ+) = 1 (19)

and
φ2(δ+) = 0 (20)

Likewise, since there is dry, unconverted polymer in the region to the left of the gel layer, we have

φ1(−δ−) = 0 (21)

and
φ2(−δ−) = 1 (22)
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Figure 1. Geometrical configuration used in analysis of polymer dissolution.

An important distinction between the layer thicknessesδ+ andδ− should be noted. Whereas the
former is regarded as a real physical quantity whose value is determined by the hydrodynamics (e.g.,
stirring) in the bulk liquid, the latter is an artificial quantity that is introduced for computational
convenience. In principle the boundary conditions (21) and (22) should be applied atη = −∞, and
in practiceδ− must be so large that any further increase in its value causes no change in the solution.
This approach ensures that all fluxes relative to fixed coordinates are zero in the dry polymer layer,
as they must be.

The remaining five boundary conditions are imposed at the solid-liquid interface. The fluxes
relative to this interface must be continuous, so

J1(0−) = J1(0+) (23)

and
J2(0−) = J2(0+) (24)

On the other hand, the volume fractions will not be continuous atη = 0. As is customary, we
assume that the two phases are in thermodynamic equilibrium at this point, so that the chemical
potential of each speciesis continuous:

µ1(0−) = µ1(0+) (25)

µ2(0−) = µ2(0+) (26)

µ3(0−) = µ3(0+) (27)

The chemical potentials are evaluated from Eq. (8) and its analogs, withφ3 everywhere replaced
by 1− φ1 − φ2. It should be emphasized that Eqs. (25)–(27) are all independent, so each of them
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must be imposed in order to satisfy the condition of equilibrium. On the other hand, the analog of
Eqs. (23) and (24) for species 3 would be redundant, because the fluxesJi always sum to a constant,
namely−u.

Solution Method

The nonlinear boundary value problem consisting of Eqs. (15)–(27) presents a significant
computational challenge. The most straightforward approach is to write the differential equations
in finite-difference form and to use a packaged routine to solve the resulting large system of algebraic
equations. Unfortunately, this method seems to be incapable of resolving (with a reasonable number
of grid points) the extremely sharp concentration gradients that are typically observed, even when
adaptive meshing is employed. The alternative is to use a shooting method, in which the differential
equations for each phase are integrated numerically from one side to the other, and any unknown
initial values or parameters that are needed for the integrations are guessed and then adjusted to
satisfy the boundary conditions at the endpoints. This method also involves several difficulties,
however. First, the numerical integrations tend to be unstable, in the sense that modest errors in
the guessed quantities can cause a computed solution to blow up before the endpoint is reached.
Obviously, this can require the initial guesses to be quite accurate, so the iteration process is not as
robust as one would like. Secondly, if the iteration is fully automated via a nonlinear system solver,
then one or more of the unknown interfacial volume fractions can become negative, and this will
also cause the computation to fail; cf. Eq. (8). This has led to the adoption of a two-tiered shooting
method, which will now be described.

For specified values of the physical parameters for the problem (in particular, the Stefan-
Maxwell diffusivities, the reaction rate constant, and the Flory-Huggins parameters), the first step
in the computation is to guess a value forφ2(0+). This is the quantity that is to be adjusted in the
outer loop of the shooting method. For the chosen value, the equilibrium relations (25)–(27) are
then solved via the SLATEC routine DNSQE to findφ2(0−), φ1(0+), andφ1(0−), so that all of the
interfacial volume fractions are known (tentatively). The remaining three quantities that are needed
in order to carry out the numerical integrations, namelyJ1(0), J2(0), andu, are then estimated;
these are the adjustable parameters in the inner loop of the shooting method. The stiff equation
solver DASSL9 is used to integrate Eqs. (15)–(18) outward fromη = 0+ to η = δ+ and also from
η = 0− to η = −δ−. The SLATEC routine DNSQ is then used to adjustJ1(0), J2(0), andu so as
to satisfy the exterior boundary conditions (19)–(21). The remaining condition (22) is satisfied in
the outer loop by iterating onφ2(0+). This is accomplished via the SLATEC root-finder DFZERO,
which allows the user to place bounds on the solution; this eliminates the danger of taking the
logarithm of a negative argument in the equilibrium relations. Finally, the entire process is repeated
for progressively larger values ofδ− until the solution (in particular, the value ofu) shows no further
change.

Sample Results

The procedure just described allows one to compute the dissolution ratev = −u for any set
of values of the physical parameters characterizing the system. Of course, most (if not all) of
these parameters will not be knowna priori, so it will be necessary at some point to fit the model
predictions to experimental data. Since the dissolution rate is generally reported as a function of the
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development temperature and the absorbed x-ray dose, two steps must be taken before the fitting
procedure can be carried out. First, model results must be computed for a number of test cases
in order to infer the quantitative relationship between the dissolution rate and the key physical
parameters. Next, separate submodels must be used to relate these parameters to the temperature
and the dose. The first of these tasks will now be discussed.

It follows from the model formulation that the dissolution ratev will depend on the following
parameters:m21, m31, D12, D13, D23, χ12, χ13, k, andδ+. A few simple approximations can be
made in order to reduce the size of this list. First, since the postulated chemical reaction does not
alter the length of the polymer chain, it is reasonable to takem21 = m31 ≡ m andD12 = D13 ≡ D.
Actually, D can in general be a function of the mixture composition, and one would certainly
expect to observe different values in the gel and liquid layers. Therefore, we takeD to be piecewise
constant, with valuesD+ and D− for η > 0 andη < 0, respectively. The polymer-polymer
diffusivity D23 should be unimportant by comparison; in the absence of further information, we
takeD23 = D/m1/2 in each phase. Finally, for purposes of the sample calculations,δ+ andD+ can
be set equal to unity with no loss of generality, as this merely serves to set the length and time scales
for the problem. In other words, each of the remaining parameters becomes a dimensionless quantity
(if it is not already) that has been scaled by the characteristic lengthδ+ and/or the characteristic
time δ+2/D+. In this way the list of parameters to be investigated is reduced tom, D−, χ12, χ13,
andk.

Before showing the results of the dissolution simulations, it is necessary to digress for a dis-
cussion of polymer solubility, as this is one of the crucial features of the model. Within the context
of the Flory-Huggins theory, the solubility of a single polymer in a given solvent depends entirely
on the values ofm21 ≡ m andχ12 ≡ χ, as determined by the solution to Eqs. (25) and (26). The
form of this dependence is shown in Figure 2, which is a more detailed version of Figure XX-13 in
Hildebrand and Scott.10 Each curve gives the values (if any) ofφ2 in equilibrated liquid and solid
phases as functions ofχ for a fixed value ofm. Sincem is a rough measure of the polymer chain
length, the plot shows that the polymer solubility increases very rapidly as the molecular weight
decreases, while the nominally solid phase contains a significant amount of solvent. However, the
solubility also increases very rapidly asχ decreases and the two chemical species become more
compatible. In fact, ifχ is sufficiently small, then the polymer and the solvent are miscible in all
proportions, and forχ < 0.5 this is true regardless of the polymer molecular weight. The present
model assumes that both of these avenues for improving solubility are operative in LIGA: Chain
scissions brought about by the x-rays obviously decrease the molecular weight, while the chemical
reaction between the polymer and the developer serves to lower the value ofχ.

Actually, since both the unconverted and converted forms of the polymer are present simultane-
ously during the development process, the equilibrium plot in Figure 2 is not sufficient to represent
the situation; instead, a standard ternary phase diagram is needed. A typical example, as computed
from Eqs. (25)–(27), is shown in Figure 3. Here the Flory-Huggins parameters are fixed, and the
diagram gives, for any overall mixture composition, the number of phases present at equilibrium as
well as their individual compositions. For any point outside the dome-shaped region, there is only
one phase and thus complete miscibility of the three components. Within the dome, the system
splits into two phases whose compositions are given by the ends of a tie line passing through the
original point; the set of tie lines can be constructed from the conjugate line, as indicated. It can
be seen that polymer #3 by itself is miscible in all proportions with the solvent while polymer #2
is not, in agreement with Figure 2. The fact that even small amounts of polymer #2 tend to give
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15



rise to incomplete miscibility suggests that a dissolution process involving these species will show
a well-defined solid-liquid interface, which is an assumed feature of the model.

Returning now to the dynamics of dissolution, Figure 4 shows computed concentration profiles
for a representative case. The Flory-Huggins parameters are the same as in Figure 3; the solid-phase
diffusivity is four orders of magnitude smaller than that in the liquid, and the reaction rate constant
has a modest but surprisingly influential value. Obviously, both forms of the polymer have very
low concentrations in the liquid phase, so the tie line representing the interfacial compositions is
very close to the horizontal axis in Figure 3. Instead of rising smoothly from its equilibrium value
atη = 0− to unity atη = −∞, the volume fraction of unconverted polymer is severely depleted just
to the left of the interface as a result of the chemical reaction. The steep gradients that are produced
by even this modest value ofk are a good indication of the difficulty of the computational problem.

Of course, the primary item of practical interest is not the form of the concentration profiles, but
rather the value of the interfacial velocityu, which is obtained as part of the solution. Figure 5 shows
the computed variation inv = −u with the rate constantk for fixed values ofm andD− (the same
as in Figure 4) and three sets of values ofχ12 andχ13. In each case the twoχ values correspond
to limited and complete solubility, respectively. Clearly, there are two distinct regimes with regard
to the dependence ofv onk. When the latter is large, the dissolution rate varies roughly ask0.5 but
is nearly independent of the interaction parameters, which is intuitively reasonable: If the reaction
does indeed cause a conversion from low to complete solubility, then the dissolution rate should
be determined largely by the rate of this conversion, and the precise values of the thermodynamic
parameters should be irrelevant. On the other hand, ifk is sufficiently small, thenv is essentially
independent ofk but strongly dependent onχ12; there can be no dependence onχ13, because the
reaction to produce species 3 does not occur. In this regime, it is clear that the dissolution rate is
determined largely by the solubility of the unconverted polymer, as this provides the driving force
for transport through the liquid layer.

In order to complete the analysis, it is necessary to know howv varies withm andD− in the
large-k regime and withχ12, m, andD− in the small-k regime. From the arguments presented
above, we would expect the value ofm to be irrelevant whenk is large,provided that the diffusivities
are held constant. Figure 6 provides some evidence that this is true. On the other hand, sinceD−

governs the rate at which the converted polymer can diffuse to the interface, its value should be
important. Figure 7 shows thatv varies roughly as (D−)0.5 over a range of conditions; the exponent
is actually somewhat smaller than this, but a value of 0.5 might be expected theoretically and will
be used for simplicity. Turning to the small-k regime, it should first be noted thatv is rigorously
independent ofD− for k = 0. This is not obvious but will be proven in the discussion below. Here
it suffices to say that the dissolution problem is much simpler when the chemical reaction is absent,
and it can be solved forv without specifying a value forD−. Of course,v does still depend on
m andχ12 ≡ χ; in fact, it varies roughly exponentially with each, as shown in Figures 8 and 9.
More precisely, lnv is roughly linear in the quantitym(α − βχ), whereα andβ are constants.
This is presumably the way in which the polymer solubility varies withm andχ according to the
Flory-Huggins theory.

An overall expression for the dissolution rate as a function of the system parameters can now
be formulated. We first revert to dimensional quantities by replacingv, k, andD− with vδ+/D+,
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Figure 4. Steady state concentration profiles for reaction-assisted dissolution
(m = 20, χ12 = 1.1, χ13 = 0.7, D− = 10−4, k = 0.01).

Figure 5. Computed dissolution rate as a function of reaction rate constant
for m = 20, D− = 10−4, and three sets of interaction parameters.
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Figure 7. Computed dissolution rate as a function of solid-phase diffusivity
for k = 0.1 and four sets of Flory-Huggins parameters.
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kδ+2/D+, andD−/D+, respectively. The desired expression must then have the form

vδ+

D+ = F

(
kδ+2

D+ ,
D−

D+ , m , χ

)
(28)

whereχ again refers toχ12; recall thatχ13 has been shown to be irrelevant. Equation (28) is
basically a statement of the Buckingham pi theorem for this problem. Now, since the expression
for v that describes the large-k regime will be negligible for smallk, and vice versa, one can simply
add the two formulas to obtain a result that is valid for allk. According to the discussion above,
this should have the form

vδ+

D+ = A(k)

(
kδ+2

D+

)0.5 (
D−

D+

)0.5

+ A(0) exp[m(α − βχ)] (29)

or, simplifying,

v = A(k)
(
kD−)0.5

+ A(0)
D+

δ+ exp[m(α − βχ)] (30)

whereA(k) andA(0) are constants yet to be determined. Interestingly, the first term in Eq. (30)
resembles the familiar flame speed formula from combustion theory, while the second term describes
simple diffusion through a stagnant liquid film. It is rather remarkable that each term involves only
one of the two diffusivities.

According to the reptation theory described by de Gennes,11,12 the diffusivity in a solid polymer
network should vary roughly as the inverse square of the chain length, so we takeD− ∼ m−2.
The situation with regard to the liquid phase is not so simple. According to Flory,13 the diffusivity
in a polymer solution at infinite dilution should vary roughly asm−0.5, but it is not clear that this
limiting law will apply under realistic conditions. Furthermore, the film thicknessδ+ in Eq. (30)
will itself depend uponD+, and hencem, in an unknown manner. Therefore, it will be assumed
here that the ratioD+/δ+ varies asm−λ, where the exponentλ is a constant to be determined. With
these stipulations, Eq. (30) becomes

v = B(k)k
0.5m−1 + B(0)m

−λ exp[m(α − βχ)] (31)

whereB(k) andB(0) are new constants.

The origins of the temperature dependence of the dissolution rate can be identified from Eq. (31).
First, the rate constantk is expected to involve an ordinary Arrhenius factor, i.e.,

k = k0 exp

(
−E(k)

RT

)
(32)

It is probable that the reptation-based diffusivityD− also has an activation energy. This may or may
not be significant relative to the chemically-basedE(k), but in any case the two activation energies
can simply be combined, according to Eq. (30). The remaining temperature dependence inv arises
from the fact that the interaction parameterχ is related to the polymer-solvent interchange energyw
by8

χ =
w

RT
(33)
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Making these substitutions in Eq. (31) gives

v = B(k) k
0.5
0 exp

(
− E(k)

2RT

)
m−1 + B(0)m

−λ exp
[
m

(
α − β

w

RT

)]
(34)

This equation predicts that the overall activation energy for the process will not be a constant, for two
distinct reasons. First, there will be a change in value accompanying the transition from the small-k
to the large-k regime. Second, even when the first term in Eq. (34) is negligible, the activation
energy will vary as a result of its proportionality tom, which must depend on the absorbed x-ray
doseQ. The way in whichk0 andm vary withQ is the last piece of information needed to obtain an
expression forv solely in terms of measurable quantities. This leads us to develop a simple model
for the structural changes in PMMA that are brought about by exposure to x-ray irradiation.

Photochemistry Model

The effects on PMMA of exposure to x-rays and similar types of radiation have been studied
by a number of investigators.14–21 Although the picture is not entirely clear, there is a reasonable
consensus as to the principal events that occur.22 The initial absorption of radiation seems to lead to
a scission (or chemical transformation) of the ester side chain of a monomer segment. This results
in an excited polymer molecule that can be stabilized either by a hydrogen abstraction, leaving the
polymer chain intact, or by a main-chain scission at the beta location. Main-chain scissions can
also occur by a more direct route, but this will not be considered here. Crosslinking reactions, while
possible in PMMA,23,24 are thought not to be important at the doses normally used in LIGA.25

Thus, we will use the following very simple and schematic mechanism for the radiation-induced
changes in PMMA:

A → B irradiation and ester group scission
B → C stabilization by hydrogen abstraction
B → C + S main chain scission

The species A, B, and C represent, respectively, an untouched polymer segment (monomer unit),
an excited segment (from which the ester group has been removed), and a stabilized segment (also
missing the ester group). The “species” S is not a physical entity but merely provides a convenient
way to keep a count of the total number of polymer molecules. Denoting the first-order rate
constants for the three reactions byk1, k2, andk3, respectively, and using the standard steady-state
approximation for species B, one can easily solve the time-dependent kinetic equations for the
concentrations of the other species. This gives

A = A0e
−k1t (35)

C = A0

(
1− e−k1t

)
(36)

and

S = S0 +
k3

k2 + k3
A0

(
1− e−k1t

)
(37)

where the subscript 0 denotes the initial value. The quantityk3/(k2+k3) is the ratio of the main chain
and ester group scission rates and will henceforth be denoted byr. In addition,S0 is essentially
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equal to the initial concentration of polymer molecules and can therefore be written asA0W/M0,
whereW is the molecular weight of the monomer andM0 is the initial average molecular weight
of the polymer. It follows that

S = A0

[
W

M0
+ r

(
1− e−k1t

)]
(38)

and the average chain length of the polymer molecules at any timet is therefore

m =
1

W/M0 + r
(
1− e−k1t

) (39)

Since the rate constantk1 is proportional to the radiation intensity (dose rate), the quantityk1t is
proportional to the total doseQ, and we can write

1
m

=
1

m0
+ r

(
1− e−γQ

)
(40)

whereγ is another constant to be determined. In terms of the limiting chain lengthm∞ at infinite
dose, Eq. (40) becomes

1
m

=
1

m∞
−

(
1

m∞
− 1

m0

)
e−γQ (41)

where
1

m∞
=

1
m0

+ r (42)

Equation (41) is equivalent to the result proposed by Schmalz,25 but the derivation here is much
simpler. The exponential dependence onQ contrasts with the often-used linear relation that is
obtained by assuming a fixed scission yield,26–28 although Eqs. (40) and (41) are of course linear
for smallQ.

Sincem0 is generally a very large number, Eq. (40) shows that the final chain length will be
independent of the initial value except when the dose is very small. Pantenburg29 has shown that this
approximation is valid under the conditions normally encountered in LIGA, so it will be adopted
here; thus

1
m

= r
(

1− e−γQ
)
≡ rf (Q) (43)

From Eq. (36), the number of side chain scissions can be expressed equally simply:

C = A0f (Q) (44)

Equations (43) and (44) are the results needed to complete the development of the preceding
section. As already noted, a fundamental assumption of the model is that the removal of side
chains during irradiation renders a polymer molecule susceptible to reaction with the solvent. It
follows that the pre-exponential factork0 in Eq. (32) should depend upon the number of side chains
removed. We would not necessarily expectk0 to be strictly proportional toC, but a power-law
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dependence with an unspecified exponentp is a reasonable assumption. Using this along with
Eqs. (43) and (44) in Eq. (34) gives

v = D(k)

[
f (Q)

]p/2+1
exp

(
− E(k)

2RT

)
+ D(0)

[
f (Q)

]λ
exp

[
1

rf (Q)

(
α − β

w

RT

)]
(45)

whereD(0) andD(k) are still more constants. This cumbersome expression can be simplified by
combining constants wherever possible, giving

v = C1

[
f (Q)

]C4

exp

(
−C3

T

)
+ C6

[
f (Q)

]C2

exp

[
1

f (Q)

(
C7 −

C8

T

)]
(46)

where
f (Q) = 1− exp(−C5Q) (47)

Equation (46) is actually quite similar to the expression proposed by Pantenburg,29 the main differ-
ence here being the presence off (Q) in the argument of the second exponential. This represents the
effect of the polymer molecular weight on the solubility and is a key feature of the present model.
Unfortunately, most of the constantsCi do not have simple physical meanings, but it should be
noted that

C2 = λ (48)

C3 =
E(k)

2R
(49)

and
C4 =

p

2
+ 1 (50)

These relations provide at least a limited opportunity to check the credibility of inferred values for
theCi.

Data Fitting

We now wish to test the suitability of Eq. (46) (and, by inference, the overall model) by fitting
it to a set of experimental data. Obviously, since the equation contains a large number of unknown
parameters, an extensive data base must be employed if the exercise is to have any meaning. The
data to be used here are the same as those recently considered by Pantenburg et al.29 and are shown
as the discrete points in Figure 10. As described in more detail in Reference 28, the dissolution
rates at 37◦C were obtained for thin sheets of commercially available noncrosslinked PMMA that
were exposed at the ELSA accelerator in Bonn, Germany. Since the deposited dose was nearly
constant across the thickness of each sample, the dissolution rate was independent of time and could
be measured simply by weight difference. On the other hand, most of the data for development
temperatures of 21◦C and 25◦C refer to thick sheets of linear cast PMMA that were exposed at the
Advanced Light Source (ALS) at Lawrence Berkeley Laboratory. Dissolution rates were obtained
more indirectly by measuring the developed depth periodically and then numerically differentiating
the results. The absorbed dose at a given depth was computed via the LEX code written at Sandia
National Laboratories, California; this allowed each measured dissolution rate to be associated with
a specific value of the dose. Altogether, dissolution rates were measured for doses ranging from
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Figure 10. Fit of reaction-assisted dissolution model to experimental
development rates.

about 0.1 to 9 kJ/cm3, and the rates themselves varied over nearly six orders of magnitude, from
3× 10−5 to 13µm/min. They should therefore provide a reasonable test of the model.

The data fitting is accomplished via a nonlinear least-squares technique that makes use of the
minimization routine in a Microsoft Excel spreadsheet. The logarithms of the dissolution rates are
used in the calculations in order to ensure that the relative errors are small even at low doses. The
results of this procedure are shown in Figure 10. It can be seen that the model provides a fairly
good qualitative and quantitative fit to the measured rates for all conditions, although the results
for 37◦C are somewhat inferior. The overall root-mean-square error in lnv is 0.151, so the average
relative error in the predicted rate is about 15%. This is almost certainly within the scatter of the
data, although some of the individual errors are of course considerably larger.

The optimized values of the constantsCi are given in the following table. The uncertainty
stated with each value is the amount by which it can be changed (while holding the others fixed)
without increasing the overall root-mean-square error by more than 10% of its optimum value.
Of course, this does not account for the possibility that several of the constants could be changed
simultaneously by amounts larger than these without degrading the quality of the fit.

Parameter Value Units
C1 (3.0± 0.7)× 1025 m/s
C2 4.3± 0.1 none
C3 (2.3± 0.2)× 104 K
C4 3.1± 0.1 none
C5 0.183± 0.003 cm3/kJ
C6 (6.8± 0.6)× 10−7 m/s
C7 13.68± 0.02 none
C8 (4.21± 0.09)× 103 K
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From Eq. (49), the activation energyE(k) is about 380 kJ/mol, which is much too large30 for
the kind of saponification reaction hypothesized by Schmalz.5 (Of course, theapparent activation
energy is only half this value.) This suggests that the reptation process does in fact have a very
significant activation energy of its own. The exponentp in Eq. (45) has a value of 4.2, according to
Eq. (50). This seems rather large for a reaction order and suggests that an exponential dependence
of the rate constantk on the number of side chain scissions might be more appropriate than a power
law. In fact, it could be argued that the removal of the side chains reduces the steric hindrance
to attack by the solvent molecules and is thus an energetic effect that should be reflected in the
activation energy rather than the pre-exponential factor. However, making this assumption actually
leads to a substantial degradation in the fit to the data; in particular, the observed behavior for low
doses at 21◦C cannot be reproduced.

Discussion

It is clear from Figure 10 that the model is least successful in fitting the data at the highest
temperature, especially at low doses. The unwanted curvature in this region, which is absent at
the low temperature, is responsible for much of the overall error if the obvious outliers at 21◦C
are disregarded. In order to gain some insight into this problem, it is useful to examine the
relative contributions made to the dissolution rate by the two terms in Eq. (46). A plot of this
nature is shown in Figure 11. Clearly, at both 21◦C and 25◦C, the reaction-assisted process is the
dominant contributor at low doses, while dissolution of the unreacted (but still irradiated) polymer
is the preferred route at high doses. This appears to reflect the extreme sensitivity of the polymer
solubility to the molecular weight: When the dose is low, the molecular weight is so large that
dissolution cannot occur until the reaction takes place and converts the polymer to a highly soluble
form. On the other hand, at high doses, the molecular weight is low enough to provide good
solubility, and dissolution occurs so quickly that the reaction has little opportunity to contribute.
The situation is very different at 37◦C, however; in this case the two contributions are roughly
comparable at all doses, so the preceding arguments must no longer apply. This can be explained
by noting that the argument of the second exponential in Eq. (46) changes sign at a temperature
of about 35◦C if the inferred values ofC7 andC8 are used. Therefore, above this temperature,
the severe decrease in solubility with increasing polymer size no longer occurs, and the chemical
reaction is no longer necessary in order to dissolve large molecules. The existence of such a critical
temperature is perfectly consistent with Figure 2 if one recalls that the interaction parameterχ is
inversely proportional toT ; cf. Eq. (33). However, since Eq. (46) actually describes anincreasing
solubility with polymer size at temperatures above the critical value, the model is not expected to
be valid at very low doses. This probably explains the nonmonotonic behavior at 37◦C in Figure 11
as well as the unwanted curvature in Figure 10.

Referring again to Figure 11, the fact that the reaction-assisted process influences the high-dose
dissolution rate more strongly at 37◦C than it does at the lower temperatures is undoubtedly due
to a difference in activation energies. Figure 12 shows the overall apparent activation energy for
dissolution as well as the values for the two contributing processes. The overall values were obtained
from Arrhenius plots generated from Eq. (46) for fixed values of the dose; the upper limit of the
temperature range was set at 35◦C in order to avoid including the anomalous behavior noted above.
Obviously, the plot mirrors the experimental fact that the overall activation energy varies strongly
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with the dose, but only in the upper part of the range. According to the model, this behavior arises
from both the transition in the dominant process and the effect ofm on the solubility, as noted in the
discussion following Eq. (34). Since the activation energy for unassisted dissolution is relatively
small at high doses, the reaction-assisted process becomes a more important contributor as the
temperature increases.

Needless to say, despite the complexity of the model presented here, there are several areas in
which it could in principle be improved. One potential flaw arises from the fact that the solvent is
treated as a single species. By assumption, this species is consumed by its chemical reaction with
the polymer, whereas in reality some components of the developer solution would likely remain
intact. It could therefore be argued that the model underestimates the extent of penetration of the
solvent into the solid phase. However, it appears that solvent penetration plays only a minor role in
determining the rate of dissolution, contrary to intuition. In fact, it can be proven that the dissolution
rate iscompletely independent of any solid-phase dynamics if the postulated chemical reaction does
not occur. To see this, note that the system involves only two species if there is no reaction to produce
species 3. According to the phase rule, the equilibrium interfacial concentrations are then fixed for
a given temperature and pressure; they can be computed before the differential equations governing
the process are solved. There are now only two such independent equations, so only two boundary
conditions are needed for each phase. For the liquid phase, we have the pure-solvent condition at
the right-hand boundary in addition to the known composition at the interface, so the problem is
self-contained and can be solved by itself for the desired flux, i.e., dissolution rate. This obviously
implies that the rate is independent of the solid-phase diffusivity, an observation that is consistent
with the second term of Eq. (30). In the gel layer, the composition profile simply adjusts itself to
be consistent with the flux determined by the liquid-phase problem, although it should be noted
that this adjustment is possible only because the solid-phase outer boundary condition is applied at
η = −∞. In any case, it appears that the key effect of the chemical reaction is to alter the interfacial
composition in a way that favors dissolution. This probably explains why increases in the rate
constant always lead to increases in the dissolution rate, even as they simultaneously decrease the
extent of solvent penetration into the polymer.

Just as the developer should in theory be treated as a multicomponent liquid, the polymer should
be treated as a mixture of molecules of different sizes. Since the solubility, in particular, is such
a strong function of the chain length, the polydispersity of the polymer couldin general have a
significant effect on the dissolution behavior. However, if the range of initial molecular weights and
the range of doses are such that Eq. (43) is an acceptable approximation, then the polydispersity of
the original polymer is no longer an issue. To take it into account would require a vast increase in
the complexity of the model, and there seems to be no compelling reason to do so. Essentially all
existing work in this area does, in fact, assume a unimodal polymer.

Finally, it could be argued that the use of the Flory-Huggins theory in modeling LIGA is
questionable, since it was originally intended to describe nonpolar systems, and the chemicals
comprising the GG developer do not belong to this category. However, since the simulations of
dissolution dynamics have been used simply to suggest a suitable form for the rate expression, the
details of the thermodynamics are probably not critical. The gross features of the Flory-Huggins
theory can be assumed to apply well enough that the general conclusions are still valid.
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Conclusion

The x-ray exposure and development steps of the LIGA process are quite complex, and the
model presented here is without question a simplification. Unlike most previous descriptions of
polymer dissolution, however, it is physically-based rather than largely empirical, and it accounts
for chemical effects that appear to be unique to LIGA. The fact that the model fits the experimental
data base so well is encouraging, although it certainly does not prove that all details of the model
are correct. Perhaps the main contribution of the model is in giving a plausible explanation for the
change in the behavior of the dissolution rate with increasing dose; the data strongly suggest that
there is a transition from one governing process to another, and the model reproduces this quite well.
It is somewhat unfortunate that the number of adjustable parameters is so large, but the opportunities
to measure these quantities independently appear to be very limited. The value inferred forC5 agrees
reasonably well with that quoted by Pantenburg,29 but little can be said beyond this. In any case, it is
unlikely that the data could be fit successfully with less than the eight parameters used here. On the
other hand, it is also unlikely that using additional parameters would result in much improvement,
so there is little to be gained by trying to account for other experimental variables such as the dose
rate. At this point it would be most helpful to have additional evidence supporting the existence
of the chemical effects proposed by Schmalz,5 and an experimental program to accomplish this is
currently underway at Sandia.
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