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Abstract 

In this paper, the term tensor refers simply to a multidimensional or N-way 
array, and we consider how specially structured tensors allow for efficient stor- 
age and computation. First, we study sparse tensors, which have the property 
that the vast majority of the elements are zero. We propose storing sparse ten- 
sors using coordinate format and describe the computational efficiency of this 
scheme for various mathematical operations, including those typical to tensor 
decomposition algorithms. Second, we study factored tensors, which have the 
property that they can be assembled from more basic components. We consider 
two specific types: a Tucker tensor can be expressed as the product of a core 
tensor (which itself may be dense, sparse, or factored) and a matrix along each 
mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We 
are interested in the case where the storage of the components is less than the 
storage of the full tensor, and we demonstrate that many elementary operations 
can be computed using only the components. All of the efficiencies described 
in this paper are implemented in the Tensor Toolbox for MATLAB. 
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1 Introduction 

Tensors, by which we mean multidimensional or N-way arrays, are used today in a 
wide variety of applications, but many issues of computational efficiency have not 
yet been addressed. In this article, we consider the problem of efficient computations 
with sparse and factored tensors, whose dense/unfactored equivalents would require 
t.oo much memory. 

Our particular focus is on the computational efficiency of tensor decompositions, 
which are being used in an increasing variety of fields in science, engineering, and 
mathematics. Tensor decompositions date back to the late 1960s with work by Tucker 
[49], Harshman [IS], and Carroll and Chang [8]. Recent decades have seen tremendous 
growth in this area with a focus towards improved algorithms for computing the 
decompositions [12, 11, 55, 481. Many innovations in tensor decompositions have been 
motivated by applications in chemometrics [3,30,7,42]. More recently, these methods 
have been applied to signal processing [9, lo], image processing [50, 52, 54, 511, data 
mining [41, 44, 11, and elsewhere [25,35]. Though this work can be applied in a variety 
of contexts, we concentrate on operations that are common to tensor decompositions, 
such as Tucker [49] and CANDECOMP/PARAFAC [8, 181. 

For the purposes of our introductory discussion, we consider a third-order tensor 

Storing every entry of X requires I J K  storage. A sparse tensor is one where the 
overwhelming majority of the entries are zero. Let P denote the number of nonzeros 
in X. Then, we say X is sparse if P << I J K .  Typically, only the nonzeros and their 
indices are stored for a sparse tensor. We discuss several possible storage schemes 
and select coordinate format as the most suitable for the types of operations required 
in tensor decompositions. Storing a tensor in coordinate format requires storing P 
nonzero values and N P  corresponding integer indices, for a total of ( N +  l)P storage. 

In addition to sparse tensors, we study two special types of factored tensors that 
correspond to the Tucker E491 and CANDECOMP/PARAFAC [8, 181 models. Tucker 
format stores a tensor as the product of a core tensor and a factor matrix along each 
mode [24]. For example, if X is a third-order tensor that is stored as the product of a 
core tensor 9 of size R x S x T with corresponding factor matrices, then we express 
it as 

R S T  

r=l s=l t=l 

If I ,  J ,  K >> R, S ,  T ,  then forming X explicitly requires more memory than is needed 
to store only its components. The storage for the factored form with a dense core 
tensor is RST+ I R +  J S + K T .  However, the Tucker format is not limited to the case 
where 9 is dense and smaller than X. It could be the case that 9 is a large, sparse 
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tensor so that R, S, T >> I ,  J ,  K but the total storage is still less than I J K .  Thus, 
more generally, the storage for a Tucker tensor is  STORAGE(^) + I R  + J S  + KT. 
Kruskal format stores a tensor as the sum of rank-1 tensors [24]. For example, if X 
is a third-order tensor that is stored as the sum of R rank-1 tensors, then we express 
it as 

R 

X = [A ; A, B, C ]  which means x i j k  = A, airbjrck, for all i, j ,  k.  
T = l  

As with the Tucker format, when I ,  J ,K  >> R, forming X explicitly requires more 
memory than storing just its factors, which require only ( I  + J + K + l ) R  storage. 

These storage formats and the techniques in this article are implemented in the 
MATLAB Tensor Toolbox, Version 2.1 [5]. 

1.1 Related Work & Software 

MATLAB (Version 2006a) provides dense multidimensional arrays and operations for 
elementwise and binary operations. Version 1.0 of our MATLAB Tensor Toolbox [4] 
extends MATLAB’s core capabilities to support operations such as tensor multipli- 
cation and matricization. The previous version of the toolbox also included objects 
for storing Tucker and Kruskal factored tensors but did not support mathematical 
operations on them beyond conversion to unfactored format. MATLAB cannot store 
sparse tensors except for sparse matrices which are stored in CSC format [15]. Mathe- 
matica, an alternative to MATLAB, also supports multidimensional arrays, and there 
is a Mathematica package for working with tensors that accompanies the book [39]. 
In terms of sparse arrays, Mathematica stores it SparseArray’s in CSR format and 
claims that its format is general enough to describe arbitrary order tensors.’ Maple 
has the capacity to work with sparse tensors using the array command and supports 
mathematical operations for manipulating tensors that arise in the context of physics 
and general relativity. 

There are two well known packages for (dense) tensor decompositions. The N-way 
toolbox for MATLAB by Andersson and Bro [2] provides a suite of efficient functions 
and alternating least squares algorithms for decomposing dense tensors into a variety 
of models including Tucker and CANDECOMP/PARAFAC. The Multilinear Engine 
by Paatero [36] is a FORTRAN code based on on the conjugate gradient algorithm 
that also computes a variety of multilinear models. Both packages can handle missing 
data and constraints ( e g ,  nonnegativity) on the models. 

A few other software packages for tensors are available that do not explicitly 
target tensor decompositions. A collection of highly optimized, template-based tensor 
classes in C++ for general relativity applications has been written by Landry [29] and 

‘Visit the Mathematica web site (www. wolfram. corn) and search on “SparseArray Data Format.” 
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supports functions such as binary operations and internal and external contractions. 
The tensors are assumed to be dense, though symmetries are exploited to optimize 
storage. The most closely related work to this article is the HUJI Tensor Library 
(HTL) by Zass [53], a C++ library for dealing with tensors using templates. HTL 
includes a SparseTensor class that stores index/value pairs using an STL map. HTL 
addresses the problem of how to optimally sort the elements of the sparse tensor 
(discussed in more detail in 53.1) by letting the user specify how the subscripts should 
be sorted. It does not appear that HTL supports general tensor multiplication, but 
it does support inner product, addition, elementwise multiplication, and more. We 
also briefly mention MultiArray [14], which provides a general array class template 
that supports multiarray abstractions and can be used to store dense tensors. 

Because it directly informs our proposed data structure, related work on storage 
formats for sparse matrices and tensors is deferred to section 53.1. 

1.2 Outline of article 

In $2, we review notation and matrix and tensor operations that are needed in the 
paper. In $3, we consider sparse tensors, motivate our choice of coordinate format, 
and describe how to make operations with sparse tensors efficient. In 54, we describe 
the properties of the Tucker tensor and demonstrate how they can be used for efficient 
computations. In 55, we do the same for the Kruskal tensor. In 56, we discuss inner 
products and elementwise multiplication between the different types of tensors. Fi- 
nally, in 57, we conclude with a discussion on the Tensor Toolbox, our implementation 
of these concepts in MATLAB. 
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2 Notation and Background 

We follow the notation of Kiers [22], except that tensors are denoted by boldface Euler 
script letters, e.g., X, rather than using underlined boldface X. Matrices are denoted 
by boldface capital letters, e.g., A; vectors are denoted by boldface lowercase letters, 
e.g., a; and scalars are denoted by lowercase letters, e.g., a. MATLAB-like notation 
specifies subarrays. For example, let X be a third-order tensor. Then, Xi::, X,,,, and 
X::k denote the horizontal, lateral, and frontal slices, respectively. Likewise, x:jk, x p k ,  

and xiJ: denote the column, row, and tube fibers. A single element is denoted by &jk .  

As an exception, provided that there is no possibility for confusion, the r th  column of 
a matrix A is denoted as a,. Generally, indices are taken to run from 1 to their capital 
version, i.e., i = 1,. . . , I .  All of the concepts in this section are discussed at greater 
length in Kolda [24]. For sets we use calligraphic font, e.g., X = { T I ,  7-2,. . . , rp}. We 
denote a set of indices by 1, = { Ir l ,  ITz,. . . , I T P } .  

2.1 Standard matrix operations 

The Kronecker product of matrices A E RIX and B E RKx is 

The Khatri-Rao product [34, 38, 7 ,  421 of matrices A E EtJxK and B E E l J x K  is 

The Hadamard (elementwise) product of matrices A and B is denoted by A * B. See, 
e.g., [42] for properties of these operators. 

2.2 Vector outer product 

The symbol 0 denotes the vector outer product. Let a(n) E El', for all n = 1,. . . , N .  
Then the outer product of these N vectors is an N-way tensor, defined elementwise 
as 

Sometimes the notation 8 is used (see, e.g., [23]). 
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2.3 Matricization of a tensor 

Matricization is the rearrangement of the elements of a tensor into a matrix. Let 
X E R11x12x."xIN be an order-N tensor. The modes N = (1,. . . , N }  are partitioned 
into 3 = (TI , .  . . , T L } ,  the modes that are mapped to the rows, and e = {el,. . . , c ~ } ,  
the remaining modes that are mapped to the columns. Recall that IN denotes the set 
(11,. . . , IN}. Then the matricized tensor is specified by 

Specifically, (X(axe, 1 ~ 1 ) ~ ~  = xili z. . . iN with 

m-1 " I  L e- 1 
j = 1 + - 1) IT I r l1  and IC = 1 + (ic, - 1) IT Lml\ 

e=i  L et=i 1 m=l  L mt=l J 

Other notation is used in the literature. For example, X({1,2}x{3,...,~}: 1 ~ 1  is more 
typically written as 

The main nuance in our notation is that we explicitly indicate the tensor dimensions, 
IN.  This matters in some situations; see, e.g., (10). 

XI1 1 2  x 13 I4"'IN 
Or x(1112 x I314'"IN)  

Two special cases have their own notation. If 3 is a singleton, then the fibers of 
mode n are aligned as the columns of the resulting matrix; this is called the mode-n 
matricization or unfolding. The result is denoted by 

X(n) X ( R ~ ~ : I ~ )  with X = {n} and e = (1,. . . , n  - 1, n + 1,. . . , N}. (1) 
Different authors use different orderings for e; see, e.g., [ll] versus [22]. If 3 = N, 
the result is a vector and is denoted by 

vec(X> = X(Nx0:  I N ) '  (2) 

Just as there is row and column rank for matrices, it is possible to define the 
mode-n rank for a tensor [ll]. The n-rank of a tensor X is defined as 

rank,(X) = rank (X(n)) . 
This is not to be confused with the notion of tensor rank, which is defined in $2.6. 

2.4 Norm and inner product of a tensor 

The inner (or scalar) product of two tensors X , y  E R'lxIzx...xIN is defined as 
I N  

and the F'robenius norm is defined as usual: 1 1  X = ( X, X ) . 
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2.5 Tensor multiplication 

The n-mode matrix product [ll] defines multiplication of a tensor with a matrix in 
mode n. Let X E R r 1 x r 2 x . " x r N  and A E RJXIn. Then 

is defined most easily in terms of the mode-n unfolding: 

The n-mode vector product defines multiplication of a tensor with a vector in 
mode n. Let X E R r l x ' ~ x x . ' ' x r N  and a E RIn. Then 

is tensor of order ( N  - l), defined elementwise as 

More general concepts of tensor multiplication can be defined; see [4]. 

2.6 Tensor decompositions 

As mentioned in the introduction, there are two standard tensor decompositions that 
are considered in this paper. Let X E R w l l x ' 2 x ' - . x r N .  The Tucker decomposition [49] 
approximates X as 

X % 9 x1 u(') x2 u(2) * * XN U ( N ) ,  (4) 

where 9 E R J l x J ~ x ' ' . x J N  and U(") E Iw'nxJn for all n = 1, . . . ,  N .  If Jn = rank,(X) 
for all n, then the approximation is exact and the computation is trivial. More 
typically, an alternating least squares (ALS) approach is used for the computation; 
see [26, 45, 121. The Tucker decomposition is not unique, but measures can be taken 
to correct this [19, 20, 21, 461. Observe that the right-hand-side of (4) is a Tucker 
tensor, to be discussed in more detail in 54. 

The CANDECOMP/PARAFAC decomposition was simultaneously developed as 
the canonical decomposition of Carroll and Chang [8] and the parallel factors model 
of Harshman [18]; it is henceforth referred to as CP per Kiers [22]. It approximates 
the tensor X as 

R 

r=l 
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( for some integer R > 0 with, for T = 1, . . . , R, A, E R and v,"' E RIn for n = 1,. . . , N .  
The scalar multiplier A, is optional and can be absorbed into one of the factors, e.g., 
vr) .  The rank of X is defined as the minimal R such that X can be exactly reproduced 
[27]. The right-hand side of (5) is a Kruskal tensor, which is discussed in more detail 
in 55. 

The CP decomposition is also computed via an ALS algorithm; see, e.g., [42, 481. 
Here we briefly discuss a critical part of the CP-ALS computation that can and should 
be specialized to sparse and factored tensors. Without loss of generality, we assume 
A, = 1 for all T = 1,. . . , R. The CP model can be expressed in matrix form as 

T x(n) = V(") (v(") 0 . . . 0 v(nf1)  0 v(n-1) @ . . . @ v(1)) , 
\ / 

Y 

W 

where V(n) = [vi") . . . v;)] for n = 1,. . . , N .  If we fix everything by V(n), then 
solving for it is a linear least squares problem. The pseudoinverse of the Khatri-Rao 
product W has special structure [6, 471: 

Wt = (V(") @ . . . @ V("S1) 0 V(n-1) 0.. . 0 V(')) Zt where 

z = (V(WV(1)) * . . . * (v(n-1)Tv(n-l)  ) * (v (n+ l )Tv(n+ l ) )  * . . . * (V(N)TV(") 1 .  

y = qn) (V(W @ . . . 0 v(n+l) 0 v(n-1)  0 . . . @ v(1)) . 
The least-squares solution is given by V(") = YZt where Y E RInXR is defined as 

(6 )  
For CP-ALS on large-scale tensors, the calculation of Y is an expensive operation 
and needs to be specialized. We refer to (6) as "matricized-tensor-times-Khatri-Rao- 
product," or "mttkrp" for short. 

2.7 MATLAB details 

Here we briefly describe the MATLAB code for the functions discussed in this section. 
The Kronecker and Hadamard matrix products are called by kron(A,B) and A.*B, 
respectively. The Khatri-Rao product is provided by the Tensor Toolbox and called 
by khatrirao (A B) . 

Higher-order outer products are not directly supported in MATLAB but can be 
implemented. For instance, X = a o b o c ,  can be computed with standard functions via 

where I ,  J ,  and K are the lengths of the vectors a, b, and c ,  respectively. Using the 
Tensor Toolbox and the properties of the Kruskal tensor, this can be done via 

X = full(ktensor(a,b,c)). 
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Tensor n-mode multiplication is implemented in the Tensor Toolbox via the ttm 
and ttv commands for matrices and vectors, respectively. Implementations for dense 
tensors were available in the previous version of the toolbox as discussed in [4]. We 
describe implementations for sparse and factored forms in this paper. 

Matricization of a tensor is accomplished by permuting and reshaping the elements 
of the tensor. Consider the example below. 

X = rand(5,6,4,2); R = [2 31; C = [4 11; 
I = size(X); J = prod(I(R)); K = prod(I(C)); 
Y = reshape(permute(X, [R Cl), J,K); % convert X to matrix Y 
Z = ipermute(reshape(Y, [I (R) I(C)l), CR Cl 1 ; % convert back to tensor 

In the Tensor Toolbox, this functionality is supported transparently via the tenmat 
class, which is a generalization of a MATLAB matrix. The class stores additional 
information to support conversion back to a tensor object as well as to support 
multiplication with another tenmat object for subsequent conversion back into a 
tensor object. These features are fundamental to supporting tensor multiplication. 
Suppose that a tensor X is stored as a tensor object. To compute A = X ( , , ~ : I ~ ) ,  use 
A = tenmat(X,R,C); to compute A = X(n), use A = tenmat(X,n); and to compute 
A = vec(X), use A = tenmat(X, C1:N-J) where N is the number of dimensions of the 
tensor X. This functionality is implemented in the previous version of the toolbox 
under the name tensor-asaatrix and is described in detail in [4]. Support for sparse 
matricization is handled with sptenmat, which is described in 53.3. 

In the Tensor Toolbox, the inner product, and norm functions are called via 
innerprod(X, Y) and norm(X) . Efficient implementations for the sparse and factored 
versions are discussed in the sections that follow. 

The “matricized tensor times Khatri-Rao product” in (6) is computed via mttkrp(X, 
{Vl , . . . , VN} , n) where n is a scalar that indicates in which mode to matricize X 
and which matrix to skip, i.e., V(n). If X is dense, the tensor is matricized, the 
Khatri-Rao product is formed explicitly, and the two are multiplied together. Effi- 
cient implementations for the sparse and factored versions are discussed in the sections 
that follow. 
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3 Sparse Tensors 

A sparse tensor is tensor where most of the elements are zero; in other words, it is 
a tensor where efficiency in storage and computation can be realized by storing and 
working with only the nonzeros. We consider storage in 53.1, operations in 53.2, and 
MATLAB details in 53.3. 

3.1 Sparse tensor storage 

We consider the question of how to efficiently store sparse tensors. As background, we 
review the closely related topic of sparse matrix storage in 53.1.1. We then consider 
two paradigms for storing a tensor: compressed storage in $3.1.2 and coordinate 
storage in 53.1.3. 

3.1.1 Review of sparse matrix storage 

Sparse matrices frequently arise in scientific computing, and numerous data structures 
have been studied for memory and computational efficiency, in serial and parallel. See 
[37] for an early survey of sparse matrix indexing schemes; a contemporary reference is 
[40, $3.41. Here, we focus on two storage formats that can extend to higher dimensions. 

The simplest storage format is coordinate format, which stores each nonzero along 
with its row and column index in three separate one-dimensional arrays, which Duff 
and Reid [13] called “parallel arrays.” For a matrix A of size 1 x J with nnz(A) 
nonzeros, the total storage is 3 nnz(A) and the indices are not necessarily presorted. 

More common is compressed sparse row (CSR) and compressed sparse column 
(CSC) format, which appear to have originated in [17]. The CSR format stores three 
one-dimensional arrays: an array of length nnz(A) with the nonzero values (sorted 
by row), an array of length nnz(A) with corresponding column indices, and an array 
of length I + 1 that stores the beginning (and end) of each row in the other two 
arrays. The total storage for CSR is 2 .  nnz(A) + 1 + 1. The CSC format, also known 
as Harwell-Boeing format, is analogous except that rows and columns are swapped; 
this is the format used by MATLAB [15].2 The CSR/CSC formats are often cited for 
their storage efficiency, but our opinion is that the minor reduction of storage is of 
secondary importance. The main advantage of CSR/CSC format is that the nonzeros 
are necessarily grouped by row/column, which means that operations that focus on 
rows/columns are more efficient while other operations become more expensive, such 
as element insertion and matrix transpose. 

2Search on “sparse matrix storage” in MATLAB Help or at the website www . mathworks. corn. 
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3.1.2 Compressed sparse tensor storage 

Numerous higher-order analogues of CSR and CSC exist for tensors. Just as in the 
matrix case, the idea is that the indices are somehow sorted by a particular mode (or 
modes). 

For a third-order tensor X of size I x J x K ,  one straightforward idea is to store 
each frontal slice, X::k, as a sparse matrix in, say, CSC format. The entries are 
consequently sorted first by the third index and then by the second index. 

Another idea, proposed by Lin et al. [33, 321, is to use extended Karnaugh map 
representation (EKMR). In this case, a three- or four-dimensional tensor is converted 
to a matrix (see $2.3) and then stored using a standard sparse matrix scheme, such 
as CSR or CSC. For example, if X is a three-way tensor of size I x J x K ,  then the 
EKMR scheme stores X({1}x{2,3}), which is a sparse matrix of size I x J K .  EKMR 
stores a fourth-order tensor as X({1,4}x{2,3)). Higher-order tensors are stored as a one- 
dimensional array (which encodes indices from the leading n - 4 dimensions using a 
Karnaugh map) pointing to n - 4 sparse four-dimensional tensors. 

Lin et al. [32] compare the EKMR scheme to the method described above, i.e., 
storing two-dimensional slices of the tensor in CSR or CSC format. They consider 
two operations for the comparison: tensor addition and slice multiplication. The 
latter operation is multiplying subtensors (matrices) of two tensors A and 'B, such 
that ( 2 - k  = A::kB::-, which is matrix-matrix multiplication on the horizontal slices. 
In this comparison, the EKMR scheme is more efficient. 

Despite these promising results, our opinion is that compressed storage is, in 
general, not the best option for storing sparse tensors. First, consider the problem 
of choosing the sort order for the indices, which is really what a compressed format 
boils down to. For matrices, there are only two cases: rowwise or columnwise. For 
an N-way tensor, however, there are N! possible orderings on the modes. Second, 
the code complexity grows with the number of dimensions. It is well known that 
CSC/CSR formats require special code to handle rowwise and columnwise operations; 
for example, two distinct codes are needed to calculate Ax and ATx. The analogue 
for an Nth-order tensor would be a different code for A X n  n for n = 1,. . . , N .  
General tensor-tensor multiplication (see [4] for details) would be hard to handle. 
Third, we face the potential of integer overflow if we compress a tensor in a way that 
leads to one dimension being too big. For example, in MATLAB, indices are signed 
32-bit integers, and so the largest such number is 231 - 1. Storing a tensor X of size 
2048 x 2048 x 2048 x 2048 as the (unfolded) sparse matrix X(1) means that the number 
of columns is 233 and consequently too large to be indexed within MATLAB. Finally, 
as a general rule, the idea that the data is sorted by a particular mode becomes less 
and less useful as the number of modes increases. Consequently, we opt for coordinate 
storage format, discussed in more detail below. 

Before moving on, we note that there are many cases where specialized storage 
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formats such as EKMR can be quite useful. In particular, if the number of tensor 
modes is relatively small (3rd- or 4th-order) and the operations are specific, e.g., only 
operations on frontal slices, then formats such as EKMR are likely a good choice. 

3.1.3 Coordinate sparse tensor storage 

As mentioned previously, we focus on coordinate storage in this paper. For a sparse 
tensor X of size I1 x 12 x x I N  with nnz(X) nonzeros, this means storing each 
nonzero along with its corresponding index. The nonzeros are stored in a real array 
of length nnz(X), and the indices are stored in an integer matrix with nnz(TX) rows 
and N columns (one per mode). The total storage is ( N  + 1) - nnz(X). We make no 
assumption on how the nonzeros are sorted. To the contrary, in 53.2, we show that 
for certain operations we can entirely avoid sorting the nonzeros. 

The advantage of coordinate format is its simplicity and flexibility. Operations 
such as insertion are O(1). Moreover, the operations are independent of how the 
nonzeros are sorted, meaning that the functions need not be specialized for different 
mode orderings. 

3.2 Operations on sparse tensors 

As motivated in the previous section, we consider only the case of a sparse tensor 
stored in coordinate format. We consider a sparse tensor 

where P = nnz(X), v is a vector storing the nonzero values of X, and S stores the 
subscripts corresponding to the pth nonzero as its pth row. For convenience, the 
subscript of the pth nonzero in dimension n is denoted by sp,. In other words, the 
pth nonzero is 

X S P l  , s p a  ' . . . 'SPN - up. - 

Duplicate subscripts are not allowed. 

3.2.1 Assembling a sparse tensor 

To assemble a sparse tensor, we require a list of nonzero values and the corresponding 
subscripts as input. Here, we consider the issue of resolving duplicate subscripts in 
that list. Typically, we simply sum the values at duplicate subscripts; for example 

(2,3,4,5) 4.5 
(2,3,5,5) 4.7 

(2,3,4,5) 3.4 
(2,3,5,5) 4.7 --+ 

(2,3,4,5) 1.1 
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If any subscript resolves to a value of zero, then that value and its corresponding 
subscript are removed. 

Summation is not the only option for handling duplicate subscripts on input. We 
can use any rule to combine a list of values associated with a single subscript, such 
as max, mean, standard deviation, or even the ordinal count, as shown here: 

(223,475) 2 
(273,535) 1 

(2 ,3 ,4 ,5 )  3.4 

(2 ,3 ,4 ,5 )  1.1 
(2 ,3 ,5 ,5 )  4.7 --+ 

Overall, the work of assembling a tensor reduces to finding all the unique subscripts 
and applying a reduction function (to resolve duplicate subscripts). The amount of 
work for this computation depends on the implementation, but is no worse than the 
cost of sorting all the subscripts, i.e., O(P1ogP) where P = nnz(X). 

3.2.2 Arithmetic on sparse tensors 

Consider two same-sized sparse tensors X and ’41, stored as (VX, Sx) and (vv, Sy) as 
defined in (7). To compute Z = X + Y, we create 

v z =  [:I, and S z =  [iz] 
To produce Z, the nonzero values, vz, and corresponding subscripts, Sz, are assem- 
bled by summing duplicates (see 53.2.1). Clearly, nnz(Z) 5 nnz(X) + nnz(Y). In 
fact, nnz(Z) = 0 if y = -X. 

It is possible to perform logical operations on sparse tensors in a similar fashion. 
For example, computing Z = X (“logical and”) reduces to finding the intersection 
of the nonzero indices for X and $j. In this case, the reduction formula is that the 
final value is 1 (true) only if the number of elements is at least two; for example, 

(2 ,3 ,4 ,5)  3.4 
(2 ,3 ,5 ,5 )  4.7 --+ (2 ,3 ,4 ,5 )  1 (true) 
(2 ,3 ,4 ,5 )  1.1 

For “logical and”, nnz(Z) 5 nnz(X) + nnz(Y). Some logical operations, however, 
do not produce sparse results. For example, Z = 1X (“logical not”) has nonzeros 
everywhere that X has a zero. 

Comparisons can also produce dense or sparse results. For instance, if X and 41 
have the same sparsity pattern, then Z = (X < 9) is such that nnz(Z) 5 nnz(X). 
Comparison against a scalar can produce a dense or sparse result. For example, 
Z = (X > 1) has no more nonzeros than X, whereas Z = (X > -1) has nonzeros 
everywhere that X has a zero. 
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3.2.3 Norm and inner product for a sparse tensor 

Consider a sparse tensor X as in (7) with P = nnz(X). The work to compute the 
norm is O ( P )  and does not involve any data movement: 

The inner product of two same-sized sparse tensors, X and 3, involves finding 
duplicates in their subscripts, similar to the problem of assembly (see 53.2.1). The 
cost is no worse than the cost of sorting all the subscripts, i.e., O(P1ogP) where 
P = nnz(X) + nnz(3). 

3.2.4 n-mode vector multiplication for a sparse tensor 

Coordinate storage format is amenable to the computation of a tensor times a vector 
in mode n. We can do this computation in O(nnz(X)) time, though this does not 
account for the cost of data movement, which is generally the most time-consuming 
part of this operation. (The same is true for sparse matrix-vector multiplication.) 

Consider 
Y = X X x , a ,  

where X is as defined in (7) and the vector a is of length In, For each p = 1,. . . , P,  
nonzero ‘up is multiplied by asp, and added to the ( sp l , .  . . , s ~ , - ~ ,  s ~ , + ~ ,  . . . , sPN)  ele- 
ment of 3. Stated another way, we can convert a to an “expanded” vector b E Rp 
such that 

bp = a, for p = 1,. . . , P. 
n P  

Next we can calculate a vector of values G E Rp so that 

G = v * b .  

We create a matrix S that is equal to S with the nth column removed. Then the 
nonzeros G and subscripts S can be assembled (summing duplicates) to create 3. 
Observe that nnz(3) 5 nnz(X), but the number of dimensions has also reduced by 
one, meaning the the final result is not necessarily sparse even though the number of 
nonzeros cannot increase. 

We can generalize the previous discussion to multiplication by vectors in multiple 
modes. For example, consider the case of multiplication in every mode: 

a = x a(’). . . x N  a(N). 

Define “expanded” vectors b(”) E Rp for n = 1 , .  . . , N such that 

b g )  = ag: for p = I , .  . . , P. 
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P We then calculate w = v * b(’) * .  - - * b(N), and the final scalar result is Q! = E,=, wp. 
Observe that we calculate all the n-mode products simultaneously rather than in 
sequence. Hence, only one “assembly” of the final result is needed. 

3.2.5 n-mode matrix multiplication for a sparse tensor 

The computation of a sparse tensor times a matrix in mode n is straightforward. To 
compute 

9 = X X, A, 

we use the matricized version in (3), storing X(,) as a sparse matrix. As one might 
imagine, CSR format works well for mode-n unfoldings, but CSC format does not 
because there are so many columns. For CSC, use the transposed version of the 
equation, i.e., 

YT (n) = XTn)AT. 

Unless A has special structure (e.g., diagonal), the result is dense. Consequently, 
this only works for relatively small tensors (and is why we have glossed over the 
possibility of integer overflow when we convert X to X,,)). The cost boils down to 
that of converting X to a sparse matrix, doing a matrix-by-sparse-matrix multiply, and 
converting the result into a (dense) tensor v. Multiple n-mode matrix multiplications 
are performed sequentially. 

3.2.6 General tensor multiplication for sparse tensors 

For tensor-tensor multiplication, the modes to be multiplied are specified. For exam- 
ple, if we have two tensors X E R3x4x5 and Y E R4x3x2x2, we can calculate: 

5 x 2 ~ 2  z = ( Z Y  ){1,2;2,1} E lR 

which means that we multiply modes 1 and 2 of X with modes 2 and 1 of 3. Here, we 
refer to the modes that are being multiplied as the “inner” modes and the other modes 
as the “outer” modes because, in essence, we are taking inner and outer products along 
these modes. Because it takes several pages to explain tensor-tensor multiplication, 
we have omitted it from the background material in 52 and instead refer the interested 
reader to [4]. 

In the sparse case, we have to find all the matches of the inner modes of X 
and Y, compute the Kronecker product of the matches, associate each element of 
the product with a subscript that comes from the outer modes, and then resolve 
duplicate subscripts by summing the corresponding nonzeros. Depending on the 
modes specified, the work can be as high as O(PQ),  where P = nnz(X) and Q = 
nnz(Y), but can be closer to O(P1ogP + QlogQ) depending on which modes are 
multiplied and the structure on the nonzeros. 
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3.2.7 Matricized sparse tensor times Kha t r i -bo  product 

Consider the calculation of the matricized tensor times a Khatri-Rao product in (6). 
We compute this indirectly using the n-mode vector multiplication, which is efficient 
for large, sparse tensors (see $3.2.4), by rewriting (6) as 

- 
w, = x  X l  v;)- xn-l v(n-l) , x,+1 - v, (n+l) - e  - X N  v:~) for r = 1 , 2 , .  . . , R. 

In other words, the solution W is computed column-by-column. The cost equates to 
computing the product of the sparse tensor with N - 1 vectors R times. 

3.2.8 Computing X(.,XTn, for a sparse tensor 

Generally, the product Z = X(n)X&, E IW'ox'n can be computed directly by storing 
X(n) as a sparse matrix. As in $3.2.5,  we must be wary of CSC format, in which 
case we should actually store A = X&, and then calculate Z = ATA. The cost 
is primarily the cost of converting to a sparse matrix format (e.g., CSC) plus the 
matrix-matrix multiply to form the dense matrix Z E However, the matrix 
X(,) is of size 

N 

m = l  
m#n 

which means that its column indices may overflow the integers is the tensor dimensions 
are very big. 

3.2.9 Collapsing and scaling on sparse tensors 

We present the concepts of collapsing and scaling on tensors to extend well-known 
(and mostly unnamed) operations on matrices. 

For a matrix, one might want to compute the sum of all elements in each row, or 
the maximum element in each column, or the average of all elements, and so on. To 
the best of our knowledge, these sorts of operations do not have a name, so we call 
them collapse operations-we are collapsing the object in one or more dimensions to 
get some statistical information. Conversely, we often want to use the results of a 
collapse operation to scale the elements of a matrix. For example, to convert a matrix 
A to a row-stochastic matrix, we compute the collapsed sum in mode 1 (rowwise) 
and call it z, and then scale A in mode 1 by (l/z). 

We can define similar operations in the N-way context for tensors. For collapsing, 
we define the modes to be collapsed and the operation (e.g., sum, max, number of 
elements, etc.). Likewise, scaling can be accomplished by specifying the modes to 
scale. 



Suppose, for example, that we have an I x J x K tensor X and want to scale each 
frontal slice so that its largest entry is one. First, we collapse the tensor in modes 1 
and 2 using the max operation. In other words, we compute the maximum of each 
frontal slice, i.e., 

z& = max{qjk I i = 1,. . . , I  and j = 1,. . . , J }  for k = 1, .  . . ,K .  

This is accomplished in coordinate format by considering only the third subscript 
corresponding to each nonzero, doing assembly with duplicate resolution via the a p  
propriate collapse operation (in this case, max). Then the scaled tensor can be 
computed elementwise by 

xijk 
zk 

Y i j k  = 

This computation can be completed by “expanding” z to a vector of length nnz(X) 
as was done for the sparse-tensor-times-vector operation in 53.2.4. 

3.3 MATLAB details for sparse tensors 

MATLAB does not natively support sparse tensors. In the Tensor Toolbox, sparse 
tensors are stored in the sptensor class, which stores the size as an integer N- 
vector along with the vector of nonzero values v and corresponding integer matrix of 
subscripts S from (7). 

We can assemble a sparse tensor from a list of subscripts and corresponding values, 
as described in 53.2.1. By default, we sum repeated entries, though we allow the 
option of using other functions to resolve duplicates. To this end, we rely on the 
MATLAB accumarray function, which takes a list of subscripts, a corresponding 
list of values, and a function to resolve the duplicates (sum, be default). To use 
this with large-scale sparse data is complex. We first calculate a codebook of the 
Q unique subscripts (using the MATLAB unique function), use the codebook to 
convert each N-way subscript to an integer value between 1 and Q, call accumarray 
with the integer indices, and then use the codebook to map the final result back to 
the corresponding N-way subscripts. 

MATLAB relies heavily on linear indices for any operation that returns a list of 
subscripts. For example, the f i n d  command on a sparse matrix returns linear indices 
(by default) that can be subsequently be converted to row and column indices. For 
tensors, we are wary of linear indices due to the possibility of integer overflow discussed 
in 53.1.2. Specifically, linear indices may produce integer interflow if the product of 
the dimensions of the tensor is greater than or equal to 232, e.g., a four-way tensor of 
size 2048 x 2048 x 2048 x 2048. Thus, our versions of subscripted reference (subsref) 
and assignment (subsasgn) as well as our version of find explicitly use subscripts 
and do not support linear indices. 

We do, however, support the conversion of a sparse tensor to a matrix stored in 
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coordinate format via the class sptenmat. This matrix can then be converted into a 
MATLAB sparse matrix via the command double. 

All operations are called in the same way for sparse tensors as they are for dense 
tensor, e.g., Z = X + Y. Logical operations always produce sptensor results, even if 
they would be more efficiently stored as dense tensors. To convert to a dense tensor, 
call full (X) . 

The three multiplication operations may produce dense results: tensor-times- 
tensor (ttt), tensor-times-matrix (ttm) and tensor-times-vector (ttv). In the case of 
ttm, since it is called repeatedly for multiplication in multiple modes, any intermediate 
product may be dense and the remaining calls will be to the dense version of ttm. For 
general tensor multiplication, which reduces to sparse matrix-matrix multiplication, 
we take measures to avoid integer overflow by instead finding the unique subscripts 
and only using that many rows/columns in the matrices that are multiplied. This is 
similar to how we use accumarray to assemble a tensor. 

Generating a random sparse tensor is complicated because it requires generating 
the locations of the nonzeros as well as the nonzeros. Thus, the Tensor Toolbox pro- 
vides the command sptenrand(sz,nnz) to produce a sparse tensor. It is analogous 
to the command sprand to produce a random sparse matrix in MATLAB with two 
exceptions. First, the size is passed in as a single (row vector) input. Second, the last 
a.rgument can be either a percentage (as in sprand) or an explicit number of nonzeros 
desired. We also provide a function sptendiag to create a superdiagonal tensor. 

25 



This page intentionally left blank. 

26 



4 Tucker Tensors 

Consider a tensor X E Rw11xw12x.-,x1N such that 

where 5 E RJ1xJ2x"'xJN is the core tensor and U(") E RrnxJn for n = 1,. . . , N .  This 
is the format that results from a Tucker decomposition [49] and is therefore termed 
a Tucker tensor. We use the shorthand notation [g ; U('), U(2), . . . U(")]I from [24], 
but other notation can be used. For example, Lim [31] proposes that the covariant 
aspect of the multiplication be made explicit by expressing (8) as 

As another example, Grigorascu and Regalia [16] emphasize the role of the core tensor 
in the multiplication by expressing (8) as 

which is called Dhe weighted Tucker product; the unweighted version has 9 = 3, the 
identity tensor. Regardless of the notation, the properties of a Tucker tensor are the 
same. 

*4.1 Tucker tensor storage 

Storing X as a Tucker tensor can have major advantages in terms of memory require- 
ments. In its explicit form, X requires storage of 

N N 

n=l n=l 

elements for the factored form. Thus, the Tucker tensor factored format is clearly 
advantageous if  STORAGE(^) is sufficiently small. This certainly is the case if 

N N 

n= 1 n=l 

However, there is no reason to assume that the core tensor S is dense; on the contrary, 
9 might itself be sparse or factored. The next section discusses computations on X 
in its factored form, making minimal assumptions about the format of 9. 
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4.2 Tucker tensor properties 

It is common knowledge (dating back to [49]) that matricized versions of the Tucker 
tensor (8) have a special form; specifically, 

X(~xe , j , )  = (U(TL) @-..@U('l))  G(axe:1,) (U(cM) @I*.. @ U(c'))T , (10) 

where X = { T I , .  . . , T L }  and C! = {el, . .  . , c M } .  Note that the order of the indices in 
3 and e does matter, and reversing the order of the indices is a frequent source of 
coding errors. For the special case of mode-n matricization (l), we have 

(11) - U(n)G(,) (U(") ... U(n+l) 8 U(,-l) @ ... @ U(l)) T . X(4 - 

Likewise, for the vectorized version (2), we have 

vec(X) = ( ~ ( " 1  8 ~ ( ' 1 )  vec(9). (12) 

4.2.1 n-mode matr ix  multiplication for a Tucker tensor 

Multiplying a Tucker tensor times a matrix in mode n reduces to multiplying its nth 
factor matrix; in other words, the result retains the factored Tucker tensor structure. 
Let X be as in (8) and V be a matrix of size K x I,. Then from (3) and (ll), we 
have 

x x, v = 19 ; ~ ( ~ 1 ,  . . . , u(n-11, VU("), u ( ~ + ~ ) ,  . . . , W)]. 
The cost is that of the matrix-matrix multiply, that is, O(I,J,K). More generally, 
let V(") be of size K, x I, for n = 1,. . . , N .  Then 

[x ;v(l), . . . , v ( ~ ) ]  = [s ;v  (1)u(1) , - - * ,  V(N)U(N)]. 

The cost here is the cost of N matrix-matrix multiplies, for a total of O ( x ,  I,J,K,), 
and the Tucker tensor structure is retained. As an aside, if U(,) has full column rank 
and V(") = U(") for n = 1,. . . , N ,  then 9 = [X ; U(')+, . . . , U(N)t]. t 

4.2.2 n-mode vector multiplication for a Tucker tensor 

Multiplication of a Tucker tensor by a vector follows similar logic to the matrix case 
except that the nth factor matrix necessarily disappears and the problem reduces to 
n-mode vector multiplication with the core. Let X be a Tucker tensor as in (8) and 
v be a vector of size I,; then, 

X X n  v = 2, w ; U(l), . . . , U("-'), U("+') 7 -  . . , U(")] where w = U(,ITv. 

The cost here is that of multiplying a matrix times a vector, O(InJn) ,  plus the cost of 
multiplying the core (which could be dense, sparse, or factored) times a vector. The 
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Tucker tensor structure is retained, but with one less factor matrix. More generally, 
multiplying a Tucker tensor by a vector in every mode converts to the problem of 
multiplying its core by a vector in every mode. Let V(") be of size In for n = 1, . . . , N ;  
then 

In this case, the work is the cost of N matrix-vector multiplies, O(Cn InJn),  plus the 
cost of multiplying the core by a vector in each mode. If 9 is dense, the total cost is 

N 

0 L J n +  n Jm 
(n:1( m=n )) 

Further gains in efficiency are possible by doing the multiplies in order of largest to 
smallest Jn. The Tucker tensor structure is clearly not retained for all-mode vector 
multiplication. 

4.2.3 Inner product 

Let X be a Tucker tensor as in (8) and let 9 be a Tucker tensor of the same size with 

with 3-C E R K I X K ~ X . . . X K N  and V(") E R1n xKn  for n = 1, . . . , N .  If the cores are small 
in relation to the overall tensor size, we can realize computational savings as follows. 
Without loss of generality, assume 9 is smaller than (or at least no larger than) X, 
e.g., Jn 5 Kn for all n. Then 

Each W(") is of size Jn x Kn and costs O(InJnKn) to compute. Then, to compute 
3, we do a tensor-times-matrix in all modes with the tensor X (the cost varies 
depending on the tensor type), followed by an inner product between two tensors of 
size J1 x Jz x x JN.  If 9 and X are dense, then the total cost is 

/ N  N / N  n \  N \  

\n=~ n=l \p=n q=l  / n=l / 
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4.2.4 Norm of a Tucker tensor 

For the previous discussion, it is clear that the norm can also be calculated efficiently 
if the core tensor is small in relation to the overall tensor, e.g., J,  < In for all n. Let 
X be a Tucker tensor as in (8). From $4.2.3, we have 

Forming all the W(") matrices costs O(znInJ ,2) .  To compute F, we have to do 
a tensor-times-matrix in all N modes, and if 9 is dense, for example, the cost is 
O ( n ,  J,  - E, Jn) .  Finally, we compute an inner product of two tensors of size 51 X 

J2 x . - - x J,, which costs O(n ,  J,) if both tensors are dense. 

4.2.5 Matricized Tucker tensor times Khatri-Rao product 

As noted in 52.6, a common operation is to calculate a particular matricized tensor 
times a special Khatri-Rao product (6). In the case of a Tucker tensor, we can reduce 
this to an equivalent operation on the core tensor. Let X be a Tucker tensor as in (8) 
and let V(,) be a matrix of size I ,  x R for all m # n. The goal is to calculate 

Using the properties of the Khatri-Rao product [42] and setting W(,) = U(m)TV(m) 
for m # n, we have 

., 
Matricized core tensor 9 times Khatri-Rao product 

Thus, this requires ( N  - 1) matrix-matrix products to form the matrices W(") of 
size J, x R, each of which costs O(I,J,R). Then we calculate the "mttkrp" with 
9, and the cost is O ( R  n, Jn) if 9 is dense. The final matrix-matrix multiply costs 
O(I,J,R). If S is dense, the total cost is 
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4.2.6 Computing X(.)X&) for a Tucker tensor 

To compute rank,(X), we need Z = X(,)X&). Let X be a Tucker tensor as in (8); 
then 

If 9 is dense, forming X costs 

And the final multiplication of the three matrices costs O(In n:=, J,  + I;J,). 

4.3 MATLAB details for Tucker tensors 

A Tucker tensor X is constructed in MATLAB by passing in the core array 9 and 
factor matrices using X = t t ensor (G,  {Ul, . . . ,UN)). In version 1.0 
of the Tensor Toolbox, this class was called tucker-tensor [4]. The core tensor can 
be any of the four classes of tensors supported by the Tensor Toolbox. 

. . . , 

A Tucker tensor can be converted to a standard tensor  by calling full(X). Sub- 
scripted reference and assignment can only be done on the factors, not elementwise. 
For example, it is possible to change the (I, 1) element of but not the (1,1,1) 
element of a three-way Tucker tensor X. Scalar multiplication is supported, Le., X*5. 

The n-mode product of a Tucker tensor with one or more matrices (54.2.1) or 
vectors (54.2.2) is implemented in t t m  and t t v ,  respectively. The inner product 
($4.2.3 and also 56) is called via innerprod, and the norm of a Tucker tensor is 
called via norm. The function mttkrp computes the matricized-tensor-times-Khatri- 
Rao-product as described in 54.2.5. The function nvecs (X,n) computes the leading 
mode-n eigenvectors for X(,,XTn, and relies on the efficiencies described in 54.2.6. 
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5 Kruskal tensors 

Consider a tensor X E R11x12x...x1~ that can be written as a sum of R rank-1 tensors 
(with no assumption that R is minimal), i.e., 

R 

where X = [A, ARIT E RR and U(") = [up) .. . u t ) ]  E RrnXR. This is the 
format that results from a PARAFAC decomposition [18, 81, and we refer to it as a 
Kruslcal tensor due to the work of Kruskal on tensors of this format [27, 281. We use 
the shorthand notation from [24]: 

x = [A ; ~ ( ~ 1 , .  . . , W)]. 

x = (U(1)). . . , U(N)) . 

(14) 
In some cases, the weights A, are not explicit and we write X = [U('), . . . , U ( N ) ] .  
Other notation can be used. For instance, Kruskal [27] uses 

5.1 Kruskal tensor storage 

Storing X as a Kruskal tensor is efficient in terms of storage. In its explicit form, X 
requires storage of 

N / 

elements for the factored form. We do not assume that R is minimal. 

5.2 Kruskal tensor properties 

The Kruskal tensor is a special case of the Tucker tensor where the core tensor 9 is 
an R x R x - - x R diagonal tensor and all the factor matrices U(") have R columns. 

It is well known that matricized versions of the Kruskal tensor (14) have a special 
form; namely, 

X ( x x e : I N )  = ( U ( ~ L )  0 . . . 0 U(rl))  A (U(cM) 0 . . . 0 U(cl))T , 

where A = diag(()A). For the special case of mode-n matricization, this reduces to 

(15) 

(16) 

T 
- U(")A (U(N) 0.. . 0 U(nS1) 0 U("-l) 0.. . 0 U(I)) . X(n)  - 

Finally, the vectorized version is 

vec(X> = ( ~ ( ~ 1 0  - a .  0 ~ ( ' 1 )  A. 
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5.2.1 Adding two Kruskal tensors 

Because the Kruskal tensor is a sum of rank-1 tensors, adding two Kruskal tensors 
together can be viewed as extending that summation over both sets of terms. For 
instance, consider Kruskal tensors X and y of the same size given by: 

Adding X and % yields 

R P 

r=l p=l 

or, alternatively, 

The work for this is O(1). 

5.2.2 Mode-n matrix multiplication for a Kruskal tensor 

Let X be a Kruskal tensor as in (14) and V be a matrix of size J x I,. From the 
definition of mode-n matrix multiplication and (15), we have 

x x n  v = [A ; ~ ( ~ 1 ,  . . . , ~ ( ~ - l ) ,  VU("), u("+~), . . . , W)]. 
In other words, mode-n matrix multiplication just modifies the nth factor matrix 
in the Kruskal tensor. The work is just a matrix-matrix multiply, O(RI,J). More 
generally, if V(n) is of size J, x In for n = 1,. . . , N ,  then 

[X p), . . . ,v  ( N )  ] - - p, ;v(l)u(1) 7 " ' )  V(N)U(N)] 

retains the Kruskal tensor format and the work is N matrix-matrix multiplies for 
O(R E, In Jn) .  

5.2.3 Mode-n vector multiplication for a Kruskal tensor 

In multiplication of a Kruskal tensor by a vector, the nth factor matrix necessarily 
disappears and is absorbed into the weights. Let v E RIn, then 

X x , v = [A * w ; U(l), . . . , U(n-l), U("+l) 7 " '  , U(N)] where w = U(")T~.  

This operation retains the Kruskal tensor structure (though its order is reduced), and 
the work is multiplying a matrix times a vector and then a Hadamard product of 
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two vectors, i.e., O(RIn).  More generally, multiplying a Kruskal tensor by a vector 
dn) E in every mode yields: 

Here, the final result is a scalar, which is computed by N matrix-vector products, N 
vector Hadamard products, and one vector dot-product, for total work of O ( R  E, In). 

5.2.4 Inner product of two Kruskal tensors 

Consider Kruskal tensors X and 3, both of size I1 x 1 2  x - - .  x I N ,  given by: 

X = [[A ; U(l), . . . , U(N)] and 3 = [a ; V(l), . . . , V(N)]. 

Assume that X has R rank-1 factors and 3 has S. From (16)) we have 

( X, Y ) = { vec(X), vec(3) ) 
T = AT (U(N) @ . . . @ u(1)) (v@) 0 . . . 0 v(1)) 0 

- p (U(N)TV(N) * . . . * U(1)TV(1) 0. 1 - 

Note that this does not require that the number of rank-1 factors in X and 3 to be 
the same. The work is N matrix-matrix multiplies, plus N Hadamard products, and 
a final vector-matrix-vector product. The total work is O(RS En In). 

5.2.5 Norm of a Kruskal tensor 

Let X be a Kruskal tensor as defined in (14). From 55.2.4, it follows directly that 

T U(N)TU(N) * . . . * U(1)TU(1) I lX / I2=(x ,xJ=~ ( > )  

and the total work is O(R2 En In).  

5.2.6 Matricized Kruskal tensor times Khatri-Rao product 

As noted in 32.6, a common operation is to calculate (6). Let X be a Kruskal tensor 
as in (14). And, let V(") be of size I ,  x S for m # n. In the case of a Kruskal tensor, 
the operation simplifies to: 

w = x (V(W 0.. . 0 V("+1) @ v(n-1) 0.. . 0 v(1)) 
- - U(")A (U(N) 0 . . . 0 U(n+1) 0 U(n-l) 0 . . . 0 U(l))T 

(v(") 0 . . . @ v ( n + l )  0 v("-1) @ . . . @ v(1)) . 
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Using the properties of the Khatri-Rao product 1421 and setting A(") = U(m)TV(") E 
RRxS for all m # n, we have 

W = U(n)A (A(N) * . . . * * * . . . * A(')) . 

Computing each A(,) requires a matrix-matrix product for a cost of O( RSI,) for each 
m = 1, . . . , n - 1, n + 1, . . . , N .  There is also a sequence of N - 1 Hadamard products 
of R x S matrices, multiplication with an R x R diagonal matrix, and finally matrix- 
matrix multiplication that costs O(RSIn).  Thus, the total cost is O(RS cn In). 

5.2.7 Computing X(n)XTn, 

Let X be a Kruskal tensor as in (14). We can use the properties of the Khatri-Rao 
product to efficiently compute 

z = x ( n ) x ( n ) T  E @ n x L *  

This reduces to 

Z = U(")A (V(N) * . . . * V("+I) * V("-l) * . . . * V(l)) 

where V(") = U(")TU(") E RRxR for all m # n and costs O(R21,). This is followed 
by ( N  - 1) R x R matrix Hadamard products, and two matrix multiplies. The total 
work in O(R2 En In).  

5.3 MATLAB details for Kruskal tensors 

A Kruskal tensor X from (14) is constructed in MATLAB by passing in the matrices 
U('), . . . , U(N) and the weighting vector X using X = ktensor(lambda, {Ul ,U2,U3}). 
If all the A-values are one, then the shortcut X = ktensor({Ul,U2,U3}) can be used 
instead. In version 1.0 of the Tensor Toolbox, this object was called the cp-tensor 
141. 

A Kruskal tensor can be converted to a standard tensor by calling full(X1. 
Subscripted reference and assignment can only be done on the component matrices, 
not elementwise. For example, it is possible to change the 4th element of X but 
not the (1,1,1) element of a three-way Kruskal tensor X. Scalar multiplication is 
supported, i.e., X*5. It is also possible to add to Kruskal tensors (X+Y or X-Y) as 
described in 55.2.1. 
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c 

The n-mode product of a Kruskal tensor with one or more matrices (55.2.2) or 
vectors (55.2.3) is implemented in t t m  and t t v ,  respectively. The inner product 
(55.2.4 and also $6) is called via innerprod. The norm of a Kruskal tensor (55 .2 .5)  
is computed by calling norm. The function mttkrp computes the matricized-tensor- 
times-Khatri-Rao-product as described in 55.2.6. The function nvecs (X, n> computes 
the leading mode-n eigenvectors for X(n)X[n) as described in 55.2.7. 
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6 Operations that combine different types of 
tensors 

Here we consider two operations that combine different types of tensors. Throughout, 
we work with the following tensors: 

D is a dense tensor of size I1 x I2 x - - . x I N .  

0 S is a sparse tensor of size Il x I2 x . - x I N ,  and v E Rp contains its nonzeros. 

0 IT = x IN with a core ; U('), . . . , U(N)] is a Tucker tensor of size Il x 1 2  x 
of size CJ E R J I X J Z X . . . X J N  and factor matrices U(") E RIn Jn for all n. 

0 X = [A ; W(l), . . . , W(N)] is a Kruskal tensor of size 11 x 12 x - x I N  and R 
factor matrices w(") E i@nXR. 

6.1 Inner Product 

Here, we discuss how to compute the inner product between any pair of tensors of 
different types. 

For a sparse and dense tensor, we have (23, S )  = vTz, where z is the vector 
extracted from D using the indices of the nonzeros in the sparse tensor S. 

For a Tucker and dense tensor, if the core of the Tucker tensor is small, we can 
compute 

( IT, 23 ) = ( 9, fi ) where fi = D x 1 U(l)T 

Computing 9 and its inner product with a dense 9 costs 

- X, U(N)T. 

The procedure is the same for a Tucker tensor and a sparse tensor, i.e., ( T, S ), though 
the cost is different (see 53.2.5). 

For the inner product of a Kruskal tensor and a dense tensor, we have 

( D, 3~ ) = vec(D)T ( ~ ( ~ 1  o - . - o ~ ( ~ 1 )  A. 

The cost of forming the Khatri-Rao product dominates: O(R n, In).  

The inner product of a Kruskal tensor and a sparse tensor can be written as 
R 

( S , X )  = CX,(S X I  w p . .  . XN w y ) .  
r=l 
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Consequently, the cost is equivalent to doing R tensor-times-vector products with N 
vectors each, i.e., O(RN nnz(S)), The same reasoning applies to the inner product 
of Tucker and Kruskal tensors, ( ’7, X ). 

6.2 Hadamard product 

We consider the Hadamard product of a sparse tensor with dense and Kruskal tensors. 

The product lj = 23 * S necessarily has zeros everywhere that S is zero, so only 
the potential nonzeros in the result, corresponding to the nonzeros in S, need to be 
computed. The result is assembled from the nonzero subscripts of S and v * z, where 
z is the values of D at the nonzero subscripts of S. The work is O(nnz(S)). 

Once again, lj = S * X can only have nonzeros where S has nonzeros. Let z E Rp 
be the vector of possible nonzeros for lj corresponding to the locations of the nonzeros 
in S. Observe that 

This means that we can compute it vectorwise by a sum of a series of vector Hadamard 
products with “expanded” vectors as in 53.2.4, for example. The work is O(N.nnz(S)). 



7 Conclusions 

In this article, we considered the question of how to deal with potentially large- 
scale tensors stored in sparse or factored (Tucker or Kruskal) form. The Tucker and 
Kruskal formats can be used, for example, to store the results of a Tucker or CAN- 
DECOMP/PARAFAC decomposition of a large, sparse tensor. We demonstrated 
relevant mathematical properties of structured tensors that simplify common oper- 
ations appearing in tensor decomposition algorithms, such as mode-n matrix/vector 
multiplication, inner product, and collapsing/scaling. For many functions, we are 
able to realize substantial computational efficiencies as compared to working with the 
tensors in dense/unfactored form. 

The Tensor Toolbox provides an extension to MATLAB by adding the ability 
to work with sparse multi-dimensional arrays, not to mention the specialized fac- 
tored tensors. Moreover, relatively few packages in any language have the ability 
to work with sparse tensors, and our investigations have not revealed any others 
that have the variety of capabilities available in the Tensor Toolbox. A complete 
listing of functions for dense (tensor), sparse (sptensor), Tucker (ttensor), and 
Kruskal (ktensor) tensors is provided in Table 1. In general, Tensor Toolbox objects 
work the same as MATLAB arrays. For example, for a 3-way tensor A in any for- 
mat (tensor, sptensor, ktensor, ttensor), it is possible to call functions such as 
size(A), ndims(A), permute(A, [3 2 11 1, -A, 2*A, norm(A) (always the F'robenius 
norm for tensors). A major difference between Tensor Toolbox objects and MATLAB 
arrays is that the tensor classes support subscript indexing (i.e., passing in a matrix 
of subscripts) and do not support linear indexing. This avoids possible complications 
with integer overflow for large-scale arrays; see 53.3. 

Due to their structure, factored tensors cannot support every operation that is sup- 
ported for dense and sparse tensors. For instance, most element-level operations are 
prohibited, such as subscripted reference/assignment , logical operations/comparisons, 
etc. In these cases, memory permitting, the factored tensors can be converted to dense 
tensors by calling full. However, there are certain operations that can be adapted 
to the structure. For example, it is possible to add two Kruskal tensors, as described 
in 55.2.1, and it is possible to do tensor multiplication and inner products involving 
Kruskal tensors, see $6. 

A major feature of the Tensor Toolbox is that it defines multiplication on ten- 
sor objects. For example, generalized tensor-tensor multiplication and contraction is 
supported for dense and sparse tensors. The specialized operations of n-mode mul- 
tiplication of a tensor by a matrix or a vector is supported for dense, sparse, and 
factored tensors. Likewise, inner products, even between tensors of different types, 
and norms are supported across the board. 

The Tensor Toolbox also includes specialized functions, such as collapse and 
scale (see §3.2.9), the matricized tensor times Khatri-Rao product (see §2.6), the 
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a Multiple subscripts passed explicitly (no linear indices). 
Only the factors may be referenced/modified. 
Supports combinations of different types of tensors. 

* New as of version 2.1. 

Table 1. Methods in the Tensor Toolbox 
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computation of the leading mode-n singular vectors (equivalent to the leading eigen- 
vectors of X,,,XT,,), and conversion of a tensor to a matrix. 

While we believe that the Tensor Toolbox is a useful package, we look forward 
to greater availability of storage formats and increased functionality in software for 
tensors, especially sparse tensors. For instance, the benefits of storing matrices in 
sorted order using CSR or CSC format generally outweigh the negatives, and so it 
makes sense to seek multidimensional extensions that are both practical and useful, 
at least for specialized contexts as with the EKMR [32, 331. 

Furthermore, extensions to parallel data structures and architectures requires fur- 
ther innovation, especially as we hope to leverage existing codes for parallel linear 
algebra. 
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