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Abstract 

 

This report presents the effort under way at Argonne National Laboratory toward a 
comprehensive, integrated computational tool intended mainly for the high-fidelity 
simulation of sodium-cooled fast reactors. The main activities carried out involved 
neutronics, thermal hydraulics, coupling strategies, software architecture, and high-
performance computing. A new neutronics code, UNIC, is being developed. The first 
phase involves the application of a spherical harmonics method to a general, unstructured 
three-dimensional mesh. The method also has been interfaced with a method of 
characteristics.  The spherical harmonics equations were implemented in a stand-alone 
code that was then used to solve several benchmark problems. For thermal hydraulics, a 
computational fluid dynamics code called Nek5000, developed in the Mathematics and 
Computer Science Division for coupled hydrodynamics and heat transfer, has been 
applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced 
burner reactors. Numerical strategies for multiphysics coupling have been considered and 
higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-
hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and 
Nek5000, and simplified problems have been defined and solved for testing. 
Furthermore, we have begun developing a lightweight computational framework, based 
in part on carefully selected open source tools, to nonobtrusively and efficiently integrate 
the individual physics modules into a unified simulation tool 
 
 
 
Results reported in the AFCI series of technical memoranda frequently are preliminary and subject to 
revision. Consequently, they should not be quoted or referenced without the authors’ permission.
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I Introduction 
 
As specified in the previous deliverable ANL-AFCI-168, advanced simulation of a 
reactor plant calls for an integrated high-fidelity system of software tools that describe 
the overall nuclear plant behavior, taking into account coupling of the systems and 
physical phenomena during reactor operations ranging from neutronics to fuel behavior 
and from thermal-hydraulics to structural mechanics.  
 
At Argonne National Laboratory, an effort has been initiated in this direction. 
Specifically, a new neutronics code, UNIC, is being written based on a single-step 
approach that will reduce approximations related to collapsing and homogenization of 
cross sections. In addition, the computational hydrodynamics code Nek5000 is being 
adapted to the needs of reactor simulation, in particular for fast sodium-cooled reactors. 
Coupling strategies are being devised to provide a better link between neutronics and 
thermal-hydraulics codes, and steps are under way to couple UNIC and Nek5000. Also 
under development are high-performance computing tools and a software architecture 
needed to carry out the huge calculations typical of this type of high-fidelity simulation.  
 
In the following sections, we document these activities, discuss our work with UNIC and 
Nek5000, and present sample problems as test cases for studying the coupling of the two 
codes. We conclude with an evaluation of software technologies for the future integrated 
system.  
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II Development of the Neutronics Code UNIC 
 
Current neutronics analysis requires two or more homogenization and group energy 
collapsing steps. The first step involves a local calculation to obtain the spectral self-
shielding for the individual pin. The second step requires an assembly-level calculation to 
obtain the spectral self-shielding for each assembly and to produce homogenous 
parameters for each unique assembly in the reactor. These assembly-level cross sections 
are used in a global geometry calculation to obtain the flux solution for a targeted reactor 
system.  
 
One of the major enhancements proposed for neutronics analysis is the elimination of the 
multistep calculational procedure for treating the energy variable. The objective is to 
exploit advances in both numerical and algorithmic efficiency, together with the 
significant increase in computing power offered by systems with several thousands of 
processors, in order to solve the neutron transport equation in a detailed three-
dimensional geometry with thousands of energy groups. Such a deterministic approach 
would directly compete with Monte Carlo methods and would offer the clear advantage 
of being systematic and of providing an adjoint solution for calculating sensitivity 
coefficients. This approach has been adopted for the new code, called UNIC (ultimate 
neutronics investigation code), being developed at Argonne. 
 
UNIC is planned to have very flexible geometrical options, as in the case of Monte Carlo 
stochastic-based codes, by using a general geometry description and a very large number 
of energy groups (of the order of 10,000) to eliminate spatial approximations, eliminate 
the lattice cross-section generation step, and account accurately for energy and space 
resonance self-shielding effects. The intent is to enable analysis of advanced nuclear 
reactor designs, including fast reactor systems. 
 
Two methods are under development for the UNIC code. The first method, PnFE, is 
based on the even-parity (second-order) form of the Boltzmann transport equation using 
the following discretization of the space-angle-energy phase space as a base method: 
 

• multigroup energy discretization, 
• three-dimensional finite elements in space, including curvilinear elements, and 
• spherical harmonics expansions in angle. 

 
The second is a method of characteristics approach based on the first-order integral 
transport equation. Coupling of the solution methods is ensured by continuity on 
boundaries of decomposed domains.  
 
At present, the PnFE code uses a conjugate gradient method with automatic 
preconditioning to solve the within-group linear system of equations. The PETSc 
(Portable, Extensible Toolkit for Scientific computation) library developed at Argonne’s 
Mathematics and Computer Science Division has been adapted for massively parallel 
solution of the multigroup problem. 
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After the first development phase, the UNIC code will provide a tool that combines the 
advantages of various methods such as spherical harmonics, discrete ordinates, and the 
method of characteristics. Whereas current reactor analysis tools use a form of the 
integral transport method (collision probability or method of characteristics) to handle the 
double heterogeneity, one can envision a characteristics formulation being used locally to 
handle the pin heterogeneity while a spherical harmonics formulation is used for the 
remainder of the domain. 
 
The key is to use flexible coding structures and develop a strategy for coupling the 
different methodologies (discrete ordinates, characteristics, spherical harmonics, etc.). To 
this end, we are using the variational nodal method, with which Argonne has 
considerable experience. This method splits the problem domain into large spatial 
“nodes,” or subdomains, and then uses spherical harmonic interface approximations to 
couple the nodes. In our recent work, we generalized the spherical harmonic interface 
conditions, thereby allowing different methodologies to be used in each subdomain. 
 
In Section II.1 we derive the multigroup transport equation and cast it in the common 
within-group form. In Section II.2 we give the derivation of the second-order form of the 
transport equation, followed by the discretization of the spherical harmonics finite 
element method. In Section II.3 we present the characteristics formulation, and in Section 
II.4 we discuss the coupling of the two methodologies with the spherical harmonic 
conditions. In Section II.5 we provide information about mesh generation. In Section II.6 
we present preliminary results obtained with the spherical harmonics-based methodology. 
 
II.1 The Within-Group Neutron Transport Equation 
 

The formulation starts with the time-independent form of the Boltzmann transport 
equation taken from Lewis and Miller [1]: 
ˆ ˆ ˆ( , , ) ( , ) ( , , )

ˆ ˆ ˆ ˆ( , ' , ' ) ( , ', ') ' ' ( , , )

� �

�

��� � �� � �

� � �� � � � � �� �

� � � �

� � �
t

s

r E r E r E

r E E r E d dE S r E
. (1) 

Where 
ˆ( , , )r E� �
�

 represents the neutron angular flux and is a function of three space 

variables (x, y, z in r
�

), two angular variables (�  and �  in �̂ ), and one energy variable 
(E).  The total cross section, ( , )t r E�

�
, represents the sum of all possible neutron reaction 

probabilities with energy E at the point r
�

. Similarly, the scattering kernel 
ˆ ˆ( , ' , ' )s r E E d dE� � �� � �
�

 represents the probability that a particle at r
�

 with energy 

'E  traveling in the direction ˆ '�  is scattered into energy dE about E with direction d�  
about �̂ . ˆ( , , )S r E�  is a generic neutron source that includes fission sources as well as 
fixed and external sources. 
 

For the initial derivation, isotropic scattering is used to simplify the discussion 
(implementation of anisotropic scattering is discussed elsewhere).  The substitution of an 
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isotropic scattering kernel in place of the anisotropic scattering kernel simplifies Eq. (1) 
to  
ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( , ' ) ( , ') ' ( , , )� � ���� � �� � � � � � ��
� � � � � � �

t sr E r E r E r E E r E dE S r E ,           (2)   

where the scalar flux relationship ˆ( , ) ( , , )r E r E d� �� � ��
� �

 
has been employed. 

 
The first step in a deterministic formulation is to apply a multigroup approach [1] to 

the energy dependence of the neutron flux.  This approach divides the energy range of 
interest into G intervals with an upper energy cutoff, 0E , and lower energy cutoff, GE , as 
seen in Figure 1.   
 
 

 
 

Figure 1. Splitting of the energy range into energy groups 
 

The desire is to develop G equations based upon the group angular fluxes ˆ( , )g r� �
�

 and 

the group sources ˆ( , )gS r �
�

 defined by Eqs. (3) and (4). 
1ˆ ˆ ˆ( , ) ( , , ) ( , , )

g

g

E

g
E g

r r E dE r E dE� � �
	

� � � � �� �
� � �

 
1, ,= �g G  (3) 

ˆ ˆ( , ) ( , , )g
g

S r S r E dE� � ��
� �

 
1, ,= �g G  (4) 

To obtain these G equations, Eq. (2) is integrated over each energy group g and the 
following relations are defined for the group cross sections. 

, ,( ) ( ) ( , ) ( , )t g g t g
g

r r r E r E dE� �� � ��
� � � �

  
(5) 

, '
'

( ) ( ) ( , ' ) ( , ') 's g g g s
g g

r r r E E r E dE dE� ��� � � �� �
� � � �

  (6) 

Using these relationships the multigroup Boltzmann transport equation is given as 

, , ' '
'1

ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( , )
G

g t g g s g g g g
g

r r r r r S r� � ��
�

��� � �� � � � � �

� � � � � � �

. 1, ,= �g G  (7) 

To simplify this expression all but the within group scattering ( 'g g= ) can be lumped 
into the group source thus arriving at the following within group form of the transport 
equation 

, ,
ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( , )g t g g s g g g gr r r r r S r� � ����� � �� � �� � �
� � � � � � �

. 1, ,= �g G  (8) 
 
II.2 Second-Order Even-Parity Spherical Harmonics Method 
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II.2.A Even-Parity Transport Equation 
 

The first step in the spherical harmonics formulation is to transform the within-group 
equation into an even-parity form. This is accomplished by splitting the angular flux into 
even- and odd-parity components given by 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r r� � �� 	� � � � �
� � �

,  (9) 
where + denotes even parity and – denotes odd parity.  The even and odd parity 
components of the flux have the following properties, where the function ( )g r�

�
 

represents the group scalar flux. 
 
Even Odd 

ˆ ˆ( , ) ( , )g gr r� �� �� � 	�
� �

 
ˆ ˆ( , ) ( , )g gr r� �	 	� �	 	�

� �
  (10) 

ˆ( , ) ( )g gr d r� �� � ���
� �

 
ˆ( , ) 0g r d�	 � ���
�

 

Inserting Eq. (9) into Eq. (8) yields the equation 

,

,

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( , )

ˆ ˆ ˆ( ) ( , ') ( , ') ' ( , )

g g t g g g

s g g g g g

r r r r r

r r r d S r

� � � �

� �

� 	 � 	

� 	
�

� � � ���� � � � �� � � � � �  �� � � �
� �� �� � � � � � � � �� �� ��

� � � � � �

� � � � .  (11) 

Equation (11) can be evaluated at Ω− ˆ  to get  

,

,

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( , )

ˆ ˆ ˆ( ) ( , ') ( , ') ' ( , )

g g t g g g

s g g g g g

r r r r r

r r r d S r

� � � �

� �

� 	 � 	

� 	
�

� � � �	��� 	� � 	� �� 	� � 	� � �  �� � � �
� �� �� 	� � 	� � � 	� � �� �� ��

� � � � � �

� � � �

 

  (12) 

Upon adding Eq. (11) to Eq. (12) and using the even and odd parity flux definitions in 
Eq. (10), the even parity form of the transport equation, given by Eq. (13), is obtained.  In 
a similar fashion, subtraction of Eq. (12) from Eq. (11) will lead to the odd parity form of 
the transport equation in Eq. (14). 
 
Even Parity 

, ,
ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( ) ( , ) 2 ( ) ( ) ( , ) ( , )g t g g s g g g g gr r r r r S r S r� � �	 �

����� � � �� � � �� � � � 	�
� � � � � � � �

 (13) 
Odd Parity 

,
ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( ) ( , ) ( , ) ( , )g t g g g gr r r S r S r� �� 	���� � � �� � � � 	 	�
� � � � � �

.  (14) 
 

To simplify the derivation, we use an isotropic source in addition to an isotropic 
scattering kernel. This approach simplifies Eqs. (13) and (14) to Eqs. (15) and (16), 
respectively.  
 
Even Parity 

, ,
ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( )g t g g s g g g gr r r r r S r� � �	 �

���� � �� � �� �
� � � � � � �

   (15) 
Odd Parity 

,
ˆ ˆ ˆ( , ) ( ) ( , ) 0g t g gr r r� �� 	��� � �� � �
� � � �

.  (16) 
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Equation (16) can now be solved for ˆ( , )g r�	 �
�

 and substituted into Eq. (15) to obtain Eq. 
(17), the second-order form of the even parity transport equation. 

, ,
,

1ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( )
( ) g t g g s g g g g

t g

r r r r r S r
r

� � �� �
�

� �	 ���� ��� � �� � �� � �� �� �

� � � � � � � �
�

  
 (17) 

This differential equation is accompanied by boundary conditions that constrain the 
angular flux along the boundary of the problem domain which are discussed later. 
 
II.2.B Weak Form of the Even-Parity Equation 
 
Temporarily dropping the group notation for simplicity, we weight Eq. (17) with the even 
parity functions ������� �

�
and integrate over space and angle to obtain the weak form  

�� � � � ���� ��� �� ��� ����
��

������

� �

�

�� � � � � � � �
�

�� � � � �

� � � �

�

� � �

�

� �� �	 � �� � ��� ��� � �� � 	� � � ��� �� �

� �

� �

� �

� �� � � � � �
�

� �
, (18) 

where the integration is over the volume of the domain. Applying the divergence 
theorem, we obtain 

1ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( ) ( , )
( )

ˆ ˆ( , ) ( ) ( ) ( , ) ( )

ˆ ˆ ˆˆ ( , ) ( , )

t
t

s g

r r r r r d dV
r

r r r r S r d dV

n r r d d

� � � �

� � �

� �

� � � �

� �

� 	

� �
 ���� � ��� � � � � � � ��� �
� �� � � � � � �� �

	 �� � � � �

� �

� �
� �

� �� � � � �
�

� � � � �

� �
�� �

, (19) 

where n̂  is the outward normal from the domain surface, Γ . The incoming angular flux, 
ˆ( , )�� �
�
r , is known on the domain surface and can be expressed for each group as 

follows. 
ˆ ˆ ˆ( , ) ( , ) ( , )� � �� 	

� � �� � � � �
� � �
r r r  ��

�
r , ˆ ˆ 0�� �n

 

(20)

 

Modified natural boundary conditions can be obtained by forming weighted residuals 

� �
� � �

� � � ���� ��� ��� ��� �
�

� � � � � �� � � �� � 	
� � �

�� �

� � � � � � 	 � �� �
� � � �

�

 

(21) 

Using angular parity arguments, we take the boundary term from Eq. (19) and write 

� � �

� � �� ��� ���

� � � � � �� ���� ��� � ��� ���
�

� � � � �

� � � � � � � � � �

� �

� � � �

� 	
�

� � �
� �

�� �

� � �� � � �

� � �� � � � � � �� � �

� �

� � � �

� �

� � � �

�

� �

 

 (22) 

Substituting Eq. (22) into Eq. (19), we obtain the primal form of the second-order 
equation with modified natural boundary conditions: 

� � � � � �

� � � � �

� 	 � � � �

� � � �
�

�� �

� ���� � ��� � � 	 � � �� �

� � 	 � � �� 	 � � ��

� �
� � � � � �

� �

� �

�

� � �

� �

� �� �� �

�� �

�

���

���� � � � � � �
. (23)  
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Note that the space, angle, and group information in Eq. (23) was dropped for 
simplification purposes. The boundary even-parity flux was also assumed to be solved for 
using the even-parity approximation internal to the domain. 

Given that we can solve Eq. (23) for ˆ( , )�� �
�
r  using �  and the incident angular flux 

�� , then, in the weak sense, we can construct the outgoing angular flux, �� , using 

� �
� � �

� � �
�

� � � � � � �� � 	
� � �

�� �

� � �� � 	 �� �� .  (24) 

In a diffusion approximation where ˆ( , ) ( )r r� �� � �
� �

 and ���� ��� �� �� � �
� �

 , and 
ˆ ˆ( ) ( , )J r d rψ −

Γ Γ= ΩΩ Ω�
� � �

 , Eq. (21) reduces to 

� � � � � �� �
	 �

� � �

� �� � ��� �
�

� � � � � � � � �� � �� � �

�� �

� �
 �� 	 � 	 � �� � � �
 �� �

� �
�� � � �

� , (25) 

where � � � �� �
	 ��� � � ��� �	 �

�� �
 is the classical form of the incoming partial current � 	  

assuming Rumyantsev interface conditions are imposed. Similarly, Eq. (24) reduces to  

� � � � � �� �
	 �

� � �

� �� � ��� �
�

� � � � � � � � �� � �� � �

�� �

� �
 �� � � 	 � �� � � �
 �� �

� �
�� � � �

� , (26) 

where � � � �� �
	 ��� � � ��� �� �

�� �
 is the classical definition of the outgoing partial current � �  

where Rumyantsev interface conditions are again assumed. Later, the splitting of the 
problem domain into multiple subdomains is discussed, and the relevance of Eqs. (25) 
and (26) will become self-evident. 
 
II.2.C Discretization of the Even-Parity Transport Equation 
 
The spherical harmonic functions are defined as  

ˆ( ) ( ) em m m imY C P φµΩ = ⋅ ⋅
� � �

, (27) 

where ( )mP µ
�

 represents the associated Legendre function ( cos( )µ θ= ) and the 
normalization constant is given by 

(2 1)( )!
( )!

m m
C

m
+ −=

+�

� �

�
. (28) 

The spherical harmonic functions can be separated into sine and cosine series. 

, ,
ˆ ˆ ˆ( ) ( ) ( )m e o

m mY Y i YΩ = Ω + Ω
� � �

  (29) 

,
ˆ( ) ( ) cos( )e m m

mY C P mµ φΩ = ⋅ ⋅
� � �

 (30) 

,
ˆ( ) ( ) sin( )o m m

mY C P mµ φΩ = ⋅ ⋅
� � �

 (31) 

Equations (30) and (31) are unique in that the functions ,
ˆ( )e

mY Ω
�  are even parity with 

respect to φ  and the functions ,
ˆ( )o

mY Ω
�  are odd parity with respect to φ . 
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The governing equation for the finite-element domain is given earlier as Eq. (23), and the 
even parity flux ˆ( , )�� �

�
g r

 

and weight function ˆ( , )�� �
�
r  can be approximated with a set 

of even parity angular functions to obtain 
ˆ ˆ( , ) ( ) ( )� �� �

�� � �
� �T

g r Y r  (32) 
ˆ ˆ( , ) ( ) ( )� �� �

�� � �
� �
r Y r  (33) 

where the set of even-parity functions ˆ( )� �
TY , are given as 

0, 2, 2, 1, 1,
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )� 	 	

� �� � � � � � � �� ��
T e e o e o

m m m N m N mY Y Y Y Y Y .

 

0,1,2, ,� �m l     (34) 

Note that the even-parity expansion has the series property 0,2, , 1� 	�l N  where N is 
odd, thereby selecting the even-parity set of functions with respect to �  from Eqs. (30) 
and (31). 

 
We next inspect the spatial approximation, designated as the finite element method. 

With this method, the problem domain is subdivided by using a finite element mesh as 
seen in Figure 2. Each finite element in the mesh is defined through the use of spatial 
vertex points (typically called nodes in the finite element literature).   

 
 

 
 

Figure 2. Finite-element mesh representation of a pin-cell geometry. 
 
Mathematically, this subdivision is applied to Eq. (19), reproduced here as Eq. (35): 

,
,

,

1ˆ ˆ,

ˆ ˆ
� �

� � � � � �

� � � � �

� 	 � � � �

� � � 	
�

� �
 �� �� � ��� ��� � � � �  �� � � �� �
� �	 � � � �� � � �� �

� �

� � � �

� �

�

g g g t g g
t g

s g g g g g

d dV

S d dV n d d

, (35) 

yielding the elemental equation 
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, , , , ,
,

, , , ,

1ˆ ˆ,

ˆ ˆ

e
e g e g e g e t g g e ee

t g

e
s g g g e g e e g e

d dV

S d dV n d d �

� � � � � �

� � � � �

� 	 � � � �

� � � 	
�

� �
 �� �� � ��� ��� � � � �  �� � � �� �
� �	 � � � � �� � � �� �

� �

� � � �

� �

� �

. (36) 

and the relation between 35 and 36 of 

, ,, ,� � � �� 	 � 	� � � �� � � �  �� � � �
g g e g e g e
e

. (37) 

Note that in Eq. (36), the spatial integration is carried out over each element rather than 
the entire problem domain and that the surface integral has been split into a sum of 
integrals over each element surface �� . 
 
The combined space-angle approximation for the even-parity flux and weight functions 
becomes 

, ,
ˆ ˆ( , ) ( ) ( )� �� �

� �� � �
� � �T T

g e e g er Y L r   (38) 
ˆ ˆ( , ) ( ) ( )e er Y L rλ+

+ ⊗Ω = Ω� �
  (39) 

where ⊗  represents a tensor product of the spatial and angular vector of trial functions. 
The same spatial approximation is used for the source and scalar flux, leading to 

, ,( ) ( )T
g e e g eS r L r S=� � �  , (40) 

and 

, ,

, , ,

( ) ( )

ˆ ˆ( , ) ( ) ( ) ( )

� �

� � �� � �
� �� �

�

� � � � � � �� �

� � �

� � �� �

T
g e e g e

T T T T
g e e g e e g e

r L r

d r d Y L r J L r
 . (41) 

Inserting Eqs. (38)–(40) into Eq. (36) leads to the following matrix equation 

, , , , , , ,
,

, ,

1
,

ˆ ˆ

e e e T e e
e g e g e K L K L t g s g g g ee

t g

e
g e g e

H P I F J J F

J F S n d d �

� � �

� �

� 	 �
� � � �

� 	
�

� � �

�

� �
 �� �� � � � 	 � �  �� � � �� �

	 � �� � �� �

� �

� � �

. (42) 

The individual angular matrices are given as 

,
ˆ ˆ ˆ ˆ( ) ( )� �� � � � � �� T

K L K LH Y Y d ,  (43) 

ˆ ˆ( ) ( )TI Y Y d� � �� � � �� ,  (44) 

and 
ˆ( )� �� � ��J Y d ,  (45) 

while the spatial matrices are given as 

, ( ) ( )e T
K L K e L e eP L r L r dV= ∇ ∇�

� �� �
, (46) 

and 
( ) ( )e

e e eF L r L r dV= �
� �

. (47) 

Equation (42) can be simplified by defining the matrices and vectors 
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, , , , ,
,

1 e e e T e e
g e K L K L t g s g ge

t g

A H P I F J J F� � � �� � �� � � 	 �
�

. (48) 

, ,� �� �� e
g e g es J F S .  (49) 

to obtain  

, , , , , ,
ˆ ˆ ˆˆ, ( , ) ( , )� � �� � � � �� 	 � � 	� �� � 	 � �� � � � � �� � � �

� �� �e g e g e g e g e g e e g eA s n r r d d . (50) 

 
II.3 Method of Characteristics 
 
II.3.A Integral Form of the Transport Equation 
 

Similar to the spherical harmonics formulation, the within-group transport equation 
can be used as the starting point of the characteristics formulation and is reproduced in 
Eq. (51). 

, ,
ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( , )g t g g s g g g gr r r r r S r� � ����� � �� � �� � �
� � � � � � �

. 1, ,= �g G  (51) 
For simplicity, the external source is assumed to be isotropic, and the total source for 
each group is merged into the emission density ( )gq r

�
: 

,

,

ˆ ˆ ˆ( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( )
g t g g g

g s g g g g

r r r q r

q r r r S r

� �

��

��� � �� � �

�� �

� � � � �

� � � � .  (52) 

To obtain the integral form of the transport equation, we recognize that the streaming 

operator ( �̂��
�

) is the directional derivative along the direction of neutron travel, 
allowing Eq. (52) to be written as 

,
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( )g t g g g

d
r u r u r u q r u

du
� �� � � �� � � � � � � � �
� � � �

,  (53) 

where u is the direction along the line of neutron travel as shown in Figure 3. We can 
reverse the direction such that we consider neutrons traveling to the point of interest, 
thereby obtaining 

,
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( )g t g g g

d
r R r R r R q r R

dR
� �	 	 � � �� 	 � 	 � � � 	 �
� � � �

  (54) 

where u and R are equal in magnitude but the sign is different. 
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Figure 3. Diagram of the neutron travel along the direction �̂ . 
 
The derivative with respect to R can be removed by using the integrating factor  

,

0

ˆexp ( ' ) '
R

t g r R dR
� �
 �	 � 	 � �
 �� �
�

�
.  (55) 

yielding 
'

,

0 0

,

0

ˆ ˆ ˆ( , ) ( ' )exp ( '' ) '' '

ˆ ˆ ˆ( , ) exp ( '' ) ''

R R

g g t g

R

g t g

r q r R r R dR dR

r R r R dR

�

�

� �
 �� � 	 � 	 � 	 � �
 �� �
� �
 �� 	 � � 	 � 	 � �
 �� �

� �

�

� � �

� �

.  (56) 

Equation (56) gives the solution of the flux at a given point in space as a function of the 
source contribution over the preceding distance R and the uncollided flux at distance R 
along the direction �̂ . Using the finite element domain decomposition, we find that the 
cross sections within each finite element are constant. With a spatial finite-element 
decomposition, the angular discretization of Eq. (56) involves drawing rays that track 
through the domain from boundary to boundary, as seen in Figure 4. The discrete angular 
directions are chosen such that the unit sphere is “sufficiently” discretized. The spatial 
distribution of the rays is chosen by defining a spatial quadrature on the boundary surface 
of the domain.  
 
In standard characteristics an equally spaced Simpson’s rule or a back projection is used. 
The back projection approach, in which the surfaces of each element are projected to a 
normal plane for a given angular direction, is generally more accurate because it allows 
one to spatially place the rays such that at least one ray from the boundary will pass 
through every finite element in the domain. In most implementations, including the one 
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shown here, the angular flux along each of these rays is assumed to be constant in the 
direction perpendicular to the ray, and thus the area, iA , is assigned to each ray leading to 
a piecewise constant approximation in the normal direction. Under these assumptions, the 
solution of the transport equation is exact along the direction of the ray and takes the 
form shown in Eq. (56). 

 
 

 
 

Figure 4. Example angular ray propagation through the domain. 
 
Equation (56) can be reduced to Eq. (57) in terms of the flux at the entry point, ,

ˆ( )IN
g i n� � , 

and the exit point, ,
ˆ( )OUT

g i n� � , along a fixed trajectory, on the boundary of an element e as 
shown in Figure 5. This is commonly termed the propagation equation, referring to the 
way in which the incoming boundary flux is propagated through the domain to the exiting 
boundary surface for a given angular direction. 

,

, , , , ,

0

ˆ ˆ ˆ( ) ( ' ) exp ' ' ( )exp
i eR

OUT e IN e
g i n g t g g i n t g i eq r R R dR R� �� � � �� � 	 � 	� � � 	� �  �� � � ��

�
  (57) 

If the source is assumed to be flat within each finite element (a typical approach in the 
method of characteristics), Eq. (57) reduces to 

, , , , , ,
,

ˆ ˆ( ) 1 exp ( )exp
e
gOUT e IN e

g i n t g i e g i n t g i ee
t g

q
R R� �� �� � � �� � 	 	� � � 	� �  � �� � � �� ��

.  (58) 
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Figure 5. Ray propagation through a triangular finite element. 
 

 
For each finite element one can construct a balance over the volume for each direction to 
obtain 

, ,
, ,

1ˆ ˆ ˆ( ) ( ) ( )
e
ge OUT IN

g n i g i n g i ne e
i et g e t g

q
A

V
� � �

�

� �� � 	 � 	 � �� �� � 
 .  (59) 

where eV  is the volume of the element, iA  is the area assigned to each ray, and ˆ( )e
g n� �  is 

the element-averaged angular flux. We note that the sum encompasses all those rays with 
direction ˆ

n�  that pass through the element e. 
 
Using Eq. (59), we obtain the angular flux moments within each element such that the 
flat source moments are reconstructed. Given that isotropic sources were used in this 
derivation, the scalar flux equation given by Eq. (60) is obtained. 

, ,
, ,

ˆ ˆ ˆ( ) ( ) ( )
e
ge e OUT INn

g g n n i g i n g i ne e
n n i et g e t g

q w
w A

V
� � � �

�

� �� � � 	 � 	 � �� �� �
 
 
 .  (60) 

where nw  are the weights of the angular quadrature. When this product is obtained, the 
new source within each element can be constructed, and the source iteration procedure is 
straightforward. 
 
The solution of the system of equations is quite different from other neutron transport 
methods in that the inner iteration does not directly involve the solution of the flux on an 
element-by-element basis. Instead, the incident flux along the boundary of the domain is 
propagated through the entire domain along individual rays in computational sweeps that 
are independent of each other (the solution is independent of the ordering of the rays).  
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The contribution to each element is accumulated from each ray as each ray is processed. 
Only after all of the rays in all directions have been processed can the next outer iteration 
be performed. This approach has significant parallel advantages, although we note that 
the construction of the new iteration source still requires extensive communication. The 
primary expense of this method is the ray tracing, which must be performed up front. 
Moreover, given that the projection of the boundary of curvilinear elements is very 
expensive, one must be careful to pick a scheme that will pick starting ray positions such 
that each element is crossed by at least one ray in every direction. A form of this 
methodology is currently being tested for implementation in the UNIC framework. 
 
II.4 Neutron Transport Equation Multisolution Coupling Strategy  
 
From the second-order spherical harmonics derivation, Eq. (50), the odd-parity flux along 
the boundary was not defined. Similarly, the angular flux along the boundary of the 
problem domain in the method of characteristics was also not defined. In this section we 
first assume a single problem domain that has been split into multiple pieces, termed sub-
domains, each having a closed surface DΓ . These subdomains are coupled together by 
using a generic interface condition. In this work, two general interface conditions are 
considered, and thus coupling with the second-order even-parity method is investigated. 
In the first, the adjacent domain is assumed to be approximated with a spherical harmonic 
method, and thus a spherical harmonic interface condition must be used. In the second, 
the adjacent subdomain is assumed to have a method of characteristics approach, and thus 
a different interface condition must be used. 
 
II.4.A Adjoining Spherical Harmonic Subdomains 
 

For the situation where the adjoining subdomains are both treated with the spherical 
harmonics approximation, we begin by approximating the angular interface flux with 

, , ,
ˆ ˆ( , ) ( ) ( )T T

g gr Y h r� �� �� �
� � ��� � �
� � � . ,Dr γ∈Γ�       (61) 

and  

, , ,
ˆ ˆ( , ) ( ) ( )T T

g gr Y h r� �� �	 	
� 	 ��� � �
� � � . ,Dr γ∈Γ�       (62) 

Here, ( )h r�

�
 is a vector of spatial trial functions defined only on the interface ,D γΓ , which 

in their lowest form are 0th order for each finite element. ,
ˆ( )TY �� �  and ,

ˆ( )TY �	 �

 

are vectors 
of even- and odd-parity spherical harmonics aligned such that the polar axis is 
perpendicular to γΓ . The set of odd-parity functions is further truncated such that they 
meet Rumyantsev conditions along the subdomain boundary. Together these functions 
can be represented by using 

, ,
ˆ ˆ( ) ( )Y Y� �� � �� � �� ,        (63) 

, , ,
ˆ ˆ( ) ( )Y Y� � �	 	 	 	� �� �� ,        (64) 

where ,���  is a rotation matrix to align the set of spherical harmonics with the outward 

normal and ,�	�  is a truncation matrix to form the set of valid Rumyantsev functions. 
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To use these expressions, we expand Eq. (50), reproduced here as Eq. (65), where the 
incoming angular flux has been expanded in terms of the even- and odd-parity flux 
components and the boundary even-parity flux was assumed to be solved for as done 
before. 

, , , , , ,

,
ˆ ˆ 0

,
ˆ ˆ 0

, ,

ˆ ˆ ˆˆ2 ( , ) ( , )

ˆ ˆ ˆˆ2 ( , ) ( , )

e g e g g g e g e g e

e g

n

e g

n

A s

n r r d d

n r r d d

�

�

� � � �

� �

� �

� � 	 �
� �

� �
�

�� �

� 	
�

�� �

� �� � 	 �� �

� �� � � � �

� �� � � � �

� �

� �

� �

� �

� �

�

�

, (65) 

Substituting in the expressions from Eqs. (61) and (62), we obtain the following two 
expressions for the undiscretized boundary expressions in Eq. (65). 

, , ,
ˆ ˆ 0

, , , ,
ˆ ˆ 0

ˆ ˆ ˆˆ ( ) ( ) ( ) ( )

ˆ ˆ ˆˆ ( ) ( ) ( ) ( )

T T T
e g g

n

T T T T
e g g

n

n Y L r Y h r d d L D

n Y L r Y h r d d K D

� � � � �

� � � � � �

� �

� �

� �
� � � � �

�� �

	 	
� 	 	 	 � �

�� �

� � �

� � �

�� � � � � �

�� � � � � � �	

� �

� �

� � � �

� � � �

�

�

�

�
 (66) 

Defining both of these variables separately is a general mathematical violation because it 
effectively states that both the incoming and outgoing angular flux are explicitly known. 
As a result, we must define them as a single unknown.  

, , ,g g gj L I K I� � � �� �	 � 	
� � �� �� 	� �   (67) 

For the remainder of the continuity conditions we project the angular finite-element flux 
solution to the boundary to obtain  

, , ,g g gj L I K I� � � �� �� � 	
� � �� �� �� � .  (68) 

Across the interface between adjoining subdomains, the outgoing “current” for one 
subdomain defined by Eq. (68) becomes the incoming “current” defined by Eq. (67) for 
the adjoining subdomain. The reverse is also true, thereby leading to an iterative solution 
process. 
 The even-parity component of Eq. (68) is obtained by directly projecting the even-
parity flux defined earlier in Eq. (38). We then have 

, ,
ˆ ˆ( , ) ( ) ( )� �� �

� �� � �
� � �T T

g e e g er Y L r  . (69) 
Projecting to the same spatial trial functions along the interface for the even parity 
variables, we obtain the integral expression 

, ,
ˆ ˆ 0

, , ,
ˆ ˆ 0

ˆ ˆ ˆˆ ( ) ( ) ( , )

ˆ ˆ ˆˆ ( ) ( ) ( ) ( )

g e

n

T T T T
e g e g e

n

n Y h r r

n Y h r Y L r d d L D

� �

� � � � �

�

� �

�
� �

�� �

� �
� � �

�� �

�

� � �

�� � � �

�� � � � � �

� �

� �

� �

� � � �

�

�

�

�
, (70) 

For the odd-parity component of Eq. (68), the odd-parity transport equation of Eq. (16) 
must be used:  

, ,
,

1ˆ ˆ ˆ( , ) ( , )g e g ee
t g

r r� �	 �� �	 ��� �
�

�� �
.  (71) 

Equation (71) is valid everywhere in the domain, including along the boundary separating 
subdomains. Thus, there are several ways to employ this equation to obtain the targeted 
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solution. One straightforward approach is to simply solve for the od-parity flux 
everywhere in the domain. This approach uses the same spatial representation as that 
used for the even-parity flux (continuous finite element), and the projection to the 
boundary is also be the same. However, this approach results in the following elemental 
expression that, after element assembly, requires the inversion of the left-hand side: 

, ,
,

1e e
g e K K g ee

t g

I F V U� �	 �
	 � ��	

�
.  (72) 

This inversion is similar to that required to solve the even-parity flux, which is quite 
expensive and thus inadvisable.  
 
Another approach is to implement a discontinuous spatial representation for the odd-
parity flux, which is obtained only in those elements along the boundary of the domain 
(i.e., where it is needed). In this approach the spatial representation is flexible, and thus 
either the finite element approximation or a set of polynomial trial functions (not 
necessarily orthonormal) can be used, expressed as follows. 

[ ]1
( )

( )
T
e T

e

x y z xy yz xz polynomial
g r

L r finite element

�
= �
�

��
� . (73) 

For the polynomial representation, a spatial expansion order is chosen such that it is 
sufficient for the surface projection. The total odd-parity approximation within each 
element is given by 

, ,
ˆ ˆ( , ) ( ) ( )T T

g e e g er Y g r� �	 	
	 �� � �

� � � . (74) 
Implementing Eqs. (74) and (38) into Eq. (71) results in the following local matrix 
relation 

, ,
,

1 e
e g e K K g ee

t g

I O V N� �	 �
	 � ��	

�
� � .  (75) 

The new matrices are defined as 
ˆ ˆ( ) ( )TI Y Y d	 	 	� � � �� ,  (76) 

ˆ ˆ ˆ( ) ( )T
K KV Y Y d	 �� � � � �� ,  (77) 

( ) ( )= �
� �T

e e e ef g r g r dV , (78) 

( ) ( )e T
K e K e eu g r L r dV= ∇�

�� �
. (79) 

The matrix defined by Eq. (78) is relatively easy to invert and leads to the matrix relation 
for the odd-parity internal distribution of 

1
, ,

,

1 e
g e K e K g ee

t g

V f u� �	 	 �
��	
�

� � .  (80) 

The relationship between the odd-parity boundary flux and internal element odd-parity 
flux is given by 

, ,
ˆ ˆ( , ) ( , )g g er r� �	 	

� � � �
� �

. r ���
�

  (81) 
Weighting Eq. (81) with the boundary odd-parity flux approximation yields the identity 

, , , ,
ˆ ˆ ˆ( ) ( ) ( , ) ( , ) 0T

g g eY h r r r d d� � � �� �	 	
	 	 	 �� � �� � � 	 � � � � �� �� �

� � �
� , r ���

�
 (82) 
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which simplifies to 

, , , , , ,
T T

g g eI d� � � � � �� �	 	
	 	 � 	 	� �� � ��� �� ,  (83) 

where the new matrix is defined as 
( ) ( )T T

ed h r g r d� � �� ��
� �

.  (84) 

Solving Eq. (83) for the odd parity coefficients, we have 

� � 1

, , , , , ,
T T

g g ed� � � � �� �
		 	

� 	 	 	 	 �� � � �� �� ,  (85) 

which along with Eq. (80) can be substituted into Eq. (68) to obtain 

� � 1 1
, , , , , ,

,

1T T T T e
g K e K g ee

t g

j L D K V d f u� � � � � � � � �
	� 	 �

� 	 	 	 	� �
� �
 �� 	 � � � �� �� �

�� , (86) 

for each element. 
 
Another approach for using Eq. (71) is to directly apply it on the surface of the element 
for which the projection desired is shown in Eq. (87). 

, ,
,

1ˆ ˆ ˆ( , ) ( , )g g ee
t g

r r� �	 �
� � �	 ��� �

�

�� �
. r ���

�
 (87) 

In this approach, the even parity flux approximation must be evaluated along the targeted 
boundary and then the derivative is applied. Weighting Eq. (87) with the boundary odd-
parity flux approximation yields the following. 
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Equation (88) is reduced to the matrix relation 
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with the matrix definition 
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K K eT h r L r d . (90) 

Equation (89) can be solved for the odd-parity coefficients, yielding 
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and can be substituted into Eq. (68) to obtain  
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It is unclear at this point whether the use of a discontinuous finite-element flux 
representation is best, hence the inclusion of the polynomial representation in Eq. (73). 
Additionally, Eqs. (86) and (92) result in roughly the same amount of work for the 
polynomial approximation because the spatial integrations are independent of the cross 
sections (i.e., they can be performed once and stored for each element). Overall, the 
above representations merely pose possible choices, and only numerical studies will show 
which approach is the best. In conclusion, the above equations can be used to obtain 



 22 

partial “current” representations for an iterative procedure for connecting to a subdomain 
by using a spherical harmonics flux approximation. 
 
II.4.B Coupling with a Different Methodology 
 
We next consider the case where an adjoining subdomain is treated with a method of 
characteristics (MOC) approach. We note that the approach for a discrete ordinates 
approach would be remarkably similar to MOC because both use a discrete set of angular 
directions to approximate the angular variable. As a result, we term these methods 
discrete angular (DA) methods. In a DA method, the angular representation along the 
subdomain boundary is a discrete set of angular directions, and the angular flux 
representation is given by 

, , ,
ˆ ˆ( , ) ( ) ( ) ( )T T

n n nr p r p r� � � � � � �� � �� ��� � � �� � � ��� � � � ,  (93) 

where ( )p r�

�  is a vector of the spatial trial functions. For a discrete ordinates subdomain 
these spatial functions can be finite element trial functions similar to the preceding 
spherical harmonics method. For a MOC subdomain the spatial functions will be 
piecewise flat on each element surface along the subdomain boundary. The spatial 
relation for the incoming and outgoing flux between the DA domain and the spherical 
harmonics domain is a simple translation of the spatial approximation used in Eq. (93) 
and Eqs. (78) and (79) given by Eq. (94), where the limiting case is generally the method 
with the lowest-order spatial interface approximation. 

( ) ( )TR h r p r dγ γ γ γ= ∈ Γ Γ�
� �

, (94) 

The angular relation is more complex because the partial current variables used earlier 
are not truly a representation of the incoming and outgoing angular flux. In general, the 
angular approximation requires the numerical projection of the interface angular spherical 
harmonics solution to the discrete angular directions incoming to the DA subdomain. The 
solution for the angular flux as given by the spherical harmonics subdomain is shown in 
Eq. (95), where the spatial representation has been removed for simplicity: 
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Equation (95) can be expressed in terms of the partial current variables defined earlier in 
Eqs. (67) and (68), yielding  
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For a discrete set of angular directions ˆ
n�

 

that are entering the DA subdomain 

( ˆ ˆ 0n n� � � ), Eq. (96) reduces to  
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Note that in Eq. (97), the incoming angular flux solution into the DA subdomain includes 
the entire angular flux solution along the boundary for the spherical harmonics domain. 
The resulting iterative solution technique will suffer from latent coupling because it will 
not pose a true response matrix routine as that seen in the preceding spherical harmonics 
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method. In short, the exiting flux solution from the previous iteration for the DA domain 
directly contributes to the new flux solution coming into the DA domain.  
 
The update of the spherical harmonics solution is more complicated because the entire 
DA angular solution must be used to construct the new incoming flux. To obtain the 
components of the spherical harmonics approximation, we use a least squares approach:  
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Although the above process can be carried out by using only the exiting DA directions, it 
would not yield a spherical harmonics solution consistent with that used in the spherical 
harmonics equations. Given that the DA flux solution is converted to an equivalent 
spherical harmonics vector, the above can be inserted into Eq. (67), as follows. 
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Combining the space angle approximations, we obtain the final equation for the angular 
flux solution entering the DA subdomain 
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and the angular flux solution entering the spherical harmonic subdomain: 
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II.5 Mesh Generator 
 
As part of the UNIC effort, several mesh generators will be evaluated and incorporated 
into UNIC for effortless mesh generation. The aim is to simplify the exchange of data for 
neutron transport calculations and provide detailed data for the high-resolution display of 
results in a postprocessing module. Currently, we are evaluating the coupling between the 
CUBIT code (mesh generator) and the finite element code PnFE (finite-element, second-
order form transport solver of the UNIC code). Initial results have provided a better 
understanding of the capability of the mesh generator and, at the same time, have 
indicated potential issues to be tackled in the future: 

• The mesh generator is capable of exporting quadratic-order hexahedron that is 
needed for accurate treatment of curved surfaces. 
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• The mesh generated by CUBIT currently must be strictly controlled by the 
user such that the mesh is coarse. For transport problems, the number of 
elements used to represent the structure can be coarser than those used for 
heat transfer and fluid flow calculations. 

• A process will be developed so that the mesh is controlled by user input, 
saving computational time and providing an easy way to control the geometry 
and mesh creation process. 

 
An effort also was undertaken to implement a translator between the MCNP geometry 
input file and the ACIS CAD file format. This translator allows importing directly the 
MCNP geometries in the CUBIT code for the meshing process. MCNP is known to have 
a practical geometry input that allows complex structures to be defined efficiently. Once 
cells are defined, they can be grouped in “universes” and then replicated or used in a 
lattice structure by using a simple card. 
 
Generally, deterministic codes inputs are much harder to define because they need mesh 
information, which must come from some special software with which the geometry is, in 
most cases, defined by hand; moreover, the meshing process is not yet automatic. 
Therefore, our objective was to create an interface from MCNP to a geometry format, so 
that MCNP geometry can be easily converted into a finite-element input for UNIC. 
 
Specifically, the interface must take as an input a MCNP input file, read it and extract the 
geometry information, create the corresponding solid model, and export it in a CAD file 
format. The format chosen is ACIS (*.sat, *.acis and *.sab files), which is widespread 
and portable. Moreover, the program must be able to export (if the user wishes) 
information about the geometry that will make the meshing process easier. 
 
The program is divided into two parts : 
 

- The parser, which reads the MCNP input file and stores the geometry 
information into relevant data structures. The parser was programmed in 
Fortran 90/95. 

- The converter, which reads the data structures, creates the geometry, and 
exports it. The converter was programmed in C++ and is based on the CGM 
library by Sandia National Laboratories. 

 
The first task was to create the parser. The Fortran 90 program is divided into three 
subprograms reflecting the hierarchy of the input. 
 

- The first module (MCNP_GEOM_PARSER) loads the input file and reads it 
line by line.  

- The second module MCNP_GEOM_LINE_PARSER contains three main 
subroutines. Each one reads a card depending on its type (cell, surface or 
data). 
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- The third module TREE_PARSER, as mentioned above, reads the 
combinatorial geometry information.  

 
The main program is a short Fortran routine that takes into account the command-line 
parameters, launches the parser and then the converter, and then cleans the files. 
 

- The converter is the program that actually creates and exports the geometry. It 
is based on the CGM library developed by Sandia National Laboratories. The 
library contains the abstract entities for volumes, surfaces, curves, vertices, 
and so forth and provides easy-to-use interfaces to create and modify the 
geometry. 

 
Figures 6a and 6b show the block geometry for a pin subset of an Advanced Burner Test 
Reactor assembly and the associated 2D meshing for CUBIT obtained starting from a 
geometrical description in MCNP. 

 
Figure 6a. 3D geometry in CUBIT with blocks. 
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Figure 6b. 2D CUBIT meshing associated to Figure 6a. 

 
 
II.6 Results 
 
Of the preceding derivation work, only the spherical harmonics method has been 
implemented to date. The first benchmark problem considered was a simple two-group 
benchmark calculation [2]. The geometry consists of three regions as shown in Figure 7, 
the cross sections for which are given in Table 1.  

 
 

 
 

Figure 7. Two-group benchmark geometry. 
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Table 1. Two-Group Benchmark Cross Sections 
 

 Fuel Composition Steel Composition Water Composition 
Cross Section 1 2 1 2 1 2 

�a 0.01 0.07 0.003 0.11 0.001 0.03 
��f  0.006 0.1 0.0 0.0 0.0 0.0 
�t 0.22 0.8 0.53 0.77 0.701 2.0 
�1�2  0.017  0.001  0.05 
 �s 0.176 0.73 0.526 0.83 0.65 1.80 
� 1.0 0.0     

 
Two configurations of the boundary conditions were considered, and the reference 
solution was obtained by using the VARIANT code [3–5]. For the first configuration, 
reflected boundary conditions were applied on all sides of the domain, and the reference 
eigenvalue solution of 0.90152 was obtained with VARIANT (P17 with sixth-order 
flux/source and quadratic interface). For the second configuration, reflected boundary 
conditions were applied to the left and bottom sides of Figure 7, while vacuum boundary 
conditions were applied to the top and right. The reference VARIANT eigenvalue 
solution was 0.64562. Tables 2 and 3 give the eigenvalue solutions of the two boundary 
configurations obtained for two different mesh refinements (coarse and fine) in the new 
code, along with lower-order angular solutions obtained with the VARIANT code. As 
can be seen from Tables 2 and 3, the solutions obtained by using a coarse mesh are 
insufficient and converge to an incorrect solution. The fine mesh produces a better 
solution, consistent with that of the VARIANT code, but additional mesh refinement is 
necessary to match the reference solution as evident by the remaining error in the P17 
solutions for the fine mesh. 
 

Table 2. Configuration 1 Results for the Two-Group Benchmark Problem 
 VARIANT Coarse Fine 

PN Eigenvalue Error Eigenvalue Error Eigenvalue Error 
1 0.89250 -1.00 0.88735 -1.57 0.89250 -1.00 
3 0.90100 -0.06 0.89477 -0.75 0.90088 -0.07 
5 0.90138 -0.02 0.89497 -0.73 0.90121 -0.03 
7 0.90145 -0.01 0.89499 -0.72 0.90125 -0.03 
9 0.90148 0.00 0.89499 -0.72 0.90127 -0.03 
17 0.90152    0.90128 -0.03 

 
Table 3. Configuration 2 Results for the Two-Group Benchmark Problem 

 VARIANT Coarse Fine 
PN Eigenvalue Error Eigenvalue Error Eigenvalue Error 
1 0.63236 -2.05 0.62664 -2.94 0.62905 -2.57 
3 0.64444 -0.18 0.64117 -0.69 0.64468 -0.15 
5 0.64516 -0.07 0.64165 -0.61 0.64539 -0.04 
7 0.64538 -0.04 0.64175 -0.60 0.64559 -0.01 
9 0.64548 -0.02 0.64178 -0.59 0.64567 0.01 
17 0.64562    0.64574 0.01 



 28 

 
The next benchmark problem is taken from previous work where the necessary space-
angle approximation is known to be very high [6–8]. A single pin-cell lattice calculation 
is solved where again the eigenvalue solution is sought for the geometry [8]. The 
reference solution was obtained by using a Monte Carlo code. For the new spherical 
harmonics code, three mesh approximations were implemented: coarse, medium, and 
fine. Figure 8 shows the eigenvalue results obtained by using the new code. As can be 
seen, the P33 angular approximation that was implemented is still not angularly 
converged. More important, additional spatial refinement is necessary to obtain an 
accurate solution. Given the relative difficulty of this problem, the solutions obtained by 
using the existing coding (poor preconditioner) are good, and therefore no additional 
effort was undertaken to improve the solution.  
 
Figure 9 plots the scalar flux solution for P1, P11, and P21 angular approximations where 
each octant is the flux solution for each group. The final octant is the fission rate for the 
cell, where obviously no fission occurs in the water region. The color shading has been 
normalized by group for all three angular approximations such that the relative 
differences in the flux gradients can be observed in each group between the different 
angular approximations. As can be seen, there is virtually no gradient in the diffusion 
approximation; but as the angular approximation is refined, the scalar flux develops a 
very steep flux gradient near the material boundary. For problems of this type, the 
spherical harmonics method (and the discrete ordinates method) are not well suited, 
hence the focus on the method of characteristics. 
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Figure 8. Eigenvalue solution for the seven-group pin-cell problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 30 

 
 
Figure 9. Flux solution plot for the seven-group pin-cell problem 

 
The third benchmark problem solved with the new code is the first of four Takeda 
benchmarks [9]. The details of the three-dimensional geometry can be found in Reference 
9. Two problems are described, but only one was solved for this work. The reference , 
given as 0.9624 ± 0.00071, was obtained by using a Monte Carlo code. Table 4 gives the 
solutions obtained by using the VARIANT code and the new UNIC module called PNFE. 
As can be seen, several meshes were attempted, with differing results. Overall, the 
medium-fine mesh, shown in Figure 10, produces solutions very close to that of the 
reference solution. Further refinements in angle are necessary but could not be obtained 
with the existing code because of limitations in computer memory. Both codes are 
observed to converge toward the reference solution, with the VARIANT solution 
obtaining slightly better results. We note that at P15, the VARIANT solution is 0.96241. 
 

Table 4. Eigenvalue Solutions for the Takeda #1 Benchmark 
 

 PNFE VARIANT 
 Coarse Error (%) Medium Error (%) Fine Error (%)  Error (%)  

1 0.92719 -3.6586% 0.93232 -3.1254% 0.93233 -3.1245% 0.932850 -3.0705% 
3 0.97477 1.2855% 0.96119 -0.1260% 0.96119 -0.1256% 0.961223 -0.1223% 
5 0.98032 1.8623% 0.96214 -0.0270% 0.96215 -0.0261% 0.962171 -0.0238% 
7 0.98189 2.0254% 0.96231 -0.0097% 0.962338 -0.0064% 
9 0.98251 2.0893% 0.96235 -0.0048% 0.962391 -0.0009% 

11 0.98280 2.1198%   0.962400 0.0000% 
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Figure 10. Takeda #1 benchmark mesh. 
 
The fourth benchmark solved with the new code is the Takeda #4 Benchmark [9]. In this 
problem only a single mesh was attempted in the PNFE code; see Figure 11. As was the 
case with the Takeda #1 benchmark, only one configuration (unrodded) was performed; 
the results are given in Table 5. The reference Monte Carlo solution was 1.09514 ± 
0.0004. As one can see from Table 5, more angular refinement is necessary in the PNFE 
code, but additional coding modifications are required before this can be achieved. We 
note that similar changes in the VARIANT code  allow it to run on a single-processor 
machine. In both cases, additional space-angle refinement is needed in the PNFE and 
VARIANT codes to achieve the reference solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 32 

 
Figure 11. Takeda #4 benchmark mesh. 

 
 

Table 5. Eigenvalue Solutions for the Takeda #4 Benchmark 
 

 PNFE VARIANT 
1 1.073385 -1.9874% 1.075429 -1.8007% 
3 1.094553 -0.0545% 1.094409 -0.0676% 
5 1.096111 0.0878% 1.095767 0.0564% 
7 1.096142 0.0905% 
9 1.096283 0.1034% 

11  1.096363 0.1108% 
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III Thermal-Hydraulics with Nek5000 
 
Nek5000 is a computational fluid dynamics code for coupled hydrodynamics and heat 
transfer developed in the Mathematics and Computer Science Division at Argonne. The 
code is based on the spectral element method (SEM), which is a high-order weighted 
residual technique that combines the rapid convergence of spectral methods with the 
geometric flexibility of the finite element method (FEM). Nek5000 employs second- or 
third-order semi-implicit timestepping, in which the nonlinear term is treated explicitly 
and the linear viscous and pressure coupling is solved by using state-of-the-art parallel 
multigrid algorithms. Nek5000 was recognized with the 1999 Gordon Bell high-
performance computing award for performance on 4096 processors of the Intel ASCI Red 
machine and has recently been running in production mode on 32K processors of IBM’s 
Blue Gene Watson platform. 
 
 
 

 
Figure 12. (a) Relative error in the 1D spectrum of u x = λλλλ u versus fraction of 
resolvable modes for n=512, E := n/N, and N=1, 2, 4, 8, and 16; (b-c) spectral 
element solution for the convected cone problem after a single plane-rotation on a 
32x32 grid: (b) (E,N) =(16x16,2), (c) (4x4,8). 
 
Velocities and temperatures in the SEM are represented as Nth-order tensor product 
polynomials within each of E curvilinear brick elements, for a total of n ~EN 3 gridpoints. 
A singular feature of the SEM is that it is designed for much higher approximation orders 
than are commonly used with the FEM. With the SEM, orders N = 4–16 are typical (and 
feasible, because of the use of matrix-free operator evaluation), implying a few hundred 
to a few thousand points per element. These high orders lead to excellent transport 
(minimal numerical diffusion and dispersion) for a significantly larger fraction of the 
resolved modes than is possible with the FEM. This point is illustrated in Figure 12a, 
which shows the error, εk, for eigenvalues associated with the model convection problem 
ut +ux = 0 on [0, 2π] versus the fraction of resolvable modes, k/kmax. Here, kmax = n/2, 
according to the Nyquist criterion, n = EN is the number of degrees of freedom for this 
one-dimensional problem, and εk := | κ  −  k| / k. The approximate eigenvalue is 
computed as  κ  :=  (φk’,D φk) N /( φk’, φk’)N , where φk (x) := cos(kx), D is the spectral 
element derivative operator associated with E uniformly sized elements of order N, and (., 
.) N  is the inner product defined by using quadrature on the N +1 Gauss-Lobatto Legendre 
nodal points within each domain. (These nodal points also correspond to the Lagrange 
interpolation nodes for the SEM basis functions.) Figure 12a shows the errors for n=512, 
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N=1, 2, 4, 8, 16, and E := n/N. Taking 1 percent as an acceptable error threshold 
(indicated by the dashed line in Figure 12a), we see that only10 percent of the modes are 
well resolved with linear elements (N=1), whereas approximately half of the modes are 
well resolved for N = 8 and higher. Thus, the SEM provides roughly a fivefold reduction 
in the required number of gridpoints per space dimension to properly propagate waves at 
typical engineering tolerances. Note that because the abscissa is scaled by kmax the curves 
in Figure 12a exhibit little material change with increased resolution; as n increases, one 
resolves more waves, but the relative fraction remains unchanged. By the same token, 
one cannot circumvent the Nyquist sampling criterion by simply increasing N. In fact, as 
N increases, one can resolve at most (2/π) kmax waves because of the spacing of stable 
(Gauss-type) nodal point distributions. The use of moderate values of N is motivated by 
the fact that one resolves nearly this number of waves with N ~8–16.  
 
The benefits of a minimally dispersive/dissipative spatial discretization are illustrated by 
the two-dimensional convection problem of Figures 12b and 12c, which show the 
solution after an initially pointed cone is subjected to plane rotation on a pair of n = 
32×32 grids. The quadratic case, with E = 16×16 elements, exhibits significant numerical 
dispersion after a single rotation. This dispersion is dramatically reduced as the order is 
increased to N = 8 (E = 4 × 4). The improvement is striking in light of the fact the 
solution is not smooth and as such is not generally considered amenable to high-order 
discretizations. The improved result of Figure 12c derives from the ability of the high to 
accurately propagate modes that are resolved (i.e., corresponding to k < (2/π) kmax in 
Figure 12a). The accurate transport properties of the SEM makes it ideal for propagation 
of small-scale structures and for long time integrations that are typical of large-eddy and 
direct numerical simulations. In addition to linear convection problems such as 
demonstrated in Figure 12, Nek5000 has been extensively verified on analytic, 
transitional, and turbulent Navier-Stokes benchmarks.    
 
III.1 Preliminary Results: Wire-Wrapped Fuel Pin Analysis 
 
The design of the advanced burner reactor calls for liquid sodium coolant. The fuel pins 
in the core are separated by wire wrap spacers that are wound helically along the pin 
axes.  A single assembly will comprise 217 pins in a hexagonal array, with about five 
turns of the wire along the length of each pin. In addition to spacing the pins, the wire 
wrap is designed to promote mixing of the coolant between the channels that are formed 
by the pin array. Enhanced mixing can lead to reduced peak pin temperatures. The ability 
to predict (and optimize) mixing behavior can lead to reduced hot channel factors and 
thereby allow the plant to operate at higher power levels. In addition to the mixing, it is 
of interest in the design of the overall core to predict the distribution of the coolant flow, 
including the amount passing through the near-wall subchannels. 
 
The wire-wrapped fuel pin analysis is challenging for several reasons. The Reynolds 
number based on the hydraulic radius, Re=U Dh/ν , is in the range of 40000–65000, 
which means the flow is turbulent. The turbulence is further promoted by the wire wrap. 
Because it creates multiple contact points and lines, the wire wrap makes the geometry 
(and mesh) relatively complex. Moreover, with ~400 subchannels and L/Dh ~360, the 
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geometry of just a single subassembly is already large. There are hundreds of assemblies 
in the reactor. 
 
We have taken a first step to understanding the thermal-hydraulics of the ABR core by 
analyzing a single periodic cell in the wire-wrap geometry. This analysis is based on the 
hypotheses (which can be rigorously checked a posteriori) that the flow in the middle of 
the assembly does not sense the presence of the walls, that the flow is fully developed 
(i.e., statistically independent) in the axial direction as one moves from one wire-wrap 
period to the next, and that the turbulent correlation length in the axial direction is less 
than the wire pitch, Hw .   
 
Our initial simulation geometry can be seen in Figure 13 (bottom). The wire pitch was 
chosen to conform to an earlier experimental study with Hw /Dh =31.9. (The design calls 
for Hw /Dh =64.) The computational mesh comprised E=29520 elements of order N=7 (8.7 
M points). Simulation of one flow-through time required 15 hours on 2048 nodes of 
Argonne’s Blue Gene/L.   
 
Figure 13 shows the axial velocity distribution along the periodic-cell interface for 
Re=4200 (top) and Re=12600 (center). A marked increase in range of scales is evident 
with the increase in Reynolds number. Low-speed streaks that are characteristic of wall-
bounded turbulent flow are visible in the velocity isosurface distribution shown for 
Re=12600 at the bottom of Figure 13. This saturated nonlinear state was reached in a 
single flow-through time, which indicates that the flow in the core will be fully developed 
within the first wire pitch. This hypothesis will be checked in a future run with 
inflow/outflow boundary conditions. 
 
The present simulations will be used to provide hydrodynamic building blocks for 
thermal transport. The simulations will be coupled with Lagrangian particle tracking that 
will allow quantification of interchannel mixing (modulo wall effects). The simulations 
also provide accurate flow fields that can be directly coupled with larger (i.e., 
multichannel) thermal hydraulics computations or used to provide accurate mean and 
fluctuating flow fields that can server as surrogate flow fields. The availability of both 
approaches will allow us to develop an accurate low-dimensional model for thermal 
transport in wire-wrap fuel pin assemblies. Future simulations involving both internal 
channels and wall channels will allow quantification of wall effects. At a minimum, one 
can perform a computation with two interior channels and two wall channels in ~30 hours 
with 2048 processors on the BG/L. 
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Figure 13. Nek5000 simulation of turbulent flow field in an array of wire-wrapped 
fuel pins: (top) axial velocity distribution at Re=4200, (center) Re=12600, (bottom) 
isosurface of axial velocity at 62.5% of Umean. 
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IV Numerical Strategies for Multiphysics Coupling 
 

For decades, high-fidelity modeling of nuclear cores has been divided into two domains 
of physics: neutronics, which solves for the neutron population distribution, and thermal-
hydraulics, which solves for the coolant velocity, density, and temperature fields and the 
fuel temperature distribution. Yet, these isolated physical models in reality describe 
physical processes that are intertwined and rely heavily on the solution field of one 
another. In the past decade or so, various monodisciplinary codes have been coupled 
together in a naive “black-box” fashion, where the output of one code serves as the input 
of another code, thereby producing solutions that we denoted hereafter as nonlinearly 
inconsistent. Such schemes, which are still the main coupling paradigm today for solving 
nonlinear nuclear reactor physics equations, are based on a linearization that is never 
resolved. The schematic of the “black-box” model is shown in Figure 14, where each 
physic component is solved by an independent monophysics code and the data from one 
code is exchanged through message-passing paradigms such as PVM or MPI. 

 
Figure 14. Schematic of a “black-box” model. - 

 
In reactor analysis, numerous N-TH (neutronics-thermal hydraulics) codes have been 
coupled in such a fashion; see, for example, the OECD/NEA - US/NRC PWR Main 
Steam-Line Break Benchmark and the OECD/NEA - US/NRC Boiling Water Reactor 
Turbine Trip Benchmark, which use the conventional coupling techniques described 
above. This coupling technique is also mathematically described as operator splitting.  
 

The fundamental inefficiency and hence the essential drawback of this conventional or 
naïve strategy is that the treatment of the nonlinear terms is not rigorous. This 
inconsistent treatment of nonlinear terms, wherein one or more physics solution field is 
lagged in time, usually results in a loss of accuracy order. Typically, in order to mitigate 
this loss of accuracy, smaller time steps are required to achieve a reasonable 
convergence, thereby taxing the CPU and increasing the overall computer calculation 
time.  
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Here, we use a Point Reactor Kinetic Model with Feedback applied to both light water 
reactors  and sodium-cooled fast reactors. The objective is fourfold: 

1. Demonstrate the weaknesses of naïve coupling paradigm 

2. Present nonlinearly consistent schemes based on fixed-point iterations and 
extrapolation techniques 

3. Investigate higher-order implicit Runge-Kutta schemes well-suited for stiff 
nonlinear problems 

4. Investigate the potential of higher-order implicit Runge-Kutta schemes combined 
with automatic step size control 

 
A nonlinear problem of ordinary differential equations can be formulated as follows:  

    ( )  ( )  ( , )u Lu N u b t f t u
•

= + + =  (103) 

where u is the vector of unknowns, u
•

 represents time derivation, L is a matrix 
representing a linear operator, and N(u) is a nonlinear vector function. L and N(u) may 
result, say, from spatial discretization of partial differential equations. Our test-case 
problems are zero-dimensional but still retain the stiffness and nonlinearities encountered 
in multidimensional coupled neutronics/thermal-hydraulics. 
 
Let us consider an implicit time integration of Eq. (103) using a theta-scheme.  
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In a conventional coupling paradigm, the nonlinear term N(un+1) would not be known but 
simply approximated by N(un), that is, lagged behind, which is a crude first-order 
approximation. Hence, if both physic components were solved by using a second-order 
scheme, in our example a Crank-Nicholson scheme (�=1/2), then the resulting overall 
accuracy order of the solution would only be 1, because of the approximation N(un+1) ≈ 
N(un). 
 
 
IV.1 Improved Coupling Strategies 
 
Rather than lagging behind the nonlinear terms, a simple idea consists of extrapolating or 
predicting the value un+1. The idea is to replace the unknown quantity N(un+1) by a 
predicted quantity N(un+1,P), where the crudest prediction N(un+1,P)=N(un) yields back the 
conventional coupling first-order result. For instance, a second-order prediction is given 
by 

1, 1 22 ( )n p n nu u u O h+ −= − +  (105) 
Equation (105) is an explicit second order prediction approximation used for nonlinear 
terms only. When combined with, say, the implicit Crank Nicolson scheme for the linear 
terms, we obtain a semi-implicit/semi-explicit of second order. Even though this idea 
seems appealing, it does not assure unconditional stability of the overall scheme because 
of the explicit treatment of some terms. Additionally, high-order accurate prediction 
formulas are more difficult to obtain for methods were nonfixed time-step sizes. 
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Fixed-point iteration (or Newton’s method) over the time step can be used to resolve the 
nonlinearities, hence restoring the convergence order of the time integrator, but at the 
cost of a certain number of iterations per time step. Fixed-point iteration can be 
accelerated by using Steffenssen’s technique (a variant of Aitken’s �2 process). 
 
The � time discretization scheme was implemented for the zero-dimensional Point 
Reactor Kinetic Model with Feedback. Figure 15 shows a calculation wherein at t=250 
ms, a control rod is ejected. The ramp ejection duration is 250 ms with amplitude of 1.2$. 
The reference computation for the transient was performed by using a time-step size of 
0.4 ms. Three other computations were performed with a time-step size of 10 ms:  

1) Conventional coupling paradigm as shown in Figure 14  
2) Fixed-point iterations (i.e., conventional scheme iterated)  
3) Explicit higher-order treatment of nonlinear terms (improved prediction) 

Figure 16 shows that the conventional coupling scheme over predicts the power level by 
more than 10%, whereas the other schemes are off by at most only 1%. Obviously, the 
improved prediction scheme was much cheaper than the fixed-point method because there 
are no iterations over all the physics within each time-step calculation.  
 
   

      
Figure 15: Comparison between schemes.         Figure 16: Enlarged at power peak. 
 
Based on the calculations, the number of fixed-point iterations per time step was 
tabulated for different values of time steps for each of the schemes mentioned above. The 
results are plotted in Figure 17. The figure shows that using either solution prediction or 
acceleration definitely improves the number of fixed-point iterations. However, whereas 
using only prediction does not yield a considerable reduction in number of iterations, the 
synergistic effects of using both acceleration and prediction provides a reduction of more 
than 30% in the number of iterations per time step. On a large time scale, the total 
reduction in CPU time can then be threefold because, on an average, only one-third of the 
iterations are needed to fully converge the nonlinearities between the different physics. 
Figure 17 also shows that the usage of acceleration for finer time steps yields no 
perceptible improvement because fewer iterations are needed to converge nonlinearities, 
while acceleration for coarser time steps results in a considerably faster convergence, still 
retaining the order of accuracy. 
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The predictive methods also will restore the lost order of accuracy for the coupled 
transient scenario even without outer fixed-point iteration. In order to analyze this, a 
ramp transient, identical to the one plotted in Figure 15, was simulated and the orders of 
accuracy of the various different schemes were measured. Figure 18 presents the 
accuracy order obtained for the three aforementioned schemes: (1) conventional 
coupling, (2) fixed-point iterations, and (3) explicit high-order treatment of nonlinear 
terms (improved prediction). The time-step sizes varied from 0.8 ms to 100 ms. 

 
The conventional coupling scheme yields only first-order accuracy, whereas fixed-point 

iterations and improved prediction both yield second-order accuracy: these schemes are 
therefore nonlinearly consistent and yield the expected higher accuracy order. Clearly, 
the improvement in the number of iterations by Steffensen’s acceleration technique does 
not change the order accuracy. But the solution prediction method does improve the 
conventional first-order solution to yield a second-order-accurate solution with a simple 
extrapolation based on the previous history of the solution. 
 

   

 
   Figure 17. Efficiency of acceleration. Figure 18. Order of accuracy for schemes. 
 
IV.2 Higher-Order Implicit Runge-Kutta Methods 
 
Even though the results in the previous section are encouraging, issues related to the (1) 
derivation of extrapolation formulae for higher orders, (2) the stability properties of semi-
explicit / semi-implicit time integration, and (3) the overhead of fixed-point iterations led 
us to investigate higher-order implicit Runge-Kutta methods. Time implicitation is 
mandatory and imposed by the stiff nature of the physical phenomena occurring during a 
reactor transient. Implicit Runge-Kutta methods offer the possibility of much higher-
accuracy orders, efficient treatment of the nonlinear terms, and automatic time-
adaptation. 
 
A generic s-stage implicit Runge-Kutta method is given by 
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which can be easily represented by using a Butcher tableau.  
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Implicit Runge-Kutta methods are obtained when the matrix ( )ijA a=  is not strictly 

lower triangular. In this case, the nonlinear function f  implicitly depends on some yet 
unknown values of jg . These nonlinear equations must be solved at each time step by 
using Newton’s method (or an inexact Newton’s method). Replacing the Jacobians 
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 by the approximation ( );n nf
J t u

t
∂=
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, we get the simplified Newton 

iterations:  
( ) ( ) ( ) ( )1k k k kI hA J Z Z Z h A I F Z+− ⊗ − = − + ⊗  

where 

( ) ( ) ( ) ( )( )TT

1 1 1 1,...,  with  and ;  ,..., ;   k k k n k n k n k n k n
s i i s sZ z z z g u F Z f t c h z u z f t c h z u= = − = + + + +

 
The question regarding the computation of the Jacobian needs to be addressed.  Three 
solutions are possible: (1) the Jacobian is built, which may require the assembly of a very 
large matrix for multidimensional applications, (2) the Jacobian is evaluated numerically 
by using finite differences, which requires 2n  function evaluations per Jacobian 
evaluation but can be a viable approach if a new Jacobian is not needed at each time step 
(inexact Newton), or (3) the Jacobian matrix need not be formed if Newton’s method 
uses a Krylov subspace method for its linear solver, in which case Jacobian-free 
techniques, which require only 1n +  function evaluations, can be used. In this work, 
solution 2 was used to evaluate the Jacobian matrix. 
 
A particular class of implicit Runge-Kutta methods, whose matrix A is only lower 
triangular with identical coefficients on the main diagonal (methods known as singly 
diagonal implicit Runge-Kutta, or SDIRK), is also of interest because of the reduced 
number of coefficients and the simplified algebra associated with it. When an SDIRK 
method is applied to a nonlinear system for which only one Newton’s iteration is 
performed at each step (i.e., a linearized Newton’s method), the class of Rosenbrock-
Runge-Kutta methods is thus devised. 
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An attractive feature of the Runge-Kutta method is that, for a given set of coefficients ija  

and ic , there exist several sets of coefficients ib  yielding embedded numerical 
approximations of different orders. 
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The new optimal step size is then given by 
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with  
( )min ,q p p= . This procedure also allows for step rejection when the error is 

greater than the user-prescribed tolerance tol. 
 
The three-stage Radau IIA method of order 5 and the Kaps-Rentrop GRK4A (of the 
Rosenbrock method family) were tested for rod ejection transient accidents with data 
typical of an LWR and an SFR. Numerical behavior of the LWR- and SFR related results 
were similar. We report here the SFR transients, whose time integration is more 
challenging because of a smaller neutron mean generation time. We note that the results 
reported here have no real physical meaning because of the many approximations (e.g., 
no time delay taken into account for thermo-mechanical feedbacks), but they demonstrate 
the numerical capabilities of the proposed methodologies. 
 
The following rapid transient was modeled: at t=0 s, a $0.4 reactivity was extracted (step 
reactivity), and at t=0.2 s, a SCRAM was simulated by step-inserting $0.5 of reactivity. 
 
Figure 19 provides the global physical trend of the transient simulated: the maximum 
power level, attained within around 1.5 ms, is about 1.68 times the initial power; fuel 
Doppler and expansion effects overturn the power increase after that time. The sodium 
temperature rises up to 448  C (no boiling), fuel temperature rises to around 575  C; the 
SCRAM initiates a temperature decrease after 0.2 s. The last plot in Figure 19 shows the 
total and partial reactivity evolutions during the transient. 
 
Figure 20 describes the log of the time-step length used using the Radau IIA method with 
three user-specified tolerances: tol =1E-3, 1E-4, 1E-5. A Matlab automated step control 
built-in function (ODE23s) was used as a reference with tol =1E-6. ODE23s required 
about 350 steps, whereas the Radau IIA methods, with crudest tolerances, required 35–55 
steps only. 
 



 43 

Figure 21 shows how precisely the rapid portion of the transient was captured by Radau 
IIA and how accurate was the SCRAM automatically captured by the step control 
algorithm of Radau IIA, even with relatively crude tolerances.  
 
Table 6 compares Radau IIA and Rosenbrock GRK4A for the same user-specified 
tolerances. More steps are generally required for the GRK4A Rosenbrock method (which 
is only an order 4 method). 
 
 

 

 
 
Figure 19: SFR: $0.4 rod ejection at t=0 followed by a $0.5 rod insertion at t=0.2: 
power level, coolant and fuel temperature, reactivity 
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Figure 20: Log (Delta t) for step size control in Radau IIA, for 3 user-prescribed 
tolerances: tol =1E-3, 1E-4, 1E-5. Matlab reference (ODE23s is also shown). 
 
 

 
 
Figure 21: Power level for t∈∈∈∈[0,0.01] (top left) and around t=0.2 (time of the 
SCRAM, top right and bottom figures) for Radau IIA, for 3 different user 
prescribed tolerances: tol =1E-3, 1E-4, 1E-5. Matlab reference (ODE23s is also 
shown). 
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Table 6. Time-step comparison of Radau IIA and Rosenbrock GRK4A 

for different tolerances 
 

Algorithm 1.00E-03 1.00E-04 1.00E-05 
Radau IIA  
  steps 53 64 77 
  successful steps 36 45 53 
Rosenbrock 
GRK4A  
  steps 82 89 109 
  successful steps 61 67 86 
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V  Steps for Coupling UNIC to Nek5000 
 
In the previous section we discussed numerical strategies for coupling multiphysics 
codes, in particular neutronics and thermal-hydraulics codes. In this section we describe 
the steps taken to couple UNIC and Nek5000 in order to have an integrated simulation of 
the rector core. Sample problems, addressing steady state solutions, are being also 
defined, that, even if limited in size, provide significant test cases for studying the 
coupling among the two codes. 
 
NEUTRONXS, a general representation scheme for broad-group cross sections, has been 
developed for the coupling calculations for a wide range of applications. In the 
NEUTRONXS approach a user-definable cross-section table is used to store the 
microscopic cross-section information. Figure 22 shows an example having tabulated 
data with respect to burnup (Bu), fuel temperature (TF), and moderator temperature 
(TM). The ISOTXS tag is a standardized cross-section information file storage format for 
neutron transport methods and is used to indicate the type of microscopic data maintained 
in NEUTRONXS. At each tabulation point (Bu, TF, TM), the cross section can 
optionally have additional embedded polynomial dependencies of the cross-section data, 
such as enrichment. All of this cross-section data is stored in a random access file for 
rapid access. The most important advantage of the NEUTRONXS approach is its ability 
to selectively use either polynomial or tabulated cross-section data. Future development 
of this package will involve linking to the parallel netCDF library for storage of and 
access to the cross-section data in a parallel environment. 

 
Figure 22. NEUTRONXS table setup. 

 
In UNIC, we developed a general object-oriented interface to interpolate isotopes from 
the NEUTRONXS table and form a homogenized composition. Since the material density 
description is necessary for neutron transport problems, it was quite straightforward to 
include a list of correlated property information for each isotope (temperature, burnup, 
etc.), which is necessary for retrieving cross-section data from NEUTRONXS because  
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each material is mapped into individual geometrical zones in the finite element mesh. The 
NEUTRONXS approach is the primary means by which thermal-hydraulic feedback and 
fuel depletion effects currently are managed in the UNIC code. Our objective is to fully 
interpolate the temperature and coolant density solution data from the Nek5000 code to 
the UNIC code by means of these data structures. 
 
With regard to the thermal-hydraulics calculations, we have identified several steps to 
prepare Nek5000 for coupling to UNIC. The first step is to prepare multiple interfaces to 
Nek5000 that allow one to set up a problem (read the mesh, define the geometry, prepare 
the preconditioners, etc.), exchange solution data, repeatedly integrate for a prescribed 
length of time or to a prescribed condition (for steady state), and output results. The 
second step is to update the communication routines in Nek5000 so that they do not rely 
on mpi_comm_world. This change is required in order to decouple communications 
between Nek5000 and any other MPI-based application that is running at the same time. 
(This process is near completion; there remains one additional routine to modify.) The 
third step is to develop prototype (Matlab) and production routines that provide the 
material properties to the code as a function of temperature. The final step is to develop 
and validate a Matlab code that computes single-pin axial and radial temperature 
distributions based on enthalpy fluxes that provides a coarse validation (sanity check) for 
the detailed thermal hydraulics computations.   
 
V.1 Specifications of Sample Coupled Problems 
 
In this section we define simplified problems for testing the functionality of the coupled 
physics calculations. The intention here is to check the validity of the coupling of the two 
codes, rather than obtaining physical solutions. Based on the information obtained from 
the ABR design group, we decided to compute two problems for the steady state solution 
of a coupled neutronics and thermal-hydraulics sodium-cooled fast reactor: a simplified 
problem with the first two rows of pins, and a more complex problem with one entire 
subassembly. In both cases the problem is limited to one-sixth of the geometry in view of 
the existing symmetry. For simplicity, variations in cross sections due to the temperature 
are considered only in the fuel zones and variation of the density only in the coolant 
zones.  
 
 
V.1.A First Problem 
 
As shown in Figures 23–25, the first problem has only one-sixth of the central pin and 
two halves of a pin belonging to the second row. A reduced (to minimize impact on Keff) 
thickness wall is added at the boundary of the geometry. Axially the configuration has: 
80 cm of active core zone, on the bottom the lower reflector (20 cm), which implies that 
HT9 replaces fuel inside the pin clad and on the top, the upper plenum (20 cm) with 
sodium replacing the fuel inside the pin clad. Boundary conditions are reflective on all 
the horizontal directions and void vertically. The densities used for the different regions 
are shown in Table 7. Cross sections have been generated for the 850 K nominal fuel 
temperature in a five-group energy structure; if memory allows, 9-group or 33-group 
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cross sections could be quickly generated. Two extra sets of cross sections for 750 K and 
950 K have been also generated for interpolation during the coupled calculation. The total 
power for normalizing the flux for this problem is 22,400 watts. The initial condition for 
the thermal-hydraulic calculation is an inlet coolant temperature of 355 °C; thermal 
conductivities for metal fuel (U-Pu-Zr), HT9 and sodium, as sodium density temperature 
dependence, have been provided by the ABR design group. Dimensions for the wire wrap 
radius and pitch also have been provided by the design group. Knowing that the outlet 
coolant temperature should be around 510 °C , averaging along the axial profile should 
give a good initial guess for both temperature distribution and flow rates. This should 
speed up the convergence for the steady-state calculation. The thermal hydraulic 
calculation should provide the temperature distribution and density coolant variation 
along the z-axis averaged every five centimeters and horizontally averaged in each pin 
region and coolant around it in the basic hexagon associated to a pin (see Figures 23 and 
25). 
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Figure 23. Problem 1 radial geometry. 
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Figure 24. Problem 1 axial geometry. 
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Figure 25. Pin radial geometry. 
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Table 7. Nuclide densities 

 

Fuel  Structure 
(Clad, Hex can wall) Coolant 

Nuclide 
Nuclide Name 

on Cross 
Section File U-Pu-Zr HT9 Sodium 

U235 U235IC 5.6711E-05   

U-238 U238IC 2.7941E-02   

Pu238 PU38IC 5.5444E-07   

Pu239 PU39IC 5.1794E-03   

Pu240 PU40IC 3.1944E-04   

Pu241 PU41IC 1.9163E-05   

Pu242 PU42IC 1.0905E-06   

Zr ZIRCIC 9.7253E-03   

Na NA23IC   2.2272E-02 

Fe FE  IC  7.0426E-02  

Ni NI  IC  4.1315E-04  

Cr CR  IC  1.1247E-02  

Mn55 MN55IC  4.7156E-04  

Mo MO  IC  2.8819E-04  

 
 
V.1.B Second Problem 
 
See Figure 26 for the radial geometry; the axial geometry stays the same as for problem 
1. The specifications also are as for the first problem, but with the geometry extended to 
the full assembly with one-sixth symmetry, which corresponds to a total of 36 1/6 pins. 
Note that this time the wall thickness of the hex can is the actual one used by the ABR 
design group. Total power to be used for normalizing the flux is 694,400 watts. 
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Figure 26. Problem 2 radial geometry. 

 
 
V.1.C Results 
 
Calculations for the neutronics code have been run on a serial machine, but because of 
memory and time limitations only the first problem was carried out. Table 8 shows the 
eigenvalues up to the P11 angular approximation, and Figure 27 shows the power 
distribution at different axial heights. 
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From Table 8, we can infer that the convergence on the angular variable will occur 
around P17 or P19. This number will be bigger when a larger number of groups are used. 
The differences between linear and quadratic meshing increase when more refined 
angular approximations are used. It is believed that quadratic mesh approximation should 
be adequate if a sufficient number of meshes are used in describing the fuel region. 
 
 
 

Table 8. UNIC computed eigenvalues for sample problem 1. 
 

PN Linear Mesh Quadratic Mesh 
1 1.36479 1.36519 

3 1.40524 1.40660 

5 1.41874 1.42059 

7 1.42539 - 

9 1.42936 - 

11 1.43180 - 

. 
 
 
 

 
Figure 27. UNIC power distribution at different heights (z=0.0 is midplane) for 
sample problem 1. 
 
Following the UNIC neutronics calculations, the power distribution was interpolated over 
the mesh structure defined for the Nek5000 code in order to calculate the temperature 
distribution of sample problem 1. Figure 28 shows the Nek5000 temperature distribution 
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in the pin, clad, and liquid sodium at several cross-sections for the three-pin model 
problem. 
 
 
  

 
 
Figure 28. Temperature distribution for a Nek5000 thermal-hydraulics computation 
based on UNIC-generated power data. The spectral element mesh distribution is 
visible in the leading slice. 
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VI  Software Design 
 
Software architecture, process, and framework are heavily overloaded terms that lead to 
considerable confusion without a careful discussion of their meaning in a given context. 
For the current project, we define these terms as follows.  
 
By software architecture we generally refer not to specific physics implementations (i.e., 
the solvers themselves) but rather to a set of rules and formalities that describe how the 
subcomponents of a larger integrated project communicate with one another—how data 
is shared, how one implementation can be swapped for another, how modules are unit 
tested, where platform-specific code can be placed, and so forth. The concept of 
architecture presumes a larger, integrated whole composed of many subpieces 
(components, modules, etc.), and the architectural specification defines how these 
components interact independently of how the details of how they are implemented.  
 
By software process we generally refer to a set of formalities that enable large group 
projects to move ahead efficiently. Bug tracking, automated testing, meeting schedules, 
code review, repository management, and distribution are common examples. Overall, 
this set of processes distinguishes small cottage-industry coding efforts from large, 
integrated software projects and is indispensable for producing code on the scale of the 
design effort here. What are the roles of the various developers? How are decisions 
ultimately made? What are the coding standards? How is documentation produced? 
While research environments necessarily eschew too rigid a set of processes, some 
significant degree of formality is necessary to keep the process moving forward. We have 
chosen specific tools in each of the relevant areas that we are putting into place as the 
project ramps up. 
 
Framework generically refers to any set of services that are provided to a set of 
implementations to augment their capabilities. This is the most general of the three terms 
(see Figure 29) and can take many forms depending on the needs of the application:  
parallel solvers for systems of equations; meshing capabilities; loose coupling for 
multiphysics applications; visualization, and so forth. Usually, framework implies some 
degree of end-to-end services, so, typically, a framework that emphasizes any one of the 
above services may provide at least simple versions of the other services; for example, a 
solver framework such as PETSc might provide some simple plotting tools.  
 
As an important part of our initial study for the fast reactor simulator, we have evaluated 
existing technologies in these areas and have made some decisions about which tools and 
approaches to adopt. 
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Figure 29. Generic depiction of the role of a software framework in the development 
of multicomponent software. Note that for scientific computing the decoupling 
between framework services and component implementation is less clean and is 
dictated by the degree of decoupling in the numerics. 
 
Our ultimate project goal is the development of a fully integrated, state-of-the-art high-
fidelity fast reactor core simulation tool. This necessarily implies (1) a strong emphasis 
on leveraging existing state-of-the-art computational hardware and (2) a group software 
process and software architecture that will enable large code development with a 
heterogeneous development team (likely over 30 contributors and 1 million lines).  
 
Point (1) is true because our state-of-the-art simulation tool aims to reduce the use of 
traditional empirical correlations to the greatest extent possible and move toward the 
solution of more fundamental governing equations. Hence, extremely fine spatial and 
temporal resolutions are needed that go beyond what can be achieved even on the 
currently proposed petascale architectures (e.g., BG/P and Cray Cascade). Point (2) 
recognizes that, when simulation codes move beyond several hundred thousand lines, the 
architectural complexity begins to compete with the individual module algorithmic 
complexity as the main barrier to progress. Twenty years of research in software 
engineering and software process has illuminated this point clearly for industrial 
applications. Relatively little work in this area has been done for high-performance 
scientific computing, however. 
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Additionally, we require that the integrated simulation tool be designed both to produce 
results with current state-of-the-art models and to be flexible enough to easily incorporate 
improved models as they become available. This requirement is particularly important 
when considering licensing and certification. Semi-empirical models that are well 
validated for certain regimes (computational paths) will be used while verification and 
validation research is carried out for next-generation models. When new modules are 
validated, they can replace or live alongside  existing modules with the same coupling 
capabilities to peer modules.  
 
Our initial finding is that many large multiphysics software projects have failed because 
they have overemphasized and decoupled the framework design too much from the 
ultimate simulation goals of the project. That is, one-size-fits-all frameworks, which are 
overly sophisticated and based on overly general and complex abstractions, have 
interfered with desirable traits such as performance, usability, simplicity, and memory 
footprint and have placed the elegance of the architecture ahead of the physics and 
engineering requirements. Architectural features must demonstrate that they serve both 
the short- and long-term simulation goals of the project. At the same time, one must 
move out of a familiar comfort zone to avoid going to the other extreme—“spaghetti 
code,” which is fragile, unreadable, and difficult to unit test, with no clear integration 
strategy and no path to growth (i.e., all implementation and no architecture). 
 
At the highest level the main physics modules for the integrated reactor core simulation 
are thermal hydraulics, neutronics, structural mechanics (for fuel pins, hex cans, etc.), and 
fuel behavior. As reported, our initial studies have focused on neutronics and thermal-
hydraulics modules. These form a set of nonlinearly coupled PDEs where considerable 
care has to be taken in the numerical aspects of coupling for specified accuracy 
requirements (see Section III).  A software coupling strategy must accompany and be 
consistent with the numerical coupling strategy. The software coupling can be viewed as 
defining a clear set of public interfaces by which each module communicates its data to 
other modules. That is, a formal specification is required for each module in terms of its 
accessible method and its input and output parameters; the only “window” into each 
module is via this public interface. This level of encapsulation ensures that each module 
can be developed and tested independently and that changes to one module do not affect 
another. 
 
This approach is far more complex than it initially appears for several reasons: (1) data 
lives on a computational mesh, and each module needs flexibility to define its own mesh 
(e.g., neutronics and thermal hydraulics require resolution in very different spatial 
locations); (2) performance is often a first-order concern, and copying or restructuring 
mesh data can be prohibitively costly; (3) sufficiently general interfaces are often difficult 
to define for numerical components; (4) operator split methods are often inadequate for 
given accuracy requirements and tighter coupling (e.g., Jacobi-free Newton Krylov) is 
required; and (5) coupling must be scalable to O[100K] processors, a scaling that is not 
an obvious extension of the serial case. 
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A coupling toolkit should provide high-level abstractions to define the relationships 
among specified components and to implement the data exchange between them, an 
effort that  includes understanding or defining the computational mesh for each module, 
providing tools to extrapolate or interpolate data between meshes, and providing multiple 
parallelization strategies for carrying this out in a scalable way (for example, each 
module could share all processors in a communicator, be split across communicators, 
etc.).   
 
We evaluated three tools as possible candidates for adoption in the fast reactor simulation 
project: Salome, the Model Coupling Toolkit (MCT), and MpCCI. Salome (see Figure 
30) is an open-source GUI-based tool that includes both pre- and postprocessing tools as 
well as a high-level coupling interface. It is developed by the French Nuclear Agency 
(CEA) in collaboration with industry, targeting in particular nuclear applications (but in 
theory applicable to other areas as well). MCT is an open source project that arose out of 
the coupled climate modeling project and evolved into a more general tool. MpCCI is a 
commercial project. Both MCT and MpCCI are designed specifically for parallel 
applications, while Salome has no deep built-in concept of parallelization (though one 
could imagine crudely coupling parallel components and doing much of the coupling by 
hand). 
 
In summary, our evaluation indicates that none of the above tools, as they stand, meet the 
requirements of our current project. Commercial tools are in general a bad choice given 
that we target leadership-class computers with semi-exotic architectures (e.g., BG/P), and 
commercial applications have shown little interest in quickly adapting and optimizing for 
these architectures; restricting ourselves with such a choice is too risky. MCT is not 
sufficiently general in its handling of complex mesh types and is not directly suited for 
nuclear applications. Salome is the most promising tool, with sophisticated software 
component design capabilities, but we found the following design choices made it 
imperfect for our needs: (1) a reliance on CORBA to provide very coarse-grained module 
coupling; (2) no built-in parallelization capabilities; (3) no built-in data interpolation 
capabilities; and (4) too heavyweight for our purposes, locking in choice of pre- and 
postprocessing tools and persistence model and requiring an intricate and delicate build 
process with over a dozen fairly complicated set of library dependencies. We also found 
the user interface portion of Salome cumbersome and limited.  
 
We have therefore chosen to develop our own lightweight coupler and loosely integrate it 
with existing solvers and pre- and postprocessing tools to form a complete software 
infrastructure for our solver modules. We have begun design of this coupler in close 
coordination with meshing experts and borrowing heavily from ideas put forth by the 
CEA and the TSTT SciDAC project. We intend to flexibly support several methods of 
software coupling on highly scalable architectures such as BG/P. Furthermore, as 
mentioned early in this report, we have chosen the PETSc toolkit as our parallel solver 
engine, CUBIT as a preprocessing tool, and tentatively VISIT as a postprocessing tool. 
We intend to partially fund work in each of these areas to evolve the tools to meet the 
specific needs of the current project. 
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Figure 30. Architecture of the Salome coupling framework. 
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VII Conclusions 
 
This report has presented the effort under way at Argonne to develop a comprehensive, 
integrated computational tool intended mainly for the high-fidelity simulation of sodium-
cooled fast reactors. Our principal activities have focused on neutronics, thermal 
hydraulics, coupling strategies, and software architecture.  
 
Neutronics. For the neutronics UNIC code, we investigated a spherical harmonic finite 
element method. The details of both the spatial and angular approximation were 
considered, along with the two boundary conditions typically applied for neutron 
transport problems. The interfacing of this method with a method of characteristics 
domainwas also evaluated. We implemented the spherical harmonics equations in a 
stand-alone code and used the code to solve several benchmark problems. Overall, the 
new spherical harmonics code performs well, although more development is necessary. 
Specifically, refinements of the code structure and better implementation of the PETSc 
package should alleviate the current problems with the space-angle limitations. After 
these refinements are made, the code should be optimized for a parallel environment. 
This optimization will allow for the modeling of more complex benchmark problems in 
addition to producing more accurate solutions. After this work is completed, the 
interfacing method proposed in Section II can be further investigated. 
 
Thermal hydraulics. Nek5000, a computational fluid dynamics code for coupled 
hydrodynamics and heat transfer developed in the MCS Division, was applied to a single-
pin, periodic cell, in the wire-wrap geometry typical of ABR. The results of the 
simulations with this code will be used to provide hydrodynamic building blocks for 
thermal transport. The simulations will be coupled with Lagrangian particle tracking that 
will allow quantification of interchannel mixing (modulo wall effects). The simulations 
will also provide accurate flow fields that can be directly coupled with larger (i.e., 
multichannel) thermal hydraulics computations or used to provide accurate mean and 
fluctuating flow fields that can serve as surrogate flow fields. 
 
Coupling. Conventional strategies for coupling multiphysics codes are at best first-order 
accurate because of the poor treatment of the implicit nonlinear terms. Higher-accuracy 
methods will be required to finely simulate coupled neutronic/thermal-hydraulic reactor 
transients. Implicit Runge-Kutta methods offer such possibilities at a potentially 
reasonable cost thanks to their automatic step-size control features. Two implicit Runge-
Kutta methods were tested here: a full implicit Radau method and a singly diagonal 
implicit Rosenbrock method. Both methods performed well and automatically captured 
extremely sharp transients. The Radau method, whose implementation was more 
complex, delivered a better performance in terms of function evaluations because of its 
higher-accuracy order. For both methods, the Jacobian matrix was calculated 
numerically. Jacobian-free Newton Krylov techniques will have to be analyzedmodified 
in order to reduce the cost associated with the computation of the Jacobian matrix. 
Another possibility is to devise a selective update for the Jacobian matrix so that it would 
not be re-evaluated at each time step. We have taken steps to couple UNIC and Nek5000 
in order to have an integrated simulation of the reactor core. Simplified problems, 
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addressing steady-state solutions, have been defined that, while limited in size, provide 
significant test cases for studying the coupling of the two codes. We have already gained 
insights about mesh approximation from the first sample problem. 
 
Software. In the field of software design we have evaluated existing technologies in 
related areas and have decided which tools and approaches to adopt. Unfortunately, none 
of the existing tools, as they stand, meet the requirements of our current project. 
Therefore, we have chosen to develop our own lightweight coupler and loosely integrate 
it with existing solvers and pre- and postprocessing tools to form a complete software 
infrastructure for our solver modules. We have begun design on this coupler in close 
coordination with meshing experts and borrowing heavily from ideas put forth by other 
projects. 
 
During the next fiscal year we will build the integrated high-fidelity software tool. 
Inclusion of other physical phenomena, such as structural mechanics and nuclear fuel 
behavior, will be essential for a better simulation of the reactor core.  
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