# EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

# **Topical Report No. 10 (Plant 4)**

U.S. DOE NETL Cooperative Agreement DE-FC26-02NT41589

Issued: January 2006



J. A. Withum J. E. Locke

CONSOL Energy Inc., Research & Development 4000 Brownsville Rd. South Park, PA 15129 (412) 854-6600

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### ABSTRACT

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber – fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal "co-benefits" achieved by NOx, and SO<sub>2</sub> control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

The objectives are 1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, 2) evaluate the effect of SCR catalyst degradation on mercury capture; 3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and 4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture.

This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO<sub>x</sub>, particulate, and SO<sub>2</sub> emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements.

The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR.

The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

# TABLE OF CONTENTS

| Pag                                                | <u>je</u> |
|----------------------------------------------------|-----------|
| DISCLAIMERi                                        |           |
| ABSTRACTii                                         |           |
| TABLE OF CONTENTSiii                               |           |
| LIST OF TABLESiv                                   |           |
| LIST OF FIGURES v                                  |           |
| LIST OF APPENDICES v                               |           |
| LIST OF ABBREVIATIONSvi                            |           |
| LIST OF ABBREVIATIONSvii                           |           |
| INTRODUCTION1                                      |           |
| HOST UTILITY DESCRIPTION1                          |           |
| MERCURY SAMPLING RESULTS                           |           |
| I. Test Matrix2                                    |           |
| II. Flue Gas Mercury Sampling Results              |           |
| A. Economizer Outlet                               |           |
| B. Air heater outlet 4                             |           |
| C. FGD inlet5                                      |           |
| D. Stack 6                                         |           |
| III. SCR/FGD System Hg Removal8                    |           |
| IV. Mercury Material Balance9                      |           |
| EXPERIMENTAL AND SAMPLING METHODS                  |           |
| I. Flue Gas Sampling Locations and Sampling Points |           |
| A. Economizer outlet11                             |           |
| B. Air heater outlet 11                            |           |
| C. FGD inlet12                                     |           |
| D. Stack                                           |           |
| II. Flue Gas Mercury Measurements12                |           |
| III. Coal Sampling and Analysis 14                 |           |
| A. Coal samples14                                  |           |
| B. Results of analyses of coal samples             |           |
| IV. Process Sample Collection and Analysis 17      |           |
| A. Coal Mill Rejects17                             |           |
| B. Boiler Bottom ash18                             |           |
| C. Limestone slurry18                              |           |
| D. ESP hopper ash22                                |           |
| E. FGD slurry                                      |           |
| F. FGD makeup water                                |           |
| QUALITY ASSURANCE/QUALITY CONTROL                  |           |
| I. Blank Samples                                   |           |
| II. NIST Standard Reference Material Checks        |           |
| III. Spike Sample Recoveries40                     |           |
| IV. Duplicate Analyses40                           |           |
| V. Flue Gas Mercury Concentration Detection Limits |           |
| VI. Mercury Material Balance Closure41             |           |
| HEAT INPUT-BASED MERCURY EMISSION                  |           |

# LIST OF TABLES

| Table 1. Coal-fired facilities in program                                   | 1  |
|-----------------------------------------------------------------------------|----|
| Table 2. Sampling test matrix                                               |    |
| Table 3. Flue gas mercury speciation at the Economizer Outlet               | 4  |
| Table 4. Flue gas mercury speciation at the air heater outlet               | 5  |
| Table 5. Flue gas mercury speciation at the FGD inlet                       | 6  |
| Table 6. Flue gas mercury speciation at the stack                           | 7  |
| Table 7. Flue gas mercury removal                                           | 8  |
| Table 8. Mercury material balance closure, Unit 1 (no SCR)                  | 9  |
| Table 9. Mercury material balance closure, Unit 2 (with SCR)                | 9  |
| Table 12. Mercury speciation by train component                             |    |
| Table 13. List of coal samples                                              | 14 |
| Table 14.    Coal sample analyses – Unit 1 samples                          | 15 |
| Table 15.    Coal sample analyses – Unit 2 samples                          |    |
| Table 16.    Coal mill reject sample analyses – both units                  | 17 |
| Table 17. Results of analyses of bottom ash samples                         |    |
| Table 18. Results of analyses of limestone slurry solids samples – Unit 1   | 19 |
| Table 19. Results of analyses of limestone slurry solids samples – Unit 2   | 20 |
| Table 20. Results of analyses of limestone slurry filtrate samples – Unit 1 | 21 |
| Table 21. Results of analyses of limestone slurry filtrate samples – Unit 2 |    |
| Table 22. Results of analyses of ESP hopper ash samples – Unit 1, Test 1    | 24 |
| Table 23. Results of analyses of ESP hopper ash samples – Unit 1, Test 2    | 25 |
| Table 24. Results of analyses of ESP hopper ash samples – Unit 1, Test 3    | 26 |
| Table 25. Results of analyses of ESP hopper ash samples – Unit 1, Test 4    | 27 |
| Table 25. Results of analyses of ESP hopper ash samples – Unit 1, Test 4    | 27 |
| Table 26. Results of analyses of ESP hopper ash samples – Unit 2, Test 1    | 28 |
| Table 27. Results of analyses of ESP hopper ash samples – Unit 2, Test 2    |    |
| Table 28. Results of analyses of ESP hopper ash samples – Unit 2, Test 3    | 30 |
| Table 29. Results of analyses of ESP hopper ash samples – Unit 2, Test 4    | 31 |
| Table 32. Results of analyses of FGD slurry filtrate samples – Unit 1 tests |    |
| Table 33. Results of analyses of FGD slurry filtrate samples – Unit 2 tests |    |
| Table 34. Results of analyses of FGD makeup water samples – Unit 1          |    |
| Table 35 Results of analyses of FGD makeup water samples – Unit 2           |    |
| Table 36.    NIST SRM analyses                                              |    |
| Table 37. Flue gas mercury detection limits                                 |    |
| Table 38.         Summary of material balance closure for mercury, Unit 1   |    |
| Table 39.         Summary of material balance closure for mercury, Unit 2   |    |
| Table 40. Heat input-based mercury emission                                 | 43 |

#### LIST OF FIGURES

#### 

#### LIST OF APPENDICES

| APPENDIX A | Mercury Sampling Data | A-1 |
|------------|-----------------------|-----|
| APPENDIX B | Plant Process Data    | B-1 |
| APPENDIX C | Flue Gas Hg Data      | C-1 |
| APPENDIX D | Process Material Data | D-1 |

# LIST OF ABBREVIATIONS

| acfm<br>am<br>Btu<br>Ca/S<br>cfm<br>$CO_2$<br>CONSOL R&D<br>CVAA<br>DI<br>DOE<br>dscf<br>dscfm<br>EPA<br>EPRI<br>ESP<br>FGD<br>ft<br>ft <sup>2</sup><br>ft <sup>3</sup><br>gm<br>gpm<br>gr<br>HCI<br>Hg<br>Hg <sup>part</sup><br>Hg <sup>part</sup><br>Hg <sup>o</sup><br>HNO <sub>3</sub><br>H <sub>2</sub> O<br>H <sub>2</sub> O <sub>2</sub><br>hr<br>ICP-AES |   | cold vapor atomic absorption<br>deionized water<br>U.S. Department of Energy<br>dry standard cubic feet<br>dry standard cubic feet per minute<br>U.S. Environmental Protection Agency<br>Electric Power Research Institute<br>electrostatic precipitator<br>flue gas desulphurization<br>feet<br>square feet<br>cubic feet<br>grams<br>gallons per minute<br>grains<br>hydrochloric acid<br>mercury<br>mercury in particulate form<br>total mercury in particulate, oxidized, and elemental forms<br>mercury in oxidized form<br>mercury in elemental form<br>nitric acid<br>water<br>hydrogen peroxide<br>hour |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                  | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ICP-AES                                                                                                                                                                                                                                                                                                                                                          | - | inductively coupled plasma-atomic emission spectrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| in                                                                                                                                                                                                                                                                                                                                                               | - | inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KCI                                                                                                                                                                                                                                                                                                                                                              | - | potassium chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KMnO₄                                                                                                                                                                                                                                                                                                                                                            | - | potassium permanganate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L                                                                                                                                                                                                                                                                                                                                                                | - | liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lb                                                                                                                                                                                                                                                                                                                                                               | - | pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m                                                                                                                                                                                                                                                                                                                                                                | - | meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                   | - | cubic meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ME                                                                                                                                                                                                                                                                                                                                                               | - | mist eliminator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mg                                                                                                                                                                                                                                                                                                                                                               | - | milligram, 10 <sup>-3</sup> gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# LIST OF ABBREVIATIONS (continued)

| min             |   | minute                                            |
|-----------------|---|---------------------------------------------------|
| mL              | - | milliliter                                        |
| M               |   |                                                   |
| MM              | - | molar, mol/L<br>million                           |
|                 | - | -                                                 |
| mol             | - | mole                                              |
| ng              | - | nanogram, 10 <sup>-9</sup> gram                   |
| N <sub>2</sub>  | - | molecular nitrogen                                |
| NIST            | - | National Institute of Standards and Technology    |
| NO              | - | nitric oxide                                      |
| NO <sub>2</sub> | - | nitrogen dioxide                                  |
| O <sub>2</sub>  | - | molecular oxygen                                  |
| O <sub>3</sub>  | - | ozone                                             |
| pm              | - | afternoon                                         |
| PM              | - | particulate matter                                |
| ppb             | - | parts per billion (10 <sup>9</sup> )              |
| ppm             | - | parts per million                                 |
| ppmv            | - | parts per million by volume                       |
| PRSD            | - | percent relative standard deviation               |
| QA              | - | quality assurance                                 |
| QC              | - | quality control                                   |
| rpm             | - | revolutions per minute                            |
| scf             | - | standard cubic feet (68EF and 29.92"Hg)           |
| scfm            | - | standard cubic feet per minute                    |
| SRM             | - | Standard Reference Material                       |
| temp            | - | temperature                                       |
| tph             | - | tons per hour                                     |
| TBtu            | - | trillion (10 <sup>12</sup> ) British thermal unit |
| wt              | - | weight                                            |
| V               | - | volts                                             |
| VS              | - | versus                                            |
| °F              | - | temperature in degrees Fahrenheit                 |
| <               | - | less than                                         |
| >               | - | more than                                         |
| μg              | - | microgram, 10 <sup>-6</sup> gram                  |
| r9              |   |                                                   |

#### INTRODUCTION

CONSOL Energy Inc. Research and Development (CONSOL R&D) is determining mercury speciation and removal at 10 coal-fired facilities with SCR/FGD combinations (Table 1). CONSOL R&D conducted flue gas mercury (Hg) measurements on Units 1 and 2 at Plant 4 in January 2005. The two units are similar except that Unit 2 is equipped with a selective catalytic reduction (SCR) unit for NOx control. The tests were performed under U. S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26-02NT41589, and the Electric Power Research Institute (EPRI) Agreement No. EP-P13687/C6820. The test program on each unit consisted of four sets of measurements across the combustion emission control system that consists of the SCR (Unit 2 only), electrostatic precipitator (ESP), and flue gas desulfurization (FGD) systems.

The mercury measurements were made using the Ontario-Hydro Flue Gas Hg Speciation Method. The testing conducted by CONSOL R&D is documented in this report.

| Site #   | MW    | Air Pollution Control Devices                 | Coal | Ozone Unit |
|----------|-------|-----------------------------------------------|------|------------|
| 1        | 330   | SCR / Spray Dryer / Baghouse                  | Bit  | year round |
| 2        | 245   | SCR / Spray Dryer / Baghouse                  | Bit  | year round |
|          |       |                                               |      |            |
| 3        | 508   | SCR / ESP/ Limestone FGD, inhibited oxidation | Bit  | Yes        |
| 4 Unit 1 | 468   | ESP/ Limestone FGD, natural oxidation         | Bit  | (1)        |
| 4 Unit 2 | 468   | SCR / ESP/ Limestone FGD, natural oxidation   | Bit  | year round |
| 5 Unit 1 | 1,300 | SCR / ESP/ Limestone FGD, in-situ oxidation   | Bit  | Yes        |
| 5 Unit 2 | 1,300 | ESP/ Limestone FGD, in-situ oxidation         | Bit  | (1)        |
| 6 (2)    | 544   | SCR / ESP/ Limestone FGD, ex-situ oxidation   | Bit  | Yes        |
| 7 (2)    | 566   | SCR / ESP/ Limestone FGD, ex-situ oxidation   | Bit  | Yes        |
|          |       |                                               |      |            |
| 8        | 684   | SCR / ESP / Lime FGD, ex-situ oxidation       | Bit  | Yes        |
| 9        | 640   | SCR / ESP/ Lime FGD, inhibited oxidation      | Bit  | Yes        |
| 10       | 1,300 | SCR / ESP/ Lime FGD, inhibited oxidation      | Bit  | Yes        |

 Table 1. Coal-fired facilities in program

<sup>(1)</sup> SCR was not installed when tests were conducted.

<sup>(2)</sup> Tests were also conducted during non-ozone seasons while flue gases bypassed SCR.

#### HOST UTILITY DESCRIPTION<sup>1</sup>

Plant 4 is a 936 MW pulverized bituminous coal-fired generation facility operating two units. The plant typically burns bituminous coal containing less than 2.5% sulfur. Both units are equipped with ESP and limestone-based wet FGD to control the emissions of

<sup>&</sup>lt;sup>1</sup> Per facility's Title V permit.

particulate matter and sulfur dioxide (SO<sub>2</sub>). The FGDs are natural oxidation systems equipped with adipic acid feed to assist in SO<sub>2</sub> removal and are designed for 90% reduction. Unit 2 is equipped with a Siemens plate-type SCR; anhydrous ammonia is injected in front of the SCR catalyst beds to react with NOx. The SCR unit is operated year-round.

Each unit is a dry-bottom wall-fired boiler with a nominal design heat input of 4,286 MM Btu per hour. Particulate matter is removed by a six-field, cold-side ESP. The ESP has 24 ash hoppers arranged in six rows of four hoppers each, one row per ESP field. The limestone-based wet FGD system has three 50%-capacity scrubber modules; only two modules are in service at any one time. The scrubber sludge is dewatered using gravity-settling type thickeners and vacuum filters and stabilized by mixing the solids with flyash and lime. The stabilized solids are landfilled. The scrubbed flue gas exits through a 550-ft stack.

#### MERCURY SAMPLING RESULTS

#### I. Test Matrix

Each set of mercury measurements consisted of a total of four tests over three days. The test matrix is shown in Table 2. A total of 16 flue gas mercury measurements were conducted at four locations (economizer outlet, air heater outlet, FGD inlet, and stack) on each unit. The two units were tested in separate weeks. The Ontario Hydro Method (ASTM Method D-6784-02) was used to perform the measurements. Mercury measurements were performed with a net sampling time of 120 minutes. Details of sampling conditions are provided later in this report.

To calculate the material balance, CONSOL R&D and plant personnel obtained process samples (coal, coal mill rejects, bottom ash, ESP ash, limestone slurry, FGD slurry, and FGD makeup/mist eliminator wash water) simultaneously during the gas sampling periods. CONSOL R&D performed all the sample laboratory analyses; no analysis was sub-contracted out. Detailed results of analyses are included in this report.

|              |                               | Flu                  | e Gas Sa                | mpling       |       | Process Sampling |                      |   |   |   |               |                                     |
|--------------|-------------------------------|----------------------|-------------------------|--------------|-------|------------------|----------------------|---|---|---|---------------|-------------------------------------|
| Date         | Activity                      | Economizer<br>Outlet | Air<br>Heater<br>Outlet | FGD<br>Inlet | Stack | Coal             | Coal Mill<br>Rejects |   | · |   | FGD<br>Slurry | FGD<br>Makeup +<br>ME Wash<br>Water |
| 18-Jan       | Setup on<br>Unit 1            |                      |                         |              |       |                  |                      |   |   |   |               |                                     |
| 19-Jan       | Test 1                        | Х                    | Х                       | Х            | Х     | Х                | Х                    | Х | Х | Х | Х             |                                     |
| 20-Jan       | Test 2                        | Х                    | Х                       | Х            | Х     | х                |                      | х | Х | Х | Х             |                                     |
| 20-Jan       | Test 3                        | Х                    | Х                       | Х            | Х     | ~                |                      | ^ | Х | Х | Х             | Х                                   |
| 21-Jan       | Test 4,<br>Move to<br>Unit 2  | х                    | х                       | х            | х     | х                |                      |   | х | х | х             | х                                   |
| Week-<br>end | None                          |                      |                         |              |       |                  |                      |   |   |   |               |                                     |
| 24-Jan       | Setup on<br>Unit 2,<br>Test 1 | х                    | х                       | х            | х     | х                | х                    |   | х | х | х             | х                                   |
| 25-Jan       | Test 2                        | Х                    | Х                       | Х            | Х     | х                | Х                    | х | Х | Х | Х             | Х                                   |
| 20 0011      | Test 3                        | Х                    | Х                       | Х            | Х     | ~                | Х                    |   | Х | Х | Х             | Х                                   |
| 26-Jan       | Test 4                        | Х                    | Х                       | Х            | Х     | Х                | Х                    | Х | Х | Х | Х             | Х                                   |
| 27-Jan       | Pack,<br>Demobilize           |                      |                         |              |       |                  |                      |   |   |   |               |                                     |

 Table 2. Sampling test matrix

#### II. Flue Gas Mercury Sampling Results

Figures 1 and 2 show the mercury speciation for the four tests conducted at each location on Units 1 (no SCR) and 2 (with SCR), respectively. All tests were conducted isokinetically. A complete listing of mercury analyses is in Appendix C. The results at each location are discussed in the following sections. The associated tables list the measured Ontario Hydro sampling train concentrations and the mercury throughput for the respective location with the concentrations applied to the stack flow rate corrected to the locations' oxygen concentration. Adjusting the mercury throughput to the stack flow rate is more accurate as this is the only location where flow could be measured accurately.

#### A. Economizer Outlet

Four mercury measurements were conducted at the economizer outlet (air heater inlet on Unit 1 and SCR inlet on Unit 2) on both units. Table 3 summarizes the results, which show that about 99% of the mercury was in the gas phase and about 1% of the mercury was in the particulate form (Hg<sup>part</sup>). The high percentage of gas phase mercury is expected due to the gas temperature (673-714°F) at this location. About forty percent of the total mercury was in the elemental form (Hg<sup>0</sup>) at both units.

| Date                                  | Test                                                     | •                                          | Concenti                                   |                                      |                                           | Hg Flow, mg/sec                      |                                  |                                 |                                         |  |
|---------------------------------------|----------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------|---------------------------------|-----------------------------------------|--|
| Dale                                  | No.                                                      |                                            | dry std c                                  | l .                                  |                                           |                                      | an mort land the option          |                                 |                                         |  |
|                                       |                                                          | Hg <sup>part</sup>                         | Hg⁺⁺                                       | Hg⁰                                  | Hg <sup>total</sup>                       | Hg <sup>part</sup>                   | Hg⁺⁺                             | Hg⁰                             | Hg <sup>total</sup>                     |  |
| 1/19                                  | Unit 1,<br>Test 1                                        | 0.061                                      | 4.82                                       | 4.50                                 | 9.37                                      | 0.025                                | 1.98                             | 1.85                            | 3.85                                    |  |
| 1/20                                  | Unit 1,<br>Test 2                                        | 0.073                                      | 4.97                                       | 3.36                                 | 8.41                                      | 0.031                                | 2.07                             | 1.40                            | 3.49                                    |  |
| 1/20                                  | Unit 1,<br>Test 3                                        | 0.073                                      | 4.85                                       | 2.97                                 | 7.89                                      | 0.031                                | 2.06                             | 1.26                            | 3.35                                    |  |
| 1/21                                  | Unit 1,<br>Test 4                                        | 0.096                                      | 3.57                                       | 1.58                                 | 5.25                                      | 0.041                                | 1.53                             | 0.68                            | 2.25                                    |  |
| Average<br>Standard Deviation<br>PRSD |                                                          | 0.076<br>0.014<br>19%                      | 4.55<br>0.66<br>14%                        | 3.10<br>1.20<br>39%                  | 7.73<br>1.76<br>23%                       | 0.032<br>0.007<br>21%                | 1.91<br>0.26<br>13%              | 1.30<br>0.48<br>37%             | 3.24<br>0.69<br>21%                     |  |
| Data Test                             |                                                          |                                            |                                            |                                      |                                           |                                      |                                  |                                 |                                         |  |
| Date                                  |                                                          | _                                          | Concenti<br>dry std co                     |                                      | _                                         |                                      | Hg Flow                          | , mg/sec                        | :                                       |  |
| Date                                  | Test<br>No.                                              | _                                          | Concenti<br>dry std co<br>Hg <sup>++</sup> |                                      | _                                         | Hg <sup>part</sup>                   | Hg Flow<br>Hg <sup>++</sup>      | , mg/sec<br>Hg⁰                 | Hg <sup>total</sup>                     |  |
| <b>Date</b><br>1/24                   |                                                          | (0                                         | ry std c                                   | ondition                             | 5)                                        |                                      | -                                |                                 |                                         |  |
|                                       | No.<br>Unit 2,                                           | (d<br>Hg <sup>part</sup>                   | dry std co<br>Hg⁺⁺                         | ondition:<br>Hg⁰                     | s)<br>Hg <sup>total</sup>                 | Hg <sup>part</sup>                   | J<br>Hg⁺⁺                        | Hg⁰                             | Hg <sup>total</sup>                     |  |
| 1/24                                  | No.<br>Unit 2,<br>Test 1<br>Unit 2,                      | (c<br>Hg <sup>part</sup><br>0.079          | dry std co<br>Hg <sup>++</sup><br>5.76     | ondition:<br>Hg <sup>0</sup><br>4.58 | s)<br>Hg <sup>total</sup><br>10.4         | Hg <sup>part</sup>                   | Hg <sup>++</sup>                 | Hg <sup>o</sup>                 | Hg <sup>total</sup><br>4.38             |  |
| 1/24<br>1/25                          | No.<br>Unit 2,<br>Test 1<br>Unit 2,<br>Test 2<br>Unit 2, | (c<br>Hg <sup>part</sup><br>0.079<br>0.074 | dry std co<br>Hg⁺⁺<br>5.76<br>6.11         | onditions<br>Hg⁰<br>4.58<br>4.55     | s)<br>Hg <sup>total</sup><br>10.4<br>10.7 | Hg <sup>part</sup><br>0.033<br>0.032 | Hg <sup>++</sup><br>2.42<br>2.63 | Hg <sup>o</sup><br>1.92<br>1.96 | Hg <sup>total</sup> 4.38           4.62 |  |

 Table 3. Flue gas mercury speciation at the Economizer Outlet

#### B. Air heater outlet

Four mercury measurements were conducted at the air heater outlet location in on both units. Table 4 summarizes the results. The majority (87-96%) of the mercury was vapor-phase Hg<sup>++</sup>. On both units, a substantial portion of the elemental mercury was oxidized in the air heater or SCR/air heater combination. Compared to about 40% elemental mercury at the economizer outlet, only 9% was elemental at Unit 1's air heater outlet and only 2.6% was elemental at Unit 2's air heater outlet. The results also show that the SCR-air heater combination on Unit 2 oxidized more mercury than the air

heater (with no SCR) on Unit 1. The elemental mercury reduction from the economizer exit to the air heater exit was 77% on Unit 1 (1.30 to 0.30 mg/sec) and 95% on Unit 2 (1.73 to 0.09 mg/sec).

| Date     | Test<br>No.                  |                      | Concenti<br>dry std co |                     |                     | Hg Flow, mg/sec      |                     |                     |                     |
|----------|------------------------------|----------------------|------------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|
|          |                              | Hg <sup>part</sup>   | Hg⁺⁺                   | Hg⁰                 | Hg <sup>total</sup> | Hg <sup>part</sup>   | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> |
| 1/19     | Unit 1,<br>Test 1            | 0.63                 | 5.65                   | 0.23                | 6.52                | 0.28                 | 2.56                | 0.11                | 2.95                |
| 1/20     | Unit 1,<br>Test 2            | 0.05                 | 6.88                   | 0.90                | 7.83                | 0.01                 | 3.18                | 0.41                | 3.61                |
| 1/20     | Unit 1,<br>Test 3            | 0.17                 | 6.55                   | 1.05                | 7.77                | 0.08                 | 3.04                | 0.49                | 3.61                |
| 1/21     | Unit 1,<br>Test 4            | 0.13                 | 4.62                   | 0.38                | 5.12                | 0.06                 | 2.18                | 0.18                | 2.41                |
| Standard | Average<br>Deviation<br>PRSD | 0.24<br>0.26<br>108% | 5.93<br>1.01<br>17%    | 0.64<br>0.39<br>62% | 6.81<br>1.28<br>19% | 0.11<br>0.12<br>106% | 2.74<br>0.46<br>17% | 0.30<br>0.18<br>62% | 3.15<br>0.58<br>18% |
| Date     | Test<br>No.                  |                      | Concenti<br>dry std co |                     |                     | Hg Flow, mg/sec      |                     |                     |                     |
|          |                              | Hg <sup>part</sup>   | Hg⁺⁺                   | Hg⁰                 | Hg <sup>total</sup> | Hg <sup>part</sup>   | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> |
| 1/24     | Unit 2,<br>Test 1            | 0.27                 | 6.97                   | 0.19                | 7.43                | 0.12                 | 3.20                | 0.09                | 3.41                |
| 1/25     | Unit 2,<br>Test 2            | 1.25                 | 6.31                   | 0.19                | 7.75                | 0.58                 | 2.92                | 0.09                | 3.59                |
| 1/25     | Unit 2,<br>Test 3            | 0.62                 | 6.57                   | 0.24                | 7.42                | 0.29                 | 3.07                | 0.11                | 3.47                |
| 1/26     | Unit 2,<br>Test 4            | 1.56                 | 5.25                   | 0.14                | 6.95                | 0.73                 | 2.44                | 0.06                | 3.22                |
| Standard | Average<br>Deviation<br>PRSD | 0.92<br>0.59<br>64%  | 6.27<br>0.74<br>12%    | 0.19<br>0.04<br>23% | 7.39<br>0.33<br>4%  | 0.43<br>0.27<br>64%  | 2.91<br>0.34<br>12% | 0.09<br>0.02<br>23% | 3.42<br>0.15<br>4%  |

Table 4. Flue gas mercury speciation at the air heater outlet

#### C. FGD inlet

Four mercury measurements were conducted at the FGD inlet location at both units. Table 5 summarizes the results. In both units, nearly 100% of the flue gas mercury was in the gaseous phase because this location is downstream of the ESP. On Unit 1, 93%

of the mercury entering the scrubber was in the oxidized form, while 98% was in the oxidized form entering Unit 2's scrubber.

| Date                                  | Test<br>No.                  |                                                        | ncentra<br>std cor  |                     |                     | Hg Flow, mg/sec                                        |                     |                     |                     |  |
|---------------------------------------|------------------------------|--------------------------------------------------------|---------------------|---------------------|---------------------|--------------------------------------------------------|---------------------|---------------------|---------------------|--|
|                                       |                              | Hg <sup>part</sup>                                     | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> | Hg <sup>part</sup>                                     | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> |  |
| 1/19                                  | Unit 1,<br>Test 1            | 2.63x10 <sup>-3</sup>                                  | 6.25                | 0.38                | 6.63                | 1.27 x10 <sup>-3</sup>                                 | 3.03                | 0.18                | 3.21                |  |
| 1/20                                  | Unit 1,<br>Test 2            | 2.56 x10 <sup>-3</sup>                                 | 6.52                | 0.27                | 6.79                | 1.22 x10 <sup>-3</sup>                                 | 3.11                | 0.13                | 3.24                |  |
| 1/20                                  | Unit 1,<br>Test 3            | 2.71 x10 <sup>-3</sup>                                 | 7.46                | 0.37                | 7.83                | 1.32 x10 <sup>-3</sup>                                 | 3.63                | 0.18                | 3.81                |  |
| 1/21                                  | Unit 1,<br>Test 4            | 2.52 x10 <sup>-3</sup>                                 | 3.43                | 0.46                | 3.90                | 1.23 x10 <sup>-3</sup>                                 | 1.67                | 0.23                | 1.90                |  |
| Average<br>Standard Deviation<br>PRSD |                              | 2.60 x10 <sup>-3</sup><br>8.29 x10 <sup>-5</sup><br>3% | 5.92<br>1.73<br>29% | 0.37<br>0.08<br>22% | 6.29<br>1.68<br>27% | 1.26 x10 <sup>-3</sup><br>4.55 x10 <sup>-5</sup><br>4% | 2.86<br>0.83<br>29% | 0.18<br>0.04<br>23% | 3.04<br>0.81<br>27% |  |
| Date                                  | Test<br>No.                  |                                                        | ncentra<br>std cor  |                     |                     | Hg Flow, mg/sec                                        |                     |                     |                     |  |
|                                       |                              | Hg <sup>part</sup>                                     | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> | Hg <sup>part</sup>                                     | Hg <sup>++</sup>    | Hg⁰                 | Hg <sup>total</sup> |  |
| 1/24                                  | Unit 2,<br>Test 1            | 2.88 x10 <sup>-3</sup>                                 | 7.18                | 0.13                | 7.31                | 1.37 x10 <sup>-3</sup>                                 | 3.40                | 0.061               | 3.47                |  |
| 1/25                                  | Unit 2,<br>Test 2            | 3.14 x10 <sup>-3</sup>                                 | 7.91                | 0.13                | 8.05                | 1.49 x10 <sup>-3</sup>                                 | 3.76                | 0.064               | 3.83                |  |
| 1/25                                  | Unit 2,<br>Test 3            | 3.22 x10 <sup>-3</sup>                                 | 7.85                | 0.13                | 7.98                | 1.54 x10 <sup>-3</sup>                                 | 3.74                | 0.060               | 3.81                |  |
| 1/26                                  | Unit 2,<br>Test 4            | 3.10 x10 <sup>-3</sup>                                 | 6.35                | 0.15                | 6.50                | 1.50 x10 <sup>-3</sup>                                 | 3.06                | 0.070               | 3.13                |  |
| Standard                              | Average<br>Deviation<br>PRSD | 3.09 x10 <sup>-3</sup><br>1.45 x10 <sup>-4</sup><br>5% | 7.32<br>0.73<br>10% | 0.13<br>0.01<br>7%  | 7.46<br>0.72<br>10% | $1.47 \times 10^{-3}$ 3.49 0.064 3.56                  |                     | 3.56<br>0.33        |                     |  |

 Table 5. Flue gas mercury speciation at the FGD inlet

#### D. Stack

Four mercury measurements were conducted at the stack on both units. Table 6 summarizes the results. On Unit 1, elemental mercury increased by 83%, from 0.18 mg/sec at the FGD inlet to 0.33 mg/sec at the stack. On Unit 2, the elemental mercury was essentially the same, 0.06 at the FGD inlet and 0.07 at the stack. An increase of

Hg<sup>0</sup> across wet scrubbers has been observed by CONSOL R&D at many other plants<sup>2,3</sup>. It is not clear why an increase did not occur in Unit 2's scrubber.

|         |                                | Hg Cor                                                 | centratio           | on, µg/r            | n <sup>3</sup>      | Hg Flow, mg/sec                                          |                       |                       |                     |
|---------|--------------------------------|--------------------------------------------------------|---------------------|---------------------|---------------------|----------------------------------------------------------|-----------------------|-----------------------|---------------------|
| Date    | Test No.                       |                                                        | std cond            | litions)            |                     |                                                          | - ,                   | <b>J</b>              |                     |
|         |                                | Hg <sup>part</sup>                                     | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> | Hg <sup>part</sup>                                       | Hg⁺⁺                  | Hg⁰                   | Hg <sup>total</sup> |
| 1/19    | Unit 1,<br>Test 1              | 2.26 x10 <sup>-3</sup>                                 | 0.45                | 0.32                | 0.77                | 1.11 x10 <sup>-3</sup>                                   | 0.22                  | 0.16                  | 0.38                |
| 1/20    | Unit 1,<br>Test 2              | 2.24 x10 <sup>-3</sup>                                 | 0.35                | 0.80                | 1.16                | 1.11 x10 <sup>-3</sup>                                   | 0.17                  | 0.40                  | 0.57                |
| 1/20    | Unit 1,<br>Test 3              | 2.24 x10 <sup>-3</sup>                                 | 0.32                | 1.06                | 1.39                | 1.11 x10 <sup>-3</sup>                                   | 0.16                  | 0.52                  | 0.69                |
| 1/21    | Unit 1,<br>Test 4              | 2.21 x10 <sup>-3</sup>                                 | 0.26                | 0.52                | 0.79                | 1.10 x10 <sup>-3</sup>                                   | 0.13                  | 0.26                  | 0.39                |
| Standar | Average<br>d Deviation<br>PRSD | 2.24x10 <sup>-3</sup><br>2.44 x10 <sup>-5</sup><br>1%  | 0.35<br>0.08<br>23% | 0.68<br>0.33<br>48% | 1.03<br>0.30<br>29% | 1.11 x10 <sup>-3</sup><br>4.79 x10 <sup>-6</sup><br>0.4% | 0.17<br>0.04<br>22%   | 0.33<br>0.16<br>48%   | 0.51<br>0.15<br>29% |
|         | <b>T</b> (N                    | -                                                      | ocentratio          |                     | n <sup>3</sup>      | Hg                                                       | Flow, m               | g/sec                 |                     |
| Date    | Test No.                       |                                                        | std cond            |                     |                     |                                                          |                       | 1                     |                     |
|         |                                | Hg <sup>part</sup>                                     | Hg⁺⁺                | Hg⁰                 | Hg <sup>total</sup> | Hg <sup>part</sup>                                       | Hg⁺⁺                  | Hg⁰                   | Hg <sup>total</sup> |
| 1/24    | Unit 2,<br>Test 1              | 2.30x10 <sup>-3</sup>                                  | 0.21                | 0.16                | 0.38                | 1.11 x10 <sup>-3</sup>                                   | 0.101                 | 0.079                 | 0.18                |
| 1/25    | Unit 2,<br>Test 2              | 2.29 x10 <sup>-3</sup>                                 | 0.35                | 0.16                | 0.52                | 1.11 x10 <sup>-3</sup>                                   | 0.172                 | 0.077                 | 0.25                |
| 1/25    | Unit 2,<br>Test 3              | 2.26 x10 <sup>-3</sup>                                 | 0.12                | 0.14                | 0.25                | 1.11 x10 <sup>-3</sup>                                   | 0.056                 | 0.067                 | 0.12                |
| 1/26    | Unit 2,<br>Test 4              | 2.23 x10 <sup>-3</sup>                                 | 0.16                | 0.10                | 0.27                | 1.10 x10 <sup>-3</sup>                                   | 0.079                 | 0.051                 | 0.13                |
| Standar | Average<br>d Deviation<br>PRSD | 2.27 x10 <sup>-3</sup><br>3.21 x10 <sup>-5</sup><br>1% | 0.21<br>0.10<br>50% | 0.14<br>0.03<br>19% | 0.35<br>0.12<br>34% | 1.11 x10 <sup>-3</sup><br>7.03 x10 <sup>-6</sup><br>0.6% | 0.102<br>0.050<br>49% | 0.069<br>0.013<br>19% | 0.17<br>0.06<br>34% |

 Table 6. Flue gas mercury speciation at the stack

<sup>&</sup>lt;sup>2</sup> DeVito, M. S., Withum, J. A., and Statnick, R. M., "Flue Gas Measurements from Coal-Fired Boilers Equipped with Wet Scrubbers," Int. J. of Environ. Pollution 17 (1/2), 2002, p. 126-142

<sup>&</sup>lt;sup>3</sup> Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems - Topical Report Nos. 1, and 4 through 9, U.S. DOE Cooperative Agreement DE-FC26-02NT41589

#### III. SCR/FGD System Hg Removal

Table 7 summarizes the flue gas mercury removal across the SCR/FGD system for the two units. In Unit 2 (with SCR), the air heater outlet-to-stack mercury removal ranged from 93 to 96% and the average was 95.0%. The coal-to-stack mercury removal ranged from 96 to 98% and the average coal-to-stack mercury removal was 97.1%. In Unit 1 (no SCR), the air heater outlet-to-stack mercury removal ranged from 81 to 87% and the average was 84.0%. The coal-to-stack mercury removal ranged from 85 to 90% and the average coal-to-stack mercury removal was 87.1%.

|      |                                       | System Mercury Reduction |                                            |                     |                                                           |                     |                     |  |  |  |
|------|---------------------------------------|--------------------------|--------------------------------------------|---------------------|-----------------------------------------------------------|---------------------|---------------------|--|--|--|
| Date | Test No.                              | Onta                     | ario Hydro R<br>mg Hg <sup>total</sup> /se | esults,<br>ec       | Coal Feed Based Reduction,<br>mg Hg <sup>total</sup> /sec |                     |                     |  |  |  |
|      |                                       | Air<br>Heater<br>Outlet  | Stack<br>Emissions                         | %<br>Reduction      | Coal<br>Feed                                              | Stack<br>Emissions  | %<br>Reduction      |  |  |  |
| 1/19 | Unit 1, Test 1                        | 2.95                     | 0.38                                       | 87                  | 3.85                                                      | 0.38                | 90                  |  |  |  |
| 1/20 | Unit 1, Test 2                        | 3.61                     | 0.57                                       | 84                  | 4.54                                                      | 0.57                | 87                  |  |  |  |
| 1/20 | Unit 1, Test 3                        | 3.61                     | 0.69                                       | 81                  | 4.50                                                      | 0.69                | 85                  |  |  |  |
| 1/21 | Unit 1, Test 4                        | 2.41                     | 0.39                                       | 84                  | 2.79                                                      | 0.39                | 86                  |  |  |  |
| S    | Average<br>tandard Deviation<br>PRSD  | 3.15<br>0.58<br>18%      | 0.51<br>0.15<br>29%                        | 84.0<br>2.5<br>3%   | 3.92<br>0.81<br>21%                                       | 0.51<br>0.15<br>29% | 87.1<br>2.3<br>3%   |  |  |  |
|      |                                       | System Mercury Reduction |                                            |                     |                                                           |                     |                     |  |  |  |
| Date | Test No.                              | Onta                     | ario Hydro R<br>mg Hg <sup>total</sup> /s  | esults,<br>ec       | Coal Feed Based Reduction,<br>mg Hg <sup>total</sup> /sec |                     |                     |  |  |  |
|      |                                       | Air<br>Heater<br>Outlet  | Stack<br>Emissions                         | %<br>Reduction      | Coal<br>Feed                                              | Stack<br>Emissions  | %<br>Reduction      |  |  |  |
| 1/24 | Unit 2, Test 1                        | 3.41                     | 0.18                                       | 95                  | 5.87                                                      | 0.18                | 97                  |  |  |  |
| 1/25 | Unit 2, Test 2                        | 3.59                     | 0.25                                       | 93                  | 6.70                                                      | 0.25                | 96                  |  |  |  |
| 1/25 | Unit 2, Test 3                        | 3.47                     | 0.12                                       | 96                  | 6.67                                                      | 0.12                | 98                  |  |  |  |
| 1/26 | Unit 2, Test 4                        | 3.22                     | 0.13                                       | 96                  | 4.60                                                      | 0.13                | 97                  |  |  |  |
| S    | Average<br>standard Deviation<br>PRSD | 3.42<br>0.15<br>4%       | 0.17<br>0.06<br>34%                        | 95.0<br>1.5<br>1.6% | 5.96<br>0.99<br>17%                                       | 0.17<br>0.06<br>34% | 97.1<br>0.8<br>0.8% |  |  |  |

 Table 7. Flue gas mercury removal

#### **IV. Mercury Material Balance**

An important criterion to gauge the overall quality of the tests is to conduct a mercury mass balance to account for the mercury entering and leaving the plant during the tests. The mercury material balance closure is the total mercury output from the plant divided by the total mercury input (expressed as %). The total mercury input is the sum of the amounts of mercury entering the system from coal, limestone slurry, and FGD make-up water. The total mercury output is the sum of the amounts of mercury output is the sum of the amounts of mercury leaving the system via coal mill rejects, boiler bottom ash, ESP hopper ash, FGD slurry, and stack flue gas.

Tables 8 and 9 summarize the mercury material balance closures for the tests conducted at Units 1 and 2, respectively. The mercury material balance closures ranged from 72% to 104% on Unit 1 and between 93 and 109% on Unit 2. The material balance closures for mercury for all individual tests are within our QA/QC criterion of 70-130% for a single test. The average material balance closure was 84% on Unit 1 and 103% on Unit 2, which are within our QA/QC criterion of 80-120% for multiple tests. The measurements, calculations, and assumptions for calculating the material balances are described later in this report.

| Test No.                                     | 1       | 2    | 3    | 4    |
|----------------------------------------------|---------|------|------|------|
| Total Hg Input (mg/sec)                      | 3.91    | 4.60 | 4.55 | 2.87 |
| Total Hg Output (mg/sec)                     | 3.15    | 3.31 | 3.61 | 2.96 |
| Hg Material Balance Closure (output / input) | 81%     | 72%  | 79%  | 104% |
| Average Hg Material Balance Closure (%)      | 84%±13% |      |      |      |

Table 8. Mercury material balance closure, Unit 1 (no SCR)

| Table 9 | Mercury material balance closure, Unit 2 (with Second | CR) |
|---------|-------------------------------------------------------|-----|
|---------|-------------------------------------------------------|-----|

| Test No.                                     | 1       | 2    | 3    | 4    |
|----------------------------------------------|---------|------|------|------|
| Total Hg Input (mg/sec)                      | 3.36    | 3.89 | 3.84 | 4.00 |
| Total Hg Output (mg/sec)                     | 3.67    | 4.08 | 4.10 | 3.70 |
| Hg Material Balance Closure (output / input) | 109%    | 105% | 107% | 93%  |
| Average Hg Material Balance Closure (%)      | 103%±7% |      |      |      |

#### V. SCR/Non-SCR Test Comparison

At the inlet to the ESP and at the inlet to the FGD, the percentage of flue gas elemental mercury was lower in the SCR-equipped unit compared to the non-SCR unit. This is important because these two pollution control devices are efficient at removing particulate and oxidized mercury, but not elemental mercury. Table 10 compares the average mercury speciation of the flue gas in the air heater outlet (ESP inlet) duct and in the ESP outlet (FGD inlet) duct for both units.

# Table 10. Comparisons of Average Flue Gas Mercury Speciation, SCR Unit vs. Non-SCR Unit, at the Air Heater Outlet and at the FGD Inlet

| Mercury            |                                                      | l Mercury at the<br>tlet (ESP Inlet) | Percent of Total Mercury at the<br>ESP Outlet (FGD Inlet) |                      |  |
|--------------------|------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------|--|
| Species            | Species<br>Unit 1 Unit 2<br>(with no SCR) (with SCR) |                                      | Unit 1<br>(with no SCR)                                   | Unit 2<br>(with SCR) |  |
| Hg <sup>part</sup> | 3%                                                   | 12%                                  | 0%                                                        | 0%                   |  |
| Hg <sup>++</sup>   | 87%                                                  | 85%                                  | 94%                                                       | 98%                  |  |
| Hg⁰                | 10%                                                  | 3%                                   | 6%                                                        | 2%                   |  |

Mercury removal in Unit 2's FGD scrubber was different from that of Unit 1. Table 11 shows that 94-97% of the oxidized mercury exiting the ESP was removed in the FGD scrubber in both units. However, the amount of elemental mercury increased across the scrubber, and the increase was greater in Unit 1 than in Unit 2; an increase in elemental mercury in wet scrubbers has been observed in tests at other plants in this program<sup>3</sup>. The reason for the greater effect in the Unit 1 scrubber compared to the Unit 2 scrubber is not clear; scrubber sulfite concentration is believed to play a role but this has not been verified. Scrubber sulfite concentration was not measured in this test program.

| Mercury            |                         | Unit 1<br>(with no SCR) |                                     | Unit 2<br>(with SCR)    |                     |                                     |
|--------------------|-------------------------|-------------------------|-------------------------------------|-------------------------|---------------------|-------------------------------------|
| Species            | FGD Inlet,<br>mg Hg/sec | Stack,<br>mg Hg/sec     | Reduction<br>Across FGD<br>Scrubber | FGD Inlet,<br>mg Hg/sec | Stack,<br>mg Hg/sec | Reduction<br>Across FGD<br>Scrubber |
| Hg <sup>part</sup> | <0.002                  | <0.002                  |                                     | <0.002                  | <0.002              |                                     |
| Hg⁺⁺               | 2.86                    | 0.17                    | 94%                                 | 3.49                    | 0.10                | 97%                                 |
| Hg⁰                | 0.18                    | 0.33                    | -83%                                | 0.064                   | 0.069               | -8%                                 |
| Total Hg           | 3.04                    | 0.51                    | 83%                                 | 3.56                    | 0.17                | 95%                                 |

## **EXPERIMENTAL AND SAMPLING METHODS**

CONSOL R&D performed flue gas mercury determinations using the Ontario-Hydro sampling method. As a quality assurance/quality control (QA/QC) measure, samples of

the coal, bottom ash, FGD slurry, limestone slurry, and ESP ash, were taken to determine a mercury balance across the system.

#### I. Flue Gas Sampling Locations and Sampling Points

Four sampling locations, the economizer outlet, air heater outlet (upstream of the ESP), FGD inlet, and stack outlet, were tested. Figure 3 is a flow schematic indicating the sampling locations at these units.

At each unit, flue gas exits the economizer through two ducts (designated Ducts A and B) and passes through the SCR, air heater, ESP, and FGD, before it combines to form a single flue tube at the stack. All sampling at points leading to the stack was conducted in Duct A of each unit. Individual sampling locations are detailed in the following sections.

#### A. Economizer outlet

On each unit, the economizer outlet consists of two horizontal, rectangular ducts, measuring 14.5 feet deep by 25 wide at the sampling plane. Eight sample ports are spaced across the top of each duct.

Preliminary pitot surveys indicated that the gas flow was straight, not cyclonic or swirling. The flue gas was sampled through the middle test port at a single point in each duct, 60 minutes per duct for each test. Parametric readings were recorded every ten minutes. Total test duration was 120 minutes. Mercury measurements were conducted with the sampling nozzle oriented parallel to and directly into the flow.

Four mercury measurements were performed isokinetically at the economizer outlet on each unit. The sample train was prepared in EPA Method 17 configuration using an instack 19 mm x 90 mm quartz-fiber thimble filter. The filter apparatus was attached to a heated probe that was connected to the impinger train with a flexible heated Teflon sample line. Figure 4 is a photograph of the mercury sampling train at the economizer outlet.

#### B. Air heater outlet

On each unit, the air heater outlet duct consists of four horizontal ducts, each approximately 11 feet 8 inches deep and 11 feet 8 inches wide. Six test ports are located across the top of each duct. Preliminary pitot surveys indicated that the gas flow was parallel to the duct walls.

The flue gas was sampled through the middle test port at a single point in each duct, 30 minutes per duct for each test. Total test durations were 120 minutes with parametric readings recorded every ten minutes. Mercury measurements were conducted with the sampling nozzle oriented parallel to and directly into the flow.

Four mercury measurements were performed isokinetically at the air heater outlet on each unit. The sample train was prepared in EPA Method 17 configuration using an instack 19 mm x 90 mm quartz-fiber thimble filter. The filter apparatus was attached to a heated probe that was connected to the impinger train with a flexible heated Teflon

sample line. Figure 5 is a photograph of the mercury sampling train at the air heater outlet location.

# C. FGD inlet

The FGD inlet at each unit consists of two horizontal ducts leading from the ID fans to the scrubbers. A single test port was available in each duct, downstream of the induced draft fan. A single point near the center of each duct was sampled, 60 minutes per duct, for each test. A preliminary pitot survey indicated that the gas flow was parallel to the duct walls at this point.

Parametric readings were recorded every ten minutes for each test period, which was 120 minutes net sampling time. Mercury measurements were conducted isokinetically with the sampling nozzle oriented parallel to and directly into the flow.

Four mercury measurements were performed at the FGD inlet on each unit. The sample train was prepared in EPA Method 17 configuration using an in-stack 47-mm quartz-fiber disc filter. The filter apparatus was attached to a heated probe that was connected to the impinger train with a flexible heated Teflon sample line. Figure 6 is a photograph of the mercury sampling train on the FGD inlet location.

## D. Stack

Both stacks are approximately 19 feet in diameter. On each stack, three points were sampled in each of four sample access ports for a total of 12 traverse points. Each point was sampled for a period of 10 minutes resulting in 120-minute tests.

Preliminary pitot surveys indicated that the gas flow was axial. Mercury measurements were conducted with the nozzle oriented horizontally, directly into the flow. Four measurements were performed isokinetically at this location on each unit. A standard EPA Method 5 sample train configuration was utilized for this location. Figure 7 is a photograph of the mercury sampling train on the stack location.

#### II. Flue Gas Mercury Measurements

Flue gas mercury measurements were conducted using the Ontario-Hydro mercury speciation train. A schematic of the sampling train is shown in Figure 8.

The flue gas was extracted from the duct and pulled through a heated glass-lined probe and quartz filter. Total particulate matter mass loading was calculated from the solids collected prior to and on the filter. Probe temperatures were set at  $325 \pm 25$  °F at the SCR inlet and outlet, the air heater outlet and the FGD inlet. Probe and filter temperatures were maintained at  $250 \pm 25$  °F at the stack. Where particle loading is high, the probe and filter are maintained as close as practical to the flue gas temperature.

Mercury collected prior to and on the filter is assumed to be Hg<sup>part</sup>. The flue gas exits the quartz filter and passes through a series of chilled impingers. The first three impingers are filled with 100 mL of a 1M-potassium chloride (KCI) solution. It is assumed that these impingers capture Hg<sup>++</sup> in the flue gas. The next impinger is filled

with 100 mL of a 5% nitric acid and 10% hydrogen peroxide  $(H_2O_2)$  solution. The purpose of this impinger is to remove  $SO_2$  from the flue gas to preserve the oxidizing strength of the two downstream impingers with acidic potassium permanganate (KMnO<sub>4</sub>) solution. Mercury collected in this impinger is assumed to be Hg<sup>0</sup>. The next two impingers are filled with 100 mL of an acidic KMnO<sub>4</sub> solution. It is assumed that these impingers capture Hg<sup>0</sup>. The next impinger is blank to catch any excess moisture. The gas exits the impinger train through a silica gel-filled impinger that removes the moisture from the flue gas. The mercury species collected by the Ontario-Hydro sampling train component are listed in Table 12.

| Train Component                                          | Species Measured   |
|----------------------------------------------------------|--------------------|
| Probe & Nozzle Rinse                                     | Hg <sup>part</sup> |
| Quartz Filter                                            | Hg <sup>part</sup> |
| KCI Impingers                                            | Hg <sup>++</sup>   |
| HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | Hg <sup>o</sup>    |
| KMnO₄ Impingers                                          | Hg <sup>0</sup>    |
| HCI Rinse of KMnO <sub>4</sub> Impingers                 | Hg <sup>0</sup>    |

 Table 12. Mercury speciation by train component

The absorbing solutions were made fresh daily. The impingers were charged and the sampling components were transported to the required locations. The sampling trains were assembled, pre-heated, and checked for pitot and sample line leaks as detailed in EPA Methods 2 and 5, respectively. After passing the leak-check procedure, the sampling probes were inserted into their respective ducts, in-stack filters were allowed to heat to stack temperature, and sampling was initiated. Leak checks were also performed during port changes.

Oxygen readings were monitored at the outlet of the sampling train using a Teledyne Model Max 5 portable analyzer (electrochemical  $O_2$  sensor). At the completion of the sampling period, the sample trains were checked for leaks, purged for 10 min, and then disassembled. The components were transported back to the lab trailer for recovery. The mercury concentration of the individual impinger solutions was determined by cold vapor atomic absorption (CVAA) as specified in the methodology. The concentration of mercury on the solids was determined by acid digestion followed by CVAA.

The amount of mercury collected in the impinger solutions was determined as outlined in EPA Method 29 and the Ontario-Hydro Draft Method. An aliquot of the impinger solution was acidified and the mercury is determined using cold vapor-atomic absorption spectroscopy. The atomic absorption spectrometer was calibrated with commercial mercury standard. The calibration was verified using NIST Standard Reference Materials (SRM) 1641D and 1633b. The calibration was reassessed periodically by analyzing a quality control standard. The instrument was recalibrated as required. Each sample matrix was analyzed as a set and an individual calibration curve was used for each set. Depending on sample type, selected samples were spiked with 2, 5, 10, or 15 ng/ml (ppb) of mercury and reanalyzed. Spike recovery must be within  $\pm$ 30% or the sample is diluted and reanalyzed. Selected samples were analyzed in duplicate. The duplicates must be within  $\pm$ 30% or the analyses are repeated.

Where sufficient solids were collected, particulate mercury was analyzed using a 0.5-1.0 gm ash sample with the direct combustion method (ASTM Method D6722). In cases where the particulate catch was low (primarily stack filters), the entire filter sample was digested with aqua-regia in pressure vessels prior to analysis by CVAA.

#### III. Coal Sampling and Analysis

#### A. Coal samples

Plant personnel collected coal samples from coal being fed to the top of the coal bunkers. The samples were collected between midnight and 6:00 am the morning of each test day. This lead time was required because of the 6-12 hour residence time in the coal bunkers before the coal reaches the burners. Listed in Table 13 are the coal samples collected.

| Unit 1<br>Test No. | 1         | 2&3         | 4         |
|--------------------|-----------|-------------|-----------|
| Sample Date        | 1/19/2005 | 1/20/2005   | 1/21/2005 |
| Sample I.D.        | COAL-U1T1 | COAL-U1T2T3 | COAL-U1T4 |
| Unit 2<br>Test No. | 1         | 2&3         | 4         |
| Sample Date        | 1/24/2005 | 1/25/2005   | 1/26/2005 |
|                    |           |             |           |

 Table 13.
 List of coal samples

#### B. Results of analyses of coal samples

Coal samples were analyzed using a direct mercury analyzer following the procedures prescribed in ASTM Method D6722. Detailed analyses of the coal samples collected in each test are presented in Appendix D and the results are summarized in Tables 14 and 15. The mercury measured in the Unit 1 coal samples ranged from 0.066 to 0.110 ppm and in the Unit 2 coal samples ranged from 0.080 to 0.095 ppm.

|                                 | -          | I           |            |
|---------------------------------|------------|-------------|------------|
| Sample I.D.                     | Coal-U1T1  | Coal-U1T2T3 | Coal-U1T4  |
| Sample Date                     | 01/19/2005 | 01/20/2005  | 01/21/2005 |
| Test No.                        | 1          | 2&3         | 4          |
| Analytical No.                  | 20050682   | 20050683    | 20050684   |
| Residual moisture, as det'd (%) | 2.00       | 1.89        | 1.37       |
| Volatile matter (%, dry)        | 38.08      | 38.40       | 37.32      |
| Ash (%, dry)                    | 7.77       | 8.24        | 11.85      |
| Total carbon (%, dry)           | 77.74      | 77.01       | 74.83      |
| Fixed carbon (%, dry)           | 54.15      | 53.36       | 50.83      |
| Hydrogen (%, dry)               | 4.63       | 4.81        | 4.65       |
| Nitrogen (%, dry)               | 1.56       | 1.61        | 1.58       |
| Total sulfur (%, dry)           | 1.39       | 1.45        | 1.19       |
| Oxygen (%, dry), by diff.       | 6.77       | 6.74        | 5.74       |
| HHV (Btu/lb, dry)               | 13,683     | 13,686      | 13,205     |
| HHV (Btu/lb, MAF)               | 14,836     | 14,915      | 14,980     |
| Chlorine (%, dry)               | 0.144      | 0.143       | 0.157      |
| Hg (ppm, as det'd)              | 0.091      | 0.110       | 0.066      |
| Major Ash Elements (%, dry)     |            |             |            |
| SiO <sub>2</sub>                | 50.01      | 50.46       | 54.52      |
| Al <sub>2</sub> O <sub>3</sub>  | 27.77      | 26.57       | 26.87      |
| TiO <sub>2</sub>                | 1.29       | 1.34        | 1.09       |
| Fe <sub>2</sub> O <sub>3</sub>  | 12.63      | 12.73       | 9.17       |
| CaO                             | 1.73       | 1.69        | 1.50       |
| MgO                             | 1.00       | 0.98        | 1.17       |
| Na <sub>2</sub> O               | 0.55       | 0.53        | 0.63       |
| K <sub>2</sub> O                | 2.28       | 2.29        | 2.90       |
| P <sub>2</sub> O <sub>5</sub>   | 0.18       | 0.25        | 0.11       |
| SO <sub>3</sub>                 | 1.68       | 1.62        | 1.24       |

 Table 14.
 Coal sample analyses – Unit 1 samples

| Sample Description             |            | As-fired Coal |           |
|--------------------------------|------------|---------------|-----------|
| Sample I.D.                    | Coal-U2T1  | Coal-U2T2T3   | Coal-U2T  |
| Test No.                       | 1          | 2&3           | 4         |
| Test Date                      | 01/24/2005 | 01/25/2005    | 01/26/200 |
| Analytical No.                 | 20050685   | 20050686      | 20050687  |
| Moisture, as det'd (%)         | 1.83       | 1.49          | 1.61      |
| VM (%, dry)                    | 38.57      | 36.26         | 35.46     |
| Ash (%, dry)                   | 8.40       | 8.69          | 8.28      |
| Total Carbon (%, dry)          | 77.39      | 76.66         | 77.44     |
| Fixed Carbon (%, dry)          | 53.03      | 55.05         | 56.26     |
| Hydrogen (%, dry)              | 4.72       | 4.67          | 4.77      |
| Nitrogen (%, dry)              | 1.52       | 1.46          | 1.53      |
| Total Sulfur (%, dry)          | 1.66       | 1.59          | 1.38      |
| Oxygen (%, dry), by diff.      | 6.17       | 6.80          | 6.45      |
| HHV (Btu/lb, dry)              | 13,764     | 13,663        | 13,761    |
| HHV (Btu/lb, MAF)              | 15,026     | 14,963        | 15,003    |
| Chlorine (%, dry)              | 0.141      | 0.135         | 0.151     |
| Hg (ppm, as det'd)             | 0.080      | 0.090         | 0.095     |
| Major Ash Elements (%, dry)    |            | •             | -         |
| SiO <sub>2</sub>               | 49.70      | 51.13         | 50.50     |
| Al <sub>2</sub> O <sub>3</sub> | 24.10      | 23.98         | 28.16     |
| TiO <sub>2</sub>               | 1.15       | 1.05          | 1.41      |
| Fe <sub>2</sub> O <sub>3</sub> | 16.77      | 15.05         | 11.76     |
| CaO                            | 1.68       | 2.81          | 1.58      |
| MgO                            | 1.16       | 0.72          | 0.95      |
| Na <sub>2</sub> O              | 0.57       | 0.65          | 0.53      |
| K <sub>2</sub> O               | 2.58       | 1.86          | 2.35      |
| $P_2O_5$                       | 0.22       | 0.35          | 0.47      |
| SO <sub>3</sub>                | 1.52       | 1.54          | 1.39      |
| UND                            | 0.55       | 0.86          | 0.90      |

 Table 15.
 Coal sample analyses – Unit 2 samples

#### **IV. Process Sample Collection and Analysis**

CONSOL R&D and plant personnel collected samples of coal mill rejects, boiler bottom ash, ESP hopper ash, limestone slurry, FGD slurry, and FGD makeup water. CONSOL R&D analyzed the samples using a direct mercury analyzer and following prescribed in the procedures of ASTM Method D6722. Detailed results of the analyses of those process samples are presented in Appendix D.

#### A. Coal Mill Rejects

Plant operators collected coal mill reject samples during the first test on Unit 1 and all of the tests on Unit 2. Although the mercury content of these samples is high (0.4 to 3.0 ppm) the contribution to the overall mercury balance is insignificant, since the flow rate is only about 0.5% of the coal flow rate.

| Sample I.D.                     | Rejects<br>U1T1 | Rejects<br>U2T1 | Rejects<br>U2T2 | Rejects<br>U2T3 | Rejects<br>U2T4 |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sample Date                     | 01/19/2005      | 01/24/2005      | 01/25/2005      | 01/25/2005      | 01/26/2005      |
| Test No.                        | 1               | 1               | 2               | 3               | 4               |
| Analytical No.                  | 20050688        | 20050689        | 20050690        | 20050691        | 20050692        |
| Residual moisture, as det'd (%) | 1.50            | 0.82            | 0.68            | 0.44            | 0.48            |
| Volatile matter (%, dry)        | 35.77           | 28.78           | 30.88           | 26.31           | 26.69           |
| Ash (%, dry)                    | 14.88           | 39.74           | 46.20           | 58.31           | 52.38           |
| Total carbon (%, dry)           | 69.43           | 46.83           | 39.74           | 24.51           | 32.41           |
| Fixed carbon (%, dry)           | 49.35           | 31.48           | 22.92           | 15.38           | 20.93           |
| Hydrogen (%, dry)               | 4.25            | 2.82            | 2.37            | 1.45            | 1.95            |
| Nitrogen (%, dry)               | 1.32            | 0.81            | 0.66            | 0.38            | 0.53            |
| Total sulfur (%, dry)           | 3.20            | 6.07            | 8.74            | 17.98           | 14.97           |
| Oxygen (%, dry), by diff.       | 6.84            | 3.66            | 2.23            | 2.66            | 2.28            |
| HHV (Btu/lb, dry)               | 12,413          | 8,456           | 6,899           | 4,502           | 5,954           |
| HHV (Btu/lb, MAF)               | 14,583          | 14,033          | 12,823          | 10,799          | 12,503          |
| Chlorine (%, dry)               | 0.085           | 0.074           | 0.060           | 0.040           | 0.040           |
| Hg (ppm, as det'd)              | 0.426           | 0.783           | 2.330           | 2.630           | 3.000           |
| Major Ash Elements (%, dry)     |                 |                 |                 |                 |                 |
| SiO <sub>2</sub>                | 45.98           | 45.27           | 28.75           | 25.07           | 23.91           |
| Al <sub>2</sub> O <sub>3</sub>  | 22.24           | 17.97           | 11.82           | 6.85            | 6.99            |
| TiO <sub>2</sub>                | 1.22            | 0.88            | 0.46            | 0.33            | 0.40            |
| Fe <sub>2</sub> O <sub>3</sub>  | 21.31           | 24.07           | 40.41           | 52.03           | 49.64           |
| CaO                             | 2.18            | 4.66            | 8.41            | 7.45            | 7.58            |
| MgO                             | 0.81            | 0.85            | 0.89            | 0.68            | 0.50            |
| Na <sub>2</sub> O               | 0.48            | 0.28            | 0.21            | 0.17            | 0.13            |
| K <sub>2</sub> O                | 1.63            | 1.03            | 0.81            | 0.72            | 0.59            |
| P <sub>2</sub> O <sub>5</sub>   | 0.35            | 0.22            | 0.13            | 0.04            | 0.04            |
| $SO_3$                          | 1.62            | 3.81            | 8.17            | 7.95            | 8.54            |

 Table 16.
 Coal mill reject sample analyses – both units

#### B. Boiler Bottom ash

Plant personnel and CONSOL personnel collected bottom ash samples at the end of the first two test days on Unit 1 (samples U1T1 and U1T2T3) and the last two test days on Unit 2 (samples U2T2T3 and U2T4). Listed in Table 17 are the results of analyses of the bottom ash samples.

|                                 | •               |                   | -                 |                 |
|---------------------------------|-----------------|-------------------|-------------------|-----------------|
| Sample I.D.                     | BTMASH-<br>U1T1 | BTMASH-<br>U1T2T3 | BTMASH-<br>U2T2T3 | BTMASH-<br>U2T4 |
| Test No.                        | 1               | 2                 | 2&3               | 4               |
| Sample Date                     | 01/19/2005      | 01/20/2005        | 01/25/2005        | 01/26/2005      |
| Sampling Time                   | 16:30-16:40     | 16:30             | 16:00-16:30       | 11:15-11:45     |
| Analytical No.                  | 20050693        | 20050694          | 20050697          | 20050698        |
| Residual moisture, as det'd (%) | 0.01            | 0.01              | 0.10              | 0.01            |
| Ash (%, dry)                    | 99.73           | 99.99             | 98.16             | 99.03           |
| Total carbon (%, dry)           | 0.39            | 0.20              | 1.93              | 1.12            |
| Total sulfur (%, dry)           | 0.02            | 0.00              | 0.32              | 0.10            |
| Chlorine (%, dry)               | 0.025           | 0.027             | 0.035             | 0.048           |
| Hg (ppm, as det'd)              | 0.011           | 0.011             | 0.074             | 0.017           |
| Major Ash Elements (%, dry)     |                 | -                 |                   |                 |
| SiO <sub>2</sub>                | 51.91           | 52.37             | 51.02             | 52.96           |
| Al <sub>2</sub> O <sub>3</sub>  | 25.87           | 25.86             | 24.66             | 26.12           |
| TiO <sub>2</sub>                | 1.36            | 1.38              | 1.33              | 1.44            |
| Fe <sub>2</sub> O <sub>3</sub>  | 13.81           | 14.13             | 14.96             | 12.62           |
| CaO                             | 1.45            | 1.47              | 1.35              | 1.45            |
| MgO                             | 0.89            | 0.90              | 0.92              | 0.91            |
| Na <sub>2</sub> O               | 0.48            | 0.47              | 0.46              | 0.47            |
| K <sub>2</sub> O                | 2.18            | 2.19              | 2.23              | 2.25            |
| P <sub>2</sub> O <sub>5</sub>   | 0.14            | 0.16              | 0.22              | 0.30            |
| SO <sub>3</sub>                 | 0.04            | 0.01              | 0.80              | 0.24            |
| UND                             | 1.87            | 1.06              | 2.05              | 1.24            |

 Table 17. Results of analyses of bottom ash samples

#### C. Limestone slurry

The plant's FGD operators collected a limestone slurry sample of approximately 500 mL during each test. Upon arrival at CONSOL R&D's analytical labs, the limestone slurry samples were filtered to generate a filtrate and a solid residue (i.e., filter cake). The air-dried solids and the filtrates were analyzed separately. Listed in Table 18 and 19 are the results of analyses of the limestone slurry solids samples. The mercury content of the solids of the limestone slurry samples ranged from 0.038 to 0.068 ppm. Listed in Table 20 and 21 are the results of analyses of the limestone slurry in all of

the limestone filtrate samples was below the detection limit of 1.0  $\mu$ g/L (1.0 ppb) for all but one sample (test 2 on Unit 2), which contained 1.3  $\mu$ g/L.

| Sample I.D.                       | LS U1T1    | LS U1T2    | LS U1T3    | LS U1T4    |
|-----------------------------------|------------|------------|------------|------------|
| Test No.                          | 1          | 2          | 3          | 4          |
| Sample Date                       | 01/19/2005 | 01/20/2005 | 01/20/2005 | 01/21/2005 |
| Sampling Time                     | 9:35       | 9:45       | 13:45      | 9:15       |
| Analytical No.                    | 20050699   | 20050700   | 20050701   | 20050702   |
| % Solids in original sample       | 20.3       | 28.5       | 21.0       | 22.0       |
| Density of original sample (g/mL) | 1.08       |            |            |            |
| Residual moisture, as det'd (%)   | 0.60       | 0.60       | 0.73       | 0.76       |
| Ash (%, dry)                      | 56.69      | 56.52      | 56.76      | 56.92      |
| Total carbon (%, dry)             | 11.67      | 11.34      | 11.58      | 11.55      |
| Chlorine (%, dry)                 | 0.05       | 0.07       | 0.04       | 0.11       |
| Hg (ppm, as det'd)                | 0.044      | 0.045      | 0.038      | 0.063      |
| Major Ash Elements (%, as det'd)  |            |            |            |            |
| SiO <sub>2</sub>                  | 1.49       | 1.45       | 1.17       | 1.76       |
| Al <sub>2</sub> O <sub>3</sub>    | 0.15       | 0.22       | 0.16       | 0.18       |
| TiO <sub>2</sub>                  | 0.01       | 0.01       | 0.01       | 0.01       |
| Fe <sub>2</sub> O <sub>3</sub>    | 0.14       | 0.17       | 0.18       | 0.18       |
| CaO                               | 53.60      | 53.39      | 53.23      | 53.58      |
| MgO                               | 1.15       | 1.31       | 1.47       | 1.51       |
| Na <sub>2</sub> O                 | 0.06       | 0.08       | 0.06       | 0.05       |
| K <sub>2</sub> O                  | 0.03       | 0.07       | 0.02       | 0.03       |
| P <sub>2</sub> O <sub>5</sub>     | 0.08       | 0.10       | 0.09       | 0.10       |
| SO <sub>3</sub>                   | 0.29       | 0.26       | 0.24       | 0.34       |
| UND                               | 43.00      | 42.94      | 43.37      | 42.26      |

Table 18. Results of analyses of limestone slurry solids samples – Unit 1

| Sample I.D.                       | LS U2T1    | LS U2T2    | LS U2T3    | LS U2T4    |
|-----------------------------------|------------|------------|------------|------------|
| Test No.                          | 1          | 2          | 3          | 4          |
| Sample Date                       | 01/24/2005 | 01/25/2005 | 01/25/2005 | 01/26/2005 |
| Sampling Time                     |            |            |            |            |
| Analytical No.                    | 20050703   | 20050704   | 20050705   | 20050706   |
| % Solids in original sample       | 14.0       | 17.2       | 15.4       | 13.5       |
| Density of original sample (g/mL) |            |            |            | 1.055      |
| Residual moisture, as det'd (%)   | 0.40       | 0.49       | 0.52       | 0.37       |
| Ash (%, dry)                      | 56.84      | 56.95      | 56.93      | 57.02      |
| Total carbon (%, dry)             | 11.69      | 11.27      | 11.62      | 11.65      |
| Chlorine (%, dry)                 | 0.07       | 0.11       | 0.08       | 0.08       |
| Hg (ppm, as det'd)                | 0.063      | 0.068      | 0.060      | 0.048      |
| Major Ash Elements (%, as det'd)  |            | -          | -          |            |
| SiO <sub>2</sub>                  | 1.49       | 1.67       | 1.62       | 1.70       |
| Al <sub>2</sub> O <sub>3</sub>    | 0.09       | 0.11       | 0.12       | 0.08       |
| TiO <sub>2</sub>                  | 0.00       | 0.00       | 0.01       | 0.00       |
| Fe <sub>2</sub> O <sub>3</sub>    | 0.11       | 0.11       | 0.13       | 0.09       |
| CaO                               | 54.88      | 55.01      | 55.15      | 55.01      |
| MgO                               | 0.78       | 0.91       | 0.95       | 0.70       |
| Na <sub>2</sub> O                 | 0.04       | 0.05       | 0.04       | 0.03       |
| K <sub>2</sub> O                  | 0.02       | 0.01       | 0.00       | 0.02       |
| P <sub>2</sub> O <sub>5</sub>     | 0.06       | 0.09       | 0.08       | 0.07       |
| SO3                               | 0.20       | 0.25       | 0.25       | 0.21       |
| UND                               | 42.23      | 41.79      | 41.65      | 42.09      |

Table 19. Results of analyses of limestone slurry solids samples – Unit 2

| Sample ID                 | LS U1T1    | LS U1T2    | LS U1T3    | LS U1T4    |
|---------------------------|------------|------------|------------|------------|
| Test No.                  | 1          | 2          | 3          | 4          |
| Sample Date               | 01/19/2005 | 01/20/2005 | 01/20/2005 | 01/21/2005 |
| Analytical No.            | 20050784   | 20050785   | 20050786   | 20050787   |
| Hardness (ppm), calc'd    | 2,445      | 1,657      | 1,259      | 1,716      |
| Al (μg/mL)                | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| Ca (μg/mL)                | 462        | 441        | 334        | 395        |
| Total Iron (μg/mL)        | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| Mg (μg/mL)                | 313        | 135        | 103        | 177        |
| Mn (μg/mL)                | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| K (μg/mL)                 | 90.4       | 73.5       | 54.1       | 71.0       |
| Ρ (μg/mL)                 | 1.74       | 2.00       | 2.04       | 2.34       |
| Si (μg/mL)                | 1.72       | 1.51       | < 1.25     | < 1.25     |
| Na (μg/mL)                | 629        | 466        | 382        | 479        |
| Cr (μg/mL)                | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| Ammonia as $NH_3$ (µg/mL) | < 10       | < 10       | < 10       | < 10       |
| $NO_3$ as N ( $\mu$ g/mL) | 0.11       | < 0.02     | < 0.02     | 0.07       |
| CI (μg/mL)                | 2,150      | 1,475      | 1,225      | 1,575      |
| SO₄ (μg/mL)               | 787        | 594        | 460        | 608        |
| Hg (μg/L)                 | < 1.0      | < 1.0      | < 1.0      | < 1.0      |

Table 20. Results of analyses of limestone slurry filtrate samples – Unit 1

|                           |            | -          |            | -          |
|---------------------------|------------|------------|------------|------------|
| Sample ID                 | LS U2T1    | LS U2T2    | LS U2T3    | LS U2T4    |
| Test No.                  | 1          | 2          | 3          | 4          |
| Test Date                 | 01/24/2005 | 01/25/2005 | 01/25/2005 | 01/26/2005 |
| Analytical No.            | 20050788   | 20050789   | 20050790   | 20050791   |
| Hardness (ppm), calc'd    | 3,692      | 3,668      | 3,515      | 3,969      |
| AI (μg/mL)                | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| Ca (μg/mL)                | 652        | 659        | 611        | 698        |
| Total Iron (μg/mL)        | 2.30       | < 1.25     | < 1.25     | < 1.25     |
| Mg (µg/mL)                | 500        | 490        | 483        | 540        |
| Mn (μg/mL)                | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| K (μg/mL)                 | 117.80     | 118.30     | 114.30     | 128.96     |
| P (μg/mL)                 | 1.39       | 2.08       | 3.51       | 2.47       |
| Si (μg/mL)                | 4.87       | 3.73       | 3.48       | 5.53       |
| Na (μg/mL)                | 844        | 836        | 824        | 914        |
| Cr (μg/mL)                | < 1.25     | < 1.25     | < 1.25     | < 1.25     |
| Ammonia as $NH_3$ (µg/mL) | < 10       | < 10       | < 10       | <10        |
| NO₃ as N (μg/mL)          | 3.32       | < 0.02     | 0.07       | 4.17       |
| CI (μg/mL)                | 3,100      | 2,975      | 3,000      | 3,350      |
| SO₄ (μg/mL)               | 1,085      | 1,109      | 1,104      | 1,202      |
| Hg (μg/L)                 | < 1.0      | 1.3        | < 1.0      | < 1.0      |

 Table 21. Results of analyses of limestone slurry filtrate samples – Unit 2

#### D. ESP hopper ash

CONSOL personnel collected ESP ash samples, with assistance from the plant boiler operator. There is one ESP for each unit. Each ESP is divided into six fields and there are four ash hoppers in each field. One set of six field hoppers is shown in Figure 9. About 10 lb of ash was collected using an ash sampling bucket which was lowered into the fly ash silo immediately after a row of field hoppers was "dumped" to the silo. The procedure for sampling during a test is as follows. The plant operators dumped the hoppers prior to the start of a test. About 30 minutes after the start of a test, the operators would dump the first field hoppers to the silo and a sample would be collected (sample "F1"). After the sample was collected (sample "F2"). This procedure was repeated for each field until samples from all six fields were collected. At the end of the test day, each sample was double-bagged in one-gallon plastic bags and labeled. Listed in Tables 22-25 are the results of analyses of the ESP ash samples collected during the

tests on Unit 1. ESP ash from only three of the six fields were sampled during Test 2 (Table 23) due to time limitations prior to the start of Test 3; for all other tests, ESP ash from all six fields were sampled. The mercury measured in the samples ranged from 0.098 to 0.217 ppm. Listed in Tables 26-29 are the results of analyses of the ESP ash samples collected during the tests on Unit 2. The mercury measured in the samples ranged from 0.179 to 0.271 ppm.

In tests conducted at other plants, CONSOL R&D has observed that the mercury content in the ESP ash samples tend to correlate with the carbon content in the samples. In Unit 1, the carbon content and the mercury content were correlated, with an  $R^2$  of 0.76 for the linear regression line between ESP ash carbon concentration and mercury concentration, as shown in Figure 10. In the tests on Unit 2, however, the correlation was not very strong. Figure 11 shows an  $R^2$  of only 0.22 for the linear regression line between ESP ash carbon concentration.

| Sample I.D.                    | ESP Ash<br>U1T1F1 | ESP Ash<br>U1T1F2 | ESP Ash<br>U1T1F3 | ESP Ash<br>U1T1F4 | ESP Ash<br>U1T1F5 | ESP Ash<br>U1T1F6 |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Electric Field No.             | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 |
| Test No.                       |                   |                   |                   | 1                 |                   |                   |
| Test Date                      |                   |                   | 01/19             | /2005             |                   |                   |
| Sampling Time                  | 11:30-<br>11:45   | 12:00-<br>12:10   | 12:20-<br>12:45   | 13:30-<br>14:00   | 14:25-<br>14:30   | 14:05-<br>14:15   |
| Analytical No.                 | 20050723          | 20050724          | 20050725          | 20050726          | 20050727          | 20050728          |
| Residual Moisture (%)          | 0.21              | 0.23              | 0.24              | 0.25              | 0.19              | 0.22              |
| Ash (%, dry)                   | 94.32             | 94.90             | 94.73             | 95.38             | 95.36             | 95.38             |
| Carbon (%, dry)                | 4.98              | 4.36              | 4.71              | 4.09              | 4.04              | 4.17              |
| Total S (%, dry)               | 0.19              | 0.20              | 0.17              | 0.20              | 0.18              | 0.19              |
| Chlorine (%, dry)              | 0.002             | 0.002             | 0.002             | 0.003             | 0.003             | 0.003             |
| Hg (ppm, as det'd)             | 0.204             | 0.210             | 0.217             | 0.186             | 0.185             | 0.188             |
| Major Ash Elements (%,<br>dry) |                   | -                 | -                 | -                 | -                 | -                 |
| SiO <sub>2</sub>               | 48.79             | 48.94             | 50.95             | 49.97             | 49.83             | 50.50             |
| Al <sub>2</sub> O <sub>3</sub> | 26.85             | 26.79             | 26.86             | 26.94             | 26.53             | 26.80             |
| TiO <sub>2</sub>               | 1.40              | 1.42              | 1.49              | 1.46              | 1.44              | 1.46              |
| Fe <sub>2</sub> O <sub>3</sub> | 11.56             | 11.43             | 9.87              | 11.05             | 11.03             | 11.21             |
| CaO                            | 1.57              | 1.61              | 1.68              | 1.66              | 1.63              | 1.64              |
| MgO                            | 0.95              | 0.95              | 0.95              | 0.97              | 0.95              | 0.96              |
| Na <sub>2</sub> O              | 0.51              | 0.52              | 0.49              | 0.53              | 0.51              | 0.52              |
| K <sub>2</sub> O               | 2.38              | 2.37              | 2.31              | 2.37              | 2.33              | 2.34              |
| P <sub>2</sub> O <sub>5</sub>  | 0.23              | 0.24              | 0.36              | 0.29              | 0.26              | 0.25              |
| SO3                            | 0.48              | 0.51              | 0.43              | 0.50              | 0.46              | 0.48              |
| UND                            | 5.28              | 5.22              | 4.61              | 4.26              | 5.03              | 3.84              |

 Table 22. Results of analyses of ESP hopper ash samples – Unit 1, Test 1

| Sample I.D.                    | ESP Ash<br>U1T2F1 | ESP Ash<br>U1T2F2 | ESP Ash<br>U1T2F3 |
|--------------------------------|-------------------|-------------------|-------------------|
| Electric Field No.             | 1                 | 2                 | 3                 |
| Test No.                       |                   | 2                 |                   |
| Test Date                      |                   | 01/20/2005        |                   |
| Sampling Time                  | 09:40-09:45       | 10:00-10:05       | 10:20-10:25       |
| Analytical No.                 | 20050729          | 20050730          | 20050731          |
| Residual Moisture (%)          | 0.19              | 0.13              | 0.18              |
| Ash (%, dry)                   | 95.96             | 95.79             | 95.82             |
| Carbon (%, dry)                | 3.66              | 3.82              | 3.74              |
| Total S (%, dry)               | 0.19              | 0.18              | 0.19              |
| Chlorine (%, dry)              | 0.002             | 0.003             | 0.003             |
| Hg (ppm, as det'd)             | 0.162             | 0.166             | 0.098             |
| Major Ash Elements (%, dry)    |                   | -                 |                   |
| SiO <sub>2</sub>               | 49.82             | 49.23             | 50.03             |
| Al <sub>2</sub> O <sub>3</sub> | 26.35             | 25.79             | 26.61             |
| TiO <sub>2</sub>               | 1.43              | 1.42              | 1.45              |
| Fe <sub>2</sub> O <sub>3</sub> | 12.23             | 12.02             | 12.04             |
| CaO                            | 1.59              | 1.52              | 1.60              |
| MgO                            | 0.94              | 0.90              | 0.94              |
| Na <sub>2</sub> O              | 0.51              | 0.50              | 0.52              |
| K <sub>2</sub> O               | 2.25              | 2.22              | 2.31              |
| P <sub>2</sub> O <sub>5</sub>  | 0.23              | 0.21              | 0.20              |
| SO <sub>3</sub>                | 0.46              | 0.46              | 0.47              |
| UND                            | 4.19              | 5.73              | 3.83              |

 Table 23. Results of analyses of ESP hopper ash samples – Unit 1, Test 2

| ·                              |                   |                   |                   |                   |                   |                   |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample I.D.                    | ESP Ash<br>U1T3F1 | ESP Ash<br>U1T3F2 | ESP Ash<br>U1T3F3 | ESP Ash<br>U1T3F4 | ESP Ash<br>U1T3F5 | ESP Ash<br>U1T3F6 |
| Electric Field No.             | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 |
| Test No.                       |                   |                   | 3                 | 3                 |                   |                   |
| Test Date                      |                   |                   | 01/20             | /2005             |                   |                   |
| Sampling Time                  | 14:00-14:05       | 14:20-14:25       | 14:40-14:45       | 14:55-15:00       | 15:15-15:20       | 15:30-15:35       |
| Analytical No.                 | 20050732          | 20050733          | 20050734          | 20050735          | 20050736          | 20050737          |
| Residual Moisture (%)          | 0.16              | 0.09              | 0.12              | 0.07              | 0.07              | 0.12              |
| Ash (%, dry)                   | 96.22             | 96.17             | 96.12             | 96.14             | 96.05             | 95.93             |
| Carbon (%, dry)                | 3.27              | 3.30              | 3.47              | 3.33              | 3.48              | 3.61              |
| Total S (%, dry)               | 0.17              | 0.16              | 0.16              | 0.17              | 0.17              | 0.18              |
| Chlorine (%, dry)              | 0.002             | 0.003             | 0.003             | 0.002             | 0.003             | 0.003             |
| Hg (ppm, as det'd)             | 0.143             | 0.151             | 0.156             | 0.147             | 0.160             | 0.157             |
| Major Ash Elements (%, dry)    |                   |                   |                   |                   |                   |                   |
| SiO <sub>2</sub>               | 50.79             | 50.15             | 49.86             | 49.83             | 49.67             | 49.46             |
| Al <sub>2</sub> O <sub>3</sub> | 26.42             | 26.16             | 26.06             | 26.00             | 25.92             | 25.85             |
| TiO <sub>2</sub>               | 1.47              | 1.45              | 1.45              | 1.46              | 1.45              | 1.46              |
| Fe <sub>2</sub> O <sub>3</sub> | 11.53             | 11.77             | 11.76             | 11.70             | 11.70             | 11.72             |
| CaO                            | 1.66              | 1.62              | 1.61              | 1.61              | 1.61              | 1.62              |
| MgO                            | 0.96              | 0.94              | 0.94              | 0.94              | 0.93              | 0.93              |
| Na <sub>2</sub> O              | 0.52              | 0.50              | 0.49              | 0.49              | 0.49              | 0.48              |
| K <sub>2</sub> O               | 2.30              | 2.25              | 2.26              | 2.25              | 2.25              | 2.21              |
| P <sub>2</sub> O <sub>5</sub>  | 0.24              | 0.23              | 0.25              | 0.23              | 0.22              | 0.22              |
| SO <sub>3</sub>                | 0.43              | 0.41              | 0.41              | 0.42              | 0.43              | 0.45              |
| UND                            | 3.68              | 4.52              | 4.91              | 5.07              | 5.33              | 5.60              |

Table 24. Results of analyses of ESP hopper ash samples – Unit 1, Test 3

| r                              |                   |                   |                   |                   |                   |                   |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample I.D.                    | ESP Ash<br>U1T4F1 | ESP Ash<br>U1T4F2 | ESP Ash<br>U1T4F3 | ESP Ash<br>U1T4F4 | ESP Ash<br>U1T4F5 | ESP Ash<br>U1T4F6 |
| Electric Field No.             | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 |
| Test No.                       |                   |                   | 2                 | 4                 |                   |                   |
| Test Date                      |                   |                   | 01/21             | /2005             |                   |                   |
| Sampling Time                  | 09:20-<br>09:25   | 09:40-<br>09:45   | 10:00-<br>10:05   | 10:20-<br>10:25   | 10:40-<br>10:45   | 11:00-<br>11:05   |
| Analytical No.                 | 20050738          | 20050739          | 20050740          | 20050741          | 20050742          | 20050743          |
| Residual Moisture (%)          | 0.11              | 0.11              | 0.14              | 0.05              | 0.05              | 0.13              |
| Ash (%, dry)                   | 96.43             | 96.47             | 96.62             | 96.45             | 96.49             | 96.54             |
| Carbon (%, dry)                | 3.14              | 3.04              | 2.99              | 2.98              | 3.13              | 2.97              |
| Total S (%, dry)               | 0.18              | 0.18              | 0.18              | 0.18              | 0.16              | 0.18              |
| Chlorine (%, dry)              | 0.003             | 0.003             | 0.004             | 0.004             | 0.003             | 0.003             |
| Hg (ppm, as det'd)             | 0.115             | 0.120             | 0.118             | 0.119             | 0.116             | 0.118             |
| Major Ash Elements (%, dry)    |                   |                   |                   |                   |                   |                   |
| SiO <sub>2</sub>               | 52.31             | 52.00             | 51.53             | 52.02             | 51.64             | 51.70             |
| Al <sub>2</sub> O <sub>3</sub> | 25.63             | 25.38             | 25.39             | 25.71             | 25.21             | 25.68             |
| TiO <sub>2</sub>               | 1.44              | 1.45              | 1.45              | 1.46              | 1.45              | 1.47              |
| Fe <sub>2</sub> O <sub>3</sub> | 10.16             | 10.56             | 10.27             | 10.40             | 10.55             | 10.38             |
| CaO                            | 1.50              | 1.54              | 1.53              | 1.53              | 1.54              | 1.57              |
| MgO                            | 0.97              | 0.97              | 0.96              | 0.98              | 0.97              | 0.97              |
| Na <sub>2</sub> O              | 0.55              | 0.53              | 0.53              | 0.54              | 0.52              | 0.53              |
| K <sub>2</sub> O               | 2.41              | 2.35              | 2.36              | 2.39              | 2.32              | 2.38              |
| P <sub>2</sub> O <sub>5</sub>  | 0.15              | 0.15              | 0.17              | 0.18              | 0.16              | 0.19              |
| SO <sub>3</sub>                | 0.44              | 0.44              | 0.44              | 0.45              | 0.39              | 0.46              |
| UND                            | 4.44              | 4.63              | 5.37              | 4.34              | 5.25              | 4.67              |

 Table 25. Results of analyses of ESP hopper ash samples – Unit 1, Test 4

| Sample I.D.                    | ESP Ash<br>U2T1F1 | ESP Ash<br>U2T1F2 | ESP Ash<br>U2T1F3 | ESP Ash<br>U2T1F4 | ESP Ash<br>U2T1F5 | ESP Ash<br>U2T1F6 |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Electric Field No.             | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 |
| Test No.                       |                   |                   |                   | 1                 |                   |                   |
| Test Date                      |                   |                   | 01/24             | /2005             |                   |                   |
| Sampling Time                  | 13:54             | 14:00             | 14:16             | 14:26             | 14:36             | 14:50             |
| Analytical No.                 | 20050744          | 20050745          | 20050746          | 20050747          | 20050748          | 20050749          |
| Residual Moisture (%)          | 0.17              | 0.17              | 0.21              | 0.15              | 0.15              | 0.04              |
| Ash (%, dry)                   | 93.03             | 93.15             | 93.06             | 93.06             | 93.15             | 93.03             |
| Carbon (%, dry)                | 6.01              | 5.99              | 6.21              | 6.08              | 6.25              | 6.18              |
| Total S (%, dry)               | 0.24              | 0.24              | 0.24              | 0.26              | 0.26              | 0.25              |
| Chlorine (%, dry)              | 0.003             | 0.003             | 0.004             | 0.004             | 0.003             | 0.004             |
| Hg (ppm, as det'd)             | 0.247             | 0.239             | 0.246             | 0.179             | 0.240             | 0.230             |
| Major Ash Elements (%,<br>dry) |                   |                   |                   |                   |                   |                   |
| SiO <sub>2</sub>               | 49.86             | 49.30             | 49.63             | 49.65             | 49.92             | 49.65             |
| Al <sub>2</sub> O <sub>3</sub> | 24.01             | 23.89             | 23.91             | 24.08             | 24.55             | 24.47             |
| TiO <sub>2</sub>               | 1.40              | 1.39              | 1.39              | 1.32              | 1.33              | 1.33              |
| Fe <sub>2</sub> O <sub>3</sub> | 10.71             | 10.69             | 10.77             | 10.46             | 10.73             | 10.75             |
| CaO                            | 1.51              | 1.52              | 1.51              | 1.50              | 1.51              | 1.50              |
| MgO                            | 0.95              | 0.94              | 0.95              | 0.94              | 0.95              | 0.94              |
| Na <sub>2</sub> O              | 0.49              | 0.49              | 0.50              | 0.53              | 0.53              | 0.52              |
| K <sub>2</sub> O               | 2.25              | 2.25              | 2.28              | 2.29              | 2.32              | 2.29              |
| P <sub>2</sub> O <sub>5</sub>  | 0.21              | 0.21              | 0.19              | 0.21              | 0.21              | 0.20              |
| SO <sub>3</sub>                | 0.61              | 0.59              | 0.61              | 0.66              | 0.65              | 0.62              |
| UND                            | 8.00              | 8.73              | 8.26              | 8.36              | 7.30              | 7.73              |

Table 26. Results of analyses of ESP hopper ash samples – Unit 2, Test 1

|                                | r                 |                   |                   |                   |                   |                   |  |  |  |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
| Sample I.D.                    | ESP Ash<br>U2T1F1 | ESP Ash<br>U2T1F2 | ESP Ash<br>U2T1F3 | ESP Ash<br>U2T1F4 | ESP Ash<br>U2T1F5 | ESP Ash<br>U2T1F6 |  |  |  |
| Electric Field No.             | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 |  |  |  |
| Test No.                       |                   | 2                 |                   |                   |                   |                   |  |  |  |
| Test Date                      |                   | 01/25/2005        |                   |                   |                   |                   |  |  |  |
| Sampling Time                  | 10:23             | 10:44             | 10:59             | 11:12             | 11:23             | 11:37             |  |  |  |
| Analytical No.                 | 20050750          | 20050751          | 20050752          | 20050753          | 20050754          | 20050755          |  |  |  |
| Residual Moisture (%)          | 0.09              | 0.09              | 0.09              | 0.09              | 0.05              | 0.17              |  |  |  |
| Ash (%, dry)                   | 92.84             | 92.81             | 92.82             | 92.86             | 92.86             | 92.86             |  |  |  |
| Carbon (%, dry)                | 6.40              | 6.36              | 6.31              | 6.12              | 6.24              | 6.49              |  |  |  |
| Total S (%, dry)               | 0.26              | 0.27              | 0.28              | 0.26              | 0.25              | 0.25              |  |  |  |
| Chlorine (%, dry)              | 0.002             | 0.002             | 0.002             | 0.004             | 0.002             | 0.002             |  |  |  |
| Hg (ppm, as det'd)             | 0.246             | 0.268             | 0.268             | 0.262             | 0.251             | 0.245             |  |  |  |
| Major Ash Elements (%,<br>dry) |                   | -                 | -                 | -                 | -                 |                   |  |  |  |
| SiO <sub>2</sub>               | 46.66             | 48.96             | 48.76             | 48.64             | 48.43             | 48.92             |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 23.67             | 24.50             | 24.42             | 24.33             | 24.23             | 24.30             |  |  |  |
| TiO <sub>2</sub>               | 1.28              | 1.34              | 1.34              | 1.33              | 1.33              | 1.34              |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 10.88             | 11.68             | 11.48             | 11.41             | 11.55             | 11.51             |  |  |  |
| CaO                            | 1.42              | 1.49              | 1.49              | 1.49              | 1.49              | 1.49              |  |  |  |
| MgO                            | 0.94              | 0.96              | 0.96              | 0.96              | 0.96              | 0.95              |  |  |  |
| Na <sub>2</sub> O              | 0.49              | 0.51              | 0.51              | 0.50              | 0.49              | 0.50              |  |  |  |
| K <sub>2</sub> O               | 2.24              | 2.30              | 2.31              | 2.29              | 2.29              | 2.30              |  |  |  |
| P <sub>2</sub> O <sub>5</sub>  | 0.23              | 0.24              | 0.23              | 0.23              | 0.23              | 0.22              |  |  |  |
| SO3                            | 0.64              | 0.67              | 0.69              | 0.64              | 0.63              | 0.63              |  |  |  |
| UND                            | 11.55             | 7.35              | 7.81              | 8.18              | 8.37              | 7.84              |  |  |  |

 Table 27. Results of analyses of ESP hopper ash samples – Unit 2, Test 2

| F                              |                   |                                                                           |                   |                   |                   |                   |  |  |  |
|--------------------------------|-------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
| Sample I.D.                    | ESP Ash<br>U2T3F1 | ESP Ash<br>U2T3F2                                                         | ESP Ash<br>U2T3F3 | ESP Ash<br>U2T3F4 | ESP Ash<br>U2T3F5 | ESP Ash<br>U2T3F6 |  |  |  |
| Electric Field No.             | 1                 | 2                                                                         | 3                 | 4                 | 5                 | 6                 |  |  |  |
| Test No.                       |                   | 3                                                                         |                   |                   |                   |                   |  |  |  |
| Test Date                      |                   |                                                                           | 01/25             | /2005             |                   |                   |  |  |  |
| Sampling Time                  | 14:35             | 14:35         14:49         14:59         15:10         15:24         15: |                   |                   |                   |                   |  |  |  |
| Analytical No.                 | 20050756          | 20050757                                                                  | 20050758          | 20050759          | 20050760          | 20050761          |  |  |  |
| Residual Moisture (%)          | 0.15              | 0.11                                                                      | 0.15              | 0.13              | 0.11              | 0.11              |  |  |  |
| Ash (%, dry)                   | 92.67             | 92.68                                                                     | 92.66             | 92.68             | 92.61             | 92.67             |  |  |  |
| Carbon (%, dry)                | 6.49              | 6.44                                                                      | 6.43              | 6.50              | 6.49              | 6.47              |  |  |  |
| Total S (%, dry)               | 0.26              | 0.26                                                                      | 0.26              | 0.26              | 0.25              | 0.26              |  |  |  |
| Chlorine (%, dry)              | 0.003             | 0.002                                                                     | 0.002             | 0.003             | 0.003             | 0.003             |  |  |  |
| Hg (ppm, as det'd)             | 0.257             | 0.258                                                                     | 0.249             | 0.263             | 0.271             | 0.266             |  |  |  |
| Major Ash Elements (%,<br>dry) |                   |                                                                           |                   |                   |                   |                   |  |  |  |
| SiO <sub>2</sub>               | 48.95             | 48.89                                                                     | 49.39             | 49.25             | 48.72             | 48.88             |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 24.42             | 24.30                                                                     | 24.89             | 24.64             | 24.36             | 24.50             |  |  |  |
| TiO <sub>2</sub>               | 1.34              | 1.33                                                                      | 1.36              | 1.35              | 1.34              | 1.34              |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 11.33             | 11.45                                                                     | 11.17             | 11.33             | 11.37             | 11.40             |  |  |  |
| CaO                            | 1.49              | 1.49                                                                      | 1.50              | 1.47              | 1.46              | 1.47              |  |  |  |
| MgO                            | 0.95              | 0.96                                                                      | 0.97              | 0.95              | 0.95              | 0.96              |  |  |  |
| Na <sub>2</sub> O              | 0.50              | 0.49                                                                      | 0.51              | 0.51              | 0.49              | 0.51              |  |  |  |
| K <sub>2</sub> O               | 2.29              | 2.28                                                                      | 2.35              | 2.31              | 2.31              | 2.34              |  |  |  |
| P <sub>2</sub> O <sub>5</sub>  | 0.24              | 0.24                                                                      | 0.25              | 0.24              | 0.24              | 0.24              |  |  |  |
| SO <sub>3</sub>                | 0.64              | 0.66                                                                      | 0.65              | 0.66              | 0.62              | 0.64              |  |  |  |
| UND                            | 7.85              | 7.91                                                                      | 6.96              | 7.29              | 8.14              | 7.72              |  |  |  |

 Table 28. Results of analyses of ESP hopper ash samples – Unit 2, Test 3

| Sample I.D.                    | ESP Ash<br>U2T4F1 | ESP Ash<br>U2T4F2 | ESP Ash<br>U2T4F3 | ESP Ash<br>U2T4F4 | ESP Ash<br>U2T4F5 | ESP Ash<br>U2T4F6 |  |  |  |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
| Electric Field No.             | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 |  |  |  |
| Test No.                       |                   |                   | 2                 | 1                 |                   |                   |  |  |  |
| Test Date                      |                   | 01/26/2005        |                   |                   |                   |                   |  |  |  |
| Sampling Time                  | 10:15             | 10:02             | 10:27             | 10:37             | 10:47             | 10:58             |  |  |  |
| Analytical No.                 | 20050762          | 20050763          | 20050764          | 20050765          | 20050766          | 20050767          |  |  |  |
| Residual Moisture (%)          | 0.09              | 0.12              | 0.15              | 0.09              | 0.22              | 0.18              |  |  |  |
| Ash (%, dry)                   | 92.95             | 92.96             | 92.96             | 92.98             | 93.02             | 93.02             |  |  |  |
| Carbon (%, dry)                | 6.09              | 6.10              | 6.03              | 5.97              | 5.90              | 6.03              |  |  |  |
| Total S (%, dry)               | 0.25              | 0.25              | 0.25              | 0.24              | 0.25              | 0.25              |  |  |  |
| Chlorine (%, dry)              | 0.003             | 0.002             | 0.003             | 0.003             | 0.003             | 0.003             |  |  |  |
| Hg (ppm, as det'd)             | 0.253             | 0.248             | 0.245             | 0.238             | 0.246             | 0.240             |  |  |  |
| Major Ash Elements (%, dry)    |                   |                   |                   |                   |                   |                   |  |  |  |
| SiO <sub>2</sub>               | 49.21             | 48.58             | 50.16             | 49.57             | 49.82             | 50.09             |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 25.14             | 25.52             | 25.45             | 25.16             | 25.61             | 25.63             |  |  |  |
| TiO <sub>2</sub>               | 1.40              | 1.40              | 1.41              | 1.38              | 1.41              | 1.41              |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 10.38             | 10.45             | 10.43             | 10.30             | 10.25             | 10.41             |  |  |  |
| CaO                            | 1.48              | 1.46              | 1.48              | 1.46              | 1.47              | 1.46              |  |  |  |
| MgO                            | 0.92              | 0.93              | 0.93              | 0.92              | 0.93              | 0.94              |  |  |  |
| Na <sub>2</sub> O              | 0.49              | 0.52              | 0.52              | 0.53              | 0.53              | 0.53              |  |  |  |
| K <sub>2</sub> O               | 2.28              | 2.38              | 2.33              | 2.35              | 2.39              | 2.38              |  |  |  |
| P <sub>2</sub> O <sub>5</sub>  | 0.29              | 0.31              | 0.29              | 0.30              | 0.30              | 0.30              |  |  |  |
| SO <sub>3</sub>                | 0.62              | 0.63              | 0.63              | 0.61              | 0.62              | 0.62              |  |  |  |
| UND                            | 7.79              | 6.82              | 6.37              | 7.42              | 6.66              | 6.23              |  |  |  |

 Table 29. Results of analyses of ESP hopper ash samples – Unit 2, Test 4

### E. FGD slurry

Each unit has two scrubber modules in operation at all times. On Unit 1, modules A and B were in use; on Unit 2, modules A and C were in use. The scrubber blowdown from each module was sampled once during each test by CONSOL personnel.

Upon arrival at CONSOL R&D's analytical lab, each slurry sample was filtered to generate a filtrate and a solid residue (i.e., filter cake) samples. The air-dried solids and the filtrates were analyzed separately. Listed in Tables 30 and 31 are the results of analyses of the FGD slurry solids samples. Listed in Tables 32 and 33 are the results of analyses of the limestone slurry filtrate samples.

| Sample I.D.                       | U1T1       | U1T1       | U1T2       | U1T2       | U1T3       | U1T3       | U1T4       | U1T4       |  |  |
|-----------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|
|                                   | FGDS-1A    | FGDS-1B    | FGDS-1A    | FGDS-1B    | FGDS-1A    | FGDS-1B    | FGDS-1A    | FGDS-1B    |  |  |
| FGD Module                        | А          | В          | А          | В          | А          | В          | А          | В          |  |  |
| Test No.                          | ,          |            |            | 2          |            | 3          | 4          | 4          |  |  |
| Sample Date                       | 01/19/2005 | 01/19/2005 | 01/20/2005 | 01/20/2005 | 01/20/2005 | 01/20/2005 | 01/21/2005 | 01/21/2005 |  |  |
| Sample Time                       | 13:05      | 13:05      | 11:00      | 11:05      | 15:45      | 15:50      | 11:20      | 11:25      |  |  |
| Analytical No.                    | 20050707   | 20050708   | 20050709   | 20050710   | 20050711   | 20050712   | 20050713   | 20050714   |  |  |
| % Solids in original sample       | 13.0       | 11.1       | 12.9       | 7.4        | 12.8       | 7.0        | 13.1       | 6.9        |  |  |
| Density of original sample (g/mL) | 1.115      | 1.098      | 1.113      | 1.070      | 1.117      | 1.070      | 1.120      | 1.074      |  |  |
| Residual moisture, as det'd (%)   | 4.47       | 4.12       | 4.03       | 5.32       | 4.03       | 5.46       | 4.06       | 5.83       |  |  |
| Ash (%, dry)                      | 99.92      | 90.24      | 103.14     | 91.54      | 99.81      | 92.24      | 99.3       | 93.02      |  |  |
| Total carbon (%, dry)             | 0.62       | 2.85       | 0.84       | 2.39       | 0.68       | 2.31       | 0.78       | 2.06       |  |  |
| Chlorine (%, dry)                 | 0.60       | 0.35       | 0.63       | 0.36       | 0.61       | 0.40       | 0.56       | 0.48       |  |  |
| Hg (ppm, as det'd)                | 0.827      | 0.609      | 0.871      | 0.712      | 0.908      | 0.744      | 0.888      | 0.744      |  |  |
| Major Ash Elements (%, as det'd)  |            |            |            |            |            |            |            |            |  |  |
| SiO <sub>2</sub>                  | 0.74       | 0.79       | 0.87       | 0.73       | 0.77       | 0.74       | 0.86       | 0.77       |  |  |
| Al <sub>2</sub> O <sub>3</sub>    | 0.11       | 0.08       | 0.14       | 0.08       | 0.12       | 0.10       | 0.14       | 0.10       |  |  |
| TiO <sub>2</sub>                  | 0          | 0.01       | 0.01       | 0          | 0.01       | 0.01       | 0.01       | 0.01       |  |  |
| Fe <sub>2</sub> O <sub>3</sub>    | 0.10       | 0.11       | 0.13       | 0.11       | 0.12       | 0.12       | 0.13       | 0.12       |  |  |
| CaO                               | 41.53      | 43.80      | 42.15      | 43.20      | 40.64      | 41.98      | 41.77      | 41.64      |  |  |
| MgO                               | 0.34       | 0.33       | 0.36       | 0.31       | 0.40       | 0.34       | 0.33       | 0.31       |  |  |
| Na <sub>2</sub> O                 | 0.24       | 0.16       | 0.25       | 0.16       | 0.30       | 0.20       | 0.23       | 0.19       |  |  |
| K <sub>2</sub> O                  | 0.06       | 0.04       | 0.06       | 0.03       | 0.07       | 0.05       | 0.06       | 0.06       |  |  |
| P <sub>2</sub> O <sub>5</sub>     | 0.03       | 0.04       | 0.02       | 0.04       | 0.03       | 0.05       | 0.05       | 0.04       |  |  |
| SO <sub>3</sub>                   | 50.18      | 41.13      | 49.68      | 41.41      | 49.37      | 41.79      | 49.64      | 43.23      |  |  |

# Table 30. Results of analyses of FGD slurry solids samples – Unit 1 tests

| Sample I.D.                       | U2T1<br>FGDS-2A | U2T1<br>FGDS-2C | U2T2<br>FGDS-2A | U2T2<br>FGDS-2C | U2T3<br>FGDS-2A | U2T3<br>FGDS-2C | U2T4<br>FGDS-2A | U2T4<br>FGDS-2C |
|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| FGD Module                        | А               | С               | А               | С               | А               | С               | А               | С               |
| Test No.                          |                 | 1               | 2               | 2               | ;               | 3               |                 | 4               |
| Test Date                         | 01/24           | /2005           | 01/25           | /2005           | 01/25           | /2005           | 01/26           | /2005           |
| Sampling Time                     | 12:53           | 12:58           | 10:11           | 10:16           | 14:02           | 14:07           | 09:38           | 9:40            |
| Analytical No.                    | 20050715        | 20050716        | 20050717        | 20050718        | 20050719        | 20050720        | 20050721        | 20050722        |
| % Solids of original sample       | 9.5             | 10.9            | 10.1            | 11.0            | 9.6             | 10.5            | 8.4             | 9.4             |
| Density of original sample (g/mL) | 1.077           | 1.098           | 1.088           | 1.084           | 1.093           | 1.084           |                 | 1.090           |
| Residual moisture (%)             | 4.52            | 6.12            | 4.60            | 3.42            | 2.51            | 2.69            | 2.95            | 3.25            |
| Ash (%, dry)                      | 96.99           | 99.90           | 95.23           | 97.80           | 94.29           | 97.56           | 97.50           | 97.70           |
| Carbon (%, dry)                   | 1.32            | 0.62            | 1.83            | 0.63            | 1.69            | 0.66            | 0.79            | 0.59            |
| Chlorine (%, dry)                 | 0.54            | 0.62            | 0.48            | 0.63            | 0.62            | 0.59            | 0.64            | 0.64            |
| Hg (ppm, as det'd)                | 0.607           | 0.562           | 0.592           | 0.562           | 0.639           | 0.575           | 0.592           | 0.616           |
| Major Ash Elements (%, as det'd)  |                 |                 |                 |                 |                 |                 |                 |                 |
| SiO <sub>2</sub>                  | 0.99            | 1.27            | 1.27            | 1.15            | 1.24            | 1.18            | 1.19            | 1.18            |
| Al <sub>2</sub> O <sub>3</sub>    | 0.06            | 0.12            | 0.07            | 0.06            | 0.06            | 0.07            | 0.07            | 0.05            |
| TiO <sub>2</sub>                  | 0               | 0.01            | 0               | 0               | 0               | 0               | 0               | 0               |
| Fe <sub>2</sub> O <sub>3</sub>    | 0.05            | 0.08            | 0.07            | 0.05            | 0.06            | 0.07            | 0.06            | 0.05            |
| CaO                               | 41.87           | 40.12           | 43.37           | 40.81           | 42.21           | 41.34           | 40.71           | 40.23           |
| MgO                               | 0.29            | 0.33            | 0.40            | 0.29            | 0.31            | 0.33            | 0.31            | 0.33            |
| Na <sub>2</sub> O                 | 0.22            | 0.30            | 0.29            | 0.24            | 0.22            | 0.26            | 0.26            | 0.28            |
| K <sub>2</sub> O                  | 0.04            | 0.07            | 0.05            | 0.04            | 0.03            | 0.03            | 0.05            | 0.04            |
| P <sub>2</sub> O <sub>5</sub>     | 0.02            | 0               | 0.03            | 0.01            | 0               | 0.01            | 0.01            | 0.01            |
| SO <sub>3</sub>                   | 46.67           | 50.62           | 45.43           | 51.29           | 46.15           | 51.73           | 49.97           | 51.01           |

 Table 31. Results of analyses of FGD slurry solids samples – Unit 2 tests

| Sample ID                    | U1T1<br>FGDS-1A | U1T1<br>FGDS-1B | U1T2<br>FGDS-1A | U1T2<br>FGDS-1B | U1T3<br>FGDS-1A | U1T3<br>FGDS-1B | U1T4<br>FGDS-1A | U1T4<br>FGDS-1B |
|------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| FGD Module                   | 1A              | 1B              | 1A              | 1B              | 1A              | 1B              | 1A              | 1B              |
| Test No.                     |                 | 1               | :               | 2               | ;               | 3               | 4               | 1               |
| Sample Date                  | 01/19/2005      | 01/19/2005      | 01/20/2005      | 01/20/2005      | 01/20/2005      | 01/20/2005      | 01/21/2005      | 01/21/2005      |
| Sample Time                  | 13:05           | 13:05           | 11:00           | 11:05           | 15:45           | 15:50           | 11:20           | 11:25           |
| Analytical No.               | 20050792        | 20050793        | 20050794        | 20050795        | 20050796        | 20050797        | 20050798        | 20050799        |
| Hardness (ppm), calc'd       | 28,422          | 19,861          | 25,108          | 20,044          | 26,800          | 18,612          | 24,696          | 18,202          |
| AI (μg/mL)                   | < 1.25          | 13.9            | < 1.25          | 15.6            | < 1.25          | 14.2            | < 1.25          | 14.3            |
| Ca (μg/mL)                   | 3,910           | 2,981           | 3,447           | 3,044           | 3,673           | 2,834           | 3,390           | 2,768           |
| Total Iron (μg/mL)           | 1.42            | 3.99            | < 1.25          | 4.53            | 2.29            | 4.17            | 2.14            | 3.63            |
| Mg (µg/mL)                   | 4,526           | 3,012           | 4,003           | 3,018           | 4,279           | 2,798           | 3,937           | 2,738           |
| Mn (μg/mL)                   | 6.36            | 6.58            | 5.87            | 6.63            | 6.42            | 6.17            | 6.03            | 6.47            |
| K (μg/mL)                    | 754             | 506             | 659             | 505             | 698             | 472             | 640             | 454             |
| Ρ (μg/mL)                    | 103.3           | 52.9            | 49.4            | 11.7            | 55.8            | 11.0            | 32.1            | 22.3            |
| Si (μg/mL)                   | 27.2            | 50.4            | 25.0            | 56.4            | 27.3            | 53.8            | 23.6            | 52.0            |
| Na (μg/mL)                   | 5,021           | 3,336           | 4,384           | 3,380           | 4,635           | 3,175           | 4,259           | 3,038           |
| Cr (μg/mL)                   | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          |
| Ammonia as $NH_3$ (µg/mL)    | < 10            | < 10            | < 10            | 10              | 10              | < 10            | < 10            | 10              |
| NO <sub>3</sub> as N (μg/mL) | 44.0            | 99.5            | 13.8            | 97.5            | 11.2            | 84.2            | 4.26            | 82.5            |
| CI (μg/mL)                   | 32,500          | 24,000          | 34,500          | 21,500          | 33,500          | 22,500          | 33,500          | 20,500          |
| SO₄ (μg/mL)                  | 4,060           | 3,937           | 3,618           | 4,479           | 3,795           | 4,231           | 3,474           | 3,615           |
| Hg (μg/L)                    | 4.0             | 4.5             | 4.8             | 5.7             | 2.7             | 3.6             | 4.0             | 4.2             |

# Table 32. Results of analyses of FGD slurry filtrate samples – Unit 1 tests

| Sample ID                          | U2T1<br>FGDS-2A | U2T1<br>FGDS-2C | U2T2<br>FGDS-2A | U2T2<br>FGDS-2C | U2T3<br>FGDS-2A | U2T3<br>FGDS-2C | U2T4<br>FGDS-2A | U2T4<br>FGDS-2C |
|------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| FGD Module                         | 2A              | 2C              | 2A              | 2C              | 2A              | 2C              | 2A              | 2C              |
| Test No.                           |                 | 1               | 2               | 2               | ;               | 3               |                 | 4               |
| Test Date                          | 01/24           | /2005           | 01/25           | 6/2005          | 01/25           | /2005           | 01/26           | /2005           |
| Sampling Time                      | 12:53           | 12:58           | 10:11           | 10:16           | 14:02           | 14:07           | 09:38           | 9:40            |
| Analytical No.                     | 20050800        | 20050801        | 20050802        | 20050803        | 20050804        | 20050805        | 20050806        | 20050807        |
| Hardness (ppm), calc'd             | 24,046          | 25,433          | 21,932          | 29,657          | 20,779          | 27,984          | 26,578          | 23,891          |
| Al (μg/mL)                         | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          |
| Ca (μg/mL)                         | 3,640           | 3,796           | 3,313           | 4,367           | 3,123           | 4,145           | 3,928           | 3,542           |
| Total Iron (μg/mL)                 | 1.98            | < 1.25          | 1.69            | < 1.25          | < 1.25          | < 1.25          | 1.61            | < 1.25          |
| Mg (μg/mL)                         | 3,628           | 3,870           | 3,313           | 4,548           | 3,148           | 4,277           | 4,067           | 3,650           |
| Mn (μg/mL)                         | 5.30            | 5.73            | 4.64            | 6.91            | 4.37            | 6.42            | 5.68            | 5.60            |
| K (μg/mL)                          | 668             | 707             | 611             | 837             | 587             | 784             | 753             | 682             |
| Ρ (μg/mL)                          | 48.9            | 51.4            | 52.6            | 86.8            | 58.7            | 68.4            | 63.3            | 63.0            |
| Si (μg/mL)                         | 30.0            | 29.5            | 26.3            | 35.7            | 24.7            | 32.3            | 34.0            | 29.1            |
| Na (μg/mL)                         | 4,447           | 4,685           | 4,098           | 5,651           | 4,001           | 5,252           | 5,122           | 4,585           |
| Cr (μg/mL)                         | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          | < 1.25          |
| Ammonia as NH <sub>3</sub> (μg/mL) | 10              | 10              | < 10            | < 10            | < 10            | 10              | < 10            | 10              |
| NO <sub>3</sub> as N (μg/mL)       | 44.7            | 45.8            | 46.3            | 44.3            | 32.8            | 35.0            | 44.3            | 38.0            |
| CI (μg/mL)                         | 29,500          | 33,000          | 27,500          | 31,000          | 24,500          | 30,500          | 29,000          | 35,000          |
| SO₄ (μg/mL)                        | 2,882           | 2,897           | 2,673           | 3,336           | 2,566           | 3,150           | 3,218           | 2,788           |
| Hg (μg/L)                          | < 1.0           | 1.9             | 1.3             | < 1.0           | 1.3             | 1.0             | 1.0             | 1.3             |

# Table 33. Results of analyses of FGD slurry filtrate samples – Unit 2 tests

### F. FGD makeup water

FGD makeup water and mist eliminator wash water came from the thickener overflow. CONSOL R&D personnel collected an FGD makeup water sample of about 250 mL during each test. Listed in Tables 34 and 35 are the results of analyses of the makeup water samples. The concentration of mercury detected in these samples was below the detection limit of 1.0  $\mu$ g/L.

| -                            |                        | -                      |                        |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|
| Sample ID                    | FGD<br>Makeup-<br>U1T1 | FGD<br>Makeup-<br>U1T2 | FGD<br>Makeup-<br>U1T3 | FGD<br>Makeup-<br>U1T4 |
| Test No.                     | 1                      | 2                      | 3                      | 4                      |
| Sample Date                  | 01/19/2005             | 01/20/2005             | 01/20/2005             | 01/21/2005             |
| Sample Time                  | 13:00                  | 11:00                  | 15:40                  | 11:15                  |
| Analytical No.               | 20050808               | 20050809               | 20050810               | 20050811               |
| Hardness (ppm), calc'd       | 5,091                  | 4,585                  | 4,483                  | 3,781                  |
| AI (μg/mL)                   | 0.09                   | 0.11                   | < 0.05                 | 0.06                   |
| Ca (μg/mL)                   | 917                    | 829                    | 811                    | 695                    |
| Total Iron (μg/mL)           | 0.10                   | 0.13                   | 0.07                   | 0.08                   |
| Mg (μg/mL)                   | 679                    | 610                    | 596                    | 496                    |
| Mn (μg/mL)                   | 0.86                   | 0.73                   | 0.70                   | 0.53                   |
| K (μg/mL)                    | 199                    | 170                    | 165                    | 154                    |
| Ρ (μg/mL)                    | 3.42                   | 3.76                   | 3.82                   | 3.68                   |
| SiO₂ (μg/mL)                 | 8.01                   | 9.92                   | 9.62                   | 9.05                   |
| Na (μg/mL)                   | 1,141                  | 1,070                  | 1,041                  | 1,005                  |
| Cr (μg/mL)                   | < 0.05                 | < 0.05                 | < 0.05                 | < 0.05                 |
| Ammonia as $NH_3$ (µg/mL)    | < 10                   | < 10                   | < 10                   | < 10                   |
| NO <sub>3</sub> as N (μg/mL) | 3.2                    | 8.1                    | 9.8                    | 10.1                   |
| Cl (μg/mL)                   | 4,500                  | 3,950                  | 3,900                  | 3,250                  |
| SO₄ (μg/mL)                  | 1,853                  | 1,763                  | 1,722                  | 1,650                  |
| Hg (μg/L)                    | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                  |

 Table 34. Results of analyses of FGD makeup water samples – Unit 1

|                              |                        | -                      | -                      |                        |
|------------------------------|------------------------|------------------------|------------------------|------------------------|
| Sample ID                    | FGD<br>Makeup-<br>U2T1 | FGD<br>Makeup-<br>U2T2 | FGD<br>Makeup-<br>U2T3 | FGD<br>Makeup-<br>U2T4 |
| Test No.                     | 1                      | 2                      | 3                      | 4                      |
| Sample Date                  | 01/24/2005             | 01/25/2005             | 01/25/2005             | 01/26/2005             |
| Sample Time                  | 11:45                  | 9:17                   | 13:30                  | 9:00                   |
| Analytical No.               | 20050812               | 20050813               | 20050814               | 20050815               |
| Hardness (ppm), calc'd       | 17,567                 | 20,040                 | 16,641                 | 13,801                 |
| Al (μg/mL)                   | < 0.53                 | < 0.53                 | 0.81                   | < 0.53                 |
| Ca (μg/mL)                   | 2,798                  | 3,174                  | 2,694                  | 2,225                  |
| Total Iron (μg/mL)           | 0.64                   | 0.94                   | 0.97                   | 0.77                   |
| Mg (μg/mL)                   | 2,566                  | 2,938                  | 2,405                  | 1,999                  |
| Mn (μg/mL)                   | 3.55                   | 4.14                   | 3.52                   | 2.93                   |
| K (μg/mL)                    | 490                    | 550                    | 453                    | 392                    |
| Ρ (μg/mL)                    | 55.1                   | 47.1                   | 35.3                   | 35.9                   |
| SiO₂ (μg/mL)                 | 29.8                   | 33.4                   | 28.1                   | 23.1                   |
| Na (μg/mL)                   | 3,260                  | 3,643                  | 3,007                  | 2,649                  |
| Cr (μg/mL)                   | < 0.53                 | < 0.53                 | < 0.53                 | < 0.53                 |
| Ammonia as $NH_3$ (µg/mL)    | < 10                   | 10                     | 10                     | < 10                   |
| NO <sub>3</sub> as N (μg/mL) | < 0.02                 | < 0.02                 | < 0.02                 | < 0.02                 |
| CI (μg/mL)                   | 19,500                 | 21,000                 | 17,000                 | 15,500                 |
| SO₄ (μg/mL)                  | 3,034                  | 3,292                  | 2,898                  | 2,533                  |
| Hg (μg/L)                    | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                  |

Table 35 Results of analyses of FGD makeup water samples – Unit 2

### **QUALITY ASSURANCE/QUALITY CONTROL**

The sampling and analysis QA/QC procedures are described below.

- Personnel specifically trained and experienced in power plant sampling methods, including the Ontario-Hydro mercury sampling method, conducted all sampling,
- The sampling equipment was maintained and calibrated as required,
- Consistent sample preparation and recovery procedures were used,
- Samples were logged and tracked under the direction of sample team Group Leader,
- Individual calibration curves were developed for each sample matrix,

- NIST Standard Reference Material (SRM) and lab QC samples were analyzed to verify calibration curves,
- Duplicates of selected samples were analyzed to assure repeatability,
- Analyses of selected "spiked" samples were analyzed to assure sample recovery, and
- Interim data were reviewed to assure sample completeness.

All samples were obtained using the procedures described in EPA Method 5 and the Ontario-Hydro mercury speciation draft method. Data were recorded on standard forms, which are included in Appendix A. The field data were reduced using standard "in-house" spreadsheets. Copies of the summary sheets are included in Appendix A. To assure consistency, all of the Ontario-Hydro train components were prepared and recovered under the supervision of a senior technician experienced in the Ontario-Hydro mercury speciation lab techniques. Copies of the recovery sheets are included in Appendix C.

The Ontario-Hydro sampling train analysis consisted of eight sub-samples. Each subsample analysis consisted of developing a calibration curve (absorbance versus mercury concentration in solution), checks of field and lab blanks, calibration checks against SRM and lab standards, selected duplicates and selected sample spikes. The laboratory summaries for each of these runs are contained in Appendix C.

A total of 346 individual Ontario-Hydro mercury determinations were completed, including 30 blank samples, 71 NIST SRM or lab QC checks, 35 sample spikes, and 34 duplicate analyses.

### I. Blank Samples

A total of 30 blank liquid samples (14 reagent blanks and 4 sets of field impinger blanks) were analyzed. All of the blanks were below the detection limit (<0.2 ng/mL for all samples except KMnO<sub>4</sub> acid rinse, which is <1.0 ng/mL). Consequently, in this report, blank concentrations were not subtracted from any mercury determination.

### II. NIST Standard Reference Material Checks

Seventy-one NIST SRM checks were conducted throughout the mercury determinations. Two standards were used in the determinations as detailed in Table 36.

| NIST<br>SRM | Standard<br>Value<br>(ng/mL) | Sample Fraction          | Samples<br>Analyzed | Average<br>Result<br>(ng/mL) | Percent<br>of<br>Standard | Standard<br>Deviation<br>(ng/mL) | Percent<br>Relative<br>Standard<br>Deviation |
|-------------|------------------------------|--------------------------|---------------------|------------------------------|---------------------------|----------------------------------|----------------------------------------------|
| 1641D       | 8.0                          | Ontario Hydro<br>Liquids | 57                  | 8.07                         | 100.9                     | 0.24                             | 3.0                                          |
| 10410       | 0.0                          | Ontario Hydro<br>Filters | 8                   | 8.23                         | 102.8                     | 0.046                            | 0.6                                          |
| 1633b       | 141.0                        | Ontario Hydro<br>Filters | 6                   | 145                          | 102.6                     | 12.9                             | 8.9                                          |

Table 36. NIST SRM analyses

### III. Spike Sample Recoveries

A total of 35 samples were spiked with a 2 or 10  $\mu$ g/L mercury standard and then reanalyzed to determine the percent spike recovery. The result of this QA/QC procedure was an average spike recovery of 91.8% recovery with a ±6.1% standard deviation.

#### IV. Duplicate Analyses

A total of 34 duplicate analyses were conducted periodically throughout the mercury determinations. The result of this QA/QC procedure was an average mercury determination that was within 6.6% of the original mercury determination, with a  $\pm$ 9.0% standard deviation.

### V. Flue Gas Mercury Concentration Detection Limits

For liquid samples, the flue gas mercury concentration was calculated using the following equation:

$$Hg\left[\mu g / m^{3}\right] = \frac{\left(C_{imp} x V_{imp}\right)}{\left(V_{gas} x 1000\right)}$$

where:

C<sub>imp</sub> = Mercury concentration of impinger solution [ng/mL (ppb)]

 $V_{imp}$  = Liquid volume of impinger solution [ mL ]

 $V_{gas}$  = Flue gas sample volume [dry standard m<sup>3</sup>]

1000= Conversion factor [1000 ng per µg]

The flue gas mercury detection limit is reduced when the flue gas sample volume is increased or liquid volume of impinger solution is decreased. The CVAA is calibrated between 0 and 20 ng/mL. Over this range, the calibration curve between absorbance and concentration is linear. The lowest concentration standard used to develop the calibration curve is 0.500 ng/mL. In addition, the detection limit of the liquid CVAA

analysis was 0.2 ng/mL for all samples except KMnO<sub>4</sub> acid rinse, which is 1.0 ng/mL. The prescribed sampling and recovery procedures result in final liquid volumes varying between 64 and 698 mL. The volume of flue gas collected varied between 1.083 and 2.228 dscm. The sampling variables result in sample-specific flue gas detection limit. The flue gas mercury detection limit for each sample matrix is listed in Table 37. Depending on the matrix, the flue gas mercury detection limit ranged from 0.1 to 0.6  $\mu$ g/m<sup>3</sup>.

| Matrix                                                    | Maximum Liquid<br>Volume (mL) | Minimum Gas<br>Volume (dscm) | Flue Gas<br>Detection Limit<br>(µg/m <sup>3</sup> ) |  |
|-----------------------------------------------------------|-------------------------------|------------------------------|-----------------------------------------------------|--|
| Probe Rinse                                               | 227                           | 1.083                        | 0.04                                                |  |
| KCI Impinger                                              | 698                           | 1.083                        | 0.13                                                |  |
| HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impingers | 183                           | 1.083                        | 0.03                                                |  |
| KMnO₄ Impingers                                           | 250                           | 1.083                        | 0.05                                                |  |
| HCI Rinse                                                 | 100                           | 1.083                        | 0.09                                                |  |

 Table 37. Flue gas mercury detection limits

### VI. Mercury Material Balance Closure

One important criterion to gauge the overall quality of the tests is to conduct a mass balance to account for the mercury entering and leaving the plant during the time of the tests. The total mercury input is the sum of the mass flow rates of mercury entering the unit from coal, limestone slurry, and FGD makeup water. The total mercury output is the sum of the mass flow rates of mercury leaving the unit through the coal mill rejects, boiler bottom ash, ESP hopper ash, FGD slurry, and stack flue gas. Tables 38 and 39 summarize the results of the mercury material balance closure calculations. For the four tests conducted on Unit 1, the calculated mercury material balance closures ranged from 72% to 104% with an average of 84%. For the four tests conducted on Unit 2, the calculated mercury material balance closures for all individual tests are within the QA/QC criterion of 70-130% for a single test. The average mercury material balance closures of 84% and 103% are within the QA/QC criterion of 80-120% for multiple tests.

| Test No.                                     | 1    | 2    | 3    | 4    |
|----------------------------------------------|------|------|------|------|
| Hg input from Coal (mg/sec)                  | 3.84 | 4.52 | 4.48 | 2.78 |
| Hg input limestone slurry (mg/sec)           | 0.06 | 0.06 | 0.05 | 0.07 |
| Hg input from FGD makeup water (mg/sec)      | 0.01 | 0.01 | 0.01 | 0.01 |
| Total Hg Input (mg/sec)                      | 3.91 | 4.60 | 4.55 | 2.87 |
|                                              |      |      |      | -    |
| Hg output via Coal Mill Rejects (mg/sec)     | 0.18 | 0.18 | 0.17 | 0.18 |
| Hg output via Bottom Ash (mg/sec)            | 0.01 | 0.01 | 0.01 | 0.14 |
| Hg output via ESP Hopper Ash (mg/sec)        | 0.78 | 0.43 | 0.39 | 0.46 |
| Hg output via FGD Slurry Solids (mg/sec)     | 1.73 | 2.00 | 2.27 | 1.70 |
| Hg output via FGD Slurry Filtrate *mg/sec)   | 0.07 | 0.13 | 0.08 | 0.08 |
| Hg output via stack gas (mg/sec)             | 0.38 | 0.57 | 0.69 | 0.39 |
| Total Hg Output (mg/sec)                     | 3.15 | 3.31 | 3.61 | 2.96 |
| Hg Material Balance Closure (output / input) | 81%  | 72%  | 79%  | 104% |
| Average Hg Material Balance Closure (%)      |      | 84 ± | 13 % |      |

### Table 38. Summary of material balance closure for mercury, Unit 1.

### Table 39. Summary of material balance closure for mercury, Unit 2.

| Test No.                                        | 1    | 2     | 3    | 4    |
|-------------------------------------------------|------|-------|------|------|
| Hg input from Coal (mg/sec)                     | 3.23 | 3.74  | 3.72 | 3.91 |
| Hg input limestone slurry (mg/sec)              | 0.12 | 0.13  | 0.10 | 0.07 |
| Hg input from FGD makeup water (mg/sec)         | 0.01 | 0.01  | 0.01 | 0.02 |
| Total Hg Input (mg/sec)                         | 3.36 | 3.89  | 3.84 | 4.00 |
|                                                 |      |       |      |      |
| Hg output via Coal Mill Rejects                 | 0.16 | 0.48  | 0.54 | 0.61 |
| Hg output via Bottom Ash (mg/sec)               | 0.03 | 0.05  | 0.05 | 0.01 |
| Estimated Hg output via ESP Hopper Ash (mg/sec) | 0.68 | 0.73  | 0.75 | 0.70 |
| Hg output via FGD Slurry Solids (mg/sec)        | 2.55 | 2.52  | 2.59 | 2.21 |
| Hg output via FGD Slurry Filtrate *mg/sec)      | 0.07 | 0.05  | 0.04 | 0.04 |
| Hg output via stack gas (mg/sec)                | 0.18 | 0.25  | 0.12 | 0.13 |
| Total Hg Output (mg/sec)                        | 3.67 | 4.08  | 4.10 | 3.70 |
| Hg Material Balance Closure (output / input)    | 109% | 105%  | 107% | 93%  |
| Average Hg Material Balance Closure (%)         |      | 103 : | ±7%  |      |

#### HEAT INPUT-BASED MERCURY EMISSION

The heat input based mercury emission rates were calculated by using the Ontario-Hydro data and the heat input to the boiler, and the results are summarized in Table 51. The mercury emissions ranged from 1.70 to 2.27 lb/TBtu with an average emission rate of 1.77 lb/TBtu during the ozone season tests. The mercury emissions ranged from 2.01 to 3.11 lb/TBtu with an average emission rate of 2.34 lb/TBtu during the ozone season tests.

| Unit 1 Test No.                                 | 1                                          | 2                               | 3                               | 4                               |
|-------------------------------------------------|--------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Stack Hg Flow [mg/sec]                          | 0.38                                       | 0.57                            | 0.69                            | 0.39                            |
| Stack Hg Flow [lb/hr]                           | 3.01x 10 <sup>-3</sup>                     | 4.54 x 10 <sup>-3</sup>         | 5.44 x 10 <sup>-3</sup>         | 3.14 x 10 <sup>-3</sup>         |
| Heat Input (MM Btu/Hr)                          | 4,490                                      | 4,370                           | 4,330                           | 4,350                           |
| Stack Hg Emissions (lb/TBtu)                    | 0.67                                       | 1.04                            | 1.26                            | 0.72                            |
| Average Stack Hg Emissions (Ib/TBtu)            |                                            | 0.9                             | )2                              |                                 |
|                                                 |                                            |                                 |                                 |                                 |
| Unit 2 Test No.                                 | 1                                          | 2                               | 3                               | 4                               |
| Unit 2 Test No.<br>Stack Hg Flow [mg/sec]       | <b>1</b><br>0.18                           | <b>2</b><br>0.25                | <b>3</b><br>0.12                | <b>4</b><br>0.13                |
|                                                 | <b>1</b><br>0.18<br>1.44x 10 <sup>-3</sup> | _                               |                                 | -                               |
| Stack Hg Flow [mg/sec]                          |                                            | 0.25                            | 0.12                            | 0.13                            |
| Stack Hg Flow [mg/sec]<br>Stack Hg Flow [lb/hr] | 1.44x 10 <sup>-3</sup>                     | 0.25<br>1.99 x 10 <sup>-3</sup> | 0.12<br>9.89 x 10 <sup>-4</sup> | 0.13<br>1.04 x 10 <sup>-3</sup> |

#### Table 40. Heat input-based mercury emission

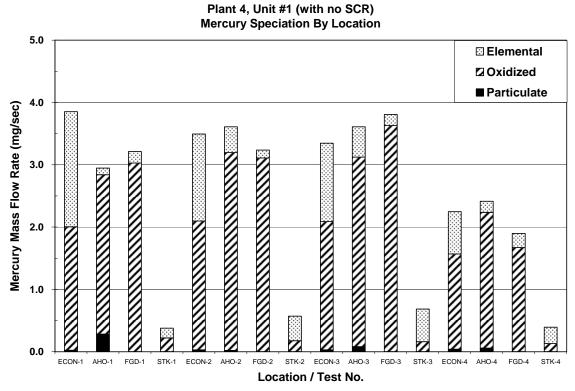
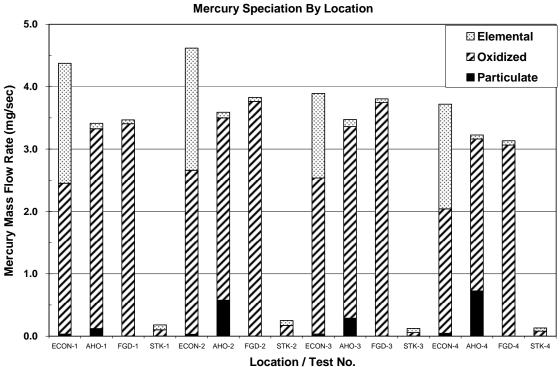




Figure 1. Mercury speciation by location, Unit 1 (with no SCR)



Plant 4, Unit #2 (with SCR)

Figure 2. Mercury speciation by location, Unit 2 (with SCR)

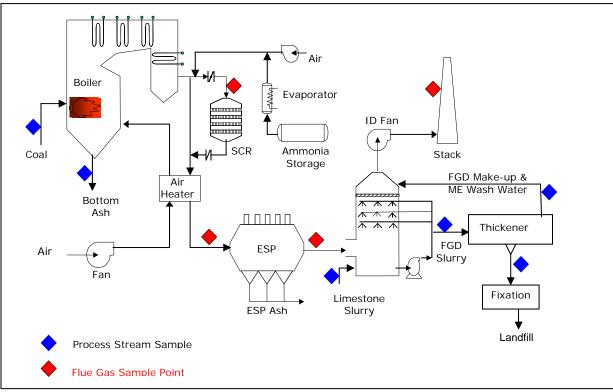



Figure 3. Process flow schematic and sampling locations



Figure 4. Economizer outlet probe and sampling train



Figure 5. ESP inlet (air heater outlet) probe and sampling train



Figure 6. FGD inlet probe (in background), sampling train, and meter box



Figure 7. Stack sampling port

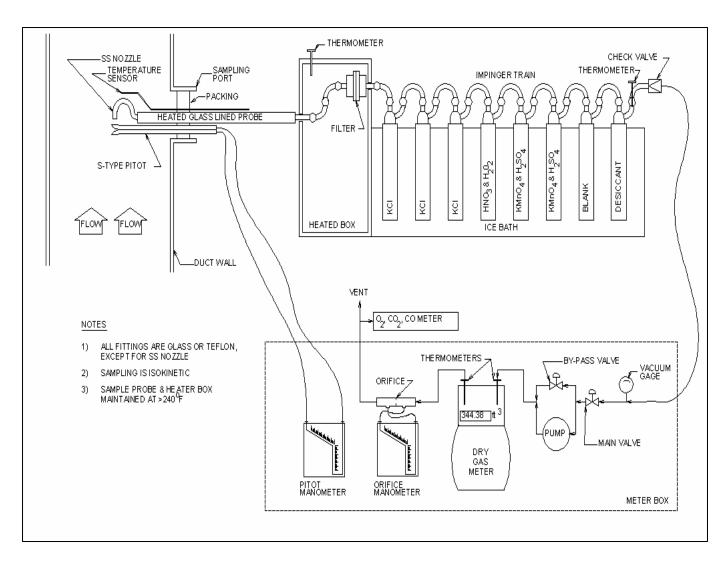



Figure 8. Ontario-Hydro sampling train schematic



Figure 9. ESP ash hoppers, showing pipes used for transferring ash to the silo

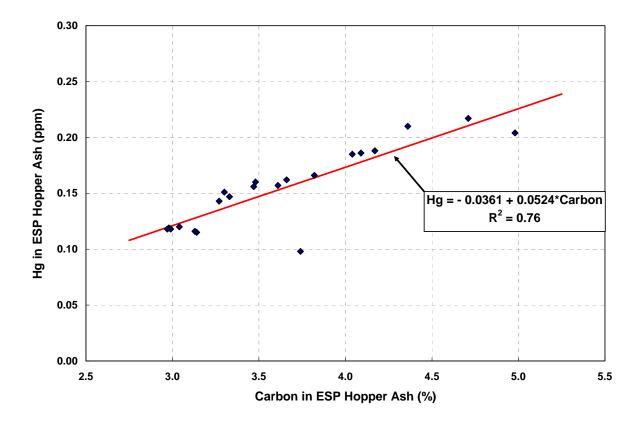



Figure 10. ESP ash mercury vs. Carbon plot, Unit 1




Figure 11. ESP ash mercury vs. Carbon plot, Unit 2

# **APPENDIX A**

# Mercury Sampling Data

• Field Data Sheets

1.11

Mercury Measurement Data Sheets

ىلىشاشى بى

a dan katalan dari katalan kat

ւտենն է հե

. المتناطن

h.

|                   |                                       |          |                      |                      |                                |                            |                    |        | г                                             |                    |            | a 17:22                       |                | Page             |                 |
|-------------------|---------------------------------------|----------|----------------------|----------------------|--------------------------------|----------------------------|--------------------|--------|-----------------------------------------------|--------------------|------------|-------------------------------|----------------|------------------|-----------------|
| TEST ID           |                                       |          | ECON-                | 1                    |                                | METER BOX                  | N-1                | CAL. D | ATA: delta H                                  |                    | Comments:  | - <u>11500</u>                | EVED S         | Light Kin        | <u>K</u> N      |
| PLANT             |                                       | S        | CR/FGD Pla           | unt 4                | PIT                            | OT TUBE DESC               | .E-15              | •      | Y                                             | 0.987              |            |                               |                |                  | 15. APS         |
| LOCATION          |                                       |          | onomizer C           |                      | PRO                            | BE LENGTH [ft]             |                    |        | C(p)                                          | 0.838              |            | @ 1130                        | +1140 1        | <u>na Be</u>     | Lew.            |
| DATE              |                                       |          | 1 jak                |                      |                                | OZZLE ID [inch]            | 3/160 0.191        |        | BOX SETTING                                   | 325                | *          | SUSPELT                       | Sort Black     | 1 1 C21          | ~/21c-123       |
| OPERATOR(S        | )                                     |          | 610                  | $/ \leq \tau$        | %                              | H <sub>2</sub> O (Assumed) |                    |        | HTR SETTING                                   | 325                |            |                               | ~p C           | 7~7,9%=          | <b>*</b> .      |
| AMBIENT TEN       |                                       |          | 90                   |                      |                                | FILTER ID                  | 1                  |        | T X-SECTION                                   | circ?              | rect ?     | other:<br>725 ft <sup>2</sup> | 1              |                  |                 |
| BAR. PRESS.       | [" Hg]                                |          | 29.90                | 0                    |                                | K FACTOR                   | 0.632              | DUCT   | DIMENSIONS                                    | <u>2@25'x14.5'</u> | DUCTAREA   | 12511                         | ]              | •                |                 |
| TRAVERSE          | CLOCK                                 | SAMPLE   | STATIC               | PITOT                | METER DIFF                     | METER                      | METER              | METER  | R TEMP                                        | STACK              | PROBE      | FILTER                        | LAST IMP       | METER E          | XHAUST          |
| POINT             | TIME                                  | TIME     | PRES                 | HEAD                 | PRESSURE                       | VACUUM                     | READING            | io     | FI (7)                                        |                    |            | вох                           | TEMP           | 0 <sub>2</sub>   | COz             |
| [port-inch]       | (24-hr)                               | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]           | [" Hg]                     | [ft <sup>3</sup> ] | inlet  | outlet                                        | CFD                | Ľ₽         | [°F]                          | Ľ°₽            | [% vol]          | [% vol]         |
|                   | 1100                                  | 0        |                      |                      |                                |                            | 509.00             |        |                                               | 100                | 000        |                               |                | 76               |                 |
|                   |                                       | 10       |                      | 0,90                 | 0.57                           | 4.0                        | 513,14             | 90     | 88                                            | 693                | 324        |                               | 64             | Z.G              | 17.3            |
| -14               |                                       | 20       |                      | 0.72                 | 0.45                           | 4.0                        | 516.89             | 93     | 89                                            | 698                | 330        |                               | 63             | 2.7              | 17.2            |
| 5005              | /                                     | 30       |                      | 0.66                 | 0.42                           | 4,0                        | 520,50             | 96     | 91                                            | 697                | 330        |                               | 63             | 2.7              | 17.2            |
| NOC               | á.                                    | 40 '     | -4,26                |                      | 035                            | 4.0                        | 523,84             | 9B     | 92                                            | 697                | 332        |                               | 65             | 26               | 17.3            |
| 1-1               | D and                                 | 50       |                      | 0.80                 | 0.50                           | 5,0                        | 527.63             | 99     | 94                                            | 699                | 318        |                               | 62             | 2.7              | 17.2            |
| 1                 | $\sim$                                | 60       |                      | 0.78                 | 0,48                           | 6.0                        | 531.64             | 101    | 95                                            | 694                | 324        |                               | 60             | 27               | 17.2            |
|                   |                                       |          |                      | POST                 | <u> </u>                       | South C                    |                    | 2 10"1 | +q                                            | · ·                |            |                               |                |                  |                 |
|                   |                                       |          |                      |                      | CAK C                          | NORTH "                    |                    | 10 "   | 119                                           |                    |            |                               |                |                  | ļ               |
| ABTALT            | 1215                                  |          | 2                    |                      |                                |                            | 532,10             |        | <u> </u>                                      |                    |            |                               |                |                  |                 |
|                   |                                       | 70       |                      | 1.00                 | 0.63                           | 5.0                        | 536.45             | 104    | 99                                            | 711                | 329        |                               | 63             | 4.0              | 15.9            |
|                   |                                       | 80       |                      | 1.00                 | 0.63                           | 5.5                        | 540,81             | 106    | 100                                           | 710                | 320        |                               | 60             | 3.0              | 16.9            |
| with the          | ~                                     | 90       | -4,81                | 1.05                 | 0,66                           | 6.0                        | 545.27             | 106    | 101                                           | 707                | 320        |                               | 60             | 4.0              | 16.0            |
| N V I             | , A                                   | 100      |                      | 1.05                 | 0,66                           | 7.0                        | 549.73             | 107    | 101                                           | 706                | 331        |                               | 60             | 3.7              | 16,3            |
| D                 | 0.                                    | 110      | -4.55                | 1.00                 | 0,63                           | 7.5                        | 554.22             | 107    | 102                                           | 707                | 332        |                               | 61             | 4.1              | 15,9            |
| 69                | (315                                  | 120      |                      | 1.00                 | 0.63                           | 8.0                        | 558.60             | 108    | 102                                           | 108                | 332        |                               | 61             | 4.0              | 16.0            |
| $\overline{\chi}$ |                                       |          |                      | 4,00                 |                                |                            |                    | ; ¥    |                                               |                    |            |                               |                |                  |                 |
|                   |                                       | 1        |                      |                      |                                |                            |                    |        |                                               |                    |            | 1                             |                |                  |                 |
|                   | · · ·                                 | 1        |                      |                      |                                |                            |                    | · ·    |                                               |                    |            |                               |                |                  |                 |
|                   |                                       |          |                      |                      |                                |                            |                    | A (1   |                                               |                    |            | <del>  )</del>                | 1              |                  |                 |
| AVERAGE           |                                       |          | -4.54                | 0.868                | 0.551                          | <u> </u>                   | 49.14              | 98.    | 7                                             | 702.83             |            |                               |                | 3.3              | 16.7            |
|                   | · · · · · · · · · · · · · · · · · · · | Si       | ample Train          |                      | t <u>0.010</u> ft <sup>3</sup> |                            |                    |        |                                               | Pitot Tube         | e PreTes   |                               | <u>5</u> in.   | H₂O              |                 |
|                   |                                       | Le       | ak Checks            | Post Test            | t ft <sup>3</sup>              | @iOi                       | n. Hġ              |        |                                               | Leak Checks        | : Post Tes | t@                            | <u>S</u> ťin.  | H <sub>2</sub> O |                 |
| CONSOL            | ENERGY.                               | Received | ****************     |                      | <u></u>                        |                            |                    |        | <u>, , , , , , , , , , , , , , , , , , , </u> |                    |            | NOT                           | E: Purge for 1 | 0 minutes at er  | nd of sampling. |

JU

ىلغانىش. ب

a sabba a ta ba

W

. .

.

a daha ina ana

|                |          |               |                      | ONTA                 | RIO HYDI                       | RO Hg SAI                   | MPLING AN                                                                                                      | D SPEC | IATION F     | IELD DA           | TA SHEE             | тИ                 | <u>II</u>    | 1                  |         |
|----------------|----------|---------------|----------------------|----------------------|--------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|--------|--------------|-------------------|---------------------|--------------------|--------------|--------------------|---------|
|                |          |               |                      |                      | <b>.</b>                       |                             |                                                                                                                |        |              |                   |                     |                    |              | Page               | of      |
| TEST ID        |          |               | AHO-                 | <u> </u>             |                                | METER BOX                   | N-5                                                                                                            | CAL. D | ATA: delta H |                   | Comments:           |                    |              |                    |         |
| PLANT          |          |               | CR/FGD Pla           |                      | 1                              | TOT TUBE DESC               | ES                                                                                                             | (M)    | Ŷ            | 1.01              |                     |                    |              |                    |         |
| LOCATION       |          | Air He        | ater Outlet          | ESP Inlet            |                                | DBE LENGTH [ft]             | IZ                                                                                                             | U      | C(p)         | 0.846             |                     |                    |              |                    |         |
| DATE           |          | - / ·         | 19-0                 | 5                    | 1                              |                             | \$16B 0.188                                                                                                    |        | BOX SETTING  | 325               |                     |                    |              |                    |         |
| OPERATOR(S     | -        |               | P. DO                |                      |                                | %H <sub>2</sub> O (Assumed) | - 3                                                                                                            |        | HTR SETTING  | 325               |                     |                    | ·            | I                  |         |
| AMBIENT TEN    |          | 70            | )<br>7.96            |                      |                                | FILTER ID<br>K FACTOR       |                                                                                                                |        | T X-SECTION  |                   | rect ?<br>DUCT AREA | other:             |              | 1                  |         |
| BAR. PRESS.    | [" Hg]   |               | $(\cdot 16)$         |                      | ł                              | KFACTOR                     | 0.73                                                                                                           | DUCI   | DIMENSIONS   | <u> </u>          | DOCTAREA            |                    | _            |                    |         |
| TRAVERSE       | CLOCK    | SAMPLE        | STATIC               | PITOT                | METER DIFF                     | METER                       | METER                                                                                                          | METEI  | RTEMP        | STACK             | PROBE               | FILTER             | LAST IMP     |                    | EXHAUST |
| POINT          | TIME     | TIME          | PRES                 | HEAD                 | PRESSURE                       | VACUUM                      | READING                                                                                                        |        | »F]          | TEMP              | TEMP                | BOX                | TEMP         | 02                 | CO2     |
| [port-inch]    | (24-hr)  | [minute]      | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]           | [" Hg]                      | 113 115                                                                                                        | inlet  | outlet       | [°F]              | [°F]                | [°F]               | [°F]         | [% vol]            | [% vol] |
| <i>A</i> C ( ) | 11:00    | 0             | 700                  | <u> </u>             |                                |                             | the second s | ~777   | 67           | 50/               | 774                 | NA                 |              | 5.2                | 14.9    |
| 8A-1           | 11:10    | 10            | -3.95                | 0.45                 | 0.42                           | 2.0                         | 837.11                                                                                                         | \$72   | -            | <u>295</u><br>296 | 209                 |                    | 65           | Y.7                | 15.3    |
| A-1            | 11:20    | 20            |                      | 0.45                 | 0.42                           | 2.10                        | 840.49                                                                                                         | 70     | 74           | 296               |                     |                    | 63           | -                  |         |
| - A-1          | 11:30    | 30            |                      | 0.42                 | 2.39                           | 2.0                         | 243.735                                                                                                        | 74     | 76           | 276               | 292                 |                    | 66           | 4,6                | 15.5    |
|                |          | - <b>36</b> 7 |                      |                      | (car                           | Chk 0.00                    |                                                                                                                |        |              |                   |                     |                    |              |                    |         |
|                | 11:33 30 | 50            |                      |                      |                                |                             | 813.900                                                                                                        |        |              |                   |                     |                    |              |                    |         |
| B-1            | 1143     | \$\$40        |                      | 0.50                 | 0.46                           | 2.5                         | 847.47                                                                                                         | -75    | 73           | Z73               | 297 :               | 1                  | 47           | 4.8                | 15.4    |
| 13-1           | 1153     | 50            |                      | 0.54                 | 0.50                           | 3.00                        | 851-21                                                                                                         | 78     | 79           | 291               | 301                 | r ta na            | 45           | 4.3                | 15.9    |
| B-1            | 12.03    | 60            |                      | 6.54                 | 0.50                           | 300                         | 854.94                                                                                                         | 80     | 81           | 291               | 300                 | Pro-               | equ          | 4.5                | 15.7    |
|                |          |               |                      |                      | Keak clack                     | 0.000 @                     | 6.0                                                                                                            | 1      |              |                   |                     |                    |              |                    |         |
|                | 1217     | đ             | -                    |                      |                                |                             | 855.03                                                                                                         | 1      | 1            | 1                 |                     | 14 T (June 1       |              |                    |         |
| C-1            | 1227     | 6070          | - 8.9                | 0.59                 | 0.54                           | 3.5                         | 858.89                                                                                                         | 8z     | 81           | <b>2</b> 261      | 292                 | 1999 B. U. L.      | 43           |                    |         |
| C-1            | 1237     | 2008          |                      | 0.65                 | 0,60                           | 3.0                         | 862.94                                                                                                         | 85     | 83           | 270               | 304                 |                    | 46           | 4.4                | 15.6    |
| C-1            | 12.47    | 180 70        |                      | 0.60                 | 0.54                           | 3.0                         | 866.76                                                                                                         | 87     | 84           | ZQ                | 302                 |                    | 44           | 4.6                | 15.5    |
|                |          | 168           |                      |                      | (k chk                         |                             | 6"+10                                                                                                          |        |              |                   |                     | and a line of the  |              |                    |         |
|                | 12-55    | 120           |                      |                      |                                |                             | 8/26-90                                                                                                        | 1      |              |                   |                     |                    |              |                    |         |
| 7-1            | 13.25    | 100           |                      | 0.45                 | 0,42                           | 26                          | 870.29                                                                                                         | 87     | 84           | 235               | 282                 |                    | 55           | 5%                 | 14.4    |
| 17-1           | 1315     | 110           |                      | 0.48                 | 0.44                           | 2,5                         |                                                                                                                | 89     | 87           | 252               |                     |                    | 50           | 5.9                | 14.2    |
| D-1            | 1325     |               | - 9.3                | 0.44                 | 0.41                           | 25                          | 873.88<br>877.12                                                                                               | 89     | 84           | 254               | 281                 |                    | 49           | 5.Z                | 14.9    |
|                |          |               |                      | King                 |                                |                             |                                                                                                                |        |              |                   |                     |                    |              |                    |         |
| AVERAGE        |          |               | -9.0                 | 0.507                | 0.471                          |                             | 42.96                                                                                                          | 80.    | ¥            | 273.7             |                     | Y Game Mar         |              | 4.9                | 15.Z    |
|                |          | S             | ample Trair          | n Pre Tes            | t 0.005 ft <sup>3</sup>        | @ <u>1(.</u> 2i             | n. Hg                                                                                                          |        |              | Pitot Tube        | PreTes              |                    | <u> </u>     | H <sub>2</sub> O   |         |
| <i>9</i> ={=   |          | Le            | ak Checks            | : Post Tes           | t <u>7.085</u> ft <sup>3</sup> | @_ <u>5,0</u> i             | n. Hg                                                                                                          |        |              | Leak Checks       | : Post Tes          | <u>.</u><br>26-1 @ | <u>7</u> in. | . H <sub>2</sub> O |         |

CONSOLENERGY.

، اللهي منظورات .

÷.,

ina nakalkakka

- - **6** - 4 - 14

· · ·

يفر فالألف و

|             |         |          |                      |                      |                                  | U                 | н.<br>А.           |          |                  |             |           |                   |          | Page             | of              |                          |
|-------------|---------|----------|----------------------|----------------------|----------------------------------|-------------------|--------------------|----------|------------------|-------------|-----------|-------------------|----------|------------------|-----------------|--------------------------|
| TEST ID     |         | :        | FGD-                 | 1                    |                                  | METER BOX         | 10-4               | CAL. D   | ATA: delta H     | 1.983       | Comments: | 1                 |          |                  |                 |                          |
| PLANT       |         | 5        | CR/FGD PI            | ant 4                | Pľ                               | TOT TUBE DESC     | EIZ                | 19       | Y                | 0.960       | ]         | · .               |          |                  |                 |                          |
| LOCATION    |         |          | FGD Inle             | t                    | PRO                              | BE LENGTH [ft]    | ۶.<br>۲            |          | C(p)             | 0.835       | · ·       |                   |          |                  |                 |                          |
| DATE        |         | 1/       | 19/05                |                      | N                                | OZZLE ID [inch]   | 7/16C 0-193        | FILTER   | SOX SETTING      | 325         |           | <u> </u>          |          |                  | <u> </u>        |                          |
| OPERATOR(S  | 5)      | JA.      |                      | PL D                 | 9                                | 6H₂O (Assumed)    | . 6                | PROBE    | TR SETTING       | 325         | ļ         |                   |          |                  |                 |                          |
| AMBIENT TEN |         |          | 55                   |                      |                                  | FILTER ID         |                    | DUC      | T X-SECTION      | circ ?      | rect ?    | other:            | r -      |                  |                 |                          |
| BAR. PRESS. | [" Hg]  | 24       | .96                  |                      |                                  | K FACTOR          | 1.04               | DUCT     | DIMENSIONS       |             | DUCT AREA |                   | ]        |                  |                 |                          |
| TRAVERSE    | CLOCK   | SAMPLE   | STATIC               | PITOT                | METER DIFF                       | METER             | METER              | METER    | TEMP             | STACK       | PROBE     | FILTER            | LAST.IMP |                  | EXHAUST         | 22                       |
| POINT       | TIME    | TIME     | PRES                 | HEAD                 | PRESSURE                         | VACUUM            | READING            | [0       |                  | TEMP        | TEMP      | BOX               | TEMP     | 0 <sub>2</sub>   | CO <sub>2</sub> | 1.2:2                    |
| [port-inch] | (24-hr) | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]             | [" Hg]            | [ft <sup>3</sup> ] | inlet    | outlet           | [°F]        | [°F]      | [°F]              | [°F]     | [% vol]          | [% vol]         | 22<br>12:2<br>Cal<br>Cal |
|             | 11:00   | 0        |                      |                      |                                  |                   | 921.60             | <u> </u> |                  | <u> </u>    |           |                   |          | 1.0              |                 |                          |
| <b></b>     | 11:10   | 10       | 5.6                  | 1.20                 | 1.25                             | 5.0               | 927,65             | 71       | 66               | 268         | 325       | 1/f               | 47       | .6.2             | 13.9            |                          |
|             | 11:20   | 20       | 5.7                  | 1.10                 | 1.15                             | 5,0               | 933,47             | 77       | 67               | 268         | . 324     | //                | 48       | 6.3              | 13.8            |                          |
|             | 11:30   | 30       | 5.8                  | 1.10                 | 1.15                             | 5.0               | 938.29             | 78       | 69               | 268         | 325       |                   | 50       | 5.8              | 14.3            |                          |
|             | 11:40   | 40 -     | 5.6                  | 1.00                 | 1-0\$                            | 5.0               | 944.90             | 29       | 69               | 269         | 325       |                   | 49       | 5.7              | 14.4            | 20,6<br>Real             |
|             | 11:50   | 50       | 5.5                  | 1.00                 | 1.05                             | 7.5               | 950.14             | Co<br>Co | 71               | 269         | 375       |                   | 48       | 6.0              | 14.1            |                          |
|             | 12:00   | 60       | 517                  | 1.05                 | 1.10                             | 5.0               | 156.14             | 81       | 7/               | 269         | 325       |                   | 48       | 6.0              | 14.1            | 208                      |
|             | 12:10   | 70       | 5.6                  | 1,20                 | 1.75                             | 5.0               | 962.21             | 23       | 72               | 270         | 325       | Values V. A. T    | 49       | 5.9              | 14.2            |                          |
|             | 12:20   | er,      | 5.6                  | 1.06                 | 1.10                             | 5.0               | 1968,10            | 83       | 73               | 270         | 325       | 4 1 0 0 0 0 0 0 0 | 49       | 6.0              | 14.1            | 1.5                      |
|             | 12:30   | 90       | 5-6                  | 1.15                 | 1.20                             | 5.0               | 973.92             | 83       | 74               | 270.        | 325       |                   | 49       | 5.6              | 14.5            | 20E<br>Urt               |
|             | 12:40   | 1.30     | 5.8                  | 1,25                 | 1.30                             | 5.5               | 980,10             | 83       | 74               | 270'        | 325       | 1                 | 50       | 5.9              | 14.2            |                          |
|             | 12:50   | 1 60     | 5,8                  | 1.20                 | 1.25                             | 5.5               | 186.20             | 83       | -73              | 270         | 325       |                   | .57      | 6.0              | 17.1            | 125                      |
|             | 13:00   | 1200     | 5.8                  | 1.20                 | 1.75                             | 5.5               | 992,28             | 84       | 74               | 270         | 3+5       |                   | 51       | 6.1              | 14.0            | 23.E<br>DK               |
|             |         | 100      |                      |                      |                                  |                   |                    |          |                  |             |           |                   |          |                  |                 |                          |
|             |         | 110      |                      |                      |                                  |                   |                    |          |                  |             |           |                   |          |                  | <u> </u>        | 1                        |
| ·····       | L       | 120      |                      |                      |                                  |                   |                    | \        |                  |             |           |                   |          |                  |                 |                          |
|             |         |          |                      |                      |                                  |                   |                    |          |                  |             |           |                   |          |                  |                 | _                        |
|             |         |          |                      |                      |                                  |                   |                    |          |                  |             |           |                   |          |                  |                 |                          |
|             |         |          |                      | (RMS)                | · .                              |                   |                    |          |                  |             |           | )                 |          |                  |                 |                          |
|             |         |          |                      | 1.123                |                                  |                   |                    |          |                  | 1           | ~         |                   | 1        |                  |                 |                          |
| AVERAGE     |         |          | 5.68                 |                      | 1.175                            |                   | 70.68              |          | 75.7             | 269.3       |           |                   |          | 3.96             | 14.14           | ]                        |
|             |         | S        | ample Train          | Pre Test             | doal ston ft3                    | @ <u>- / 2</u> ii | n. Hg              |          |                  | Pitot Tub   | e PreTes  | <u>t_0K_@</u>     |          |                  |                 |                          |
|             |         | Le       | ak Checks:           | Post Test            | d <u>ore slo</u> ft <sup>3</sup> | @_ <u>~/</u> øi   | n. Hg              |          | **************** | Leak Checks | Post Tes  | t@                | in.      | H <sub>2</sub> O |                 |                          |

CONSOLENERGY. Post-fest air purge for to min & d H=1.0

. However the second second

, k.

غلائا ئىز. ب.

، الشطيني

u **ki**ni - uu

|   |             |         |          |                       |                                       |                      |                             |                     |         |                                 |                      |                     |                                  |                 | Page             | _ of          |
|---|-------------|---------|----------|-----------------------|---------------------------------------|----------------------|-----------------------------|---------------------|---------|---------------------------------|----------------------|---------------------|----------------------------------|-----------------|------------------|---------------|
|   | TEST ID     |         |          | STK -                 | Ι                                     | ×                    | METER BOX                   | N-3                 | CAL. D. | ATA: deita H                    |                      | Comments:           |                                  |                 |                  |               |
|   | PLANT       |         | s        | CR/FGD Pla            | ant 4                                 | P).                  | FOT TUBE DESC               | E-11                |         | . Y                             | 1.026                |                     |                                  |                 |                  |               |
| - | LOCATION    |         |          | Stack                 |                                       |                      | BE LENGTH [ft]              | 10                  |         | C(p)                            | 0.806                |                     |                                  | ·· · ·          |                  |               |
| - | DATE        |         | , ,      | 9.0                   | $\sim$                                |                      | OZZLE ID [inch]             |                     |         | SOX SETTING                     | 325                  |                     |                                  |                 |                  |               |
| - | OPERATOR(S) |         | <u> </u> |                       | <u>، کر، ا</u>                        | 9                    | 6H <sub>2</sub> O (Assumed) | 3.5                 |         | ITR SETTING                     | 250                  |                     |                                  |                 |                  |               |
| : |             |         | <u> </u> | <u>ح ~~</u><br>۲۰۰۹ ( |                                       |                      | FILTER ID<br>K FACTOR       | <u># 2</u><br>1.67  |         | T X-SECTION                     | circ ?<br>19 ft ID   | rect ?<br>DUCT AREA | other:<br>283.53 ft <sup>2</sup> |                 |                  |               |
| 1 | BAR. PRESS. | [ Hg]   |          | 1.10                  | 0                                     |                      | KFACTOR                     | 1.0-7               |         |                                 |                      |                     | $\overline{(200.00  \text{m})}$  | $(\mathcal{F})$ |                  |               |
| 1 | TRAVERSE    | CLOCK   | SAMPLE   | STATIC                | PITOT                                 | METER DIFF           | METER                       | METER               | METER   | TEMP                            | STACK                | PROBE               | FILTER                           | LAST IMP        | METER E          | XHAUST        |
| - | POINT       | TIME    | TIME     | PRES                  | HEAD                                  | PRESSURE             | VACUUM                      | READING             | [0      | F]                              | TEMP                 | TEMP                | BÓX                              | TEMP            | 0 <sub>2</sub>   | CO2           |
|   | [port-inch] | (24-hr) | [minute] | [ <sup>⊷</sup> H₂0]   | [" H <sub>2</sub> 0]                  | [" H <sub>2</sub> 0] | [" Hg]                      | [fft <sup>3</sup> ] | inlet   | outlet                          | [°F]                 | [°F]                | `[ <sup>°</sup> F]               | [°F]            | [% vol]          | [% vol]       |
|   |             | 1100    | 0        |                       |                                       | <u> </u>             | <u> </u>                    | 464.60              | - ~ 1   |                                 | $\sim$ $\sim$ $\sim$ | $\sim \sim 1$       |                                  | ~ ~             |                  | 120           |
| - | -10.00      |         | 10       |                       | ·14                                   | 1.23                 | 3.5                         | 470.54              | 75      | 74                              | 129                  | 251                 | 305                              | 55              | 6.3              | 13.8          |
| A | -33.33      |         | 20       | -,4452                | 1.00                                  | 1.65                 | 4                           | 477.13              | 81      | 75                              | 129                  | 261                 | 327                              | 49              | 6.2              | 13.9          |
|   | -67.50      |         | 30       |                       | 1,10                                  | 1.82                 | S                           | 484.04              | 08      | 77                              | 129                  | 261                 | 335                              | 51              | 5.8              | 14.3          |
| - |             |         |          |                       | r<br>N                                | REST                 | ART                         | 484.16              |         | 1 40<br>-                       |                      |                     |                                  |                 |                  | 1             |
|   |             | -       |          |                       |                                       |                      |                             |                     |         |                                 |                      |                     |                                  |                 |                  |               |
| - | -10.00      |         | 40       |                       | .70                                   | 1.15                 | 2.5                         | +89.76              | 83      | רר                              | 127                  | 247                 | 307                              | 49              | 3. کا            | 13.8          |
| 0 | -33.33      |         | 50 -     | .4996                 | 1,00                                  | 1.65                 |                             | 496.33              | 85      | <u>.</u><br>רר                  | 127                  | 253                 | 322                              | 46              | 5.8              | 14.3          |
| ß | -67.50      |         | 60       |                       | 1.10                                  | 1.82                 | 5                           | 503.24              | 26      | <u>יי</u><br>צר                 | 126                  | 255                 | 233                              | 47              | 6.0              | 14,1          |
| : | -07.50      |         | 00       |                       |                                       | REST                 |                             | 503.36              | 00      | 10                              | 1 2 0                |                     | 1-22                             |                 | 0,0              |               |
|   |             |         |          |                       | <u> </u>                              | 12231                |                             | 00.00               |         |                                 |                      |                     |                                  | 1               |                  |               |
| : |             |         |          |                       |                                       |                      | 3.5                         | 508.85              | 84      | 78                              | 125                  | 256                 | 329                              | 50              | 6.3              | 13.8          |
|   | -10.00      |         | 70       | 2020                  | <u>ماما،</u>                          | 1.10                 |                             |                     |         |                                 |                      | 1                   | 229                              | 79              |                  | $\frac{1}{1}$ |
| C | -33,33      |         | 80       | 3980                  | · · · · · · · · · · · · · · · · · · · | 1.75                 | 5                           | 515.66              | 87      | 80                              | 126                  | 248                 | +~~                              |                 | 6.0              | 17.1          |
| ļ | -67.50      |         | 90       |                       | 1.10                                  | 1.82                 | 5                           | 522.62              | 90      | 8)                              | 126                  | 252                 | 330                              | 52              | 6.3              | 13.8          |
| 1 |             |         |          |                       | L.C.                                  | RESTI                | ART                         | 522.74              |         |                                 |                      |                     |                                  |                 |                  | <br>          |
|   |             |         |          |                       |                                       |                      |                             |                     | \       |                                 |                      |                     |                                  |                 |                  |               |
| : | -10.00      |         | 100      |                       | . ¬ 8                                 | 1.30                 | 4                           | 528.66              | 27      | 81                              | 126                  | 225                 | 329                              | 12              | 6.3              | 13.8          |
| 5 | -33.33      |         | 110 -    | 4651                  | 1.10                                  | 1.82                 | S                           | 535.60              | 89      | 82                              | 126                  | 253                 | 328                              | 52              | 6.3              | 13.8          |
| D | -67.50      |         | 120      |                       | 1.10                                  | 1.82                 | 5                           | 5+2,58              | 9       | 84                              | 126                  | 256                 | 330                              | 54              | 6.2              | 13.9          |
| : |             | 1320    |          |                       |                                       |                      |                             |                     |         |                                 | · · ·                |                     |                                  |                 |                  |               |
|   | AVERAGE     |         |          | -0.45                 | 0.944                                 | 1.57                 |                             | 77.62               | ŴĒ      | 2                               | 126.8                | ·                   |                                  |                 | 6.2              | 14.0          |
|   | Street as   | ·       | Si       | ample Train           | Pre Test                              | OK ft <sup>3</sup>   |                             | n. Hg               |         |                                 | Pitot Tube           |                     | t <u> </u>                       |                 |                  |               |
|   |             |         | Le       | ak Checks:            | Post Test                             | <u> </u>             | @ <u>\0</u> i               | n. Hg               |         | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | Leak Checks          | - Post Tes          | t_ <b>OK</b> @                   | in.             | H <sub>2</sub> O |               |

CONSOLENERGY.

. data di s

, i da

ىلتانىخ :

a interactions.

ۇ ئىلىكى ،

| ч.<br>(     |         |                                        |                          | • .                  | _                               |                             |                     |             |              |                            |                                          |                     |                  | Page       | of                         |
|-------------|---------|----------------------------------------|--------------------------|----------------------|---------------------------------|-----------------------------|---------------------|-------------|--------------|----------------------------|------------------------------------------|---------------------|------------------|------------|----------------------------|
| TEST ID     |         |                                        | ECON-                    | 2                    |                                 | METER BOX                   | N-1                 | ÇAL. D      | ATA: delta H | 1.976                      | Comments:                                |                     |                  |            |                            |
| PLANT       |         | s                                      | CR/FGD PI                | ant 4                | PI                              | TOT TUBE DESC               | E-15                | •           | Y            | 0,987                      |                                          |                     |                  |            |                            |
| LOCATION    |         | E                                      | conomizer (              |                      |                                 | OBE LENGTH [ft]             |                     |             | C(p)         | 0.838                      | · · ·                                    |                     |                  |            |                            |
| DATE        |         |                                        | 1/20/                    |                      |                                 |                             | 3/16 DIA O.A        | FILTER I    | BOX SETTING  | 325                        |                                          |                     |                  |            |                            |
| OPERATOR(S  | •       |                                        | <u>SLC/</u>              | ST                   |                                 | %H <sub>2</sub> O (Assumed) | ,<br>,              | PROBE       | HTR SETTING  | 325                        |                                          |                     |                  |            |                            |
| AMBIENT TEN | MP (°F) |                                        | 90                       |                      |                                 | FILTER ID                   |                     |             | T X-SECTION  | circ ?                     | rect ?                                   | other:              | <u> </u>         |            |                            |
| BAR. PRESS. | (" Hg]  |                                        | 29.19                    | 7                    |                                 | KFACTOR                     |                     | DUCT        | DIMENSIONS   | <u>2@25'x14.5'</u>         | DUCT AREA                                | 725 ft <sup>2</sup> |                  |            |                            |
| TRAVERSE    | CLOCK   | SAMPLE                                 | 07470                    |                      |                                 |                             | 4 <del>9;632)</del> |             |              |                            |                                          |                     | [                |            |                            |
| POINT       | TIME    | TIME                                   | STATIC                   | РПОТ<br>HEAD         | METER DIFF<br>PRESSURE          | VACUUM                      | METER               | 29 <b>\</b> |              | STACK                      | PROBE<br>TEMP                            | FILTER<br>BOX       | LAST IMP         |            | EXHAUST<br>CO <sub>2</sub> |
| [port-inch] | (24-hr) | [minute]                               | [" H <sub>2</sub> 0]     | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]            | [" Hg]                      | [ft <sup>3</sup> ]  | inlet       | outlet       | [°F]                       | [°F] 🖉                                   | [°F]                | I°FI             | [% vol]    | [% vol]                    |
|             | 0936    | 0                                      |                          |                      |                                 |                             | 564.1D              |             |              |                            |                                          |                     |                  |            |                            |
| 1V          |         | 10                                     |                          | 1.00                 | 0,63                            | 4.0                         | 568,50              | 84          | 87           | 709                        | 320                                      | (                   | .50              | 3.7        | 16.3                       |
| 0           |         | 20 🦯                                   | -4.56                    | 1,05                 | 0,60                            | 4.5                         | 572.91              | 86          | 83           | 711                        | 330                                      | /                   | 47               | 37         | 16,3                       |
| R           |         | 30                                     |                          | 1,05                 | 0.66                            | 5,0                         | 577.34              | 89          | 85           | 710                        | 329                                      | 1                   | 48               | 4.2        | 159                        |
| T           |         | 40                                     |                          | 1,05                 | 0.66                            | 5.0                         | 581.78              | 92          | 86           | 7/1                        | 321                                      |                     | 49               | 4.0        | 16.0                       |
| H           |         | 50                                     | -4.65                    | 1.05                 | 0.66                            | 6.0                         | 586,23              | 94          | 88           | 7/3                        | 321                                      |                     | 50               | 38         | 16.2                       |
|             |         | 60                                     |                          | 1.05                 | 0.66                            | 6.5                         | 540.00              | 95          | 89           | 710                        | 318                                      |                     | 51               | 4.2        | 15,9                       |
|             |         |                                        |                          | POST                 | NORTH                           | LEAK (                      | HECK                | ak          | O"el         | 0"/19                      |                                          | [                   |                  |            |                            |
| ļ           |         |                                        |                          |                      |                                 |                             |                     |             |              |                            | an a |                     |                  |            |                            |
|             | 1054    |                                        |                          |                      |                                 |                             | 594.50              | •           |              |                            |                                          |                     |                  |            |                            |
| 5           |         | 70                                     |                          | 0.90                 | 0.56                            | 7.0                         | 598.71              | 98          | 94           | 713                        | 320                                      |                     | 55               | 3.1        | 16.9                       |
| 0           |         | 80                                     | - 4,49                   | 0,80                 | 0.50                            | 7.0                         | 602.68              | 99          | 94           | 712                        | 320                                      |                     | 52               | 3.7        | 16.7                       |
| <u> </u>    |         | 90                                     |                          | 0.80                 | 0,50                            | 8,0                         | 606.iA              | 100         | 95           | 710                        | 330                                      | ·                   | 52               | 3.7        | 16.3                       |
| T           |         | 100                                    |                          | 0,80                 | 0.50                            | 8.5                         | 610.60              | 101         | 96           | 711                        | 330                                      |                     | 54               | 3.5        | 16.5                       |
| H           |         | 110                                    |                          | 0,80                 | 0,50                            | 9.0                         | 614,52              | 102         | 97           | 712                        | 329                                      |                     | 54               | 3,6        | 16.4                       |
|             |         | 120                                    |                          | 0.80                 | 0.50                            | 10.0                        | 618,51              | 102         | 91           | 713                        | 36                                       |                     | 54               | 3.1        | 16.9                       |
|             |         |                                        |                          |                      |                                 |                             |                     |             |              |                            |                                          |                     |                  |            |                            |
|             |         |                                        |                          |                      |                                 |                             |                     | a.          |              |                            | :                                        | <u> </u>            |                  |            | 1                          |
|             |         |                                        |                          |                      | -                               |                             |                     |             |              | İ                          |                                          |                     | \$               |            | <u> </u>                   |
|             |         |                                        |                          |                      |                                 |                             |                     |             |              |                            |                                          |                     |                  |            | 1                          |
| AVERAGE     |         |                                        |                          | 0.925                | 0.583                           |                             | 50.57               | 92.9        | ¥            | 711.6                      |                                          |                     | $\perp_{\Gamma}$ | 3.7        | 16.4                       |
|             |         |                                        | mple Train<br>ak Checks: | (                    | $\frac{2.2.02}{0} \text{ ft}^3$ | _                           | n. Hg               |             |              | Pitot Tube<br>Leak Checks: | PreTest<br>Post Test                     | · · · · ·           |                  | H₂O<br>H₂O |                            |
|             |         | 10111111111111111111111111111111111111 | in oneoro,               | http://www.contest   |                                 |                             | *****               |             |              | Lean Gleuks:               | FUSLIEST                                 |                     | <u>, 11.</u><br> |            | <u></u>                    |

18 5

 $\mathbf{k}_{1},\ldots,$ 

المتلف المتقارر المراجع

, a sillin de de la co

1.21.14.1

4.1

nakihi da Ziriyezi

|             |                 |           |                              | UNTP                |                                  |                            |                    |          |               |               |               |                 |                  | Page 🥖           | of              |
|-------------|-----------------|-----------|------------------------------|---------------------|----------------------------------|----------------------------|--------------------|----------|---------------|---------------|---------------|-----------------|------------------|------------------|-----------------|
| TEST ID     | 1               |           | AHO-                         | 2.                  |                                  | METER BOX                  | N-5                | CAL. D   | ATA: delta H  | 2:015         | Comments:     |                 |                  |                  |                 |
| PLANT       | •               | s         | CR/FGD Pla                   |                     | PIT                              | OT TUBE DESC               |                    |          | Y             | 1.511         |               |                 |                  |                  |                 |
| LOCATION    |                 |           | ater Outlet/                 |                     |                                  | BE LENGTH [ft]             | 10                 |          | C(p)          |               |               |                 |                  |                  |                 |
| DATE        |                 |           | 10-05                        |                     |                                  | OZZLE ID [inch]            |                    | FILTER I | BOX SETTING   | 325           |               |                 |                  |                  |                 |
| OPERATOR(S  | ;)              | JL,       | DO, 9                        | K                   | %                                | H <sub>2</sub> O (Assumed) | 6                  | PROBE    | HTR SETTING   | 325           |               |                 |                  |                  |                 |
| AMBIENT TEN | /P [°F]         |           |                              |                     |                                  | FILTER ID                  |                    | סטס      | T X-SECTION   | circ ?        | rect?         | other:          |                  |                  |                 |
| BAR. PRESS. | [" Hg]          | 29        | 19                           |                     |                                  | K FACTOR                   | 0.93               | рист     | DIMENSIONS    |               | DUCT AREA     | <u> </u>        |                  |                  |                 |
|             |                 |           |                              |                     |                                  |                            |                    |          |               |               |               |                 |                  | NETER            | EXHAUST         |
| TRAVERSE    | CLOCK           | SAMPLE    | STATIC                       | PITOT               | METER DIFF                       | METER<br>VACUUM            | METER<br>READING   |          | R TEMP<br>>F] | STACK<br>TEMP | PROBE<br>TEMP | FILTER<br>BOX   | LAST IMP<br>TEMP |                  | CO <sub>2</sub> |
| POINT       | TIME            | TIME      | PRES<br>[" H <sub>2</sub> 0] | HEAD<br>[" H₂0]     | PRESSURE<br>[" H <sub>2</sub> 0] | VAC00101                   | [ft <sup>3</sup> ] | inlet    | outlet        | [°F]          | [°F]          | [°F]            | [°F]             | <br>[% vol]      | [% vol]         |
| [port-inch] | (24-hr)<br>0735 | [minute]  | <u>[ n20]</u>                | [ n <sub>2</sub> v] |                                  | <u> </u>                   | 836.000            |          |               |               |               |                 |                  |                  |                 |
| D-1         | 0945            | 10        |                              | 0.30                | 0.23                             | 0, )                       | 888.84             | 58       | 6!            | 254           | 306           | NA              | 55               |                  |                 |
| <u> </u>    | 0955            | 20        | -9.03                        | 0.30                | 0.2B                             | 1-0                        | 891.57             | 60       | 62            | 254           | .291          |                 | 47               | 5.7              | 14.84           |
| D-1         | 1005            | 30        |                              | 0.30                | 0.23                             | 1-0                        | 894.33             | 62       | 65            | 254 -         | 294           |                 | 43               | 6.1              | 14.0            |
|             | <u> </u>        | - 555     | ,<br>,<br>,                  |                     | ic che                           | . OK @ 7.                  | o "HR              |          |               |               |               |                 | 1                |                  |                 |
|             | 10.12           | <b>\$</b> |                              |                     |                                  |                            | 894.700            |          |               |               |               |                 |                  |                  |                 |
| C-1         | 1022            |           |                              | 0.45                | 0.42                             | 1.5                        | 893.12             | 65       | 63            | 254           | 363           | an an an an an  | SI               |                  |                 |
| C-I         | 1032            | 50        | -9.27                        | 0.50                | 0.46                             | 1.5                        | 901.66             | 67       | GB            | 270           | 300           | 1               | 47               | 5.1              | 15.0            |
| C-1         | 1042            | 63        |                              | 0.50                | 0.46                             | 1.5                        | 905.18             | 68       | 69            | 270           | 305           |                 | 47               | 5.1-             | 14.9            |
|             |                 |           | 2                            |                     | 1 le client                      | -0266                      | O"HP               |          |               |               |               |                 |                  |                  |                 |
|             | 10:51           | ø         | ·                            | 0.82                |                                  |                            | 955.47             |          |               |               |               |                 |                  |                  |                 |
| <u>B-1</u>  | 11:01           | 000       |                              | <u>ass</u>          | 0,6576                           | 2.0                        | 910:00             | 70       | 72            | Z.88          | 327-          |                 | 55               |                  |                 |
|             | 7/11            | මහිට      |                              | 10.95               | 0.87                             | 2.0                        | 914.68             | 72       | 71            | 293           | 314           |                 | 5/               | 5.5              | 14.5            |
| 13-1        | 11Z1            | 20092     |                              | 0.95                | 0.87                             | 2.0                        | 919.39             | 74       | 72            | 293           | 323           |                 | 51               | 5.0              | 15.2            |
|             |                 | 6         |                              |                     | 1/2 diese                        | - 5.000 C                  | £                  |          |               |               |               |                 |                  |                  |                 |
|             | 1/30            | 1287      | - '                          |                     |                                  |                            | 919.50             |          |               |               |               |                 |                  |                  |                 |
| A-1         | 1140            | [00       |                              | 0.45                | 0.41                             | 1.5                        | 922.97             | 73       | 74            | Z95           | 274           |                 | 61               |                  |                 |
| A-1         | 1150            | 110       | - 3.14                       | 0.41                | 0.33                             | 1.5                        | 926-24             | 74       | 74            | 299           | 303           |                 | 55               | 5.4              | 14.6            |
| A-1         | 1200            | 120       |                              | 0.53                | 0.49                             | 20                         | 929.985            | 75       | 74            | 300           | 317           |                 | 56               | 5.6              | 14.6            |
|             |                 |           |                              |                     |                                  |                            |                    |          |               |               |               |                 | <u> </u>         | <u></u>          |                 |
| AVERAGE     |                 |           | -9.16                        | 0.516               | 0.497                            |                            | 43.215             | 6        | 377           | 277.0         |               |                 |                  | 15.4             | 1614.7          |
|             | •               | S         | ample Train                  | n Pre Tes           | t <u>0.01</u> ft <sup>3</sup>    | 0.0] 0                     | in. Hg             |          |               | Pitot Tub     | e PreTes      | t @             | <u>9</u> in.     | H <sub>2</sub> O |                 |
|             |                 | Le        | ak Checks                    | : Post Tes          | t <u>C、クロン</u> ft <sup>3</sup>   | @                          | in. Ág             |          |               | Leak Check    | s: Post Tes   | t_ <u>0k_</u> @ | 2 <u>2</u> in.   | H₂O              |                 |

CONSOLENERGY

e . . . lis,

ى مىرى ، خىلەغىلەلغىن.

i ail ai

19**11**-1-11-1

, ini i

. الاستقاد

|             |         |                |                      |                      |                      |                 |                    |         |              |             |           |                                                  |          | Page             | of             |
|-------------|---------|----------------|----------------------|----------------------|----------------------|-----------------|--------------------|---------|--------------|-------------|-----------|--------------------------------------------------|----------|------------------|----------------|
| FEST ID     |         |                | FGD-                 | 2                    |                      | METER BOX       | N-4                | CAL. D  | ATA: delta H | 1.983       | Comments: |                                                  |          |                  |                |
| LANT        |         | s              | CR/FGD PI            | ant 4                | Pľ                   | TOT TUBE DESC   | E-12               |         | Ŷ            | 0.960       | 1         |                                                  |          |                  |                |
| OCATION     |         |                | FGD Inie             | <u>t</u> .           | PRO                  | DBE LENGTH [ft] | 8                  | •       | C(p)         | 0.835       | 1         |                                                  |          |                  |                |
| DATE        |         |                | 120 /05              |                      | Ν                    | OZZLE ID [inch] | 3/16C 0.193        | FILTER  | BOX SETTING  | 325         | 1         |                                                  |          |                  | <u> </u>       |
| DPERATOR(S  | )       | J.             | W .                  |                      | . 9                  | %H₂O (Assumed)  | \$ 7.5             | PROBE   | HTR SETTING  | 325         | <u> </u>  | <del>.                                    </del> |          | 1                |                |
| AMBIENT TEM | P [°F]  | <u>ک</u>       | ~~~                  |                      |                      | FILTER ID       |                    | DUC     | T X-SECTION  | circ ?      | rect ?    | other:                                           |          | 1                | O, ne          |
| BAR. PRESS. | [" Hg]  | 29             | .79                  |                      |                      | K FACTOR        | 1.06               | DUCT    | DIMENSIONS   |             | DUCT AREA |                                                  | _        |                  | outis<br>outis |
| TRAVERSE    | CLOCK   | SAMPLE         | STATIC               | DITOT                | METER DIFF           | METER           | METER              | MEYE    | R TEMP(76)   | STACK       | PROBE     | FILTER                                           | LAST IMP | METERI           | Che.           |
| POINT       | TIME    | TIME (         | PRES                 | HEAD                 | PRESSURE             | VACUUM          | READING            | [c      | (76)<br>F]   | TEMP        | TEMP      | BOX                                              | TEMP     | 02 (6)           | CO(14)         |
| [port-inch] | (24-hr) | [minute]       | [" H <sub>z</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>z</sub> 0] | [" Hg]          | [ft <sup>3</sup> ] | inlet . | outlet       | [°F]        | [°F]      | [°F]                                             | [°F]     | [% vol]          | [% vol]        |
|             | 09:35   | <sup>,</sup> 0 |                      |                      |                      |                 | 998.80             |         |              |             |           |                                                  |          |                  |                |
|             | 09:45   | 10             | 4.3                  | 1,15                 | 1.20                 | 4.0             | 1004.84            | 7/      | 66           | 271         | 327       | NA                                               | 50       | 6.0              | 14.1           |
|             | 07:55   | 20             | 4.2                  | 1.15                 | 1.20                 | 4.0             | 1010.82            | つつ      | 67           | 270         | . 325     | 1                                                | 48       | 5.9              | 14.2           |
|             | 10:05   | 30             | 4,2                  | 1.15                 | 1.30                 | 4.0             | 1016.75            | 78      | 67           | 271         | 326       |                                                  | 49       | 5.8              | 14.3           |
|             | 10:15   | 40             | 4.4                  | 1.10                 | 1.15                 | 4.0             | 1022,62            | 78      | 69           | 271         | 325       |                                                  | 51       | 6.0              | 14.1           |
|             | 10:25   | 50             | 4.3                  | 1,10                 | 1.15                 | 4.0             | 1028-47            | 79      | 61           | 27/         | 325       |                                                  | 51       | 5.5              | 14.6           |
|             | 10:35   | 60             | 4.2                  | 1.10                 | 1.15                 | 4.0             | 1334.30            | 80      | 70           | 272         | 325       |                                                  | 51       | 5.7              | 14.4           |
|             | 10:45   | 70             | 4.5.                 | 1.00                 | 1.05                 | 4.0             | 1039.96            | 63      | 71           | 272         | 325       |                                                  | 51       | 6.3              | 13.8           |
|             | 10:55   | 80             | 4.2.                 | 1.00                 | 1.05                 | 4.0             | 1245,58            | 20<br>T | 72           | 272         | 325       | 1                                                | 52       | 5.7              | 14.4           |
|             | 11:05   | 90             | t.3.                 | 0,95                 | 1.00                 | 40              | 1051.06            | 70      | 72           | 273         | 374       | · ·                                              | 52       | 5.9              | 14.2           |
| aline.      | 11:15   | ( 700)         | 4.2                  | 1.00                 | 1.05                 | 4.0             | 1056.72            | FI      | 72           | 273         | 325       |                                                  | 53       | 6.0              | 14.1           |
|             | 11225   | 1 100          | 42                   | 0.94                 | 1.00                 | 4.0             | 1062.23            | 81      | 72           | 273         | 326       |                                                  | 54       | 5.7              | 14.4           |
|             | 11:35   | 1200           | 4.5.                 | 1.00                 | 1.05                 | 7.0             | 1007.87            | TI      | 73           | 274         | 326       | <u> </u> . (                                     | 54       | 5.9              | 122            |
|             |         | 100            |                      |                      |                      |                 |                    |         |              |             |           |                                                  |          |                  |                |
|             |         | 110            |                      |                      |                      |                 |                    |         |              |             |           |                                                  |          |                  |                |
|             |         | 120            |                      |                      |                      |                 |                    | j       |              |             |           |                                                  |          |                  |                |
|             |         |                |                      |                      |                      |                 |                    |         |              |             |           |                                                  |          |                  |                |
|             |         |                |                      |                      |                      |                 |                    |         |              |             | :         |                                                  |          |                  |                |
|             |         |                |                      |                      |                      |                 |                    |         |              | -           |           |                                                  | 4.       |                  |                |
|             | ······  |                |                      | ene                  |                      |                 | -                  |         | ,            |             |           |                                                  |          | 5.87             |                |
| AVERAGE     |         |                | 4.29                 | 1.052                | 1.104                |                 | 69.07              |         | 74,5         | 271.9       |           |                                                  |          |                  | 14.23          |
| -           |         | S              | ample Train          | Pre Test             | deal shep ft3        | @_17i           | n. Hg              |         |              | Pitot Tube  |           | st <u>OR</u> @                                   |          | =                |                |
| €           | 5       | Le             | ak Checks:           | Post Test            | deal shoft           | @_ <u>/</u> ⁄i  | n. Hg              |         |              | Leak Checks | Post Tes  | .t@                                              | in.      | H <sub>2</sub> O |                |

ب الملك والمالة . او ج

. بالفعاسطة فارب

المناقبة الألفان

. 84 . ....

|             |             |             |          |                      | <u>.</u>             |                      |                             |           |              |             |                    |                     |                                  |         | Page             | of      |
|-------------|-------------|-------------|----------|----------------------|----------------------|----------------------|-----------------------------|-----------|--------------|-------------|--------------------|---------------------|----------------------------------|---------|------------------|---------|
|             | TEST ID     |             |          | STK-C                | 2                    |                      | METER BOX                   | N-3       | CAL. D       |             | 1.982              | Comments:           |                                  |         |                  |         |
|             | PLANT       |             | S        | CR/FGD Pla           | ant 4                | PE                   | TOT TUBE DESC               | E-11      |              | Y           | 1.026              |                     |                                  |         |                  | <u></u> |
|             | LOCATION    |             |          | Stack                |                      |                      | BE LENGTH [ft]              |           |              | C(p)        | 0.806              |                     |                                  |         |                  |         |
|             | DATE        |             |          | 0 - 0                | <u>, 2</u>           |                      |                             | 7/32A 0.2 |              |             | 325                |                     |                                  |         |                  |         |
| . :         | OPERATOR(S  |             | 1<. (    |                      | . S .                | 9                    | 6H <sub>2</sub> O (Assumed) |           |              | HTR SETTING | 250                |                     |                                  |         |                  |         |
|             | AMBIENT TEM |             | $\sim$   | <u>25°</u><br>רי     |                      |                      | FILTER ID<br>K FACTOR       |           |              | T X-SECTION | circ ?<br>19 ft ID | rect ?<br>DUCT AREA | other:<br>283.53 ft <sup>2</sup> |         |                  |         |
| :           | BAR. PRESS. | [" Hg]      | <u> </u> | · 1 1                |                      |                      | K FACTOR                    | 1.61      |              |             |                    |                     |                                  | Ð       |                  |         |
|             | TRAVERSE    | CLOCK       | SAMPLE   | STATIC               | PITOT                | METER DIFF           | METER                       | METER     | METER        |             | STACK              | PROBE               | FILTER                           | LASTIMP | METER E          |         |
| · -         | POINT       | TIME        | TIME     | PRES                 | HEAD                 | PRESSURE             | VACUUM                      | READING   |              | F]          | TEMP               | TEMP                | BOX                              | TEMP    | 0 <sub>2</sub>   | CO2     |
|             | [port-inch] | (24-hr)     | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" Hg]                      |           | inlet        | outlet      | [°F]               | [°F]                | [°F]                             | [°F]    | [% vol]          | [% vol] |
| :           |             | <u>0935</u> | 0        |                      | ,<br>,               |                      | ~                           | 548.80    |              |             |                    | 2.10                | 220                              |         |                  |         |
|             | -10.00      |             | 10       |                      | 010                  | 1.15                 | 3                           | 554.34    |              | 69          | 129                | 248                 | 328                              | 52      | ط، ط             | 13.6    |
| D           | -33.33      |             | 20 -     | .6590                | 1.10                 | 1.82                 | 4.5                         | 561.22    | レイ           | <u> </u>    | 128                | 255                 | 332                              | ふス      | 6.2              | 13.9    |
| <b>ر</b> _د | -67.50      |             | 30       |                      | 1.10                 | 1.82                 | 4.5                         | 568.18    |              | 71          | 128                | 257                 | 334                              | 54      | 6.4              | 13.7    |
|             |             |             | × .      |                      | L,C                  | REST                 | ART                         | 568.30    |              |             |                    |                     |                                  |         |                  | :       |
|             | :           |             |          |                      |                      |                      |                             |           |              |             |                    |                     |                                  |         |                  |         |
|             | -10.00      |             | 40       | `                    | 5                    | 1.25                 | 3.5                         | 574.11    | 76           | 1           | 128                | 257                 | 330                              | 57      | 6.4              | 13.8    |
| ~           | -33.33      |             | 50 -     | 5194                 | 1.00                 | 1.65                 | 4                           | 580.73    | - <u>-</u> 8 | 11          | 127                | 260                 | 332                              | 57      | 6.6              | 13.6    |
| $\sum_{i}$  | -67.50      |             | 60       |                      | 1.10                 | 1.82                 | 5                           | 587.73    | 80           | 72          | 127                | 261                 | 332                              | 59      | 6.3              | 13.9    |
|             |             |             |          |                      |                      | 107                  | $\sim$                      |           |              |             |                    |                     | 10/2 /2                          |         |                  |         |
| 1           |             |             |          |                      | L,C                  | REST                 | ART                         | 587.88    | -80-         | 74          | -+                 | 257                 | 372                              | -54-    | 6.5              | 13.7    |
|             | -10.00      |             | 70       |                      | .73                  | 1.20                 | 3.5                         | 593.62    | 80           | 74          | 127                | 257                 | 332                              | 54      | 6.5              | 13.7    |
|             | -33.33      |             | 80 -     | 5058                 | 1.10                 | 1.82                 | 5                           | 600.61    | 84           | 75          | 127                | 251                 | 332                              | SI      | 6.4              | 13.8    |
| ß           | -67.50      |             | 90       | 0-02                 | 1.15                 | 1.90                 | 5                           | 607.77    | 85           | 16          | 126                | -                   | 332                              | 49      | 6.5              | 13.7    |
| :           | 01.30       |             |          |                      |                      |                      | ~                           | 603.11    |              |             |                    |                     |                                  | ·····   |                  |         |
|             |             |             |          |                      | λ.ς.                 | RESTI                | ART                         | 607.90    | N.           |             |                    |                     |                                  |         |                  |         |
|             | -10.00      |             | 100      |                      | .70                  | 1.15                 | 3.5                         | 613.49    | 83           | 5           | 126                | 252                 | 325                              | 50      | 6.4              | 13.8    |
|             | -33.33      | ••••        | 110 -    | .6109                | 1.00                 | 1.65                 | 4.5                         | 620.16    | 84           | 77          | 126                | 258                 | 329                              | 49      | 6.4              | 13.8    |
| A           | -67.50      | •••         | 120      |                      | 1.10                 | 1.82                 | 5                           | 627.21    | 86           | 78          | 126                | 253                 | 33)                              | 49      | 6.5              | 13.7    |
| 1           |             | 1154        |          |                      |                      |                      |                             |           |              |             |                    |                     |                                  |         |                  |         |
| :           | AVERAGE     |             |          | 0.59                 | 0.953                | 1.588                |                             | 78.01     | 76.          | 6           | 127.1              |                     |                                  |         | 6.4              | 13.8    |
| :           |             | -           |          | ample Train          | Pre Test             | $0 \sqrt{ft^3}$      |                             | -         |              |             | Pitot Tube         |                     | t_015@                           |         |                  |         |
|             |             |             | Le       | ak Checks:           | Post Test            | _ <u>_0\</u> ft³     | @ <u>``O</u> i              | n. Hg     |              |             | Leak Checks        | : Post Tes          | t_ <u>0K@</u>                    | in.     | H <sub>2</sub> O |         |

CONSOL ENERGY.

وبالاستعادية

مر د

· calak

1.046-04-04-0

12.1

d i d

| PLANT         BCRPRD Plant         PPTOT TURE DESC         FLTS         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         C</thc<>                                                                                                                                                                                                                                                                                                                                                                                 |             |        | <b></b>  |                      |                       |                      |                 | · · · · · · · · · · · · · · · · · · · |        |              |                                                                                                                | r         | And A               |                                       | Page          | _ of                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|----------|----------------------|-----------------------|----------------------|-----------------|---------------------------------------|--------|--------------|----------------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------------------------------|---------------|---------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEST ID     |        |          | ECON-                | 3                     |                      | METER BOX       | N-1                                   | CAL. D | ATA: delta H |                                                                                                                | Comments: | NCAK 14             | vel Ken                               | and @         | ~ 1500                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLANT       |        | s        | CR/FGD Pla           | ant 4                 | , PII                | TOT TUBE DESC   |                                       |        | Ŷ            | the second s |           | PAUSE               | TESTE                                 | 1513          |                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOCATION    |        | Ec       |                      | _                     |                      |                 | <i>C</i> )                            | •/     | C(p)         | 0,838                                                                                                          |           |                     |                                       |               |                                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE        |        |          |                      |                       |                      |                 | 3/15- DIA, 0.191                      |        |              |                                                                                                                |           | INSPECTE            | <u>* [lenk</u>                        | TESTED        | PIPT                                              |
| BAR. PRESS. ["Hig]         29.72.         K FACTOR         0.632         DUCT DIMENSIONS         2025X145"         DUCT AREA         725 ft²           TRAVERSE         CLOCK         STATIC         PROT         METER DIFF         METER         METER         TEME         PROT         PROT <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>%</td> <td></td> <td></td> <td>PROBE</td> <td>HTR SETTING</td> <td>325</td> <td></td> <td>LINES</td> <td>- CK</td> <td></td> <td>a b<br/>Antonio - A<br/>Stanton - Antonio - Antonio</td> | •           |        |          |                      |                       | %                    |                 |                                       | PROBE  | HTR SETTING  | 325                                                                                                            |           | LINES               | - CK                                  |               | a b<br>Antonio - A<br>Stanton - Antonio - Antonio |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |          |                      |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     |                                       |               |                                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BAR. PRESS. | [" Hg] |          | ,                    | 12                    |                      | K FACTOR        | 0.652                                 | DUCT   | DIMENSIONS   | 2@25'x14.5'                                                                                                    | DUCT AREA | 725 ft <sup>-</sup> | ]                                     |               |                                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRAVERSE    | CLOCK  | SAMPLE   | STATIC               | PITOT                 | METER DIFF           | METER           | METER                                 | METER  |              | STACK                                                                                                          | PROBE     | FILTER              | LAST IMP                              | METER F       | XHAUST                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1         |        |          |                      | _                     |                      |                 |                                       |        | (~7)         |                                                                                                                |           |                     |                                       |               |                                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [port-inch] |        | [minute] | [" H <sub>2</sub> 0] | [" H₂0]               | [" H <sub>2</sub> 0] | [" Hg]          |                                       | inlet  | outlet       |                                                                                                                | ு பி      | [°F]                | r P                                   | [% vol]       | [% vol]                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 1335   | 0        |                      |                       |                      |                 | 623.60                                |        |              |                                                                                                                |           |                     |                                       |               |                                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5           |        | 10       |                      | 0.82                  | 0.52                 | 4.0             | 627,66                                | 99     | 97           | 712                                                                                                            | 315       |                     | 63                                    | 3.5           | 16.5                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        | 20       |                      | 0.82                  | 0.52                 | 4.0             |                                       | 100    | 97           | 710                                                                                                            | 324       | 1                   | 60                                    | 3.2           | 16.8                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           |        | 30       | -4,25                | 2.82                  | 0.52                 | 4.5             | 635.68                                | 102    | 98           | 712                                                                                                            |           |                     |                                       |               |                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +           |        | 40 -     | 6 *                  |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     |                                       |               |                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4           |        | 50       | -4.54                |                       | N.JR                 |                 | 643.51                                |        |              |                                                                                                                |           |                     | 1                                     |               |                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |          |                      |                       | 0.4%                 |                 | 647 41                                | N      | <u> </u>     |                                                                                                                |           |                     |                                       |               | · -                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |          |                      |                       |                      |                 |                                       | 1-     |              |                                                                                                                |           |                     | - 62                                  |               | 10,0                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |          |                      |                       |                      |                 |                                       |        | - 1.         | <i>"</i>                                                                                                       |           |                     | +                                     |               |                                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 1453   |          |                      |                       | Varin                |                 | 647-10                                |        |              |                                                                                                                |           |                     | +                                     |               |                                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 17-2-2 |          |                      | 0.54                  | 124                  | 40              |                                       | 104    | hI           | -114                                                                                                           | 201       | <u>  </u>           | 6-7                                   | 12            | 150                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        |          |                      | ł                     |                      |                 |                                       |        | <b>1</b>     |                                                                                                                |           |                     | · · · · · · · · · · · · · · · · · · · |               |                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        | 80       |                      |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     |                                       |               |                                                   |
| H       110       4.46       0.54       0.34       6.0       0.04.83       98       99       717       327       67       3.4       16.6         120       0.60       0.38       6.5       668.32       98       98       78       721       330       68       3.1       16.9         120       0.60       0.38       6.5       668.32       98       98       78       721       330       68       3.1       16.9         120       0.60       0.38       6.5       668.32       98       98       78       721       330       68       3.1       16.9         120       0.60       0.38       6.5       668.32       98       98       78       721       330       68       3.1       16.9         120       120       120       120       120       120       120       120       120       120       16.9         120       120       120       120       120       120       120       120       120       120       120       120       120       16.9         120       120       120       120       120       120       120       120 <td></td> <td></td> <td>90</td> <td>- 4 - 4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>   </td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                              |             |        | 90       | - 4 - 4              |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     |                                       |               |                                                   |
| 120       0.60       0.38       6.5       668.32       98       98       721       330       68       3.1       16.9 <t< td=""><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>67</td><td></td><td>16.1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        | 100      |                      |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     | 67                                    |               | 16.1                                              |
| AVERAGE -4.47 0.672 0.428 44.43 99.7 713.4 3.7 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H           |        | 110      | -4.46                | 0.54                  | 0.34                 | 6.0             | 464,83                                | 98     | 99           | 717                                                                                                            | 327       |                     | 67                                    | 3.4           | 16.6                                              |
| AVERAGE -4.47 0.672 0.428 44.43 99.7 713.4 3.7 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        | 120      |                      | 0.60                  | 0,38                 | 6.5             | 668.32                                | 98     | 98           | 721                                                                                                            | 330       |                     | 68                                    | 31            | 169                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |          |                      |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     | 1                                     |               |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |          |                      |                       |                      |                 |                                       |        |              |                                                                                                                | ;         |                     | +                                     |               |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |          |                      |                       |                      |                 |                                       |        |              |                                                                                                                |           |                     |                                       |               | ·····                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |          |                      |                       | ·                    |                 |                                       |        |              |                                                                                                                | <u> </u>  |                     |                                       |               |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AVERAGE     |        |          | -4.47                | 0.672                 | 0.47.2               |                 | 44.43                                 | 99     | 2            | 713.4                                                                                                          | !<br>     |                     | <u>+</u>                              | 2.7           | 1/2 3                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        | Sa       |                      |                       |                      | @_ <u>/0</u> ir |                                       |        | /            |                                                                                                                | PreTect   | <u> </u>            | 5 in.1                                | 0 .           |                                                   |
| Leak Checks: Post Test ft <sup>3</sup> @ in. Hg Leak Checks: Post Test @ in. H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        |          |                      |                       |                      |                 | •                                     |        |              |                                                                                                                |           |                     |                                       |               |                                                   |
| CONSOLENERGY. $A \in \mathcal{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONSOL      | Mergy. |          | *************        | ********************* |                      |                 | ******                                |        | <u></u>      |                                                                                                                |           |                     |                                       | ត្រូវិសាសាសាស | i of sampling                                     |

FROM 5"-> 45", ~ 30.520 LEAK PER TEN

.. ئاللة. م! أدف ... اس

، الأسلكية ،

ىلى 100 مىل

البد با

|             |         |                                                          |                      |                      |                                  |                             |         |          |              |             |             |                   |                | Page !           | of       |
|-------------|---------|----------------------------------------------------------|----------------------|----------------------|----------------------------------|-----------------------------|---------|----------|--------------|-------------|-------------|-------------------|----------------|------------------|----------|
| TEST ID     |         | AHO- 3<br>SCR/FGD Plant 4<br>Air Heater Outlet/ESP Inlet |                      |                      |                                  | METER BOX                   | N-5     | CAL. D.  | ATA: delta H | 2.015       | Comments:   |                   |                |                  |          |
| PLANT       |         | s                                                        | CR/FGD Pla           | ant 4                | PI                               | FOT TUBE DESC               |         |          | Y            | 1.011       | Į           |                   |                |                  |          |
| LOCATION    |         |                                                          |                      |                      | PRC                              | BE LENGTH [ft]              | 0       |          | С(р)         |             | 1           |                   | , <u></u> ,    |                  |          |
| DATE        |         |                                                          | 20-0                 | 5                    | N                                | OZZLE ID [inch]             |         | FILTER E | BOX SETTING  | 325         | -           |                   |                |                  |          |
| OPERATOR(S  | 5)      | JL #                                                     | K DO                 |                      | · ?                              | 6H <sub>2</sub> O (Assumed) |         | PROBE I  | ITR SETTING  | 325         |             | [                 |                | 1                | ÷        |
| AMBIENT TEN | MP [°F] |                                                          |                      |                      |                                  | FILTER ID                   | 11      |          | T X-SECTION  | circ ?      | rect?       | other:            | 1              | ļ                |          |
| BAR. PRESS. | [" Hg]  | 22                                                       | 12                   |                      | ,                                | K FACTOR                    | 0.93    | DUCT     | DIMENSIONS   |             | DUCT AREA   |                   |                |                  |          |
| TRAVERSE    | CLOCK   | SAMPLE                                                   | STATIC               | PITOT                | METER DIFF                       | METER                       | METER   | METER    | TEMP         | STACK       | PROBE       | FILTER            | LAST IMP       | METER            | EXHAUST  |
| POINT       | TIME    | TIME                                                     | PRES                 | HEAD                 | PRESSURE                         | VACUUM                      | READING | [0       | F]           | TEMP        | TEMP        | вох               | TEMP           | 02               | CO2      |
| [port-inch] | (24-hr) | [minute]                                                 | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]             | [" Hg]                      | [ft³]   | inlet    | outiet       | [°F]        | [°F]        | [ <sup>°</sup> F] | [°F]           | [% vol]          | [% vol]  |
|             | 13:35   | 0                                                        |                      |                      |                                  |                             | 435,44  |          |              |             | 1 -         |                   |                | 4" . 1           |          |
| A-1         | 1345    | 10                                                       |                      | 0.65                 | 0.60                             | 2.0                         | 939.41  | 78       | 18           | 298         | 286         | NA                | 49             | 5.4              | 14.8     |
| A-1         | 1355    | 20                                                       | -9.29                | 0.65                 | 0.60                             | 2.0                         | 943.51  | 81       | So           | 299         | 289         |                   | 46             | 5.1              | 14.9     |
| A-1         | 1405    | 30                                                       |                      | 065                  | 0.60                             | 2.0                         | 947.556 | 82-      | 81           | 299         | 290         |                   | 46             | 5.5              | 14.g ·   |
|             |         | 4                                                        |                      |                      | the dred                         | OK @ Tinty                  | 4       |          |              |             |             |                   |                |                  | /        |
|             | 1414    | 56                                                       |                      | p.15                 | 0.41                             | Ų                           | 947.702 | 80-      | - <u>49</u>  | -74         |             |                   |                |                  |          |
| B-1         | 1424    | 6040                                                     |                      | 0 000                | 0.37                             | 1.5                         | 951.21  | 80       | 19           | 294         | 294         |                   | 51             | 5.4              | 14.7     |
| 3-1         | 1434    | Ÿ                                                        | - 8.55               | 0.48                 | 0.44                             | 2.0                         | 954.73  | 81       | D            | 294         | 310         | 4 jung Au Thai    | 49             | 4.9              | 15.2     |
| 13-1        | 1444    | 60                                                       | Ť                    | 0.48                 | 0.44                             | 2.0                         | 968.243 | 83       | 83           | 291         | 319         |                   | 49             | 5.1              | 149      |
|             |         |                                                          |                      |                      | reak de                          | KOKQ6.                      | Ha      |          |              |             |             |                   |                |                  |          |
|             | 1450    | Ð                                                        |                      | 52                   |                                  |                             | 958.33Z |          |              |             |             | a) a service      |                |                  |          |
| C-1         | 1500-   | 3070                                                     |                      | 0,50                 | 0.248                            | 2.0                         | 96/96   | 84       | 81           | 267         | 300         |                   | 55             | <u> </u>         |          |
| C-1         | 1510    | \$5 H                                                    | 8:48                 | 0.5%                 | 0.52                             | 3.0                         | 965.70  | 86       | 86           | 275         | 306         |                   | 45             | 4.8              | 15.4     |
| C-1         | 1520    | 15895                                                    |                      | 0.56                 | 0.52                             | 20                          | 969.317 | 86       | 86           | 275         | 317         |                   | 48             | 5.0              | 14.9     |
|             |         | 120                                                      |                      | lea                  | a check ?                        | pk@7inz                     | 11      |          |              |             |             |                   |                |                  | ,        |
|             | 1529    | 1200                                                     |                      |                      |                                  |                             | 969.431 | Λ.<br>   |              |             |             |                   |                | 1                |          |
| 7-1         | 1539    | g)x                                                      | 1                    | 0.42                 | 0.39                             | 1.5                         | 972.61  | 83       | 85           | 254         | 303         |                   | 60             |                  |          |
| 7-1         | 1549    | 10 000                                                   | - 7.23               | 0.42                 | 0.39                             | 1.5                         | 976.05  | 85       | 85           | 257         | 323         |                   | 47             | 5.6              | 14.5     |
| D-1         | 1559    | 120                                                      | -                    | 0.38                 | 0.35                             | 1.5                         | 979.295 | 87       | 87           | 258         | 323         |                   | 47             | 5.3              | 14.8     |
|             |         |                                                          |                      |                      |                                  |                             |         |          |              |             |             |                   |                | <u> </u>         | <u> </u> |
| AVERAGE     |         |                                                          | -8.90                | 0.514                | 0.478                            |                             | 43.506  | 83       | . D          | Z80.3       |             | . 1               |                | 5.2              | 14.9     |
|             |         | S                                                        | ample Trair          |                      | t <i>⊡_000</i> ft³               |                             | n. Hg   |          |              | Pitot Tub   |             | t_ <u>O'</u> @    | ) <u>7</u> in. | H <sub>2</sub> O |          |
|             |         | Le                                                       | ak Checks            | : Post Tes           | t <u> ク. 600</u> ft <sup>3</sup> | @_ <u></u> i                | n. Hg   |          |              | Leak Checks | s. Post Tes | t_ <u></u> 6      | 7 in.          | . H₂O            |          |

CONSOLENERGY

ulation ...

· ....

ىلەتسالىق. ئ

. الثاليطينة .

ى ئىشار،

|             |              |          |                      |           |             |                                               |                    |          | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                              |                |                 | Pageį́           | of              |              |
|-------------|--------------|----------|----------------------|-----------|-------------|-----------------------------------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|----------------|-----------------|------------------|-----------------|--------------|
| TEST ID     |              |          | FGD-                 | 3         |             | METER BOX                                     | N-1                | CAL. D   | ATA: delta H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.983        | Comments:                    |                |                 | <i>.</i>         | ·               | -            |
| PLANT       |              | 5        | CR/FGD PI            | ant 4     | PI          | TOT TUBE DESC                                 | E-12               |          | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,960        |                              |                |                 |                  |                 | -            |
| LOCATION    |              |          | FGD inle             |           |             | DBE LENGTH [ft]                               |                    |          | C(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.835        |                              |                |                 |                  |                 | -            |
| DATE        |              |          | 1/20/05              |           | N           | OZZLE ID [inch]                               | 3/16C 0.193        | FILTER I | BOX SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 325          |                              |                |                 |                  |                 | -            |
| OPERATOR(S  | •            |          | This                 |           | 9           | %H <sub>2</sub> Ο (Assumed)                   | 7.5                | PROBE    | HTR SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 325          |                              | 1              |                 | T                | <u> </u>        |              |
| AMBIENT TEN | · ·          |          | 68                   |           |             | FILTER ID                                     |                    | DUC      | T X-SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | circ ?       | rect ?                       | other:         | 1               | į                | a escalib       | -<br>7       |
| BAR. PRESS. | [" Hg]       | نہ       | 19.72                |           |             | K FACTOR                                      | 1.05               | DUCT     | DIMENSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | DUCT AREA                    |                | ]               |                  | calib<br>Cheele |              |
| TRAVERSE    | CLOCK        | SAMPLE   | STATIC               | PITOT     | METER DIFF  | METER                                         | METER              | METER    | RTEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STACK        | PROBE                        | FILTER         | LAST IMP        | METER            | EXHAUST         | ĺ            |
| POINT       | TIME         | TIME     | PRES                 | HEAD      | PRESSURE    | VACUUM                                        | READING            |          | F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEMP         | TEMP                         | BOX            | TEMP            | 02               | CO <sub>2</sub> | 1            |
| [port-inch] | (24-hr)      | [minute] | [" H <sub>2</sub> 0] | [" H₂0]   | [" H₂0]     | [" Hg]                                        | [ft <sup>3</sup> ] | inlet    | outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [°F]         | [°F]                         | [°F]           | [°F]            | [% vol]          | [% vol]         |              |
|             | 13.36        | 0        |                      |           |             |                                               | 074.80             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  | <u> </u>        |              |
|             | 13:46        | 10       | 5.6                  | 1.25      | 1.30        | 4.0                                           | 81.10              | 75       | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274          | 325                          | NA             | 57              | 5.8              | 14,3            |              |
|             | 13:56        | 20       | 5.5                  | 1.25      | 1.30        | 4.0                                           | 87.40              | So       | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 273          | .375                         |                | 55              | 6.0              | 14.1            |              |
|             | 14:06        | 30       | 5.8                  | 1.75      | (.30        | 4.0                                           | 97.65              | 83       | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 273          | 325                          |                | 52              | 6,2              | 13.9            | 208          |
|             | 14:16        | 40 -     | 5.6                  | 1.25      | 1.30        | 40                                            | 99.89              | 84       | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274.         | 305                          |                | 50              | 6.0              | 14.1            | 1            |
|             | 17:26        | 50       | 5.3                  | 1.25      | 1-30        | 40                                            | 100,12             | 25       | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274          | 325                          |                | 49              | 5.5              | 14.6            | 20,8<br>OK   |
|             | 14:36        | 60       | 5.6                  | 1.25      | 1-30        | 4.0                                           | 112,36             | 86       | >7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 774          | 325                          |                | 50              | 5.9              | 14-2            | 1            |
|             | 14246        | 70       | 5.8                  | 1.10      | 1.15        | 4.0                                           | 118.27             | 86       | マフ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274          | 325                          |                | 51              | 5,8              | 14.3            | ]            |
|             | 17:56        | 80       | 5.7                  | 1.20      | 1.25        | 4.0                                           | 124.18             | 87       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274          | 325                          |                | 51              | 5.8              | 183             | ] .          |
|             | 15:06        | 90       | 5.6                  | 1 22      | 125         | 4.0                                           | 130,47             | 88       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 775          | 326                          |                | S,              | 5-7              | 17.4            | ]            |
|             | 15:16        | (#0)     | 5,3                  | 1.20      | 1.25        | 4.0                                           | 136.54             | 84       | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 275          | 325                          | surve i ranna  | 52              | 6.2              | 13.9            | 12099<br>0/7 |
|             | 15:26        | (10      | 5.3                  | مجر !     | 1-25        | 4.0                                           | 142-57             | 89       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 275          | 325                          |                | 51              | 6.0              | 14.1            |              |
|             | 15:36        | 120      | 5.8                  | 1,20      | 1.25        | 4.0                                           | 148.62             | 79       | e de la constancia de l | 275          | 325                          |                |                 | 5.3              |                 | 089<br>0K    |
|             |              | 100      |                      |           |             |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  | <u> </u>        |              |
|             |              | 110      |                      |           |             |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  |                 |              |
|             |              | 120      |                      |           |             |                                               |                    | ١        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  |                 | _            |
|             |              |          |                      |           |             |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  | 1               |              |
|             |              |          |                      |           |             |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  |                 | ]            |
|             |              |          |                      |           |             |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                | 1               |                  |                 | 1            |
|             | -            |          |                      | (2Ms)     |             |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                | 1               |                  |                 |              |
| AVERAGE     |              |          | 5,58                 | j.216     | 1.267       |                                               | 73,82              |          | 80,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 274,2        | <u></u>                      | 1              |                 | 5.85             | 14.25           | =            |
| <u> </u>    |              | Sa       | mple Train           |           |             | @_ <u>∽/</u> ii                               | n. Hg              | <u>,</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pitot Tube   | PreTes                       | st             | <u>~ 8</u> in.  |                  |                 |              |
|             |              |          | ak Checks:           | Post Test | 1 OKLON ft3 | @ <u>~                                   </u> | ո. <b>Hg</b>       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leak Checks: |                              | st <u>っぺ</u> @ | _               | H <sub>2</sub> O |                 |              |
| CONSOL      | -<br>Energy. | <u></u>  | - / <u>a</u> -       |           | ALLO LA     | - 10 <i>-</i>                                 | i-01               | #51.2    | <u></u> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>      | **************************** | NOT            | E: Purge for 10 | ) minutes at er  | nd of sampling  | ان<br>ا-ل    |
|             |              | (In ST   | -rest                | 451       | "~Y~ "      |                                               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                |                 |                  |                 |              |

s.

ىكەن ئەت

ः ः म⊾ः ३ ।

. 10.1 .

| -   |                            |         |          |                      |                      |                                 |                             |                |          |                                        |                    |                     | -                                |                   | Page           | of       |
|-----|----------------------------|---------|----------|----------------------|----------------------|---------------------------------|-----------------------------|----------------|----------|----------------------------------------|--------------------|---------------------|----------------------------------|-------------------|----------------|----------|
| :   | TEST ID                    |         |          | STK -                | X Z                  |                                 | METER BOX                   | N-3            | CAL. D   | ATA: delta H                           | 1.982              | Comments:           |                                  |                   |                |          |
|     | PLANT                      |         | s        | SCR/FGD Pla          | ant 4                | Pľ                              | TOT TUBE DESC               | E-11           |          | Y                                      | 1.026              |                     |                                  |                   |                |          |
|     | LOCATION                   |         |          | Stack                | ~ ~ ~                |                                 | BE LENGTH [ft]              | 10             |          | C(p)                                   | 0.806              |                     |                                  |                   |                | <u> </u> |
| -   | DATE                       |         | 1        | <u>20 -</u>          |                      |                                 |                             | 7/32A 0.2      |          |                                        | 325                |                     |                                  | ,                 |                |          |
|     | OPERATOR(S)                |         | <u>K</u> | $\frac{C}{\sqrt{3}}$ | 3.5.                 | ¢                               | 6H <sub>2</sub> O (Assumed) | 31- 53         |          | HTR SETTING                            | 250                |                     |                                  |                   |                |          |
| :   | AMBIENT TEM<br>BAR. PRESS. |         |          | $\frac{5}{3}$        |                      |                                 | FILTER ID                   |                |          | T X-SECTION                            | circ ?<br>19 ft ID | rect ?<br>DUCT AREA | other:<br>283.53 ft <sup>2</sup> |                   |                |          |
|     | DAR. PRESS.                | [ []]   | <u> </u> | 1.12                 | <b>`</b>             |                                 | K FACTOR                    | <u>ا</u> ها، ۱ |          |                                        |                    |                     | 200.00 11                        | Ē                 |                |          |
|     | TRAVERSE                   | CLOCK   | SAMPLE   | STATIC               | РПОТ                 | METER DIFF                      | METER                       | METER          | METER    | TEMP                                   | STACK              | PROBE               | FIETER                           | LASTIMP           | METER E        | EXHAUST  |
|     | POINT                      | TIME    | TIME     | PRES                 | HEAD                 | PRESSURE                        | VACUUM                      | READING        | [0       | F]                                     | TEMP               | TEMP                | вох                              | TEMP              | 0 <sub>2</sub> | CO2      |
| i.  | [port-inch]                | (24-hr) | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]            | [" Hg]                      | [ft³]          | inlet    | outlet                                 | [°F]               | [°F]                | [°F]                             | [ <sup>°</sup> F] | [% vol]        | [% vol]  |
| •   |                            | 1335    | 0        |                      |                      | _                               |                             | 633.00         |          |                                        |                    |                     |                                  |                   |                |          |
| -   | -10.00                     |         | 10       |                      | .73                  | 1.20                            | 3.5                         | 638.78         | <u> </u> | רר                                     | 127                | 255                 | 325                              | 55                | 6.3            | 12.9     |
| A   | -33.33                     |         | 20 -     | ما 253.              | 1.05                 | 1.75                            | 4.5                         | 645.67         | 83       | 78                                     | 127                | 259                 | 333                              | 20                | 6.2            | 14.0     |
| ÷ 1 | -67.50                     |         | 30       |                      | 1.10                 | 1.82                            | 5                           | 652.72         | 86       | 78                                     | 127                | 252                 | 333                              | 20                | 5.9            | 14.2     |
|     | -                          |         |          |                      |                      |                                 | 1                           |                |          |                                        |                    |                     |                                  |                   |                |          |
|     |                            |         |          |                      | L.C.                 | RESTA                           | RT                          | 652.85         |          |                                        |                    |                     |                                  |                   |                |          |
| :   | -10.00                     |         | 40)      |                      | .70                  | 1.15                            | 3.5                         | 658.47         | 86       | 80                                     | 127                | 257                 | 330                              | 52                | [، جا          | 14.0     |
| ~   | -33.33                     |         | 50 -     | .5375                | 1.10                 | 1.82                            | 5                           | 665.52         | 89       | 81                                     | 127                | 259                 | 1231                             | 52                | 6.1            | 14.0     |
| B   | -67.50                     |         | 60       |                      | 1.15                 | 1.90                            | 5                           | 672.73         | 90       | 81                                     | 126                | 254                 | 331                              | SZ                | 6.2            | 14.0     |
|     |                            |         |          | 2                    |                      |                                 |                             | ······         |          |                                        |                    |                     |                                  |                   |                |          |
|     |                            |         |          |                      | L.C.                 | REST                            | ART                         | 672.86         |          |                                        |                    |                     |                                  |                   |                |          |
| 1   | -10.00                     |         | 70       |                      | .73                  | 1.20                            | 4                           | 678.68         | 87       | 82                                     | 125                | ンナレ                 | 327                              | 154               | 6.1            | 14.0     |
|     | -33.33                     |         | 80 -     | .6511                | 1.05                 | 1.75                            | S                           | 685.58         | 90       | 83                                     | 126                | 253                 | 333                              | SS                | 6.2            | 14.0     |
| C   | -67.50                     |         | 90       |                      | 1.10                 | 1.82                            | S                           | 692.64         | 90       | 83                                     | 126                | 256                 | 334                              | 56                | 6,0            | 14.1     |
|     |                            |         |          |                      |                      |                                 | -                           |                |          |                                        |                    |                     |                                  |                   |                |          |
|     |                            |         |          |                      | L.C                  | REST                            | ART                         | 692.77         | V.       |                                        |                    |                     | -                                |                   |                |          |
|     | -10.00                     |         | 100      |                      | حا جا ،              | 1.10                            | 3.5                         | 698.35         | 89       | 84                                     | 127                | 255                 | 330                              | 55                | 6.1            | 14.0     |
| Ø   | -33.33                     |         | 110 -    | .5822                | 1.10                 | 1.82                            | S                           | 105.43         | ሻአ       | 84                                     | 126                | 255                 | 331                              | 53                | 6.3            | 13.9     |
| :   | -67.50                     | 1       | 120      |                      | 1.15                 | 1.90                            | 5                           | 712.70         | 92       | 84                                     | 124                | 256                 | 329                              | 54                | 6.1            | 14.0     |
|     |                            | 1553    |          |                      |                      |                                 |                             |                |          |                                        |                    |                     |                                  |                   |                |          |
|     | AVERAGE                    |         |          | -0.58                | 0.958                | 1.60                            |                             | 79.31          | 84.      | 5                                      | 126.3              |                     |                                  |                   | 6.1            | 14.0     |
| :   |                            |         |          | ample Train          |                      |                                 | @ <u>\Q</u> i               |                |          |                                        | Pitot Tube         |                     | OK@                              |                   | H₂O            |          |
| ÷ / |                            |         | Le       | ak Checks:           | Post Test            | $\underline{O}$ ft <sup>3</sup> | @ <u>\ O</u> i              | n. Hg          |          | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, | Leak Checks        | Post Tes            | t_ <u>```K@</u>                  | <u> </u>          | H₂O            |          |

للانت المتراب

են։ Հերենն

بالغالية المطلحة ت

. Lini -

|                       |               |                                       |                      |                      | T                          |                            |                    |          |              |                    |           | <b>A</b>                        |                 | Page             | of              |
|-----------------------|---------------|---------------------------------------|----------------------|----------------------|----------------------------|----------------------------|--------------------|----------|--------------|--------------------|-----------|---------------------------------|-----------------|------------------|-----------------|
| TEST ID               | 4             | L                                     | ECON-                | 4                    |                            | METER BOX                  |                    | CAL. D   | ATA: delta H | 1.976              | Comments: | MOST                            | STABLE          | flow             | 5               |
| PLANT                 |               | s                                     | CR/FGD Pla           | ant 4                | PI                         | TOT TUBE DESC              | E-15               |          | Y            | 0.987              |           | DURING                          | they            | TEST,            | RELATIK         |
| LOCATION              |               | E                                     | conomizer (          |                      |                            | BE LENGTH [ft]             |                    |          | C(p)         | 0.838              |           | TE                              | <u>575 /-</u>   | <u>-23. (</u>    |                 |
| DATE                  |               |                                       | 1/21/0               |                      | N                          | OZZLE ID [inch]            | 3/6", 0.191"       | FILTER F | BOX SETTING  | 325                |           |                                 |                 |                  |                 |
| OPERATOR(S            | )             | 6                                     |                      | $\tau$               | %                          | H <sub>2</sub> O (Assumed) |                    | PROBE I  | HTR SETTING  | 325                |           | <del>,</del>                    |                 | I                |                 |
| AMBIENT TEN           | ιΡ [°F]       |                                       | 90                   |                      |                            | FILTER ID                  |                    |          | T X-SECTION  | circ ?             | rect ?    | other:                          | ļ               | r                |                 |
| BAR. PRESS.           | [" Hg]        |                                       |                      |                      |                            | K FACTOR                   |                    | DUCT     | DIMENSIONS   | <u>2@25'x14.5'</u> | DUCT AREA | 725 ft <sup>2</sup>             | ]               |                  |                 |
|                       |               | T                                     | i                    |                      | r                          | • • • • • • • • •          | -632               |          |              |                    |           | <u> </u>                        | T               |                  |                 |
| TRAVERSE<br>POINT     | CLOCK<br>TIME | SAMPLE<br>TIME                        | STATIC<br>PRES       | PITOT<br>HEAD        | METER DIFF<br>PRESSURE     | METER<br>VACUUM            | METER<br>READING   | 6        |              | STACK              | PROBE     | FILTER<br>BOX                   | LAST IMP        |                  | CO <sub>2</sub> |
| [port-inch]           | (24-hr)       | [minute]                              | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]       | [" Hg]                     | [ft <sup>3</sup> ] | inlet    | outlet       | [°F] ()            | [°FIZ     | [°F]                            | TEMP<br>[°F]    | [% vol]          | [% vol]         |
|                       | D900          | 0                                     |                      | <u> </u>             | L                          | 1                          | 618,60             |          |              |                    |           |                                 |                 |                  |                 |
|                       |               | 10                                    |                      | 0.95                 | 0.60                       | 3.5                        | 682.80             | 84       | 83           | 714                | 325       |                                 | 67              | 3.7              | 16.3            |
|                       |               | 20                                    | -4:36                | 0.95                 | 0.60                       | 4.0                        | 687.02             | 89       | 85           | 716                | 330       |                                 | 56              | 3.7              | 16,3            |
| R                     |               | 30                                    |                      | 0.95                 | 0.60                       | 4.5                        | 691.23             | 89       | 85           | 7/3                | 315       |                                 | 55              | 3.6              | 16.4            |
| $\overline{}$         |               | 40                                    | -4.58                | 1.00                 | 0.63                       | 50                         | 695.54             | 89       | 85           | 714                | 315       |                                 | 54              | 3.5              | 16.5            |
| 1                     |               | 50                                    | ,                    | 1.00                 | 0.63                       | 6.0                        | 699,85             | 89       | 87           | 7/3                | 320       |                                 | 54              | 3.6              | 16.4            |
|                       |               | 60                                    |                      | 1.00                 | 0.63                       | 7.0                        | 704.15             | 90       | 87           | 7/3                | 322       | 1                               | 55              | 3.3              | 167             |
|                       |               |                                       |                      | POST                 | NORTH                      | LEAK                       | CHECK              | ~ 0.01   |              |                    |           |                                 |                 |                  |                 |
| 1. 17 894<br>8.<br>2. |               |                                       |                      | PRE                  | South                      | 11                         | 1240               | 61       |              | 11                 |           | $\vdash$                        |                 |                  |                 |
|                       | 1017          |                                       |                      | 1865                 | 30079                      |                            | 20150              |          |              |                    |           | $\left  \left  \right  \right $ |                 | 1                |                 |
|                       | 1013          |                                       |                      |                      |                            |                            | 704,50             | ~        | 00           |                    | 224       | +                               |                 | 2                |                 |
| 3                     |               | 70                                    |                      | 0.90                 | 0,56                       | 4.5                        | 108,60             | 91       | 89           | 715                | 330       | $ \rightarrow $                 | 51              | 3,6              | 16.4            |
| 0                     |               | 80                                    | 443                  | 690                  | 0,56                       | 50                         | 17/274             | 93       | 91           | 713                | 315       |                                 | 50              | 3.6              | 164             |
| 0                     |               | 90                                    | · · · ·              | 0.95                 | 0.60                       | 6.0                        | 716.98             | 94       | 92           | 713                | 315       |                                 | 48              | 40               | 159             |
| <u> </u>              |               | 100                                   |                      | 0.95                 | 060                        | 1,0                        | 721,18             | 94       | 93           | 715                | 316       |                                 | 50              | 3,1              | 16,9            |
| H                     |               | 110                                   | -4.23                | 090                  | 0,56                       | 86                         | 7725.30            | 95       | 93           | 714                | 319       |                                 | 51              | 44               | 15,8            |
|                       | •             | 120                                   |                      | 690                  | 0,50                       | 815                        | 129.42             | 95       | 94           | 715                | 320       |                                 | 52              | 3.7              | 163             |
|                       |               |                                       |                      | l l                  |                            |                            |                    |          | a .          |                    |           |                                 |                 | 1                |                 |
| -                     |               |                                       |                      |                      |                            |                            |                    |          |              |                    | :         |                                 |                 |                  |                 |
|                       |               |                                       |                      |                      |                            |                            |                    |          |              |                    |           |                                 | 1               |                  |                 |
|                       |               |                                       |                      | •                    |                            |                            |                    |          |              |                    |           |                                 |                 |                  |                 |
| AVERAGE               |               |                                       | 4.40                 | 0.945                | 0.594                      |                            | 50.47              | 89.      | 2            | 714                |           |                                 |                 | 3.7              | 16.4            |
|                       | 131           | 7 <sup>s.</sup>                       | ample Train          | Pre Test             |                            |                            | n. Hg              |          |              | Pitot Tube         | PreTes    | O                               | -               | H₂O              |                 |
|                       |               | Le                                    | ak Checks:           | Post Test            | - <u>0</u> ft <sup>3</sup> | @_ <u>[0</u> _i            | n. Hg              |          | 1<br>        | Leak Checks:       | Post Tes  | t @                             | in.             | H <sub>2</sub> O |                 |
| CONSOL                | energy./      | · · · · · · · · · · · · · · · · · · · |                      |                      |                            |                            | <u> </u>           | <u></u>  | <u></u>      |                    |           | NOTE                            | E: Purge for 10 | minutes at er    | d of sampling.  |

17 SEL

. La casal

ظلاما الغاني

i LALI, II

|             |         |          |                      |                                    |                                | :                           |                    |          |              |            | _           |                                                                                                                |          | Page 🧾           | of       |
|-------------|---------|----------|----------------------|------------------------------------|--------------------------------|-----------------------------|--------------------|----------|--------------|------------|-------------|----------------------------------------------------------------------------------------------------------------|----------|------------------|----------|
| TEST ID     |         |          | AHO-                 | 4                                  |                                | METER BOX                   | N-5                | CAL. D   | ATA: delta H |            | Comments:   |                                                                                                                |          |                  |          |
| PLANT       |         | s        | CR/FGD Pl            | ant 4                              | - , Pľ                         | TOT TUBE DESC               |                    |          | Y            | 1.0:1      |             |                                                                                                                |          |                  |          |
| LOCATION    |         | Air He   | ater Outlet          | ant 4<br>(ESP Inlet ن              | ut PRC                         | BELENGTH [ft]               | 17                 |          | C(p)         |            |             |                                                                                                                |          |                  |          |
| DATE        |         | 1-6      | 200                  |                                    | N                              | IOZZLE ID [inch]            |                    | FILTER I | BOX SETTING  | 325        |             |                                                                                                                |          |                  |          |
| OPERATOR(S  | 5)      | JC       | CR 7                 | 0.                                 | 9                              | %H <sub>2</sub> O (Assumed) |                    | PROBE    | HTR SETTING  | 325        |             |                                                                                                                |          |                  |          |
| AMBIENT TEN | MP (°F) |          |                      |                                    |                                | FILTER ID                   |                    |          | T X-SECTION  | circ ?     | rect ?      | other:<br>54.44                                                                                                | 1        |                  |          |
| BAR. PRESS. | [" Hg]  | 24.      | 65                   |                                    | Į                              | K FACTOR                    | 0.93               | DUCT     | DIMENSION8   | (113× 4    | DUCT AREA   | <u> </u>                                                                                                       |          |                  |          |
| TRAVERSE    | СГОСК   | SAMPLE   | STATIC               | РПОТ                               | METER DIFF                     | METER                       | METER              | METER    | R TEMP       | STACK      | PROBE       | FILTER                                                                                                         | LAST IMP | METER            | EXHAUST  |
| POINT       | TIME    | TIME     | PRES                 | HEAD                               | PRESSURE                       | VACUUM                      | READING            |          | F]           | TEMP       | TEMP        | вох                                                                                                            | TEMP     | 02               | CO2      |
| [port-inch] | (24-hr) | [minute] | [" H <sub>2</sub> 0] | ['≿H <sub>z</sub> 0]               | [" H <sub>2</sub> 0]           | [" Hg]                      | [ft <sup>3</sup> ] | inlet    | outlet       | [°F]       | [°F]        | [°F]                                                                                                           | [°F]     | [% vol]          | [% vol]  |
|             | 0900    | 0        |                      |                                    |                                |                             | 984.415            |          |              |            |             |                                                                                                                |          |                  | <u> </u> |
| D-1°        | 0910    | 10       |                      | 0.41                               | ૦-પા                           | 2.0                         | 487.78             | 55       | 54           | 254        | 326         | NA                                                                                                             | 51       |                  |          |
| D-1         | 0920    | 20       | -8.94                | $\mathcal{O}, \forall \mathcal{A}$ | 0.41                           | 2.0                         | 991.12             | 35       | 57           | 254        | .327        |                                                                                                                | 45       | 60               | 14.1     |
| D-1         | 0930    | 30       |                      | 0.44                               | 7.41                           | 2.0                         | 994.443            | 58       | 59           | Z54        | 325         |                                                                                                                | 44       | 5.8              | 14.3     |
|             |         | æ        |                      |                                    | Leak chi                       | ep skal                     | 904                |          |              |            |             |                                                                                                                |          |                  |          |
| e-t         | 0337    | 50       |                      |                                    |                                |                             | 994.560            |          |              |            |             |                                                                                                                |          | 4.               |          |
| C-1         | 09.47   | _80 tv   |                      | 0.44                               | 0.41                           | Z.0                         | 997.800            | .59      | 63           | Z59        | 324         | - The second | 50       |                  |          |
| C-1         | 0957    | 50       | - 8.67               | 0.41                               | 0.33                           | 2.0                         | 1001.000           | 63       | 64           | 270        | 324         | - bak Kiri Poore                                                                                               | 44       | 4.7              | 15.4     |
| C-1         | (007)   | - 60     |                      | 0.41                               | 0.33                           | 2.5                         | 1004.237           | 64       | 65           | 270        | 325         | 4 10.1910-04-0                                                                                                 | 44       |                  |          |
|             |         |          | ÷                    |                                    | lank                           | dreade O                    | KeG"NI             |          |              |            |             |                                                                                                                |          |                  |          |
|             | 10:13   | Ð        |                      | 57                                 |                                |                             | (004.360           |          |              |            |             |                                                                                                                |          |                  |          |
| 3-1         | 10:23   | 80.70    |                      | 0.49                               | 0.253                          | 2.5                         | 1008,17            | 65       | 68           | 285        | 324         | L della O press                                                                                                | 51       |                  |          |
| T3 - (      | 10:33   |          | -8.95                | 0.62                               | 0.58                           | 3.0                         | 1012.14            | 68       | 69           | 293        | 322         |                                                                                                                | 49       | 5.0              | 15.1     |
| 13-1        | 10:43   | 19090    |                      | 0.62                               | 0.53                           | 3.0                         | 1016.113           | 70       | 71           | 293        | 325         |                                                                                                                | SI       |                  |          |
|             |         | 1770     | 1                    |                                    |                                | check of                    | 26"19              |          |              |            |             |                                                                                                                |          |                  |          |
|             | 0:50    | 1-29     |                      |                                    |                                |                             | 016.25             | X X      |              |            |             |                                                                                                                |          |                  |          |
| A-1         | 11:00   | 100      |                      | 0.51                               | 0.47                           | 2.5                         | @1019.85           | 76       | 73           | 294        | 322         |                                                                                                                | 60       |                  |          |
| A-1         | 11:10   | 110      | -9.10                | 0.51                               | 0.47                           | 2.5                         | 1023.39            | 73       | 73           | 301        | 316         |                                                                                                                | 54       | 53               | 14.8     |
| A-1         | 11:20   | 120      | 1                    | 0.51                               | 2.47                           | 30                          | 1027.016           | 74       | 75           | 301        | 318         | 1                                                                                                              | 54       | 4.9              | 16.2     |
| <u> </u>    |         |          |                      | 0.491                              |                                |                             |                    |          |              |            |             |                                                                                                                |          | 1                |          |
| AVERAGE     |         |          | 8.92                 | 0.456                              | 0.458                          |                             | 42.229             | 68       | 1.3          | 277.3      |             |                                                                                                                |          | 5.3              | 14.8     |
|             |         | 1        | ample Trair          | n Pre Tes                          | t_0,720_ft <sup>3</sup>        | @ <u> ((</u> )              | in. Hg             |          |              | Pitot Tub  | e PreTes    |                                                                                                                |          | H <sub>2</sub> O |          |
| =           |         | Le       | eak Checks           | : Post Tes                         | t <u>0.00ರ</u> ft <sup>3</sup> | @ <u>5</u> i                | in. Hg             |          |              | Leak Check | s: Post Tes | t@                                                                                                             | in.      | H <sub>2</sub> O |          |

CONSOL ENERGY.

بالاستقادات

: સ્વાસ્ટ્ર

1980), (1. j

i i i

|                                       |                         |                             |                          |                        | _                    |                             |                    |         |                                |                     |           |                 |                | Page             | of                   |              |
|---------------------------------------|-------------------------|-----------------------------|--------------------------|------------------------|----------------------|-----------------------------|--------------------|---------|--------------------------------|---------------------|-----------|-----------------|----------------|------------------|----------------------|--------------|
| TEST ID                               |                         |                             | FGD-                     | 4                      |                      | METER BOX                   | NY                 | CAL. I  | DATA: delta H                  | 1.983               | Comments: |                 |                |                  |                      |              |
| PLANT                                 |                         | s                           | CR/FGD PI                | ant 4                  | PI                   | TOT TUBE DESC               | E-12               |         | Y                              | 0.960               |           |                 |                |                  |                      |              |
| LOCATION                              |                         |                             | FGD Inle                 |                        | 7                    | OBE LENGTH [ft]             |                    |         | C(p)                           | 0.835               |           |                 |                |                  |                      |              |
| DATE                                  |                         |                             | 121/09                   | 2                      |                      |                             | 3/160 0,193        | FILTER  | BOX SETTING                    | 325                 |           |                 |                |                  |                      |              |
| OPERATOR(S                            |                         |                             | TAN                      |                        |                      | %H <sub>2</sub> O (Assumed) |                    | PROBE   | HTR SETTING                    | 325                 |           | 1               |                | I                |                      |              |
|                                       |                         |                             | 57                       |                        | -                    | FILTER ID                   |                    |         | CT X-SECTION                   |                     | rect ?    | other:          |                |                  |                      |              |
| BAR. PRESS.                           | [" Hgj                  | <i>}</i>                    | 9.65                     |                        | J                    | K FACTOR                    | 1.06               | DUCT    | DIMENSIONS                     |                     | DUCT AREA |                 |                |                  |                      |              |
| TRAVERSE                              | CLOCK                   | SAMPLE                      | STATIC                   | PITOT                  | METER DIFF           | METER                       | METER              | METE    | RTEMP                          | STACK               | PROBE     | FILTER          | LAST IMP       | METER E          | XHAUST               |              |
| POINT                                 | TIME                    | TIME                        | PRES                     | HEAD                   | PRESSURE             | VACUUM                      | READING            | [0      | F] (75)                        |                     | TEMP      | BOX             | TEMP           | 02 (6)           | CO <sub>2</sub> (14) |              |
| [port-inch]                           | (24-hr)                 | [minute]                    | ["H <sub>2</sub> 0]      | [" H <sub>2</sub> 0]   | [" H <sub>2</sub> 0] | [" Hg]                      | [ft <sup>3</sup> ] | inlet   | outlet                         | темр<br>272<br>[°F] | [°F]      | [°F]            | [°F]           | [% vol]          | [% vol]              |              |
|                                       | 09:00                   | 0                           |                          |                        |                      |                             | 155.20             |         |                                |                     |           |                 |                |                  |                      |              |
|                                       | 09.12                   | 10                          | 5.5                      | 1.20                   | 1.25                 | 4.0                         | 161.43             | 65      | 62                             | .270                | 325       | NA              | 51             | 5.9              | 14.2                 |              |
|                                       | 09:20                   | 20                          | 5.6                      | i.20                   | 1.25                 | 4.5                         | 167,50             | 69      | 63                             | 270                 | . 325     | {               | 51             | 5.9              | 14.2                 | ,<br>        |
|                                       | 09:30                   | 30                          | 5.6                      | 1.20                   | 1.25                 | 4.0                         | 173.54             | 72      | 64                             | 270                 | 325       |                 | 52             | 6.0              | 14.1                 |              |
|                                       | 09:40                   | _40 ·                       | 517                      | 1,30                   | 1.35                 | 4.5                         | 179.86             | 74      | 65                             | 270                 | Sas       |                 | 53             | 5,7              | 14.4                 | 109<br>OK    |
|                                       | 69.50                   | 50                          | 5.6                      | 1:30                   | 1.35                 | 4.5                         | 186.19             | 75      | 66                             | 270                 | 325       |                 | 5 à            | 5.9              | 14.2                 | -10          |
|                                       | 10:00                   | 60                          | 5.6                      | 1.30                   | 1.35                 | 4.5                         | 1\$2.50            | っつ      | 67                             | 270                 | 325       | -               | 52             | 5,7              | 14.4                 |              |
|                                       | (0)10                   | 70                          | 5.7                      | 1:15                   | 1.20                 | 4.5                         | 198.70             | 78      | 68                             | 271                 | 324       | andro f y ma    | 52             | 5,6              | 14.5                 | 12 6<br>Geod |
|                                       | 10:20                   | हर                          | 5-6                      | 1.15                   | 1.20                 | 1.5                         | 204,79             | 79      | 69                             | 2-71                | 325       | 2               | 54             | 5.9              | 14.2                 |              |
|                                       | 19:30                   | 90                          | 5.5                      | 1.15                   | 1.20                 | 4.5                         | 710.86             | 80      | 69                             | 272                 | -325      | a i i dana di s | 54             | 5,7              | 14.4                 |              |
|                                       | 10:40                   | ( 79                        | 5.6                      | 1.20                   | 1.25                 | 14.5                        | 716.95             | 81      | 70                             | 272                 | 325       |                 | 55             | 5.9              | 14.2                 |              |
|                                       | 10:50                   | 1,502                       | 5.8                      | 1.20                   | 1.25                 | 4.5                         | 223.14             | 81      | 7/                             | 272                 | 325       |                 | 55             | 5.8              | 14.3                 |              |
|                                       | 11:00                   | 120                         | 5.8                      | 1.20                   | 1.75                 | 4.5                         | 229.15             | 82      | . 72                           | 273                 | 325       | -               | 56             | 5.9              | 14-2                 |              |
|                                       |                         | 100                         |                          |                        |                      | ·<br>·                      |                    |         |                                |                     |           |                 |                |                  |                      |              |
|                                       |                         | 110                         |                          |                        |                      |                             |                    |         |                                |                     |           |                 |                |                  |                      |              |
|                                       |                         | 120                         |                          |                        |                      |                             |                    | · · · · |                                |                     |           |                 |                |                  |                      |              |
|                                       |                         |                             |                          |                        |                      |                             |                    |         |                                |                     |           |                 |                |                  |                      |              |
|                                       |                         |                             |                          |                        |                      |                             |                    |         |                                |                     | :         |                 |                |                  |                      |              |
| · · · · ·                             |                         |                             |                          |                        |                      |                             | ·····              |         |                                |                     |           |                 |                |                  |                      |              |
|                                       |                         |                             |                          | (ruc)                  |                      |                             |                    |         |                                |                     |           |                 |                |                  |                      |              |
| AVERAGE                               |                         |                             | 5.63                     | 1,212                  | 1.763                |                             | 73,95              |         | 71,8                           | 270.9               |           |                 |                | 5.83             | H.38                 |              |
|                                       | <b>-</b>                |                             | mple Train<br>ak Checks: |                        | UK, ft <sup>3</sup>  | @ <u>-!]</u> ir<br>@ir      | n. Hg<br>n. Hg     |         |                                | Pitot Tube          |           |                 | ~~             | H <sub>2</sub> O |                      |              |
| CONSOL                                | e<br>Nedriv             | <u>1919-1920-1920-1920-</u> | <u> </u>                 | *******                |                      | *****                       |                    |         | <u>111</u> 1111111111111111111 | Leak Checks:        | Post Test |                 |                | H <sub>2</sub> O |                      |              |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ₩ 7 7 7 7 7 7 7 8 2 8 2 | Par                         | + - +2                   | st pir                 | Norman +             | GF 10 M                     | ~ @ A I            | 1=1.0   |                                |                     |           | NOTE            | : Purge for 10 | minutes at end   | l of sampling.       |              |
|                                       |                         | γ @ >                       | 5 C C                    | - <del>•</del> • • • • | 1 m y                |                             | -                  |         |                                |                     |           |                 |                |                  |                      |              |

: સ્વાચક

المراقة الالطانية .

13. i ...

|                    |             |          |          |                                              |                      |                         |                             |                    |        |                                          |                                       |               |                        |          | Page                | of              |
|--------------------|-------------|----------|----------|----------------------------------------------|----------------------|-------------------------|-----------------------------|--------------------|--------|------------------------------------------|---------------------------------------|---------------|------------------------|----------|---------------------|-----------------|
| :                  | TEST ID     | 1        |          | STK -                                        | 1 TES                | イキチ                     | METER BOX                   | 2-3                | CAL. E | ATA: delta H                             | 1.982                                 | Comments:     |                        |          |                     |                 |
| i                  | PLANT       |          |          | SCR/FGD PI                                   | ant 4                | Pi                      | TOT TUBE DESC               |                    |        | Y                                        | 1.026                                 |               |                        |          |                     |                 |
| ÷                  | LOCATION    |          |          | Stack                                        |                      | 4                       | DBE LENGTH [ft]             |                    |        | C(p)                                     | 0.806                                 |               |                        |          | <u> </u>            |                 |
|                    | DATE        |          | 1-21     | -05                                          |                      |                         | IOZZLE ID [inch]            | 7/324 0.2          |        | BOX SETTING                              | 325                                   |               |                        |          |                     |                 |
|                    | OPERATOR(S  | •        | K.C      | <u>.                                    </u> | SO BA                | B. ,                    | %H <sub>z</sub> O (Assumed) |                    | PROBE  | HTR SETTING                              |                                       |               |                        |          | 1                   |                 |
|                    | AMBIENT TEM |          | ~ 5      | 30                                           |                      |                         |                             | #5                 |        | CT X-SECTION                             |                                       | rect ?        | other:                 |          | l                   |                 |
|                    | BAR. PRESS. | [" Hg]   |          | .65                                          |                      |                         | K FACTOR                    | 1.67               | DUCT   |                                          |                                       |               | 283.53 ft <sup>2</sup> |          |                     |                 |
|                    | TRAVERSE    | CLOCK    | SAMPLE   | STATIC                                       | РІТОТ                | METER DIFF              | METER                       | METER              |        |                                          | STACK                                 | PROBE         | FILTER                 |          | METER E             | THAUST          |
| -                  | POINT       | TIME     | TIME     | PRES                                         | HEAD                 | PRESSURE                | VACUUM                      | READING            |        | F]                                       | TEMP                                  | TEMP          | BOX                    | TEMP     | O <sub>2</sub>      | CO <sub>2</sub> |
|                    | [port-inch] | (24-hr)  | [minute] | [" H <sub>2</sub> 0]                         | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]    | [" Hg]                      | [ft <sup>3</sup> ] | inlet  | outlet                                   | [°F]                                  | [°F]          | [°F]                   | [°F]     | [% vol]             | [% vol]         |
| ł                  |             | <u> </u> | 0        |                                              |                      |                         |                             | 718.50             |        |                                          |                                       |               |                        |          |                     |                 |
|                    | -10.00      |          | 10       |                                              | .73                  | 1.20                    | 2.5                         | 724.28             | ZL     | コン                                       | 127                                   | 247           | 328                    | 46       | 6:5                 | 13.7            |
| $\hat{\mathbf{D}}$ | -33.33      |          | 20 -     | .665)                                        | 1.10                 | 1.82                    | 5                           | 731.28             | רר     | コス                                       | 127                                   | - <u>2</u> 50 | 333                    | 46       | 6.1                 | 14.0            |
|                    | -67.50      |          | 30       |                                              | 1.15                 | 1.90                    | 2                           | 738.49             | 80     | 73                                       | 126                                   | 250           | 333                    | 4 b      | <i>.</i> , <i>)</i> | 14.0            |
|                    |             |          |          |                                              |                      |                         |                             |                    |        |                                          |                                       |               |                        | ſ        |                     |                 |
|                    |             |          |          |                                              | L.C.                 | RESTI                   | ART                         | 738.61             |        |                                          |                                       |               |                        |          |                     |                 |
| :                  | -10.00      |          | 40       |                                              | 51.                  | 1.20                    | 2.5                         | 744.38             | 78     | 73                                       | 126                                   | 251           | 330                    | ナン       | 6.1                 | 14.0            |
| C                  | -33.33      |          | 50 -     | .5008                                        | 1.05                 | 1.75                    | 5                           | 751.25             | 81     | 74                                       | 126                                   | 257           | 330                    | 49       | 5.9                 | 14.2            |
|                    | -67.50      |          | 60       |                                              | 1.10                 | 1.82                    | 5                           | 758 29             | 82     | 75                                       | 126                                   | JSZ           | 331                    | 51       | 1.0                 | 14.0            |
| ÷                  |             |          |          | 2                                            |                      |                         |                             |                    |        |                                          |                                       |               |                        |          |                     |                 |
|                    |             |          |          |                                              | $\lambda$ ,C,        | RESTI                   | ART                         | 758.40             |        |                                          |                                       |               |                        |          |                     |                 |
| :                  | -10.00      | -        | 70       |                                              | .76                  | 1.25                    | 4                           | 764.27             | 81     | 75                                       | 126                                   | 255           | 330                    | らん       | 6.2                 | 14.0            |
| ß                  | -33.33      |          | 80 -     | .5228                                        | 1.10                 | 1.82                    | 5                           | 271.33             | 83     | 76                                       | 126                                   | 254           | 1221                   | 53       | 6.1                 | 14.0            |
| С,                 | -67.50      |          | 90       |                                              | 1.15                 | 1.90                    | 2                           | 778.56             | 85     | רר                                       | 127                                   | 223           | 332                    | 48       | 6.2                 | 14.0            |
|                    |             |          |          | 1 1                                          | 1                    |                         |                             |                    |        |                                          |                                       |               |                        |          |                     |                 |
| -                  |             |          |          |                                              | LIC.                 | RESTR                   | ART                         | 07.871             | ŕ      |                                          | · · · · · · · · · · · · · · · · · · · |               |                        |          | ·                   |                 |
|                    | -10.00      |          | 100      |                                              | .76                  | 1.25                    | 4.                          | 184.57             | 84     | 78                                       | 127                                   | 255           | 327                    | 40       | 6.2                 | 14.0            |
|                    | -33.33      |          | 110 -    | 4812                                         | 1.10                 | 1.82                    | S                           | 791.60             | 86     | 78                                       | 127                                   | 254           | 331                    | 46       | 6.2                 | 14.0            |
| A                  | -67.50      | _        | 120      |                                              | 1.15                 | 1.90                    | 5                           | 798.83             | 85     | 80                                       | 127                                   | 259           | 332                    | 47       | 6.)                 | 14.0            |
| -                  |             | 1115     |          |                                              |                      |                         |                             |                    |        |                                          |                                       |               |                        |          |                     |                 |
|                    | AVERAGE     |          | _        | -0.54                                        | 0.982                | (.64                    | 1                           | 79.96              | 1B.    | 4                                        | 176.5                                 |               |                        |          | 6.2                 | 14.0            |
| -                  |             |          | Sa       | ample Train                                  |                      | <u> </u>                |                             |                    |        |                                          | Pitot Tube                            | PreTest       | <u>0K</u> @            |          | H <sub>2</sub> O    |                 |
| 4.5                |             |          | Lea      | ak Checks:                                   | Post Test            | <u></u> ft <sup>3</sup> | @_ <u>\O</u> _i             | n. Hg              |        | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | Leak Checks:                          | Post Test     | <u> </u>               | <u> </u> | H₂O                 |                 |

CONSOLENERGY.

#### SCR/FGD Hg SAMPLING PROGRAM, PLANT 4 - ONTARIO HYDRO SAMPLING TRAIN DATA

.i.ailitti

يفتكشك غاده

. . . . . . . .

| Location                               |                                        | Econ Out       | AirHtr Out         | FGD Inlet          | Stack              | Econ Out         | AirHtr Out         | FGD Inlet          | Stack              | Econ Out           | AirHtr Out       | FGD Inlet        | Stack              | Econ Out        | AirHtr Out       | FGD Inlet        | Stack          |
|----------------------------------------|----------------------------------------|----------------|--------------------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|--------------------|-----------------|------------------|------------------|----------------|
| Location                               |                                        | Unit 1         | Unit 1             | Unit 1             | Unit 1             | Unit 1           | Unit 1             | Unit 1             | Unit 1             | Unit 1             | Unit 1           | Unit 1           | Unit 1             | Unit 1          | Unit 1           | Unit 1           | Unit 1         |
| Date                                   |                                        | 19-Jan         | 19-Jan             | 19-Jan             | 19-Jan             | 20-Jan           | 20-Jan             | 20-Jan             | 20-Jan             | 20-Jan             | 20-Jan           | 20-Jan           | 20-Jan             | 01/21/2005      | 01/21/2005       | 01/21/2005       | 01/21/2005     |
| Start Time                             |                                        | 1100           | 1100               | 1100               | 1100               | 935              | 935                | 935                | 935                | 1335               | 1335             | 1335             | 1335               | 900             | 900              | 900              | 900            |
| Stop Time                              |                                        | 1315           | 1325               | 1300               | 1320               | 1154             | 1200               |                    | 1154               | 1553               | 1559             |                  | 1553               | 1113            | 1120             | 1100             | 1115           |
| Test Number                            |                                        | ECON-1         | AHO-1              | FGD-1              | STK-1              | ECON-2           | AHO-2              | FGD-2              | STK-2              | ECON-3             | AHO-3            | FGD-3            | STK-3              | ECON-4<br>OH-Ho | AHO-4<br>OH-Hg   | FGD-4<br>OH-Hg   | STK-4<br>OH-Hg |
| Sample Type                            |                                        | ÓH-Hg          | OH-Hg              | OH-Hg              | OH-Hg              | OH-Hg            | OH-Hg              | OH-Hg              | OH-Hg              | OH-Hg              | OH-Hg            | OH-Hg            | OH-Hg              | 0.987           | 1.010            | 0.960            | 1.026          |
| Y factor of dry gas meter              |                                        | 0.987          | 1,010              | 0.960              | 1.026              | 0.987            | 1,010              | 0.960              | 1.026              | 0.987              | 1.010            | 0.960            | 1,026              |                 |                  | 73.95            | 79,96          |
| Gas Volume                             | - ft <sup>3</sup>                      | 49.14          | 42.96              | 70.68              | 77.62              | 50.57            | 43.22              | 73.82              | 78.01              | 44,43              | 43.51            | 69.07            | 79.31              | 50.47           | 42.23            |                  |                |
| Delta H of dry gas meter               | - "H <sub>2</sub> 0                    | 0.55           | 0.47               | 1.18               | 1.57               | 0,58             | 0.50               | 1.27               | 1.59               | 0.43               | 0.48             | 1.10             | 1.60               | 0.59            | 0.46             | 1.26             | 1.64           |
| Meter Temperature                      | - °F                                   | 98.7           | 80.3               | 75.7               | 82.0               | 92.8             | 68.7               | 80.7               | 76.6               | 99.7               | 83.0             | 74.5             | 84.5               | 89.9            | 65.3             | 71.8             | 78.4           |
| C Factor of pitot tube                 | -                                      | 0.838          | 0,846              | 0.835              | 0.806              | 0.838            | 0.846              | 0.835              | 0.806              | 0.838              | 0.846            | 0.835            | 0.806              | 0.838           | 0.846            | 0.835            | 0.806          |
| Nozzle Diameter                        | <ul> <li>inches</li> </ul>             | 0.191          | 0.188              | 0.193              | 0.214              | 0.191            | 0.188              | 0.193              | 0.214              | 0.191              | 0.188            | 0,193            | 0.214              | 0.191           | 0.188            | 0.193            | 0.214          |
| A n (area of nozzle)                   | - ft <sup>2</sup>                      | 0,00020        | 0.00019            | 0.00020            | 0.00025            | 0.00020          | 0.00019            | 0.00020            | 0.00025            | 0.00020            | 0.00019          | 0.00020          | 0.00025            | 0.00020         | 0.00019          | 0.00020          | 0.00025        |
| Area of Stack (Single of Dual)         | - ft <sup>2</sup>                      | 725.0          | 544.4              |                    | 283.5              | 725.0            | 544.4              |                    | 283.5              | 725.0              | 544,4            |                  | 283.5              | 725.0           | 544.4            |                  | 283.5          |
| H <sub>2</sub> O Weight                | - gm                                   | 90.7           | 76.4               | 114.1              | 239.2              | 91.5             | 71.7               | 107.5              | 243.3              | 77.3               | 74.0             | 124.9            | 241.4              | 90.1            | 89.7             | 121.6            | 245.3          |
| Sample Time                            | <ul> <li>minutes</li> </ul>            | 120            | 120                | 120                | 120                | 120              | 120                | 120                | 120                | 120                | 120              | 120              | 120                | 120             | 120              | 120              | 120            |
| Barometric Pressure                    | - "Hg                                  | 29.96          | 29.96              | 29.96              | 29.96              | 29.79            | 29.79              | 29.79              | 29.79              | 29.72              | 29.72            | 29.72            | 29.72              | 29.65           | 29.65            | 29.65            | 29.65          |
| Static Pressure                        | - "H <sub>2</sub> 0                    | -4.54          | -9.00              | 5.68               | -0.45              | -4.57            | -9.16              | 5.58               | -0.59              | -4.47              | -8.90            | 4.29             | -0.58              | -4.40           | -8.92            | 5.63             | -0,54          |
| % Oxygen                               | -                                      | 3.3            | 4.9                | 6.0                | 6.2                | 3.7              | 5.4                | 5.9                | 6.4                | 3.7                | 5.2              | 5.9              | 6.1                | 3.7             | 5.3              | 5.8              | 6.2            |
| % Carbon Dioxide                       | -                                      | 16.7           | 15.2               | 14.1               | 14.0               | 16.4             | 14.7               | 14,3               | 13.8               | 16.3               | 14.9             | 14.2             | 14.0               | 16.4            | 14.8             | 14.3             | 14.0<br>79.8   |
| % N <sub>2</sub> + CO                  | -                                      | 80.0           | 79.9               | 79.9               | 79.8               | 79.9             | 79.9               | 79.8               | 79.8               | 80.0               | 79,9             | 79.9             | 79.9               | 79.9            | 79.9             | 79.9             |                |
| Stack Temp (Dry Bulb)                  | - °F                                   | 702            | 274                | 269                | 127                | 712              | 277                | 274                | 127                | 713                | 280              | 272              | 126                | 714             | 277              | 271              | 127            |
| Stack Temp (Wet Bulb)                  | - °F                                   |                |                    |                    |                    |                  |                    | l                  |                    |                    |                  |                  |                    |                 |                  |                  |                |
| "S" sample (rms vel head)              | - ™H₂0                                 | 0.868          | 0.507              | 1.123              | 0.944              | 0.925            | 0.516              | 1.216              | 0.953              | 0.672              | 0.514            | 1.052            | 0,958              | 0.945           | 0.491            | 1.212            | 0.982          |
| Dust Wt.                               | - gm                                   | 5.300          | 1.638              | 0.0024             | 0.0002             | 6.576            | 0,698              | 0.0004             | 0.0030             | 6.039              | 2.135            | 0.0115           | 0.0012             | 7,128           | 1.597            | 0.0134           | 0,0017         |
| Sample Volume                          | <ul> <li>DSCF</li> </ul>               | 45,94          | 42,49              | 67.13              | 77,95              | 47.52            | 43.44              | 69.09              | 78.69              | 41.12              | 42.47            | 65.21            | 78.66              | 47.45           | 42.51            | 70.04            | 80.02          |
| Sample Volume                          | <ul> <li>dscm</li> </ul>               | 1,301          | 1.203              | 1.901              | 2.208              | 1.346            | 1.230              | 1,957              | 2.228              | 1,164              | 1.203            | 1.847            | 2.228              | 1.344           | 1.204            | 1.984            | 2.266<br>29.61 |
| ABS ST PRES                            | - "Hg                                  | 29.63          | 29.30              | 30.38              | 29,93              | 29.45            | 29.12              | 30.20              | 29.75              | 29.39              | 29.07            | 30,04            | 29.68              | 29.33           | 28.99            | 30.06            |                |
| ABS ST TEMP                            | - °R                                   | 1162           | 734                | 729                | 587                | 1172             | 737                | 734                | 587                | 1173               | 740              | 732              | 586                | 1174            | 737              | 731              | 587            |
| H <sub>2</sub> O - % by Vol            | vapor                                  | 8.5            | 7.8                | 7.4                | 12.6               | 8.3              | 7.2                | 6.8                | 12.7               | 8.1                | 7.6              | 8.3              | 12.6               | 8.2             | 9.0              | 7.6              | 12.6           |
| Water Volume                           | <ul> <li>std ft<sup>3</sup></li> </ul> | 4.27           | 3.60               | 5.37               | 11.27              | 4.31             | 3.38               | 5.06               | 11.46              | 3.64               | 3.49             | 5.88             | 11.37              | 4.24            | 4.22             | 5.73             | 11.55          |
| Dry Molecular Weight                   | <ul> <li>Ib/ib-mole</li> </ul>         | 30.80          | 30.63              | 30.50              | 30.49              | 30.77            | 30,57              | 30.52              | 30.46              | 30.76              | 30.59            | 30.51            | 30,48              | 30.77           | 30.58            | 30.52            | 30,49          |
| Wet Molecular Weight                   | <ul> <li>Ib/Ib-mole</li> </ul>         | 29.71          | 29.64              | 29.57              | 28.91              | 29.71            | 29.66              | 29.67              | 28.88              | 29.72              | 29.64            | 29.47            | 28.91              | 29.72           | 29.44<br>33.6    | 29.57<br>37.9    | 28.91<br>41.7  |
| % EXCESS AIR                           | -                                      | 18.5           | 30.3               | 39.4               | 41.7               | 21.3             | 34.4<br>0.928      | 38.9<br>0.932      | 43.6<br>0.873      | 21.2<br>0.919      | 32.7<br>0.924    | 38.8<br>0.917    | 40.7<br>0.874      | 21.3<br>0.918   | 0.910            | 0.924            | 0.874          |
| Dry Mole Frac                          | •                                      | 0.915<br>0.085 | 0.922              | 0.926<br>0.074     | 0.874<br>0.126     | 0.917<br>0.083   | 0.928              | 0.932              | 0.873              | 0.919              | 0.924            | 0.083            | 0.126              | 0.082           | 0.090            | 0.924            | 0.126          |
| Wet Mole Frac.<br>Gas Velocity, Direct | - ft/sec                               | 76.69          | 47,33              | 68,16              | 77.95              | 79.73            | 47.99              | 71.26              | 78.69              | 68.07              | 48.07            | 66,57            | 78.66              | 80.82           | 47.10            | 71.25            | 80.02          |
| ACFM                                   | - 10300                                | 3,336,140      | 1,546,234          | 0                  | 1,326,070          | 3,468,059        | 1,567,764          | 0                  | 1,338,659          |                    |                  | 0                | 1,338,148          | 3,515,756       |                  | 0                | 1,361,284      |
| DSCFM (FGD inlet = Air Heater Ou       | rtlet)-                                | 1,372,962      | 1,004,537          | 1,004,537          | 1,042,760          | 1,410,646        | 1,014,161          | 1,014,161          | 1,044,777          | 1,202,357          | 1,005,445        | 1,005,445        | 1.044.352          | 1,422,593       |                  | 971,175          |                |
| DSCFM (rounded)                        |                                        | 1,373,000      | 1,004,500          | 1,004,500          | 1,042,800          | 1,410,600        | 1,014,200          | 1,014,200          | 1,044,800          | 1,202,400          | 1,005,400        | 1,005,400        | 1,044,400          | 1,422,600       |                  | 971,200          | 1,059,800      |
| DSCMM                                  |                                        | 38,882         | 28,448             | 28,448             | 29,531             | 39,950           | 28,721             | 28,721             | 29,588             | 34,051             | 28,474           | 28,474           | 29,576             | 40,288          | 27,504           | 27,504           | 30,014         |
| Excess Air Free DSCFM                  | -                                      | 1,156,179      | 769,023            | 718,075            | 733,425            | 1,160,915        | 752,129            | 727,867            | 724,845            | 989,500            | 755,286          | 721,611          | 739,541            | 1,170,747       | 724,896          | 701,662          | 745,410        |
| CALCULATED FIRING RATE:                |                                        |                |                    |                    |                    |                  |                    |                    |                    |                    |                  |                  |                    |                 |                  | i <u>-</u>       |                |
| Dry                                    | - Ib/min                               | 8,648          | 5,752              | 5,371              | 5,486              | 8,710            | 5,643              | 5,461              | 5,438              | 7,424              | 5,667            | 5,414            | 5,549              | 9,028           | 5,590            | 5,411            | 5,748<br>5,828 |
| Wet                                    | - Ib/min                               | 8,825          | 5,870              | 5,481              | 5,598              |                  | 5,752              | 5,566              | 5,543              | 7,567<br>445,436   | 5,776<br>340,002 | 5,518<br>324,842 | 5,655<br>332,914   |                 | 5,668<br>335,406 | 5,486<br>324,656 |                |
| Dry<br>Wet                             | - Ib/hr                                | 518,885        | 345,132<br>352,176 | 322,267<br>328,844 | 329,156<br>335,873 |                  | 338,580<br>345,103 | 327,658<br>333,970 | 326,298<br>332,584 | 445,436<br>454,017 | 340,002          | 324,842          | 332,914<br>339,327 | 541,699         | 335,406          | 324,656          |                |
| CALCULATED FIRING RATE:                | - Ib/hr                                | 529,474        | 332,176            | əz <b>ə</b> ,844   | JJJ,8/3            | J34,008          | 343,103            | 333,970            | ə⇒ <b>∠,</b> ⊋¢4   | 434,017            | 340,331          | 331,100          | 443,361            |                 | 540,005          | 323,103          |                |
| Dry                                    | - tons/hr                              | 259.4          | 172.6              | 161.1              | 164.6              | 261.3            | 169.3              | 163.8              | 163.1              | 222.7              | 170.0            | 162.4            | 166.5              | 270.8           | 167.7            | 162.3            | 172.4          |
| Wet                                    | <ul> <li>tons/hr</li> </ul>            | 264.7          | 176.1              | 164.4              | 167.9              | 266,3            | 172.6              | 167.0              | 166.3              | 227.0              | 173.3            | 165.6            | 169.7              | 274.6           | 170.0            | 164.6            | 174.8          |
| HEAT INPUT:                            |                                        |                |                    |                    |                    |                  |                    |                    |                    |                    |                  |                  |                    |                 |                  |                  |                |
| MM Btu/hr                              | -                                      | 7100           | 4722               | 4410               | 4504               | 7152             | 4634               | 4484               | 4466               | 6096               | 4653             | 4446             | 4556               | 7153            | 4429             | 4287             | 4554           |
| PARTICULATE LOADING:                   |                                        |                |                    |                    |                    |                  |                    |                    |                    |                    | 1                |                  |                    |                 |                  |                  |                |
| Grains/DSCF                            | -                                      | 1.7799         | 0.5946             | 0.0006             | 0.0000             | 2.1356           | 0,2480             | 0.0001             | 0.0006             |                    |                  | 0.0027           | 0.0002             |                 | 0.5797           | 0,0030           |                |
| ib/hr                                  | -                                      | 20,955         | 5,122              | 5                  | 0.35               | 25,830           | 2,157              | 1                  | 5.27               | 23,363             |                  | 23.5             | 2.11               | 28,273          |                  | 24.6             | 2.98           |
| Ib/MM Btu                              | -                                      | 2.95           | 1.08               | 0.00               | 0.00               | 3.61             | 0.47               | 0.00               | 0.00               | 3.83               | 1.44             | 0,01             | 0.00               | 3.95            | 1.09             | 0.01             | 0.00           |
|                                        |                                        | 40.000         |                    | 05.040             | 0.5 5-5-           | 40.000           | 07 000             |                    | 20.007             | 36,704             | 28,016           | 26,767           | 27,432             | 64,191          | 39,745           | 38,472           | 40.870         |
| Ash Production                         | lb/hr                                  | 40,317         | 26,817             | 25,040             | 25,575             |                  | 27,899             | 26,999<br>1        | 26,887<br>5.27     | 36,704<br>23,363   | 28,016           | 26,767           | 27,432<br>2.11     | 28,273          | 4,828            | 36,472           | 40,870         |
| Bagouse Ash<br>Bottom Ash              |                                        | 20,955         | 5,122<br>21,695    | 5<br>25,035        | 0.35<br>25,575     | 25,830<br>17,232 | 2,157<br>25,742    | 1<br>26,998        | 5.27<br>26,882     | 23,363             | 21,331           | 23<br>26,744     | 27,430             | 20,273          | 4,020            | 38,447           | 40,867         |
| Percent Fly Ash                        |                                        | 52,0%          | 19,1%              | 25,035             | 23,573             | 60.0%            | 23,742             | 20,550             | 20,002             | 63.7%              | 23.9%            | 0.1%             | 0.0%               |                 | 12.1%            | 0.1%             |                |
|                                        |                                        | 52.0%          | 13,170             | 0.0%               | 0.076              | 00.0%            | 7.775              | 0.0 %              | 0.0 %              | <b></b>            | 20.076           |                  | /4                 |                 |                  |                  |                |
| % ISOKINETIC                           | -                                      | 101.71         | 99,66              | 99.05              | 70.79              | 102.39           | 100.91             | 98.12              | 71.32              | 103.96             | 99.53            | 100.92           | 71.32              | 101.39          | 103.14           | 100.26           | 71.50          |
| 1                                      |                                        |                |                    |                    |                    |                  |                    |                    |                    |                    |                  |                  |                    |                 |                  |                  | 1              |
|                                        |                                        |                |                    |                    |                    |                  |                    |                    |                    |                    | 1                |                  |                    | L               | <u> </u>         | <u> </u>         |                |
|                                        |                                        |                |                    |                    |                    |                  |                    |                    |                    |                    |                  |                  |                    |                 |                  |                  |                |

| Impinger Components Wts & Volumes      | ECON-1   | AHO-1    | FGD-1     | STK-1     | ECON-2  | AHO-2      | FGD-2     | STK-2     | ECON-3  | AHO-3   | FGD-3     | STK-3     | ECON-4      | AHQ-4   | FGD-4     | STK-4     |
|----------------------------------------|----------|----------|-----------|-----------|---------|------------|-----------|-----------|---------|---------|-----------|-----------|-------------|---------|-----------|-----------|
| Fitter Wt. g                           | 5.2995   | 1,6375   | 0.0024    | 0.3278    | 6.5763  | 0.6981     | 0.0004    | 0.3375    | 6.0387  | 2,1345  | 0.0115    | 0.3303    | 7,1277      | 1.5973  | 0.0134    | 0.3297    |
| ppb Hg                                 | 15       | 462      | <5.0      | <5.0      | 15      | 80         | <5.0      | <5.0      | 14      | 98      | <5.0      | <5.0      | 18          | 95      | <5.0      | <5.0      |
| total ug                               | 0.08     | 0.76     | <5.00E-03 | <5.00E-03 | 0,10    | 0.06       | <5.00E-03 | <5.00E-03 | 0.08    | 0.21    | <5.00E-03 | <5.00E-03 | 0.13        | 0,15    | <5.00E-03 | <5.00E-03 |
| ug/dscm                                | 0,06     | 0.63     | <2.63E-03 | <2.26E-03 | 0.07    | 0.05       | <2.56E-03 | <2.24E-03 | 0.07    | 0.17    | <2.71E-03 | <2.24E-03 | 0.10        | 0.13    | <2.52E-03 | <2.21E-03 |
|                                        |          |          |           |           |         |            |           |           |         |         |           |           |             |         |           |           |
| Probe Rinse volume, ml                 | 177      | 143      | 64        | 109       |         | 120        | 77        | 105       |         | 121     | 135       | 111       | 227         | 88      | 127       | 109       |
| Analytical Hg, ng/ml                   | <1.0     | 1.0      | <1.0      | <1,0      | <1.0    | <1.0       | <1.0      | <1.0      |         | <1.0    | <1.0      | <1.0      | <1.0        | <1.0    | <1.0      | <1.0      |
| ug/dscm                                | <0.14    | 0.12     | <0.03     | <0,05     | <0,14   | <0.10      | <0.04     | <0.05     | <0.15   | <0.10   | <0.07     | <0.05     | <0.17       | <0.07   | <0.06     | <0,05     |
|                                        |          |          |           |           |         |            | 80        |           | 115     | 118     | 112       | NA        | 173         | 139     | 107       | NA        |
| Heated Umbilical Line Rinse volume, ml | 75       | 98       | 84        | NA        | 111     | 106<br>5,1 | <1.0      | NA        | <1.0    | <1.0    | <1.0      | AN I      | <1.0        | <1.0    | <1.0      |           |
| Analytical Hg, ng/ml                   | <1.0     | 1.7      | <1.0      |           | <1.0    |            |           |           | <0.10   | <0.10   | <0.06     | I         | <0.13       | <0.12   | <0.05     |           |
| ug/dscm                                | <0.06    | 0.14     | <0.04     |           | <0.08   | 0.44       | <0.04     |           | <0.10   | <0.10   | ×0.06     |           | <b>V.13</b> | ~0.12   | <0.03     |           |
| KCi volume, mi                         | 537      | 528      | 559       | 680       | 537     | 524        | 555       | 683       | 526     | 523     | 566       | 684       | 537         | 539     | 562       | 690       |
| Analytical Hg. ng/ml                   | 11.2     | 12.3     | 21.0      | 1.3       | 11.9    | 14.9       | 22.7      | 1.0       |         | 14.6    | 23.9      | 0.9       | 8.2         | 9.9     | 11.7      | 0.7       |
| ug/dscm                                | 4.62     | 5.40     | 6.17      | 0.40      | 4.75    | 6.35       | 6.44      | 0.31      | 4.61    | 6.35    | 7.32      | 0.28      | 3.28        | 4.43    | 3.32      | 0.21      |
|                                        |          |          |           |           |         |            |           |           |         |         |           | वनवन्त्री |             |         | 200000    |           |
| Nitric/Peroxide volume. ml             | 176      | 174      | 175       | 177       | 175     | 173        | 175       | 177       | 175     | 175     | 176       | 175       | 174         | 175     | 176       | 175       |
| Analytical Hg, ng/ml                   | 0.5      | <0.2     | <0.2      | <0.20     | 0.5     | 0.9        | 0.4       | <0.20     | 0.4     | 0.3     | 0.2       | 0.2       |             | <0.2    | <1.0      | <0.20     |
| uq/dscm                                | 0.07     | <0.03    | <0.02     | <0.02     | 0.07    | 0.13       | 0.04      | <0.02     | 0.06    | 0.04    | 0.02      | 0.02      | 0.05        | <0.03   | <0.09     | <0.02     |
|                                        |          |          |           |           |         |            |           |           |         |         |           |           |             |         |           |           |
| KMnO4 volume, ml                       | 244      | 243      | 244       | 245       | 246     | 242        | 243       | 246       | 245     | 246     | 247       | 245       | 245         | 245     | 247       | 244       |
| Analytical Hg, ng/ml                   | 23.2     | 0.4      | 2.4       | 2.3       | 17.3    | 3.5        | 1.4       | 6.3       | 13.4    | 4.5     | 2.0       | 9.1       | 8.0         | 1.3     | 2.6       | 4.3       |
| ug/dscm                                | 4.35     | 0.08     | 0.31      | 0.26      | 3.16    | 0.69       | 0.17      | 0.70      | 2.82    | 0.92    | 0.27      | 1.00      | 1.46        | 0.26    | 0.32      | 0.46      |
|                                        |          | []       |           |           |         |            |           |           |         |         |           | ]         |             |         |           |           |
| KMnO4-Acid Rinse volume, ml            | 100      | 100      |           | 100       | 100     | 100        | 100       | 100       |         | 100     | 100       | 100       | 100         | 100     | 100       | 100       |
| Analytical Hg, ng/ml                   | <1.0     | 1.5      |           | <1.0      | 1.8     | <1.0       | 1.1       | 2.0       | <1.0    | <1.0    | 1.5       | <1.0      | <1.0        | <1.0    | <1.0      | <1.0      |
| ug/dscm                                | <0.08    | 0.12     | <0.05     | <0.05     | 0.13    | <0.08      | 0.06      | 0.09      | <0.09   | <0.08   | 80.0      | <0.04     | <0.07       | <0.08   | <0.05     | <0.04     |
|                                        |          | <u> </u> |           |           |         |            |           |           |         |         |           |           |             |         |           |           |
|                                        | 1        | 1 1      |           |           |         |            |           |           |         |         |           |           |             |         |           |           |
| -                                      |          | 1 1      |           |           |         |            |           |           |         |         |           |           |             |         |           |           |
| Particulate, ug/m <sup>3</sup>         | 0.0611   | 0.6287   | 2.63E-03  | 2.26E-03  | 0,0733  | 0.0454     | 2.56E-03  | 2.24E-03  |         | 0,1739  | 2.71E-03  | 2.24E-03  | 0.0955      | 0.1260  | 2.52E-03  | 2.21E-03  |
| Particulate, mg/sec                    | 0.0251   | 0.2843   | 1.27E-03  | 1.11E-03  | 0.0305  | 0.0209     | 1.22E-03  | 1.11E-03  |         | 0.0808  | 1.32E-03  | 1.11E-03  | 0.0408      | 0.0594  | 1.23E-03  | 1.10E-03  |
| Percent of Total                       | 0.6519   | 9.6464   | 0.0396    | 0.2947    | 0.8721  | 0.5801     | 0.0376    | 0.1939    | 0.9202  | 2.2388  | 0.0346    | 0.1615    | 1.8169      | 2.4600  | 0.0647    | 0.2807    |
| Oxidized Fraction, ug/m <sup>3</sup>   | 4.8164   | 5.6543   | 6.2523    | 0,4498    | 4,9711  | 6.8841     | 6.5191    | 0.3536    | 4,8521  | 6.5466  | 7.4582    | 0.3262    | 3.5746      | 4.6204  | 3,4330    | 0,2612    |
| Oxidized Fraction, mg/sec              | 1.9800   | 2.5568   | 3.0279    | 0.2214    | 2.0666  | 3,1758     | 3.1077    | 0.1744    | 2.0580  | 3,0420  | 3.6274    | 0.1608    | 1.5282      | 2.1779  | 1.6718    | 0.1307    |
| Percent of Total                       | 51,3863  | 86,7578  | 94.2470   | 58.5185   | 59.1385 | 87.9653    | 96.0454   | 30,5640   | 61.4972 | 84.2812 | 95.2679   | 23.4682   | 58.0243     | 90.1879 | 88.0609   | 33.2360   |
| Elemental Fraction, ug/3               | 4.4954   | 0.2343   | 0,3790    | 0.3166    | 3.3614  | 0.8964     | 0.2659    | 0.8011    | 2.9652  | 1.0471  | 0.3678    | 1.0615    | 1.5848      | 0,3767  | 0.4629    | 0.5226    |
| Elemental Fraction, mg/sec             | 1.8480   | 0.1060   | 0.1836    | 0.1558    | 1.3974  | 0,4135     | 0.1267    | 0.3950    | 1.2577  | 0.4865  | 0.1789    | 0.5232    | 0.6775      | 0.1775  | 0.2254    | 0.2614    |
| Percent of Total                       | 47,9618  | 3,5958   | 5.7133    | 41.1869   | 39.9894 | 11.4545    | 3.9170    | 69,2421   | 37.5827 | 13.4800 | 4.6976    | 76.3703   | 30.1588     | 7.3521  | 11.8744   | 66.4833   |
| Total ug/m <sup>3</sup>                | 9,3730   | 6.5173   | 6.6340    | 0,7687    | 8,4058  | 7.8260     | 6.7876    | 1,1569    | 7.8899  | 7.7676  | 7,8287    | 1.3899    | 5.2549      | 5,1231  | 3,8985    | 0.7860    |
| Total mg/sec                           | 3.8531   | 2.9471   | 3.2127    | 0.3783    | 3.4945  | 3.6103     | 3,2356    | 0.5705    | 3.3465  | 3,6094  | 3,8076    | 0,6851    | 2,2466      | 2.4149  | 1.8985    | 0.3932    |
| 1                                      | 1 0.0001 |          |           | 0.0100    | 0.1010  |            |           |           |         |         |           |           |             |         |           |           |

الد 17

|            |                                          |                   | Axial Flow | Check                | 2 - 5 × 105<br>    |         | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |
|------------|------------------------------------------|-------------------|------------|----------------------|--------------------|---------|-----------------------------------------------------------------------------------------------------------------|
| Location   | FOON OUT                                 | Duct Ht, "        |            |                      | Barometric         | 30.15   |                                                                                                                 |
| Date       | 1/18/05                                  | Duct ID,"         |            | <b>_</b>             | Static             |         | -<br>-                                                                                                          |
| Time       | 1530                                     | Duct Area         |            | _ft <sup>2</sup>     | Dry Bulb           |         |                                                                                                                 |
| Tube I.D.  |                                          | % O <sub>2</sub>  | ·          |                      | Wet Bulb           |         |                                                                                                                 |
| C-Factor   |                                          | % CO <sub>2</sub> |            |                      | % H <sub>2</sub> 0 |         |                                                                                                                 |
| Operator   | <u>(s)</u>                               | % N <sub>2</sub>  |            | _                    | W.M.Wt             |         |                                                                                                                 |
|            | PORT/                                    | DISTANCE          | TEMP       |                      | VELOCITY           | Null    |                                                                                                                 |
|            | POINT                                    | [" From Wall]     | [°F]       | [" H <sub>2</sub> O] | [Ft/Sec]           | Angle   |                                                                                                                 |
|            |                                          |                   |            | -                    |                    |         |                                                                                                                 |
|            | South                                    |                   |            |                      |                    |         |                                                                                                                 |
| \<br>\     |                                          | 11/2/             |            | 620                  |                    |         | -40                                                                                                             |
| ) AM       |                                          | /3(               | 710        | 0.32                 |                    |         | -4:0<br>-4,0<br>-4,8                                                                                            |
| 2)         |                                          | FUI (8-10"        | 718        | 0.47                 |                    |         | - 4.0                                                                                                           |
| 3          | ······································   | 1011 (0-10        | 10         | 0.150                |                    |         | -4,8                                                                                                            |
|            |                                          |                   |            |                      |                    |         |                                                                                                                 |
|            | 01                                       |                   |            |                      |                    |         |                                                                                                                 |
|            | 1/0R+1+                                  |                   |            |                      | 0.95               |         |                                                                                                                 |
|            |                                          |                   |            |                      |                    |         |                                                                                                                 |
| 12         |                                          | 13                | 716        | 0.16                 |                    |         | 11                                                                                                              |
| A A        |                                          | ·/2               | 724        | 0.925                |                    |         | -4,1                                                                                                            |
| 3          |                                          | FUL 18-10")       | 730        | 0.74                 |                    |         | - 5.1                                                                                                           |
|            | · · ·                                    |                   |            |                      |                    |         |                                                                                                                 |
|            |                                          |                   |            |                      |                    |         |                                                                                                                 |
|            | · · · · · · · · · · · · · · · · · · ·    |                   |            |                      |                    |         |                                                                                                                 |
|            |                                          |                   |            |                      |                    |         |                                                                                                                 |
| 1          |                                          |                   |            |                      |                    |         |                                                                                                                 |
|            |                                          |                   |            |                      |                    |         |                                                                                                                 |
|            |                                          |                   |            |                      |                    | · · · · |                                                                                                                 |
|            |                                          |                   |            |                      |                    |         |                                                                                                                 |
|            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                   |            |                      |                    |         |                                                                                                                 |
|            | Average                                  |                   |            |                      |                    |         |                                                                                                                 |
| 1          | Maximum                                  | -<br>-            |            |                      |                    |         |                                                                                                                 |
| <u>د :</u> | Minimum                                  |                   |            |                      |                    |         |                                                                                                                 |
|            | SDEV                                     |                   |            |                      |                    |         |                                                                                                                 |

| DATA SUMMARY              |  |
|---------------------------|--|
| Velocity, [fps]           |  |
| acfm                      |  |
| scfm                      |  |
| dscfm                     |  |
| Ex Air Free cfm           |  |
| Est. MM Btu/hr Heat Input |  |
| Est. Firing Rate, lb/hr   |  |
|                           |  |

() Canton Meke Box N-1 Y = 0.987 AH = [.976 E-15 = 0.838 3/16 D=0.121 K=0.632

nover, s

|           | <b>.</b> .     |                                       | Axial Flow | Check                |                    |       |       |
|-----------|----------------|---------------------------------------|------------|----------------------|--------------------|-------|-------|
| Location  | AHO<br>1-19.05 | Duct Ht, "                            |            |                      | Barometric         |       |       |
| Date      | 1-19.05        | Duct ID,"                             |            |                      | Static             |       | •     |
| Time      |                | Duct Area                             |            | ft <sup>2</sup>      | Dry Bulb           |       |       |
| Tube I.D. | •              | % O <sub>2</sub>                      |            |                      | Wet Bulb           |       |       |
| C-Factor  |                | % CO <sub>2</sub>                     |            |                      | % Η <sub>2</sub> 0 |       |       |
| Operator  | r(s)           | % N <sub>2</sub>                      | - 11.4     | _                    | W.M.Wt             |       |       |
|           | PORT/          | DISTANCE                              | TEMP       | DELTA P              | VELOCITY           | Null  |       |
|           | POINT          | [" From Wall]                         | [°F]       | [" H <sub>2</sub> O] | [Ft/Sec]           | Angle |       |
|           | A - 1          |                                       | 299        | 0.72                 |                    |       |       |
|           | Z              |                                       | 300        | 0.30                 |                    |       | - 8.2 |
|           | 3              |                                       | 307        |                      |                    |       |       |
|           | 4              |                                       | 300        | 0.72                 |                    |       |       |
|           |                |                                       |            |                      |                    |       | -     |
|           | B-1            |                                       | 292<br>293 | 0.79<br>0.55         |                    |       | -     |
|           | 2.             | · · · · · · · · · · · · · · · · · · · | 293        |                      |                    | ·     | 2     |
|           | 4              |                                       | 293<br>293 | 0.50                 |                    |       | -     |
|           | L.             |                                       | 212        | 0                    |                    |       |       |
|           | C - 1          |                                       | 271        | 0.92                 |                    |       |       |
|           | 2              |                                       | 271        | 0.62                 |                    |       |       |
|           | 3              |                                       | 271        | 0.62                 |                    |       | -8.3  |
|           | 4              |                                       | 27         | a.76                 |                    |       |       |
|           | 1              |                                       |            |                      |                    |       | _     |
|           | <u> </u>       |                                       | 256        | 0.65                 |                    | ~     |       |
|           | 2              |                                       | 255        | 0.54                 |                    |       | 8:3   |
|           | 3              |                                       | 256        | 0.27                 |                    |       |       |
|           | <u> </u>       |                                       | 255        | 0.63                 |                    |       |       |
|           |                |                                       |            |                      |                    | ·     |       |
|           |                |                                       | ·····      |                      |                    |       |       |
|           |                |                                       |            | -                    |                    |       | -     |
|           |                |                                       |            |                      |                    |       | -     |
|           | <u> </u>       |                                       |            |                      |                    |       | 4     |
|           | Average        | *                                     |            |                      |                    |       |       |
|           | Maximum        | · · · ·                               |            |                      |                    |       |       |
|           | Minimum        | · · · · · · · · · · · · · · · · · · · |            |                      |                    |       |       |
|           | SDEV           |                                       |            |                      |                    |       |       |

ESP 3  $\nabla$ A HO T

| DATA SUMMARY              | / |
|---------------------------|---|
| Velocity, [fps]           |   |
| acfm                      |   |
| scfm                      |   |
| dscfm                     |   |
| Ex Air Free cfm           |   |
| Est. MM Btu/hr Heat Input |   |
| Est. Firing Rate, Ib/hr   |   |

N=5 y=1,011 AH@=2,015 E=0.846 3/16 B=2,007 0,188 FC0.93

| -                |                   | 1                       | Axial Flow                            | Check           |                      | · ·                                   |   |
|------------------|-------------------|-------------------------|---------------------------------------|-----------------|----------------------|---------------------------------------|---|
| Location<br>Date | F-GPIN<br>1-18-05 | Duct Ht, "<br>Duct ID," |                                       | -               | Barometric<br>Static | 30.15                                 |   |
| Time             | ·                 | Duct Area               |                                       | ft <sup>2</sup> | Dry Bulb             |                                       |   |
|                  | 3-54              | % O <sub>2</sub>        |                                       | -               | Wet Bulb             |                                       |   |
| C-Factor         |                   | % CO <sub>2</sub>       |                                       | -               | % H₂0                |                                       |   |
| Operator         |                   | % N <sub>2</sub>        | · · · · · · · · · · · · · · · · · · · | -               | W.M.Wt               | · · · · · · · · · · · · · · · · · · · |   |
|                  | PORT/             | DISTANCE                | ТЕМР                                  | DELTA P         |                      | Null                                  | ] |
|                  | POINT             | [" From Wall]           | [°F]                                  | [" H₂O]         | [Ft/Sec]             | Angle                                 |   |
|                  | 81                | 6                       | 220 (                                 | 1,23            | Use thisp            |                                       |   |
|                  |                   |                         |                                       | 751             | Je hosp              |                                       | 1 |
| 1 Sorth          | · · · · ·         |                         |                                       | 1.27            |                      |                                       | - |
|                  | <br>              |                         |                                       | 1.15            | ·····                |                                       |   |
|                  | 4'                |                         | 263                                   | 0.90            |                      |                                       |   |
|                  |                   |                         |                                       |                 |                      |                                       |   |
|                  |                   |                         |                                       |                 |                      |                                       |   |
|                  | <u> </u>          | <u></u>                 | 277                                   | 0.12            |                      |                                       |   |
|                  | 7                 | )                       | 275                                   | 0.14            |                      |                                       |   |
|                  | 6                 |                         | 276                                   | 0.15            |                      |                                       |   |
| and a            | <u>S`</u>         |                         | 7.76                                  | 0108            |                      | - 198                                 |   |
| South            | 4/1               |                         | 276 .                                 | C               |                      | . <sup>-</sup> 2                      |   |
| -                |                   |                         |                                       |                 |                      |                                       |   |
|                  |                   | ·                       |                                       |                 |                      |                                       | - |
|                  |                   |                         |                                       |                 |                      |                                       |   |
|                  |                   | ~                       |                                       |                 |                      | \$:<br>                               |   |
|                  |                   |                         |                                       |                 |                      |                                       |   |
| -                |                   |                         |                                       |                 |                      | ,,,,,,, _                             |   |
| 1                |                   |                         |                                       |                 |                      |                                       |   |
|                  |                   |                         |                                       |                 |                      | · · · · · · · · · · · · · · · · · · · |   |
|                  |                   |                         |                                       |                 |                      |                                       |   |
|                  |                   |                         | · · ·                                 |                 |                      |                                       |   |
| · .              |                   |                         |                                       |                 |                      |                                       |   |
|                  |                   |                         |                                       |                 |                      |                                       |   |
|                  | Average           |                         |                                       |                 |                      |                                       |   |
|                  | Maximum           | -                       |                                       |                 |                      |                                       |   |
|                  | Minimum           |                         |                                       |                 |                      |                                       |   |
|                  | SDEV              |                         |                                       |                 |                      |                                       |   |

| DATA SUMMARY              | / |
|---------------------------|---|
| Velocity, [fps]           |   |
| acfm                      |   |
| scfm                      |   |
| dscfm                     |   |
| Ex Air Free cfm           |   |
| Est. MM Btu/hr Heat Input |   |
| Est. Firing Rate, lb/hr   |   |

N-4 Y = 0.960 AHE= 1.983 E-12= 0.835 3/16C= 0.193 K= 1.04

| 1               |                          |                     | Axial Flow | Check                |                    |                              |                                       |
|-----------------|--------------------------|---------------------|------------|----------------------|--------------------|------------------------------|---------------------------------------|
| Location        | Stack                    | _ Duct Ht, "        |            |                      | Barometric         | 30.15                        |                                       |
| Date            | 1-18-05                  | Duct ID,"           |            |                      | Static             | -0.                          | 5603                                  |
| Time 14         | 45-1500                  | Duct Area           | <u></u>    | ft <sup>2</sup>      | Dry Bulb           |                              |                                       |
|                 | S-19'S-5                 |                     |            | •                    | Wet Bulb           |                              |                                       |
| <b>C-Factor</b> |                          | % CO <sub>2</sub>   |            |                      | % Η <sub>2</sub> 0 |                              |                                       |
| Operator        | (s) \<. C., <u>B</u> . S | 5. % N <sub>2</sub> | · .        |                      | W.M.Wt             |                              | · · · · · · · · · · · · · · · · · · · |
|                 | PORT/                    | DISTANCE            | TEMP       | DELTA P              | VELOCITY           | Null                         |                                       |
|                 | POINT                    | [" From Wall]       | [°F]       | [" H <sub>2</sub> O] | [Ft/Sec]           | Angle                        |                                       |
| 1               | A-1                      | 10.0                | 123.3      |                      | .5466              |                              |                                       |
|                 | A-2                      | 33.3                | 123,2      |                      | 1.275              |                              | 5054                                  |
|                 | A-3                      | 67.5                | 122.5      |                      | 1.427              |                              |                                       |
|                 |                          |                     |            |                      |                    | 1.05 <sup>15</sup>           | 가 문<br>                               |
|                 | B-1                      | 10                  | 123.7      |                      | 15092              | ده.<br><sup>معرب</sup> معنون |                                       |
|                 | B-2                      | 33.3                | 122.8      |                      | 1.301              |                              | 4255                                  |
|                 | B-3                      | 67.5                | 124.0      |                      | 1.413              | · · · · ·                    | *<br>=                                |
|                 | C-1                      | 10                  | 1216       |                      | .1729              | +2",7300                     |                                       |
|                 | C-2                      | 33.3                | 1209       |                      | 1.337              | +2-17200                     | 7538                                  |
|                 | C-3                      | 67.5                | 122.8      |                      | 1.292              | · · ·                        | 1220                                  |
| 1               |                          |                     |            |                      |                    |                              |                                       |
|                 | D-1                      | 10                  | 124.2      | ······               | ,1002              | · ·                          |                                       |
|                 | D-2                      | 33.3                | 124.1      |                      | 1.243              |                              | 556X                                  |
|                 | D-3                      | 67.5                | 123.2      |                      | 1.268              |                              |                                       |
|                 | · .                      |                     |            |                      |                    |                              |                                       |
|                 |                          |                     | 123.025    |                      | 1.04               |                              |                                       |
|                 | Average                  |                     |            |                      | 1.056              |                              |                                       |
| 11              | Maximum                  |                     |            |                      | (RMS)              |                              |                                       |
|                 | Minimum<br>SDEV          |                     |            |                      |                    |                              |                                       |
|                 |                          |                     |            |                      |                    |                              | x                                     |

| DATA SUMMARY              |  |
|---------------------------|--|
| Velocity, [fps]           |  |
| acfm -                    |  |
| scfm                      |  |
| dscfm                     |  |
| Ex Air Free cfm           |  |
| Est. MM Btu/hr Heat Input |  |
| Est. Firing Rate, lb/hr   |  |

B 0 ELEV. P,

N-3 Y=1.026 AH@=1.982 E-11=0.806 7/22K=0.214 K=1.67

ં સ્વી સંક્રે

. An i

|             |          |          |                      | 4         | 1                               |                             | i                  |         |                                                   |              |           |                     |                | Page    | of              |
|-------------|----------|----------|----------------------|-----------|---------------------------------|-----------------------------|--------------------|---------|---------------------------------------------------|--------------|-----------|---------------------|----------------|---------|-----------------|
| TEST ID     |          |          | ECON-                | 1         |                                 | METER BOX                   | N-1                | CAL. E  | DATA: delta H                                     |              | Comments: |                     |                |         |                 |
| PLANT       |          |          | CR/FGD PI            |           | PI                              | TOT TUBE DESC               |                    |         | Ŷ                                                 | 0.981        |           |                     |                |         | •••••           |
| LOCATION    |          |          |                      | Dutlet #2 | PRC                             | BE LENGTH [ff]              |                    |         | C(p)                                              |              |           |                     |                |         |                 |
| DATE        |          |          | 124/05               |           |                                 | IOZZLE ID [inch]            |                    | FILTER  | BOX SETTING                                       | 325          |           |                     |                |         |                 |
| OPERATOR(S) |          | - 6      | SLC/N                | 14        | 9                               | 6H <sub>2</sub> O (Assumed) |                    | PROBE   | HTR SETTING                                       | 325          |           |                     | n              |         |                 |
| AMBIENT TEM |          |          | 60                   | ~         |                                 | FILTER ID                   |                    |         | CT X-SECTION                                      | circ ?       | rect ?    | other:              |                |         |                 |
| BAR. PRESS. | [" Hg]   |          | 29.9                 | 2         | l                               | K FACTOR                    | 0-632              | DUCT    | DIMENSIONS                                        | 2@25'x14.5'  | DUCT AREA | 725 ft <sup>2</sup> | ]              |         |                 |
| TRAVERSE    | CLOCK    | SAMPLE   | STATIC               | PITOT     | METER DIFF                      | METER                       | METER              | METE    | R TEMP                                            | STACK        | PROBE     | FILTER              | LAST IMP       | METER E |                 |
| POINT       | TIME     | TIME     | PRES                 | HEAD      | PRESSURE                        | VACUUM                      | READING            |         | of ()                                             | TEMP _       | TEMP      | BOX                 | TEMP           |         | CO <sub>2</sub> |
| [port-inch] | (24-hr)  | [minute] | [" H <sub>2</sub> 0] | [" H₂0]   | [" H <sub>2</sub> 0]            | (" Hg)                      | [ft <sup>3</sup> ] | inlet   | outlet                                            | [°F] ()      | [°F]      | [°F]                | [°F](4)        | [% vol] | [% vol]         |
|             | 1130     | 0        |                      |           |                                 |                             | 739.10             |         |                                                   |              | <u> </u>  |                     |                | 4.3.    | 15.1            |
| N<br>O      | <i>í</i> | 10       |                      | 0.60      | 0.38                            | 3.0                         | 142.46             | 63      | 60                                                | 671          | 325       | <i></i>             | 49             | CB*     | @01             |
| 0           | _ ¥      | 20       | -4,50                | 0.60      | 0,38                            | 3.0                         | 745.81             | 66      | 62                                                | .674         | 320       | 1                   | 49             | 4.2     | 15,8            |
| R           |          | 30       |                      | 0.60      | 0.38                            | 3.5                         | 749.18             | 69      | 64                                                | 675          | 320       |                     | 51             | 4,2     | 15;8            |
| T           |          | 40       | -4.20                | 0.60      | 0,38                            | 4,0                         | 752.56             | 71      | 65                                                | 675          | 320       |                     | 52             | 4.3     | 15.7            |
| <u> </u>    |          | 50       |                      | 0.60      | 0.38                            | 4.0                         | 755,93             | 73      | . 67                                              | 677          | 323       |                     | 53             | 4.2     | 15,8            |
|             |          | 60       |                      | 0.60      | 0.38                            | 4,5                         | 759,33             | 74      | 69                                                | 679          | 323       |                     | 53             | 4,3     | 15,7            |
|             |          |          |                      | POST N    | BRT1+                           | EAK C                       | HELK OF            | < - C   | @ 10                                              | ~ 1/g        |           |                     |                |         |                 |
|             |          |          |                      |           |                                 | <b>_</b>                    | β.                 |         |                                                   | 7            |           |                     |                |         |                 |
|             | 1241     |          | ÷                    |           |                                 |                             | 759.45             |         |                                                   |              |           |                     |                |         |                 |
| 5           |          | 70       |                      | 0.65      | 0.41                            | 4.5                         | 762.94             | 75      | 71                                                | 685          | 327       |                     | 55             | 3.1     | 16.9            |
| -0          |          | 80       | -458                 | 0,70      | 0.44                            | 5,0                         | 760.50             | .77     | 72                                                | 688          | 323       |                     | 54             | 3.0     | 16,9            |
| <u> </u>    |          | 90       |                      | 0.70      | 0.44                            | 6,0                         | 770.22             | 78      | 73                                                | .687         | 322       |                     | 56             | 2.8     | 171             |
| T           |          | 100      | -443                 | \$,70     | 0,44                            | 6.5                         | 113,86             | 79      | 74                                                | 689          | 318       |                     | 56             | 2.9     | 17.0            |
| H           |          | 110      |                      | 0.70      | 0,44                            | 7.0                         | 777.51             | 79      | 14 .                                              | 689          | 327       |                     | 5%             | 3.0     | 17.0            |
|             |          | 120      |                      | 0.72      | 0.45                            | 6.0                         | .781.14            | 80      | 75                                                | 690          | 322       |                     | 57             | 30      | 17.0            |
|             |          |          |                      |           |                                 |                             |                    |         |                                                   |              |           |                     |                |         |                 |
|             |          |          |                      |           |                                 |                             |                    |         |                                                   |              | :         | )                   | 1              |         |                 |
| 1 C S       |          |          |                      |           |                                 |                             |                    |         |                                                   |              | 1.        |                     |                |         |                 |
|             |          |          |                      |           |                                 | ·                           |                    | <b></b> |                                                   |              | ·         |                     |                |         |                 |
| AVERAGE     |          |          | -4.4                 | 0.647     | 0.408                           |                             | 41.92              | 71.     | 3                                                 | 681.6        | ·         |                     |                | 3.6     | 16.7            |
|             |          | Sa       | mple Train           | Pre Test  | $\underline{0}$ ft <sup>3</sup> |                             | n. Hg              |         |                                                   | Pitot Tube   | PreTest   | <u>0</u> @          | in. ł          |         |                 |
|             |          | Lea      | ak Checks:           | Post Test | <u>0</u> ft <sup>3</sup>        | @ _ <b>_//</b> ir           | n. Hg              |         | \$1, <u>1</u> ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, | Leak Checks: | Post Test | <u> </u>            | <u>5</u> in. ł | l₂O     |                 |

CONSOLENERGY

- 4 6 708

a - 10 - 2 - 2 - 2

· · · ·

| TEST ID     |                  |                 | AHO-                 | 1                    | ]                                |                             | 74                           | 1           |                     |             | ٦         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | Page 🧾           | of \                                     |
|-------------|------------------|-----------------|----------------------|----------------------|----------------------------------|-----------------------------|------------------------------|-------------|---------------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|------------------------------------------|
| PLANT       | ٠                |                 | CR/FGD PI            |                      |                                  | METER BOX                   | >                            | CAL. I      | DATA: delta H<br>Y  | 2.015       | Comments  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                  |                                          |
| LOCATION    | -                | <u> </u>        |                      | /ESP Inlet           | .L.                              | OBE LENGTH [ft]             | 10                           |             | •                   |             | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
| DATE        |                  |                 | 24.05                |                      | -                                | NOZZLE ID [inch]            |                              |             | C(p)<br>BOX SETTING | 205         | -         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                  |                                          |
| OPERATOR(S  | 5)               |                 | LR D                 |                      | 7                                | %H <sub>2</sub> O (Assumed) |                              |             | HTR SETTING         | }           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
| AMBIENT TEN | MP [°F]          | 42              |                      |                      |                                  | FILTER ID                   |                              |             | CT X-SECTION        |             | rect ?    | other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1                |                                          |
| BAR. PRESS. |                  | 29.0            | 72                   |                      | 1                                | K FACTOR                    |                              |             | DIMENSIONS          |             | DUCT AREA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 1                |                                          |
|             |                  |                 |                      |                      | <b>_</b>                         |                             |                              |             |                     | ·           |           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _]       |                  |                                          |
| TRAVERSE    | CLOCK            | SAMPLE          | STATIC               | PITOT                | METER DIFF                       | METER                       | METER                        | METE        | R TEMP              | STACK       | PROBE     | FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LAST IMP | METER            | EXHAUST                                  |
| POINT       | TIME             | TIME            | PRES                 | HEAD                 | PRESSURE                         | VACUUM                      | READING                      |             | oF]                 | TEMP        | TEMP      | BOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEMP     | Oz               | CO2                                      |
| [port-inch] | (24-hr)<br>11:30 | [minute]<br>0   | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]             | [" Hg]                      | [ft <sup>3</sup> ]<br>31.765 | īnlet       | outlet              | [°F]        | [°F]      | [°F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [°F]     | [% vol]          | [% vol]                                  |
| D-1         | 1                |                 |                      | - 11-                |                                  | -                           |                              |             | ~ 2                 | 1           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.       | <u>1</u>         | 1                                        |
|             | 11:40            | 10              |                      | .0:45                | 0 0                              | 2.0                         | 35,060                       | 51/         | 58                  | -265        | 246       | 1.JA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46       |                  |                                          |
| D-1         | 11:50            | 20              |                      | 0.44                 | 0.39                             | 2.0                         | 38,320                       | ک ک         | 58                  | .246        | .248      | a and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43       | 6.3              | 13-8                                     |
| <u>n-1</u>  | 12:00            | 30              | -                    | 6.44                 | 0.34                             | 2.0                         | 41.596                       | 55          | 59                  | 265         | 258-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44       | 6.3              | 13.8                                     |
|             |                  | 499             |                      | ,                    | :                                | lask de                     | - 0.00 4"                    | 1-1-2       |                     |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
|             | 12070            | ja<br>Bi        |                      |                      |                                  | ·····                       | . 41.800                     | Ű           |                     |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 1                |                                          |
| C-1         | 101217           | 20 4U           |                      | 0.60                 | 6.54                             | ZIS                         | 15                           | 53          | 59                  | - 279       | 303       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50       |                  |                                          |
| C-1         | 1227             | 50              | - (Z: <i>i</i> );    |                      | .0.52                            | 2.5                         | 49.29                        | 61          | 60 .                | 231         | 301       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46       | 4.7              | 15.22                                    |
| C·I         | 1237             | 60              | •                    | 0.53                 | 0.52                             | 25                          | 53.022.                      | 63          | 60 .                | 232         | 326       | a de la companya de la | 47       | 4.3 .            | 15.3                                     |
|             |                  |                 | .*                   |                      | 120                              | K clack O                   | 206 Hr                       |             |                     |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
|             | 12:5°            | 20              | ·                    |                      |                                  |                             | 53.150                       |             |                     |             | 1         | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
| 73-1        | 13:00            | 20 70           |                      | 0.70 -               | 0.63                             | 2.5                         | 57.23 .                      | EX          | 62                  | -299        | 313       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51       |                  |                                          |
| 73-1        | 1310             | ණිට්ට           | -13.15               | 0.70                 | 7.63                             | 3.0                         | 61.31 .                      | 65          | 63 .                | 299         | 320       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46       | 4.4 -            | 15.7                                     |
| 13 - 1      | (320             | ( <b>1</b> 983) | -                    | 0.67                 | 0.60                             | 3.5                         | 65300.                       | 657         | 65.                 | 299         | 325       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46       | 4.4 -            | 15.7                                     |
|             |                  | 140             | -                    |                      | leak                             | check of                    | e @7"1-6                     |             |                     |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
|             | 1329             | -125            |                      |                      |                                  |                             | 65.400                       | \<br>\<br>\ |                     |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  |                                          |
| A-1         | 1339             | 120             | •                    | 0.43                 | 0:39                             | 2.0                         | 63.67 .                      | 66          | -67                 | . 7.91      | 326       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55       |                  |                                          |
| A-1         | 1349             | 110             | - 12.95              | .0.40                | 0.36                             | 2.0                         | 71.86                        | G           | 63 .                | 302         | 324       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52       | 5.0              | 15.1                                     |
| A-1         | 1359             | 126             |                      | 0.40                 | 0.346                            | Z.0 .                       | 75.052.                      | -72         | 71                  | 30 i        | 323       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53       | 4.3              | 15.3                                     |
|             |                  |                 |                      |                      |                                  |                             |                              |             |                     |             | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | <u> </u>         | 1                                        |
| AVERAGE     |                  |                 | -12.97               | 0.527                | 0.478                            |                             | 42.855                       | 62.         | . 4                 | Z85, 8      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> | 5.1              | 14.15.0                                  |
| <b>.</b>    | 23               | 1               | mple Train           | Pre Test             | <u>ට,උ</u> ුුුටා ft <sup>3</sup> |                             | ı. Hg                        |             |                     | Pitot Tube  | e PreTes  | t <u>54</u> @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> | H <sub>2</sub> O | i fa |
|             |                  | Lea             | ak Checks:           | Post Test            | <u>0.000</u> ft <sup>3</sup>     | @_ <u>5_</u> ir             | n. Hg                        |             |                     | Leak Checks |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,        | H <sub>2</sub> O |                                          |

CONSOLENERGY

29.92

N

5

NOTE: Purge for 10 minutes at end of sampling.

1

s a brunk

A > A > 1 = 1

|                   |              | _Ur       | NT i                | み                    | 13 N                   |                                       |                            |        |                                                 |                                              |              |                   |                | Page /         | of/           |             |
|-------------------|--------------|-----------|---------------------|----------------------|------------------------|---------------------------------------|----------------------------|--------|-------------------------------------------------|----------------------------------------------|--------------|-------------------|----------------|----------------|---------------|-------------|
| TEST ID           | · ·          |           | FGD-                | 1                    |                        | METER BOX                             | N-4                        | CAL.   | DATA: delta H                                   | 1.583                                        | Comments:    |                   |                |                |               | •           |
| PLANT             |              |           | SCR/FGD P           | lant 4               | ] рі                   | TOT TUBE DESC                         | 5-54                       |        | Ŷ                                               | 0.960                                        | 1            | · · ·             |                |                |               | -           |
| LOCATION          |              |           | FGD Ini             |                      |                        | OBE LENGTH [ft]                       | 6                          | 1      | C(p)                                            | 9,807                                        | 1.           | •,                |                |                |               | -           |
| DATE              |              | 1         | 12410               | 5                    | <b>۱</b>               | OZZLE ID [inch]                       | \$ 3/16                    | FILTER | BOX SETTING                                     |                                              | 1            |                   |                |                |               | -           |
| OPERATOR(         | •            | <u> </u>  | mi                  |                      |                        | %H₂O (Assumed)                        | 7.5                        | PROBE  | HTR SETTING                                     |                                              | 1            |                   |                |                |               | -           |
| AMBIENT TEI       |              |           | 53                  |                      |                        | FILTER ID                             | 1                          | עס     | CT X-SECTION                                    | circ ?                                       | rect ?       | other:            |                | ]              |               |             |
| BAR. PRESS.       | [" Hg]       |           | 29.9                | 2                    |                        | K FACTOR                              |                            | DUC    | T DIMENSIONS                                    |                                              | DUCT AREA    |                   | 1              | 4              | Ozen<br>Cali  | ्र          |
| TRUCTOR           |              |           |                     |                      | , <b></b>              |                                       | 1,03(5)                    | _      |                                                 |                                              | -            | · · · · ·         | -              |                | Ch (1)<br>(42 | · fe        |
| TRAVERSE<br>POINT |              | SAMPLE    | STATIC              | PITOT<br>HEAD        | METER DIFF<br>PRESSURE | METER<br>VACUUM                       | METER                      |        |                                                 | STACK                                        | PROBE        | FILTER            | LAST IMP       |                | EXHAUST       | ] d         |
| [port-inch]       | (24-hr)      | [minute]  | ["H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]   |                                       | READING [ft <sup>2</sup> ] |        | [0F]                                            | TEMP                                         | TEMP         | BOX               | TEMP           | O <sub>2</sub> | CO2           |             |
|                   | 11:30        | 0         | L 1.201             | 1 1 11201            | L 1120]                | [" Hg]                                | 238,10                     | inlet  | outlet                                          | [°F]                                         | [°F]         | [ <sup>°</sup> F] | [°F]           | [% vol]        | [% vol]       |             |
| North             | 11:40        | 10        | 8.6                 | 0.86                 | 0.73                   | 3.0                                   | 1                          | 17     | 1                                               | · · · · · · · · · · · · · · · · · · ·        |              |                   |                |                |               |             |
|                   |              |           | 6.5                 | 0.00                 |                        |                                       | 242.81                     | 63     | 56                                              | 285                                          | 323          | 326               | 51             | 6.0            | 14.1          | 4           |
|                   | 11:50        | 20        | - (                 | 1                    | 0.773                  | 3.0                                   | 247.50                     | 69     | 58                                              |                                              | -315         | 326               | 49             | 6.0            | 14.1          |             |
| ļ                 | 12:00        | 30        |                     |                      |                        | 3,0                                   | 257.21                     | 73     | 60                                              |                                              | 325          | 326               | 50             | 4.0            | 14.1          | 21,0<br>CUT |
| - Alton           | 12:10        | 40        |                     | /                    |                        | 3.0                                   | +56.89                     | 74     | 63                                              | 7                                            | 324          | 325               | 51             | 6.0            | 14.1          | 100         |
|                   | 12.20        | 50        |                     |                      | 2                      | 3.0                                   | 261.60                     | フク     | 65                                              | (                                            | 325          | 325               | 52             | 6.0            | 14.10         |             |
|                   | 12;30        | 60        |                     |                      | 7                      | 3.0                                   | 208-22                     | 78     | 66                                              |                                              | 324          | 326               | ラス             | 6.0            | 14.1          | 2il         |
| 19 N. 19          |              |           |                     |                      |                        |                                       | 28.12                      |        |                                                 | 1                                            |              | 0-0-05            | <u> </u>       | . 8-0          | 11-1 30       | Re al       |
| 111.<br>12        |              | già da la |                     |                      |                        |                                       |                            |        |                                                 |                                              |              |                   | 1              |                |               | 1           |
| and a second      | 12:45        |           |                     |                      |                        | · · · · · · · · · · · · · · · · · · · | 266.50                     |        |                                                 |                                              |              |                   |                |                |               |             |
| Sonth             | 12:55        | 70        | 8.5                 | 1.15                 | 1,20                   | 3.0                                   | \$72,58                    | ファ     | 68                                              | 153                                          | 379          | 3.(               | .50            |                | 14.8          | {           |
|                   | 13:05        | 80        | 612                 | i (-1 <u>-</u> )     | <u> </u>               | 3.0                                   | 778,59                     |        |                                                 | [55]                                         | 323          | 326               |                | 5.2            |               | -           |
|                   | 13:15        | 90        | /                   |                      |                        | 3,0<br>3,0                            | 284.57                     | 81     | 69                                              | 1                                            |              | 375               | 76             | 5.2            | 14.8          | J.,         |
| 1 <sup>11</sup>   | 13:25        |           | <u> </u>            |                      |                        |                                       |                            | 83     | 69                                              | <u>    (                                </u> | 326          | 325               | 47             | 5.2            | 14.8          | 21.0        |
|                   |              | 100       |                     | 1                    |                        | 3.0                                   | 290.52                     | 85     | 71                                              |                                              | 327          | 325               | 47             | 5.2            | 148           |             |
|                   | 13:35        | 110       |                     | <u> </u>             |                        | <u>3</u> .0                           | 296.56                     | 86     | 72                                              |                                              | 324          | 325               | 47             | 5,2            | 14.8          |             |
|                   | 13:45        | 120       |                     | 1                    | /*                     | 30                                    | 302.56                     | 86     | 73                                              | <u> </u>                                     | 325          | 325               | 48             | 5,2            | 14,5          | 208<br>0K   |
|                   |              |           |                     |                      |                        |                                       | 36.06                      |        |                                                 |                                              |              |                   |                |                |               | CR          |
| ·                 |              |           |                     |                      |                        |                                       |                            |        |                                                 |                                              | :            |                   |                | ,              |               | 1           |
|                   |              |           |                     |                      |                        |                                       |                            |        |                                                 |                                              | ·. ·         | ·                 |                |                | 1             | 1           |
|                   |              |           |                     | ms                   |                        |                                       |                            |        |                                                 |                                              |              |                   |                |                |               | 1           |
| AVERAGE           |              |           | 8.5                 | 1.00                 | 0,965                  |                                       | 64,18                      |        | 71.8                                            | 219                                          |              |                   | 1              | 5.6            | 14.45         | +           |
|                   |              | Sa        | mple Train          | Pre Test             | druge , ft3 (          | @12in                                 |                            |        |                                                 | Pitot Tube                                   | DraTect      | NA @              | lin            | <u></u><br>H₂O |               |             |
|                   |              | Lea       | ak Checks:          | Post Test            | lead shorts (          | @ <u>i</u> -@in                       | -                          |        |                                                 | Leak Checks:                                 |              |                   |                | H₂O<br>H₂O /   |               |             |
|                   | ONSOI ENEDOV |           |                     |                      |                        |                                       | <u> </u>                   |        | <u>kanan na sana sana sana sana sana sana s</u> |                                              | 100000000000 | <u></u>           |                |                |               |             |
|                   |              | 10570     | rej                 | ar pur               | ye ton                 | 10 4                                  | 0014-11                    | . 0    |                                                 |                                              |              | NOTE              | : Purge for 10 | minutes at en  | d of sampling |             |

< un

։ հեենե

(S#U) (I

Aile i

|    |             |         |          |                      |                      |                      |                             | ·····              |          |                                               |              |           |                        |             | Page                     | of              |
|----|-------------|---------|----------|----------------------|----------------------|----------------------|-----------------------------|--------------------|----------|-----------------------------------------------|--------------|-----------|------------------------|-------------|--------------------------|-----------------|
| :  | TEST ID     |         |          | STK -                | 2 TES                | 1#1                  | METER BOX                   | N-3                | CAL. D   | ATA: delta H                                  |              | Comments: |                        |             |                          |                 |
| :  | PLANT       |         | s        | CR/FGD PI            | ant 4                | PI                   | TOT TUBE DESC               |                    |          | Y                                             | 1.026        |           |                        |             |                          |                 |
| •  | LOCATION    |         |          | Stack                |                      | PRO                  | DBE LENGTH [ft]             | 108                |          | C(p)                                          |              |           |                        |             |                          |                 |
|    | DATE        |         |          | <u></u>              |                      |                      | IOZZLE ID [inch]            |                    | FILTER I | BOX SETTING                                   | 325          |           |                        |             |                          |                 |
|    | OPERATOR(S  | ,       | L_1.     |                      | <u> <u></u></u>      | 9                    | 6H <sub>2</sub> O (Assumed) |                    | PROBE    | HTR SETTING                                   | 250          |           |                        |             | I                        |                 |
|    | AMBIENT TEN |         | ~        | + 6 C                |                      |                      | FILTER ID                   |                    |          | T X-SECTION                                   | circ ?       | rect?     | other:                 |             | l                        |                 |
|    | BAR. PRESS. | [" Hg]  |          | <u>9 - 9 C</u>       | )                    |                      | K FACTOR                    | 1.59               |          | DIMENSIONS                                    |              |           | 283.53 ft <sup>2</sup> |             |                          |                 |
|    | TRAVERSE    | CLOCK   | SAMPLE   | STATIC               | ΡΙΤΟΤ                | METER DIFF           | METER                       | METER              |          |                                               | STACK        | PROBE     |                        |             | METER E                  | THALIST         |
|    | POINT       | TIME    | TIME     | PRES                 | HEAD                 | PRESSURE             | VACUUM                      | READING            |          | F]                                            | TEMP         | TEMP      | BOX                    | TEMP        | 0 <sub>2</sub>           | CO <sub>2</sub> |
|    | [port-inch] | (24-hr) | [minute] | [" H <sub>2</sub> 0] | [" H <sub>z</sub> 0] | [" H <sub>2</sub> 0] | [" Hg]                      | [ft <sup>3</sup> ] | inlet    | outlet                                        | [°F]         | [°F]      | [°F]                   | [°F]        | [% vol]                  | [% vol]         |
| :  |             | 1130    | 0        |                      |                      |                      |                             | 808.30             |          |                                               |              |           |                        |             |                          |                 |
|    | -10.00      |         | 10       |                      | 570                  | 1.10                 | 3.5                         | 813.79             | 69       | حاحا                                          | 127          | 253       | 328                    | 49          | 5.9                      | 14.2            |
|    | -33.33      |         |          | :5832                | 1.00                 | .1.59                | ナンい                         | 820.27             | ・フト・     | 5                                             | 127          | 257       | 331                    | らん          | 5.9                      | 14.2            |
| D  | -67.50      |         | 30       |                      | 1,05                 | 1.67                 | న                           | 826.92             | 77       | 500                                           | 125          | ጉሪጋ       | 33)                    | 57          | 5.9                      | 14.2            |
|    |             |         |          |                      |                      |                      |                             |                    |          |                                               |              |           |                        |             |                          |                 |
|    |             |         |          |                      | L.C.                 | RESTR                | IRT                         | 827.03             |          |                                               |              |           |                        |             |                          |                 |
| :  | -10.00      |         | 40       |                      | 07.                  | 1.10                 | 2.5                         | 832.51             | 76       | 6                                             | 125          | 226       | 320                    | 5           | 6.0                      | 14.1            |
| c  | -33.33      |         | 50 ~     | .7267                | 1.00                 | .1.59                | 4.5                         | 839.02             | 78       | 20                                            | 125          | 235       | 325                    | 47          | 5.9                      | 14.2            |
|    | -67.50      |         | 60       |                      | -1.05                | 1.67                 | 5                           | 845.76             | 80       |                                               | 124          | 256       | 331                    | 49          | 5.8                      | 14.3            |
|    |             |         |          |                      | ~                    |                      | ~                           | <u></u>            |          | <u>, , , , , , , , , , , , , , , , , , , </u> |              | <u> </u>  |                        | <u> </u>    |                          |                 |
| -  |             |         |          |                      | L.C.                 | RESTI                | ART                         | .845.90            |          |                                               |              |           |                        |             |                          |                 |
| 1  | -10.00      |         | 70       |                      | 73                   | 1.15                 | 3.5                         | 851.48             | ۶۲       | フス                                            | 125          | 226       | 325                    | 49          | 6.0                      | 14.1            |
|    | -33.33      |         | 80 ~     | .6246                |                      | 1.67                 | <u>ہ</u>                    | 858.02             | . 81     | 22                                            | 125          | 220       | 330                    | 5           | 5.8                      | 14.3            |
| ß  | -67.50      |         |          | <u>, an io</u>       | 1.10                 | 1.74                 | $\overline{\langle}$        | 865.05             | - 82     | 54                                            | 124          | 256       | 332                    | 57          | 5.8                      |                 |
|    | -01.50      |         | 90       |                      | 1.10                 |                      | <u>~</u> ~                  | 600.00             | 85       |                                               |              | 120       | 222                    | 2 F         | $  \Delta \cdot \Delta $ | 14.3            |
| i. |             |         |          |                      | 1                    | OFST                 |                             | 21 210             |          |                                               |              |           |                        |             |                          |                 |
|    |             |         |          |                      | L.C.                 | REST                 | 3.5                         | 865.15             |          | 211                                           |              | > < >     | 220                    | <u> </u>    |                          |                 |
| •  | -10.00      |         | 100      | 55.33                | 10                   |                      | <u> </u>                    | 870.68             | 80       |                                               | 124          | 253       | 329                    | 52          | 6.0                      | 14.1            |
| A  | -33.33      |         | 110 -    | .5543                | 1.00                 |                      | <u>_ స</u>                  | 877.21             | 81       | 74                                            | 124          | 252       | 329                    | 54          | 5.9                      | 14.2            |
| :  | -67.50      | 12115   | 120      |                      | 1.10                 | 1.74                 | 5                           | 884.05             | 83       | 75                                            | 124          | 254       | 331                    | 58          | 5.8                      | 14.3            |
|    |             | 1345    | <br>     | [                    |                      |                      |                             |                    |          |                                               |              |           |                        |             |                          | ļ               |
|    | AVERAGE     |         |          | -0.62                | 0.924                | 1.48                 |                             | 75.400             | 74.      | 7                                             | 124.9        |           |                        |             | 5.9                      | 14.2            |
|    | <b>r</b>    | <b></b> |          | mple Train           |                      |                      |                             |                    |          |                                               | Pitot Tube   | PreTest   | <u>0K@</u>             | <u> </u>    | H₂O                      |                 |
|    |             |         | Le       | ak Checks:           | Post Test            | $\circ$ $ft^3$       | @ ii                        | n. Hg<br>          |          | <u>1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:</u> | Leak Checks: | Post Test | <u> </u>               | <u></u> in. | H <sub>2</sub> O         |                 |

CONSOL ENERGY.

1 . A

ئلاتىلىق. ن

ى الدىلىغانغا تە ب

an in

.t. *i*i

|                                                                                                                 |         | r        |                      | <u>ANNA -</u>                                                                                                          | 7                      |                             |                    | -      |                  |                        |             |                     |                | Page             | of              |
|-----------------------------------------------------------------------------------------------------------------|---------|----------|----------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|--------------------|--------|------------------|------------------------|-------------|---------------------|----------------|------------------|-----------------|
| TEST ID                                                                                                         |         |          | ECON-                |                                                                                                                        |                        | METER BOX                   |                    | CAL. I | DATA: delta H    | 1,976                  | Comments:   |                     |                |                  |                 |
| PLANT                                                                                                           |         | s        | CR/FGD PI            | ant 4 📲 🖉                                                                                                              | Pi                     | TOT TUBE DESC               |                    | Ð      | Ŷ                | 0.987                  |             |                     |                |                  |                 |
| LOCATION                                                                                                        |         | E        | conomizer (          |                                                                                                                        |                        | DBE LENGTH [ft]             |                    |        | C(p)             |                        |             |                     |                |                  |                 |
| DATE                                                                                                            |         | L        | 1/25/                | 05                                                                                                                     | , N                    | OZZLE ID [inch]             | 3/16 0.191         | FILTER | BOX SETTING      | 325                    |             |                     |                |                  |                 |
| OPERATOR(S                                                                                                      | •       | 6        | E/m                  | LF                                                                                                                     | 9                      | %H <sub>2</sub> O (Assumed) |                    | PROBE  | HTR SETTING      | 325                    |             |                     |                |                  |                 |
| AMBIENT TEM                                                                                                     |         |          | 75                   |                                                                                                                        | -                      | FILTER ID                   |                    | טעס    | CT X-SECTION     | circ ?                 | rect ?      | other:              |                |                  |                 |
| BAR. PRESS.                                                                                                     | (" Hg]  |          | 29.19                |                                                                                                                        | 1                      | K FACTOR                    | 0.632              | רסטס   | DIMENSIONS       | <u>2@25'x14.5'</u>     | DUCT AREA   | 725 ft <sup>2</sup> |                |                  |                 |
| TRAVERSE                                                                                                        | CLOCK   | SAMPLE   | STATIC               | РІТОТ                                                                                                                  |                        | ····                        | <u> </u>           | r      |                  |                        |             |                     |                |                  |                 |
| POINT                                                                                                           | TIME    |          | PRES                 | HEAD                                                                                                                   | METER DIFF<br>PRESSURE | METER<br>VACUUM             | METER<br>READING   |        |                  | STACK<br>TEMP A        |             | FILTER<br>BOX       | LAST IMP       |                  | EXHAUST         |
| [port-inch]                                                                                                     | (24-hr) | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]                                                                                                   | [" H <sub>2</sub> 0]   | [" Hg]                      | [ft <sup>3</sup> ] | inlet  | outlet           |                        | [°F]        | [°F]                |                | O <sub>z</sub> ( | CO <sub>2</sub> |
|                                                                                                                 | 902     | 0        |                      |                                                                                                                        |                        | L 51                        | 793.90             |        | Outiet           |                        | r.1         |                     |                |                  | [% vol]         |
|                                                                                                                 |         | 10       |                      | 0,66                                                                                                                   | 0,42                   | 3.0                         | 797,46             | 70     | 66               | 673                    | 324         | · · ·               | 68             | 3,5              | 16.5            |
| AD                                                                                                              |         | 20       | -4,47                |                                                                                                                        | 0.41                   | 3.0                         | 800.95             |        | 66               |                        |             |                     |                |                  | 1               |
| 10                                                                                                              |         | -        |                      | 0.62                                                                                                                   |                        |                             |                    | 72     |                  | 675                    | 326         | <u>}_</u>           | 67             | 3.6              | 16.4            |
|                                                                                                                 |         | 30       | 1                    |                                                                                                                        | 0,40                   | 3.5                         | 864.40             | 73     | 68               | 676                    | 318         |                     | 64             | 3,6              | 16.4            |
|                                                                                                                 |         | 40       | -4.65                | 1.62                                                                                                                   | 0,40                   | 4.0                         | 807.89             | 74     | GB               | 676                    | 328         |                     | 62             | 3.7              | 16.3            |
| <u></u>                                                                                                         |         | 50       |                      | 0.62                                                                                                                   | 0,40                   | 4.5                         | 811.35             | 74     | 69               | 676                    | 318         |                     | 6              | 3.6              | 16.4            |
|                                                                                                                 |         | 60       |                      | 0.62                                                                                                                   | OAO                    | 5.0                         | -814,84            | 75     | 70               | 676                    | 320         |                     | 61             | 3.6              | 16.4            |
|                                                                                                                 |         |          |                      |                                                                                                                        |                        |                             |                    | u-v    |                  |                        | 10"H        |                     |                |                  |                 |
|                                                                                                                 |         |          | POST                 | -5 <del>224</del> 5                                                                                                    | 1 PRE-T                | NORTH                       | LEAR C             | ncore  | or-              | - <del>- 0</del>       | 10 19       |                     |                |                  |                 |
| in the second | 1009    |          |                      |                                                                                                                        |                        |                             | 815,00             |        |                  |                        |             |                     |                |                  |                 |
|                                                                                                                 |         | 70       |                      | 0.50                                                                                                                   | 0,32                   | 3,0                         | 818.16             | 76     | 72               | 669                    | 318         |                     | 62             | 4.5              | 15.6            |
| D                                                                                                               |         | 80 *     | -4.72                | 0,50                                                                                                                   | 0.32                   | 3,5                         | 821.29             | 77     | 72               | 671                    | 324         | <u>}</u>            | 60             | 4.6              | 15,5            |
| R                                                                                                               |         | 90       |                      | 0.50                                                                                                                   | 0.32                   | 4.0                         | 824.44             | 78     | 73               | 672                    | 321         | <u> </u>            | <del>;</del>   |                  |                 |
| -                                                                                                               |         | ·        | - 4.54               | 0.50                                                                                                                   | 0.32                   |                             |                    | 79     |                  |                        |             |                     | 60             | 4.5              | 15.6            |
| H                                                                                                               |         | 100      |                      |                                                                                                                        |                        | 4.0                         | 827.60             |        | 74               | 670                    | 318         | ·                   | 60             | 4.5              | 15.6            |
| - <del>1.</del>                                                                                                 |         | 110      |                      | 0.50                                                                                                                   | 0.32                   | 4.5                         | 830,76             | 80     | 75               | 671                    | 320         |                     | 59             | 4.5              | 15,5            |
|                                                                                                                 |         | 120      |                      | 0,50                                                                                                                   | 0,32                   | 5,0                         | 833.92             | 80     | 75               | 671                    | 321         |                     | 59             | 4.6              | 15.5            |
|                                                                                                                 |         |          |                      |                                                                                                                        |                        |                             |                    |        |                  |                        |             |                     |                |                  |                 |
| · .                                                                                                             |         |          |                      |                                                                                                                        |                        |                             |                    |        |                  |                        | :           | )                   |                |                  |                 |
|                                                                                                                 |         |          |                      |                                                                                                                        |                        |                             |                    |        |                  |                        |             |                     |                |                  |                 |
|                                                                                                                 |         |          |                      |                                                                                                                        |                        |                             |                    |        |                  |                        |             |                     |                |                  |                 |
| AVERAGE                                                                                                         |         | -        | 4.00                 | 0.564                                                                                                                  | 0.363                  |                             | 39.86              | 73     | . Z.             | 673                    |             |                     | I              | 41               | 160             |
| ·                                                                                                               |         | Sai      | mple Train           | Pre Test                                                                                                               |                        | @ <b> O</b> ir              | n. Hg              |        | I                | Pitot Tube             | PreTest     | 0 @                 | <u> </u>       | ( 1 /            |                 |
|                                                                                                                 | -       | Lea      | k Checks:            | Post Test                                                                                                              | ft <sup>3</sup> (      | @ir                         |                    |        |                  | Leak Checks:           | Post Test   |                     | <u>6</u> in. F | -                |                 |
| CONSOLE                                                                                                         | Nepay   | <u></u>  |                      | <u>(1999): 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1997; 1</u> |                        | *****                       | <u></u>            |        | <u>1997-1998</u> | Alexandra and a second | in our rest |                     |                |                  |                 |

NOTE: Purge for 10 minutes at end of sampling.

غلائل تحتا

. الثابطية≼ية

ب نىشد.

|             |         |              |                      |                      |                         |                   |                    |             |              |             |            |                       |          | Page             | of       |
|-------------|---------|--------------|----------------------|----------------------|-------------------------|-------------------|--------------------|-------------|--------------|-------------|------------|-----------------------|----------|------------------|----------|
| TEST ID     | i.      |              | AHO-                 | ĩ                    |                         | METER BOX         | N.5                |             | ATA: delta H | 2.215       | Comments:  |                       |          |                  | <u>_</u> |
| PLANT       |         | 5            | CR/FGD PI            | ant 4                | Pľ                      | TOT TUBE DESC     |                    |             | Y            | 1011        | 4          |                       |          |                  |          |
| LOCATION    |         |              |                      | ESP Inlet            | Z PRC                   | DBE LENGTH [ft]   |                    | -           | C(p)         |             |            |                       |          |                  |          |
| DATE        |         |              | 5-17                 |                      |                         | OZZLE ID [inch]   | <u> </u>           | 1           | BOX SETTING  | 325         | -          |                       |          |                  |          |
| OPERATOR(S  |         | JL           | LK L                 | 10                   | 9                       | 6H2O (Assumed)    |                    | 1           | HTR SETTING  | 325         |            |                       |          | ٦                |          |
| AMBIENT TE  |         | 29.          | 77                   |                      |                         | FILTER ID         |                    | -           | CT X-SECTION | circ ?      | rect ?     | other:                |          | ]                |          |
| BAR. PRESS. | . [ˈhɡ] |              | 14                   |                      |                         | к ғастор          | 1. 10              |             | DIMENSIONS   |             | JUUCI AREA |                       |          |                  |          |
| TRAVERSE    | CLOCK   | SAMPLE       | STATIC               | PITOT                | METER DIFF              | METER             | METER              | METE        | R TEMP       | STACK       | PROBE      | FILTER                | LAST IMP | METER            | EXHAUST  |
| POINT       | ТІМЕ    | TIME         | PRES                 | HEAD                 | PRESSURE                | VACUUM            | READING            | [(          | »F]          | TEMP        | TEMP       | вох                   | ТЕМР     | 0 <sub>2</sub>   | COz      |
| [port-inch] | (24-hr) | [minute]     | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H₂0]                 | [" Hg]            | [ff <sup>3</sup> ] | inlet       | outlet       | [°F]        | [°F]       | [°F]                  | [°F]     | [% vol]          | [% vol]  |
| 1 1         | 0900    | 0            |                      |                      | <i></i>                 | -                 | · 3/1.150          |             | $\sim$       | 201         | 700        |                       | 1.77     |                  |          |
| 4.1         | 0915    | 10           |                      | 0.59                 | 0.53                    | 2.0               | 84.99              | 51          | .52          | . 235       | 302        | NA                    | 41       | .5,5             | 14.7     |
| A-1         | 0920    | 20           | - 13.13              | 0.57                 | 0:53                    | 2.0               | 89.66              | 54          | 53           | 29B         | .234       |                       | 40       | #5.4             | 14.7     |
| A-1         | 0930    | 30           |                      | 0.59                 | 2.53                    | Ζ.Ο               | 92.400             | 56          | 55           | 296         | 234        |                       | 40       | 5.4              | 14.7     |
|             |         | æ            |                      |                      |                         | leck chen         | KOKES"             | 419         |              |             |            | -                     |          |                  |          |
|             | 0935    | 5 <b>7</b> 2 |                      |                      |                         |                   | 42.500             | 0           |              |             |            |                       |          |                  |          |
| 13-1        | 0945    | et 1         |                      | 0.59                 | 3.53                    | Z.J               | 76                 | 55          | 56           | 235         | 300        |                       | 44       |                  |          |
| B-1         | 0955    | 57           | \$ 13.50             |                      | 0.53                    | 25                | 49.93              | 53          | 57           | 294         | 311        |                       | 41       | 4.6              | 15.5     |
| 13-1        | 1005    | 63           |                      | 059                  | 0.53                    | Z.5 .             | 103.653            | 65 .        | 53           | 294         | 304        | 4<br>0<br>0<br>0<br>0 | 42       | 4.6              | 15.5     |
|             |         |              |                      | -                    |                         |                   |                    |             |              |             |            |                       |          |                  |          |
|             | 1015    | 7,67         |                      |                      |                         | •.                | 103.740            |             |              |             |            | e navde m             |          |                  |          |
| C-1         | 1025    | 8077         |                      | 0.500                | 0.46                    | 2.5               | 107.29             | S.          | 60 .         | 270         | 302        |                       | 46       |                  |          |
| C-1         | 1035    | # m          | -13.00               | 0.50                 | 0.45                    | 2.5               | 110.765            | 61          | 61           | 276         | 369        | ere da Andrea         | 44       | 5.0              | 15.1     |
| C-1         | 1045    | 12090        |                      | 0.47                 | 3.42                    | 25                | 114.245            | 62          | 61           | 277         | 312        | - Printally Brow      | 44       | 4.9              | 15.Z     |
|             |         | *50          |                      |                      |                         | leck ded          | DECSIN             | H.          |              |             |            | - Aura Boureu         |          |                  |          |
|             | 1043    | 429          |                      |                      |                         | -                 | 114.310            |             |              |             |            |                       |          |                  |          |
| D-1         | 1053    | 100          |                      | 0.50                 | 0.455                   | Z.5               | 117.903            | GZ          | 61           | 255         | 317        |                       | 48       | 1                |          |
| D-1         | 1103    | 110          | -13.48               | 0.47                 | 0:47                    | 2.5               | 121.31             | 63          | 63           | Z63         | 319        |                       | 46       | 6.2.             | 14.0     |
| 5-1         | 1118    | 120          |                      | 0.47                 | 0.42                    | 2.5               | 124.714            | Get         | 63           | 264         | 314        |                       | 46       | 6.2              | 1410     |
|             |         |              |                      |                      |                         |                   |                    |             |              |             |            |                       |          | 5.3              |          |
| AVERAGE     | ·       |              | 13.30                | 0.538                | 0.483                   |                   | 43.317             | 5 <i>3.</i> | 5            | 279.6       |            |                       |          | 2.8              | 14,8     |
|             |         | Sa           | ample Train          |                      | C. 750 ft <sup>3</sup>  |                   | n. Hg              |             |              | Pitot Tub   | e PreTes   |                       | S in     | H₂O              |          |
|             |         | Le           | ak Checks            | Post Test            | <u></u> ft <sup>3</sup> | @_ <u>-4.5_</u> i | n. Hg              |             |              | Leak Checks | : Post Tes | t <u></u> @           | 7 in     | H <sub>2</sub> O |          |

CONSOLENERGY

and an an all

|             |          | WIT      | - 2                  | UN 14                |                      | RO Hg SAI                  |             | D SPEC | IATION F      | IELD DA     | IA SHEE    | - 1         |                 | Page /           | of /                     |
|-------------|----------|----------|----------------------|----------------------|----------------------|----------------------------|-------------|--------|---------------|-------------|------------|-------------|-----------------|------------------|--------------------------|
| TEST ID     |          | <u> </u> | FGD-                 | 2                    | ]                    | METER BOX                  | A14         | CAL    | DATA: delta H | 1983        | Comments:  |             |                 | . ugu <u>.</u>   |                          |
| PLANT       |          |          | SCR/FGD PI           |                      | Pi                   | TOT TUBE DESC              |             | UAL A  |               | 0,960       |            |             |                 |                  |                          |
| LOCATION    |          | <u> </u> | FGD Inle             |                      | 4                    | BE LENGTH [ft]             | 6           |        | С(р)          | 0.807       | •          |             |                 |                  |                          |
| DATE        |          | 11       | 25/05                |                      |                      |                            | 63/16 0,185 | FILTER | BOX SETTING   | 325         | -          |             |                 | •                | ·····                    |
| OPERATOR(S  | 5}       |          | -sw                  |                      |                      | H <sub>2</sub> O (Assumed) | 7.15        |        | HTR SETTING   | 325         |            | Without a l | -               |                  | 2 arr - 11 5 - 11 1 - 12 |
| AMBIENT TEN | VIP [°F] |          | 55                   |                      |                      | FILTER ID                  | 2           |        | CT X-SECTION  | circ.?      | rect ?     | other:      |                 |                  |                          |
| BAR. PRESS. |          | 29       | .79                  |                      |                      | K FACTOR                   | 2,826,756   |        | DIMENSIONS    |             | DUCT AREA  |             |                 |                  |                          |
|             |          |          | <u> </u>             |                      |                      |                            | (S) (N)     | )      |               |             | 3          | L           | 1               |                  |                          |
| TRAVERSE    | CLOCK    | SAMPLE   | STATIC               | PITOT                | METER DIFF           | METER                      | METER       | METE   | R TEMP        | STACK       | PROBE      | FILTER      | LAST IMP        | METER E          | XHAUST                   |
| POINT       | TIME     | TIME     | PRES                 | HEAD                 | PRESSURE             | VACUUM                     | READING.    |        | oF]           | TEMP        | TEMP       | BOX         | TEMP            | O <sub>2</sub>   | CO2                      |
| [port-inch] | (24-hr)  | [minute] | [" H <sub>z</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" Hg]                     | [ft³]       | inlet  | outlet        | [°F]        | [°F]       | [°F]        | [°F]            | [% vol]          | [% vol]                  |
|             | 09:00    | 0        |                      |                      |                      |                            | 309.70      |        |               |             | _          |             |                 |                  |                          |
| South       | 09:10    | 10       | 8,4                  | 1.17                 | 1.05                 | 4.0                        | 315-35      | 65     | 58            | 150         | 323        | 325         | 43              | 5,5              | 14.6                     |
|             | 09:20    | 20       | $\int $              |                      | (                    | 4.0                        | 320,92      | 72     | 62            |             | .323       | 325         | 43              | 5,5              | 14-6                     |
|             | 69:30    | 30       |                      |                      |                      | 4.0                        | 326.47      | 77     | 63            | <u> </u>    | 324        | 325         | 76              | 5,1              | 14.7                     |
|             | 09:40    | 40       |                      |                      | 1                    | 4.0                        | 332,08      | 79     | 65            | /           | 329        | 325         | 47              | 5,4              | 14.7                     |
|             | 09:50    | 50       |                      |                      |                      | 4 0                        | 337.68      | 50     | 66            |             | 324        | 325         | 49              | 5,5              | 14.6                     |
|             | 10,00    | 60       | -1                   | l                    | (                    | 4.9                        | 343,29      | 82     | 68            |             | 375        | 325         | 49              | 5.5              | 14.6                     |
|             |          |          |                      | ,                    |                      |                            | 33.59       |        |               |             | •          |             |                 |                  |                          |
| ·           |          |          | land (               | lech: lec            | n sby 3 -            | 104                        |             |        | 7967          |             |            |             |                 |                  |                          |
|             | 10:15    |          | -                    |                      |                      |                            | 343.60      |        |               |             |            |             |                 |                  |                          |
| No. Th      | 10:25    | 70       | 8.9                  | 0.78                 | 0.59                 | 2.5                        | 347.96      | 76     | 69            | 776         | 329        | 325         | 47              | 6,0              | 14.1                     |
|             | 10:35    | 80       | r-                   |                      |                      | 2.5                        | 352.23      | 79     | 70            | Ċ.          | 328        | 3.25        | 47              | 6.0              | 14.1                     |
|             | 10:45    | 90       |                      | 5                    |                      | 7-5                        | 356,52      | 81     | 1-71          | <u> </u>    | 328        | 325         | 47              | 6.0              | 141                      |
|             | 10:55    | 100      | <u>\</u>             | · {                  |                      | 25                         | 360,77      | 87     | 72            |             | 323        | 325         | 48              | 6.1              | 140                      |
|             | i1:05    | 110      |                      |                      |                      | 25                         | 365.02      | 73     | 7.3           |             | 324        | 325         | 49              | 6.0              | 14.1                     |
|             | 11:15    | 120      |                      |                      | Ĵ                    | 2.5.                       | 369.26      | 83     | 74            |             | 328        | 326         | 49              | 6.0              | 14.1                     |
|             |          |          | /                    |                      |                      |                            | (25,60)     |        |               |             |            | -<br>-      |                 |                  |                          |
| •••         |          |          |                      |                      |                      | -                          |             |        |               | I           |            |             |                 |                  |                          |
|             |          |          |                      |                      |                      |                            |             |        |               |             | ¥.         |             |                 |                  |                          |
|             |          |          |                      | RAS                  |                      |                            |             |        |               |             |            |             |                 |                  |                          |
| AVERAGE     |          |          | 8.65                 | 0.963                | 0.82                 |                            | 5925        |        | 72,9          | 213         |            |             |                 | 5.74             | 14.36                    |
|             |          | Sa       | ample Train          | Pre Test             | dead shatt           | @_ <u>/O_</u> ir           | n. Hg       |        |               | Pitot Tube  | e PreTes   |             | in.             | H <sub>2</sub> O |                          |
| - Le        |          |          | ak Checks:           | Post Test            | dend shaps           | @ <u>[</u> 2_ir            | n. Hg       |        |               | Leak Checks | : Post Tes | t <u></u> @ | in.             | H <sub>2</sub> O |                          |
| CONSOL      | energy.  | 10,+.    | - te s +             |                      |                      |                            | OAH= (      | . 0    |               |             |            | NOTE        | E: Purge for 10 | minutes at en    | id of sampling.          |

: ailai

1.542-01.00

.

بالاستفقار

a a Lada

د ا د. ۲۵۵ ⊲ د

\$4. ÷ \_

|                   |         |                              | <u> </u>                           | <u> </u>             | - 11 -                                        |                                          | <b></b>                  |                           |              |                               |           |                        |                    | Page             | of              |
|-------------------|---------|------------------------------|------------------------------------|----------------------|-----------------------------------------------|------------------------------------------|--------------------------|---------------------------|--------------|-------------------------------|-----------|------------------------|--------------------|------------------|-----------------|
| TEST ID           |         |                              | STK -                              |                      | イキン                                           | METER BOX                                |                          | CAL. D                    | ATA: delta H |                               | Comments: |                        |                    |                  |                 |
| PLANT<br>LOCATION |         | S                            | SCR/FGD Pla                        | ant 4                | 1                                             | ITOT TUBE DESC                           |                          |                           | Y            | 1.026                         |           |                        |                    |                  |                 |
| DATE              |         |                              | Stack                              | 15                   | 1                                             | OBE LENGTH [ft]                          |                          |                           | С(р)         |                               |           |                        |                    |                  |                 |
| OPERATOR(S        |         |                              |                                    | $\frac{1}{3}$        | 1                                             | NOZZLE ID [inch]                         | ·                        |                           | BOX SETTING  |                               |           |                        |                    |                  |                 |
| AMBIENT TEN       | •       |                              | 500                                |                      | /                                             | %H <sub>2</sub> O (Assumed)<br>FILTER ID |                          |                           | HTR SETTING  |                               |           |                        |                    | 1                |                 |
| BAR. PRESS.       |         |                              | 20                                 |                      | 4                                             | FILTER ID<br>K FACTOR                    |                          |                           | T X-SECTION  |                               | rect?     | other:                 | <sup>_</sup>       | 1                |                 |
|                   | [ 119]  | <u> </u>                     |                                    | <u> </u>             | J                                             | K FACTOR                                 | 1.27                     |                           | DIMENSIONS   | 19 ft ID                      |           | 283.53 ft <sup>2</sup> | (F)                |                  |                 |
| TRAVERSE          | CLOCK   | SAMPLE                       | STATIC                             | PITOT                | METER DIFF                                    | METER                                    | METER                    |                           |              | STACK                         | PROBE     |                        | LASTIMP            | METER E          | EXHAUST         |
| POINT             | TIME    | TIME                         | PRES                               | HEAD                 | PRESSURE                                      | VACUUM                                   | READING                  | [0                        | •F]          | ТЕМР                          | TEMP      | BOX                    | TEMP               | 0 <sub>2</sub>   | CO <sub>2</sub> |
| [port-inch]       | (24-hr) | [miņute]                     | [" H <sub>2</sub> 0]               | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]                          | [" Hg]                                   | [ft <sup>3</sup> ]       | inlet                     | outlet       | [°F]                          | [°F]      | [°F]                   | [°F]               | [% vol]          | [% vol]         |
|                   | 0000    | Ö                            |                                    |                      |                                               |                                          | 889,90                   |                           |              |                               |           |                        |                    |                  |                 |
| -10.00            |         | 10                           | i                                  | 10                   | 1.10                                          | 3.5                                      | 895.40                   | 69                        | ط کا.        | 127                           | 253       | 329                    | チッ                 | 6.2              | 13.9            |
| -33.33            |         | 20 -                         | .7326                              | 1.05                 | 1.67                                          | 4.5                                      | 402.04                   | -74                       | .68          | 126                           | 257       | 233                    | 49                 | . 6.1            | 14.0            |
| -67.50            |         | 30                           |                                    | 1.10                 | ·1.72                                         | 5                                        | 908.83                   | $\cdot$ $\gamma$ $\gamma$ | _<br>م       | 126                           | 258       | 333                    | 49                 | 6.)              | 14.0            |
|                   |         |                              |                                    |                      |                                               |                                          |                          |                           |              |                               |           |                        |                    |                  |                 |
|                   |         |                              |                                    | L.C.                 | REST                                          | ART                                      | 49.809                   |                           |              |                               |           |                        |                    |                  |                 |
| -10.00            |         | 40                           |                                    | 01,                  | 1.10                                          | 2.5                                      | 914.46                   | רר                        | 06           | 126                           | えらえ       | 329                    | 46                 | . ۲. ک           | 14.0            |
| -33.33            |         | 50 ~                         | . [مام.                            | 1.10                 | 1.72                                          | 5                                        | 921.23                   | 80                        | 7            | 126                           | 257       | 330                    | J L                | 6.0-             | 14.1            |
| -67.50            |         | 60                           |                                    | 1.15                 | 1.80                                          | 5                                        | 928.22                   | . 81 .                    | 72           | .124                          | 253       | 221                    | J G                | 0, ی             | 14.1            |
| _                 |         |                              | 5                                  |                      |                                               |                                          |                          |                           |              |                               |           |                        |                    |                  |                 |
|                   |         |                              |                                    | L.C.                 | REST                                          | ART                                      | 928.34                   |                           |              |                               |           |                        |                    |                  |                 |
| -10.00            |         | 70                           |                                    | والحا.               | 1.05                                          | 7                                        | 933.71                   | · 79 ·                    | 27           | 126                           | 224       | 309                    | 44                 | 6.1.             | 14.0            |
| -33.33            |         | 80 -                         | .+87.                              | 1.05                 | 1.67                                          | 4.5                                      | 440.43.                  | 81                        | 74           | 126                           | 246       | 322                    | 44                 | 6.0              | 14.1            |
| -67.50            | _       | 90                           |                                    | 1.10                 | 1.72                                          | S                                        | 447.23.                  | 82                        | JF           | .124                          | 256       | 329                    | 46                 | 6.0              | )4.1            |
|                   |         |                              |                                    |                      |                                               |                                          |                          |                           |              |                               |           |                        | , •                |                  |                 |
|                   |         |                              |                                    | L.C.                 | RESTA                                         | ART                                      | 947.35                   | Ĭ                         |              |                               |           |                        |                    |                  |                 |
| -10.00            |         | 100                          |                                    | .73                  | 1.15                                          | 3.5                                      | 952.98                   | 81                        | 75           | 125                           | 244       | 326                    | 46                 | 6.0              | 14.1            |
| -33,33            |         | 110 -                        | .706                               | 1.05                 | 1.67                                          | 5                                        | 459.70                   | 83                        | 75           | 125                           | 256       | 331                    | 49                 | 5.9              | 14.2            |
| -67.50            |         | 120                          |                                    | 1.10                 | 1.72                                          | 5                                        | 966.53                   | $\frac{3}{48}$            | 76           | 124                           | 255       | 330                    | 51                 | 5.9              | 14.2            |
|                   | רווו    |                              |                                    |                      |                                               |                                          |                          |                           |              |                               |           |                        | ~ '                |                  | 111             |
| AVERAGE           |         |                              | -0.647                             | 0.948                | 1.508                                         |                                          | 76.ZB                    | 75.                       | 5            | 125.4                         |           |                        |                    | 6.0              | 14.1            |
|                   |         |                              | mple Train                         | Pre Test             |                                               | <br>@\ᢕ_ir                               |                          |                           | Ľ            | ! <u>( こうって</u><br>Pitot Tube | ProTect   | 015@                   | 1<br>7 in 1        | H <sub>2</sub> O | <u> //·/</u>    |
|                   |         |                              | ak Checks:                         |                      |                                               |                                          | •                        |                           |              | Leak Checks:                  |           | <u> </u>               | $\underline{}$ in. | -                |                 |
| <b>b</b>          |         | 1941-1944-19 <u>71-1</u> 931 | <u>. 1919 (1919) (1919) (1919)</u> |                      | <u>, , , , , , , , , , , , , , , , , , , </u> |                                          | <u>anan ang</u> ananan d |                           |              | 1011010101010101010101        |           |                        |                    |                  |                 |

CONSOLEMERGY

A

ß

C

D

4 . d

ONTARIO HYDRO Hg SAMPLING AND SPECIATION FIELD DATA SHEET

ះ ខរ ស

144.11

1ü. i

UNIL #2

|                                       |                                       | •              |                      | · _                  |                        |                            |                               |             |                                          |                    |                 |                                               |              | Page           | of       |
|---------------------------------------|---------------------------------------|----------------|----------------------|----------------------|------------------------|----------------------------|-------------------------------|-------------|------------------------------------------|--------------------|-----------------|-----------------------------------------------|--------------|----------------|----------|
| TEST ID                               |                                       |                | ECON-                |                      |                        | METER BOX                  | <u>N-(</u>                    |             | ATA: delta H                             |                    | Comments:       |                                               |              |                |          |
| PLANT                                 |                                       | s              | CR/FGD PI            | ant 4 # 2            | PIT                    | OT TUBE DESC               |                               | E-15        | Ŷ                                        | 0.981              |                 |                                               |              |                |          |
| LOCATION                              |                                       | Ed             | conomizer (          |                      | PRO                    | BE LENGTH [ff]             | Ű                             |             | C(p)                                     |                    |                 |                                               |              |                |          |
| DATE                                  |                                       |                | 1/25/0               |                      | N                      | OZZLE ID [inch]            | 3/14 DA 0.191                 | FILTER I    | BOX SETTING                              | 325                |                 |                                               |              |                |          |
| OPERATOR(                             | 5)                                    |                | GLC 11               | n_F                  | %                      | H <sub>2</sub> O (Assumed) |                               | PROBE       | HTR SETTING                              | 325                |                 | 1                                             |              |                |          |
| AMBIENT TE                            | MP [°F]                               |                | 75                   |                      |                        | FILTER ID                  | 6                             | סטס         | T X-SECTION                              | circ ?             | rect?           | other:                                        | <u> </u>     |                |          |
| BAR, PRESS                            | . (" Hg]                              |                | 29.7                 | 6                    |                        | K FACTOR                   | 0.632                         | рист        | DIMENSIONS                               | <u>2@25'x14.5'</u> | DUCT AREA       | 725 ft <sup>2</sup>                           |              |                |          |
|                                       | · ·····                               |                |                      |                      |                        |                            |                               |             |                                          | · · · ·            |                 |                                               |              |                |          |
| TRAVERSE                              | CLOCK                                 | SAMPLE<br>TIME | STATIC<br>PRES       | PITOT<br>HEAD        | METER DIFF<br>PRESSURE | METER<br>VACUUM            | METER<br>READING              |             |                                          | STACK              | PROBE<br>TEMP   | FILTER<br>BOX                                 | LAST IMP     |                | EXHAUST  |
| [port-inch]                           | (24-hr)                               | [minute]       |                      |                      |                        |                            | READING<br>[ft <sup>3</sup> ] |             |                                          |                    | (°F) (Z)        | [°F]                                          | [°F]         | 0 <sub>2</sub> |          |
| [port-inch]                           | 1255                                  | 0              | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]   | [" Hg]                     | 838.70                        | inlet       | outlet                                   | [1]-               | <u>ے ب</u> ار ا | ( L'J                                         |              | [% vol]        | [% vol]  |
| N                                     |                                       |                |                      | 150                  | 1 20                   | 2.                         |                               | Di          | -10                                      | 1.70               | 200             | ,                                             | <u>r</u> -1  | 11             | 1-0      |
|                                       |                                       | 10             |                      | 0.50                 | 0,32                   | 3,0                        | 841,88                        | -81         | -78                                      | 672                | 320             |                                               | 53           | 4.2            | 15.8     |
| 0                                     | · · · · · · · · · · · · · · · · · · · | 20             | -4.53                |                      | 0.32                   | 3,0                        | 845,02                        | .83         | 79                                       | 673                | 318             |                                               | 52           | 4.0            | 160      |
| R                                     |                                       | 30             |                      | 1),49                | 0.32                   | 3.5                        | 348.16                        | 84          | BO                                       | 673                | 322             |                                               | 5 <b>3</b>   | 4.0            | 16.0     |
|                                       | :                                     | 40             |                      | 0,49                 | D.31                   | 3,5                        | 851,28                        | 85          | 80                                       | 674                | 320             |                                               | 53           | 3.9            | 16.1     |
| H                                     |                                       | 50             | -4.56                | 0,49                 | 0,31                   | 4.0                        | 854.49                        | .86         | 81                                       | 673                | 325             |                                               | 55           | 4.0            | 160      |
|                                       |                                       | 60             |                      | 0,49                 | 0.31                   | 4.0                        | 857,56                        | 86          | 81                                       | 674                | 327             |                                               | 54           | 3.9            | 16,1     |
| 1 2                                   |                                       |                |                      | POST .               | -NORTH )               | PRE-S                      |                               | 1           | hECK                                     | OK-                | oe.             | ALO "HA                                       |              | <u> </u>       |          |
|                                       |                                       |                |                      | 1051                 | 10 GRITI               |                            |                               |             | mc                                       |                    |                 | 119                                           |              |                |          |
|                                       | 1404                                  |                |                      |                      |                        |                            | 857.70                        |             |                                          |                    |                 |                                               |              |                |          |
| S                                     |                                       |                |                      | 220                  | <u> </u>               | An                         |                               | ·<br>n_     | . 01                                     | 1-11               | 71-             | <u> </u>                                      | 52           | - 11           | 110      |
|                                       |                                       | 70             | 1 -                  | 0.70                 | 0,44                   | 4.0                        | 861.38                        | 81          | 83                                       | 676                | 327             |                                               |              | 3,2            | 16.8     |
| <u> </u>                              |                                       | 80             | -4,77                | 0.68                 | 0,43                   | 5,0                        | 665.04                        | .08         | 83                                       | 676                | 32B             |                                               | 50           | 3.1            | 16,9     |
| <u> </u>                              |                                       | 90             |                      | 0,76                 | 0.44                   | 5.5                        | 368,74                        | 89          | 84                                       | 677                | 325             |                                               | 50           | 3.0            | 16.9     |
| LT                                    |                                       | -<br>100 ~     | -4.79                | 0,70                 | 0,44                   | 6.0                        | 872.40                        | 90          | 84 .                                     | 677                | 317             |                                               | 51           | 3.1            | 16.9     |
| 1+                                    |                                       | 110            |                      | 0,10                 | 0.44                   | 6,5                        | 876,11                        | 90          | 85                                       | 675                | 318             |                                               | 51           | 3.0            | 16.9     |
|                                       |                                       | 120            |                      | 0,70                 | 0.44                   | 7.5                        | 819,18                        | 91          | blo                                      | 617                | 328             |                                               | 52           | 31             | 16,9     |
|                                       |                                       |                |                      | 0110                 |                        |                            |                               | ╎╴╸╸╃╶╃╺╼╸╧ |                                          |                    |                 |                                               | ~~~          |                | 10,1     |
|                                       |                                       |                | -                    |                      |                        |                            |                               |             |                                          |                    |                 |                                               |              |                | <u> </u> |
| ·                                     | •                                     |                |                      |                      |                        |                            |                               | <br>        | · · · · · ·                              |                    |                 |                                               |              |                |          |
| · · · · · · · · · · · · · · · · · · · |                                       |                |                      |                      |                        |                            |                               |             |                                          | 1                  |                 |                                               |              |                | <u> </u> |
|                                       |                                       | [              | -11.1                | 1.0500               | -7-1                   |                            | 1000                          | <br>        | 17                                       | (-2) (7)           |                 |                                               |              |                |          |
| AVERAGE                               | 1                                     |                |                      | 0.590                | 0.376                  |                            | 40.94                         | 84          | >                                        | 674.8              |                 | <u> </u>                                      |              | 3.5            | 16.4     |
|                                       |                                       |                | mple Train           |                      |                        |                            | n. Hg                         |             |                                          | Pitot Tube         |                 | <b>_</b>                                      | <u>6</u> in. |                |          |
|                                       |                                       | Le             | ak Checks:           | Post Test            |                        | ا <u>ر ر ا</u> س           | n. Hg                         |             | 1940-1940-1940-1940-1940-1940-1940-1940- | Leak Checks:       | Post Test       | a <u>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u> | <u>6</u> in. |                |          |

։ դելենե

رلقات طلبة ت

. <u>19</u>.2 .

|             |                  |          |                      |                      | Ø                            | -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Page _           | of 🖌    |
|-------------|------------------|----------|----------------------|----------------------|------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|---------|
| TEST ID     |                  |          | AHO-                 | 3                    | V                            | METER BOX                   | N-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAL. D   | ATA: delta H | 2.015        | Comments: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ·                |         |
| PLANT       |                  |          | CR/FGD PI            |                      |                              | TOT TUBE DESC               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Y            | 1.011        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
| LOCATION    |                  | Air He   | ater Outlet/         | ESP Inlet 🕏          |                              | BE LENGTH [ft]              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ^        | C(p)         |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
| DATE        |                  |          | 25-0                 |                      | N                            | OZZLE ID [inch]             | manager and the second s | FILTER E | BOX SETTING  | 325          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
| OPERATOR(S  |                  | <u>J</u> | <u>LR 70</u>         | /                    | 9                            | 6H <sub>2</sub> Ο (Assumed) | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | ITR SETTING  | 325          |           | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  |         |
| AMBIENT TEN |                  |          | 16                   |                      |                              | FILTER ID                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | T X-SECTION  | circ ?       | rect ?    | other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | Ø                |         |
| BAR. PRESS. | [" Hg]           |          |                      |                      |                              | K FACTOR                    | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DUCT     | DIMENSIONS   |              | DUCT AREA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]        | ¥                |         |
| TRAVERSE    | CLOCK            | SAMPLE   | STATIC               | рпот                 | METER DIFF                   | METER                       | METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METER    |              | STACK        | PROBE     | FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAST IMP | METER E          | XHAUST  |
| POINT       | TIME             | TIME     | PRES                 | HEAD                 | PRESSURE                     | VACUUM                      | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·····    | F]           | TEMP         | TEMP      | BOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEMP     | 0 <sub>z</sub>   | CO2     |
| [port-inch] | (24-hr).<br>1255 | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]         | [" Hg]                      | [ft³]<br>[29.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inlet    | outlet       | [°F]         | [°F]      | [°F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [°F]     | [% vol]          | [% vol] |
| 5           |                  | 0        |                      |                      |                              | _                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>i</i> | / 7          | 511          | <i></i>   | <u>н с N</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                  |         |
| D-1         | 1305             | 10       | -                    | 0.50                 | 24.00                        | 2.0                         | 132.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .65      | 63           | 265          | 326       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       |                  |         |
| D-1         | 1315             | 20       | -13.07               | 0.43                 | 0.43                         | Z.0                         | 136.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69       | : (A         | 264          | .324      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52       | :5.7             | 14.4    |
| <u>P-1</u>  | 1325             | 30       |                      | 0:50                 | 0.45                         | Z.0                         | 139.7469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71       | <u>וכ</u>    | 261          | 305       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 .     | 6.1 -            | 14-0    |
|             |                  | Æ        |                      |                      | ical-                        | dick OK                     | es?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |              |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
|             | 33>              | 50       |                      |                      |                              |                             | 139.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | ·.           |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
| 2-1         | (3+0             | @+b      |                      | 0.85                 | 0.76                         | 3.0                         | 144.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74 .     | 74 .         | 274          | 312       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55       |                  |         |
| C-1         | 350              | 50       | -13.35               | 0.85                 | 0.74                         | 3.5                         | 148.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26       | 79 -         | 279          | 304       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.      | 4.9              | 15.2    |
| C-/         | 1400             | 60       |                      | 0:85                 | 0.76                         | 4.0 .                       | 153.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77 .     | 73.          | 279          | 301       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53       | 4.3              | 15.3    |
|             |                  |          | 2                    |                      |                              |                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |              |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
|             | 1407             | 7.6-     |                      |                      |                              |                             | 153.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |              |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
| 3-1         | 1417             | 2870     |                      | 0.82                 | 0.73                         | 3.5                         | 157.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·778     | 77 .         | 290          | 305       | -to go a factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.      |                  |         |
| 13-1        | 1427             | 9580     | -13.5                | 0,70                 | 0.72                         | 4.0                         | 162.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 81     | 78           | 297          | 292       | The state of the s | 54       | 4.8              | 15.3    |
| 13-1        | 1437             | 1000     |                      | 080                  | 0.72                         | 4.5                         | 166.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 23     | So.          | 297          | 286       | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53       | 4.9              | 15.2    |
|             | •                | 110      |                      |                      |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |              |           | liver Black opp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |         |
|             | 14/2             | 1-250    |                      |                      |                              |                             | 166.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Υ.       |              |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4                | uest:   |
| 4-1         | 1452             | 100      |                      | 0.62                 | 0:56                         | 3.0                         | 170.905.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84       | 81 .         | 302          | 305       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57       |                  | 207     |
| A-1         | 1502             | 110      |                      | 0.56                 | 0.50                         | 3.0                         | 174.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84       | 50           | 302          | 314       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57       | 5.5              | 14.7    |
| A-1         | 1512             | 120      | 5                    | 0.58                 | 0.52                         | 3.0                         | 178645.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83       | 78           | 302          | 316       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57       | 5.4              | 14.7    |
|             |                  |          |                      |                      |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,        |              |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>i</i> |                  |         |
| AVERAGE     |                  |          | 13.31                | 0.676                | 0,613                        |                             | 49.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.      | 3            | 2846         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 5.3              | 14.9    |
| <b>9</b>    |                  | Sa       | mple Train           | Pre Test             | <u>, a</u> ft <sup>3</sup>   | @ <u> 2</u> ii              | n. Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |              | Pitot Tube   |           | <u> 0 k @</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | H <sub>2</sub> O |         |
|             |                  | Le       | ak Checks:           | Post Test            | <u> この</u> の ft <sup>3</sup> | ii                          | n. Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |              | Leak Checks: | Post Test | <u> 61-</u> @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u> | H₂O              |         |

C)

CONSOLEMERGY

i i i i i i

an ts

1944-111

|             |         | Sha      | ITZ                  |                      |                      |                             |                        |         |                                               |                                    |                                              |        |              | Page (           | of (            |
|-------------|---------|----------|----------------------|----------------------|----------------------|-----------------------------|------------------------|---------|-----------------------------------------------|------------------------------------|----------------------------------------------|--------|--------------|------------------|-----------------|
| TEST ID     |         |          | FGD-                 | 3                    | ]                    | METER BOX                   | NY                     | CAL.    | DATA: delta H                                 | 1,983                              | Comments:                                    |        |              |                  |                 |
| PLANT       |         | s        | CR/FGD PI            | ant 4                | PI                   | TOT TUBE DESC               | 5-54                   |         | Ŷ                                             | 0.960                              |                                              |        |              |                  |                 |
| LOCATION    |         |          | FGD inie             |                      | PRO                  | BE LENGTH [ft]              | 6                      | /       | C(p)                                          | 0.807                              |                                              |        |              |                  |                 |
| DATE        |         |          | 1251                 | 05                   | . N                  | OZZLE ID [inch]             | 63/16 0.185            | FILTER  | BOX SETTING                                   | 325                                |                                              |        |              |                  |                 |
| OPERATOR(S  |         |          | JAW                  |                      | 9                    | %H <sub>2</sub> Ο (Assumed) |                        | PROBE   | HTR SETTING                                   | 325                                |                                              |        |              | 1                |                 |
| AMBIENT TEN |         |          | 000/                 | -                    | -                    | FILTER ID                   |                        | טם      | CT X-SECTION                                  | circ ?                             | rect ?                                       | other: |              |                  |                 |
| BAR. PRESS. | [" Hg]  |          | 29,75                |                      |                      | K FACTOR                    | C.E.28 0.824<br>N) (S) | DUC     | T DIMENSIONS                                  | L                                  | DUCT AREA                                    |        |              |                  |                 |
| TRAVERSE    | CLOCK   | SAMPLE   | STATIC               | PITOT                | METER DIFF           | METER                       | METER                  | METE    | RTEMP                                         | STACK                              | PROBE                                        | FILTER | LAST IMP     | METER            | EXHAUST         |
| POINT       | TIME    | TIME     | PRES                 | HEAD                 | PRESSURE             | VACUUM                      | READING                |         | oF]                                           | TEMP                               | TEMP                                         | BOX    | TEMP         |                  | CO <sub>2</sub> |
| [port-inch] | (24-hr) | [minute] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" Hg]                      | [ft <sup>3</sup> ]     | inlet   | outlet                                        | [°F]                               | [°F]                                         | [°F]   | [°F]         | [% vol]          | [% vol]         |
|             | 12:55   | 0        | -                    |                      |                      | _                           | 375.00                 |         |                                               |                                    |                                              |        |              |                  |                 |
| North       | 13:05   | 10       | 9,2                  | 0.79                 | 0.65                 | 2.0                         | 379,56                 | 78      | 74                                            | 284                                | 323                                          | 325    | 57           | 6.0              | 14.1            |
| · <u> </u>  | 13:15   | 20       |                      | ſ                    |                      | 7.0                         | 384.06                 | 84      | 75                                            |                                    | . 329                                        | 325    | 52           | 5,9              | 14,2            |
|             | 13:25   | 30       |                      | )                    |                      | 2.0                         | 388.59                 | 86      | 77                                            |                                    | ろみつ                                          | 326    | 54           | 5.8              | 14,3            |
|             | 13:35   | 40 -     |                      | (                    |                      | 2,0                         | 393.09                 | 87      | 78                                            | (                                  | 328                                          | 325    | 51           | 5,8              | 14.3            |
|             | 13:45   | 50       |                      |                      | (                    | 2,5                         | 397.62                 | 88      | 78                                            |                                    | 325                                          | 325    | 53           | 5.9              | 14.2            |
|             | 13:55   | 60       |                      |                      | j                    | 2.0                         | 402114                 | 89      | 79                                            |                                    | 327                                          | 324    | 54           | 5.9              | 14.2            |
|             |         |          |                      |                      |                      |                             | 27,19                  | )       |                                               |                                    |                                              |        |              |                  |                 |
|             |         | leak c   | eck:                 | had shy              | @ /0"                |                             |                        |         |                                               |                                    |                                              |        |              |                  |                 |
|             | 14:15   |          |                      | ,-                   |                      |                             | 702.40                 |         |                                               |                                    |                                              |        |              |                  |                 |
| South       | 14:25   | 70       | 8,8                  | 1,12                 | 0.92                 | 2.5                         | 407,68                 | 87      | 70                                            | 305                                | 328                                          | 325    | 55           | 5,4              | 14.7            |
|             | 14:35   | 80       | 1                    | /                    |                      | 25                          | 413.01                 | 90      | 80                                            | j                                  | 327                                          | 376    | 51           | 5,4              | 14.7            |
|             | 14:45   | 90       |                      | ******               |                      | 7.5                         | 418.32                 | 92      | 81                                            |                                    | 323                                          | 375    | 52           | F. 4             | 14.7            |
|             | 14:55   | 100      |                      |                      |                      | 2.5                         | 423,63                 | 93      | 82                                            | (                                  | 326                                          | 321    | 52           | 514              | 14.7            |
| ·           | 15:05   | 110      |                      |                      | 1                    | 25                          | 429.00                 | 94      | 83                                            |                                    | 326                                          | . 325  | 53           | 5.4              | 14.7            |
|             | 15:15   | 120      |                      | -                    | 1 .                  | 2-5                         | 434,36                 | 95      | 84                                            |                                    | 324                                          | 325    | 54           | 5.3              | 14.8            |
|             |         |          |                      |                      |                      |                             | 31,96)                 |         |                                               |                                    |                                              |        |              |                  |                 |
|             |         |          |                      |                      |                      |                             |                        |         |                                               |                                    | :                                            |        |              |                  | 1               |
|             |         |          |                      | (                    |                      |                             |                        |         |                                               |                                    | •                                            |        |              |                  | · · ·           |
|             |         |          |                      | (RMS/                |                      |                             |                        |         |                                               |                                    |                                              |        | -            |                  |                 |
| AVERAGE     |         |          | 9,0                  | 0.948                | 0.785                |                             | 59,10                  |         | 83.9                                          | 294.5                              |                                              |        | <br>         | 5,63             | 14.47           |
|             | _       | Sai      | mple Train           | Pre Test             | kerl stry ft3        |                             | l. Hg                  |         | <u></u>                                       | Pitot Tube                         | PreTest                                      | NA @   | in.          | H <sub>2</sub> O |                 |
|             |         | Lea      | k Checks:            | Post Test            | elent stopft3        | @in                         | . Hg                   |         |                                               | Leak Checks:                       |                                              | NA @   |              | H₂O              |                 |
| CONSOL      | INERGY. | 105t-+   | est a                | i- Ju~               | le for i             | o hito                      | 0 AH=1.0               | <u></u> | <u>:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+</u> | <u>1999</u> 0707070707070707070707 | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | NOTE   | Purge for 10 | minutes at en    | d of sampling.  |

-

ئلاتا تقا

ىلغاسە بايغان

10.1 .

| - |             |         |            |                             |                      | 1                    |                             |         |          | 1            |              | i         |                        |                                       | Page         | of      |
|---|-------------|---------|------------|-----------------------------|----------------------|----------------------|-----------------------------|---------|----------|--------------|--------------|-----------|------------------------|---------------------------------------|--------------|---------|
|   | TEST ID     |         |            | STK -                       | <u> </u>             | ST #3                | METER BOX                   | ~-3     | CAL. D   | ATA: delta H | <u>1.982</u> | Comments: |                        |                                       |              |         |
| : | PLANT       |         | s          | CR/FGD PI                   | lant 4               | Pľ                   | TOT TUBE DESC               |         |          | Y            | 1.026        |           |                        |                                       |              |         |
| - | LOCATION    |         |            | Stack                       |                      |                      | BE LENGTH [ft]              |         |          | C(p)         |              |           |                        |                                       |              |         |
| - | DATE        |         |            | 5-0                         |                      |                      | OZZLE ID [inch]             |         | FILTER I | BOX SETTING  | 325          |           |                        |                                       |              |         |
|   | OPERATOR(S  |         |            | <u> </u>                    |                      | 9                    | %H <sub>2</sub> Ο (Assumed) |         | PROBE    | HTR SETTING  | 250          |           |                        |                                       |              |         |
|   | AMBIENT TEM |         |            |                             |                      |                      | FILTER ID                   |         |          | T X-SECTION  | circ ?       | rect ?    | other:                 |                                       |              |         |
| - | BAR. PRESS. | [" Hg]  | <u>ک</u> , | $\hat{H} \cdot \mathcal{I}$ | ۵                    | ]                    | <b>Ř</b> FACTOR             | 1.59    | DUCT     | DIMENSIONS   |              | · ~~      | 283.53 ft <sup>2</sup> |                                       |              |         |
|   | TRAVERSE    | CLOCK   | SAMPLE     | STATIC                      | РІТОТ                | METER DIFF           | METER                       | METER   |          |              | STACK        | PROBE     |                        |                                       | METER E      | YUAUET  |
|   | POINT       | TIME    | TIME       | PRES                        | HEAD                 | PRESSURE             | VACUUM                      | READING |          | F]           | TEMP         | TEMP      | BOX                    |                                       |              |         |
| - | [port-inch] | (24-hr) | [minute]   | [" H <sub>2</sub> 0]        | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" Hg]                      | [ft³]   | j inlet  | outlet       | [°F]         | [°F]      | [°F]                   | [°F]                                  | -<br>[% vol] | [% vol] |
|   |             | 1255    | 0          |                             |                      |                      |                             | 912.40  |          |              |              |           |                        |                                       |              |         |
|   | -10.00      |         | 10         |                             | , TO                 | .1.10                | 3.5                         | 977.96  | 76       | ッナ           | 127          | 257       | 329                    | 46                                    | 60           | .14.1   |
|   | -33.33      |         | 20 -       | <u>.482</u>                 | 1.10                 | 1.72                 | 5                           | 984.74  | . 80     | .74          | 126          | 251       | 331                    | 46                                    | 5.9          | .14.2   |
| D | -67.50      |         | 30         |                             | 1,15                 | 1.80                 | Υ<br>Λ                      | 991.76  | - 83     | בר           | 125          | 256       | 329                    | 49                                    | 5.8          | 14.3    |
| - |             |         | -          |                             |                      |                      |                             |         |          |              |              |           |                        |                                       |              |         |
| : |             |         |            |                             | L.C.                 | RESTA                | 27                          | .991.90 |          |              |              |           |                        |                                       |              |         |
| : | -10.00      |         | 40         |                             | 1.73                 | 1.15                 | 3.5                         | 497.58  | 82       | ר            | 126          | 229       | 316                    | 46                                    | 60           | 14.1    |
| C | -33.33      |         | 50 -       | .775                        | .1.10                | - <b>\</b> . ] J     | 5                           | 004.36  | .84      | - 76         | 125          | 252       | 329                    | 44                                    | 5,9.         | 14.2    |
| - | -67.50      |         | 60         |                             | .1.15                | · 1.80               | S                           | 011.36  | .86      | 77           | 123          | 254       | 155                    | 46                                    | 5.9          | 14.2    |
|   |             |         |            |                             |                      |                      |                             | :       |          |              |              |           |                        |                                       |              |         |
| ; |             |         |            |                             | L.C                  | REST                 | ART.                        | 011.49  |          |              |              |           |                        |                                       |              |         |
|   | -10.00      |         | 70         |                             | -76                  | 1.20                 | 4                           | 017.23  | 587      | . 77         | コンチ          | 254       | ふんし                    | 43                                    | 6.3          | 13.8    |
| ß | -33.33      |         | 80 -       | .636                        | 1.10                 | 1.72                 | 5                           | 024.06  | 82       | - 77         | 123          | 251       | 328                    | 39                                    | 6.3:         | 13.8    |
| - | -67.50      |         | 90         |                             | 1.15                 | 1.80                 | 2                           | 531.07  | ·84      | .78          | 124          | 256       | 330                    | 41                                    | · 6.2        | 13.9    |
| • |             |         |            |                             |                      |                      |                             |         |          |              |              |           |                        | -                                     | <b>``</b>    |         |
| • |             |         |            |                             | L.C.                 | RESTR                | ART.                        | 031.20  | ١.       |              |              |           |                        |                                       |              |         |
|   | -10.00      |         | 100        |                             | 5                    | 1.20                 | Ŧ                           | 037.00  | 84       | 80           | 125          | 25-2      | 329                    | 46                                    | 6.2          | 13.9    |
| A | -33.33      |         | 110 ~      | <u>،5۱۶</u>                 | 1.10                 | 1.72                 | 2                           | 043.82  | 87       | 80           | 125          | 248       | 329                    | 46                                    | 6.0          | 14.1    |
|   | -67.50      |         | 120        |                             | 1.15                 | 1.80                 | <u>ہ</u>                    | 050.84  |          | - 81         | 125          | 250       | 332                    | 46                                    | 6.0          | 14.1    |
| i |             | 1533    |            |                             |                      |                      |                             |         |          |              |              |           |                        | · · · · · · · · · · · · · · · · · · · |              |         |
|   | AVERAGE     |         |            | -0.521                      | 0.987                | 1.561                |                             | 78.04   | 80,      | Z            | 124.8        |           |                        |                                       | 6.0          | 14.)    |
|   | ور          |         | Sa         | mple Train                  |                      | OK ft <sup>3</sup>   |                             |         |          |              | Pitot Tube   |           | <u> </u>               | ] in. I                               |              |         |
| - | te i        |         | Lea        | ak Checks:                  | Post Test            | $0 \leq ft^3$        | @_ <u>\O</u> ir             | n. Hg   |          | *****        | Leak Checks: | Post Test | <u> </u>               | <u>)</u> in. I                        | -            |         |

CONSOL ENERGY.

..**i**.. *i*i

. .i.. ää, Läki

- غ ت<del>قق</del>دار طلبی

4.1

ւ հնեմ ե

|             |               | ,                  |                      |                      |                        |                             |                                         |              |                  |              |             |                     |                | Page                      | of       |
|-------------|---------------|--------------------|----------------------|----------------------|------------------------|-----------------------------|-----------------------------------------|--------------|------------------|--------------|-------------|---------------------|----------------|---------------------------|----------|
| TEST ID     |               |                    | ECON-                |                      |                        | METER BOX                   |                                         | CAL. [       | DATA: delta H    |              | Comments:   |                     |                |                           |          |
| PLANT       |               | s                  | CR/FGD PI            | ant 4-#2             | PI                     | TOT TUBE DESC               | E-15                                    |              | Y                | 0.987        |             |                     |                |                           |          |
| LOCATION    |               | E                  | conomizer (          |                      |                        | OBE LENGTH [ft]             |                                         |              | С(р)             |              |             |                     |                |                           |          |
| DATE        |               |                    | 1/26/0               |                      | , N                    | OZZLE ID [inch]             | 3/12°DIA 0.191'                         | FILTER       | BOX SETTING      | 325          |             |                     |                |                           |          |
| OPERATOR(S  | )             |                    | Gic/                 | MLF                  |                        | %H <sub>2</sub> O (Assumed) |                                         | PROBE        | HTR SETTING      | 325          |             |                     |                |                           |          |
| AMBIENT TEN |               |                    | 75                   |                      |                        | FILTER ID                   |                                         | DUC          | CT X-SECTION     | circ ?       | rect ?      | other:              |                |                           |          |
| BAR. PRESS. | [" Hg]        |                    | 29.7                 | 3                    |                        | K FACTOR                    | 0.632                                   | DUCT         | DIMENSIONS       | 2@25'x14.5'  | DUCT AREA   | 725 ft <sup>2</sup> |                |                           |          |
| TRAVEROF    | 01.001/       |                    |                      |                      |                        |                             | · · · · · ·                             |              |                  |              |             |                     |                |                           |          |
| POINT       | CLOCK<br>TIME | SAMPLE             | STATIC<br>PRES       | PITOT<br>HEAD        | METER DIFF<br>PRESSURE | METER<br>VACUUM             | METER<br>READING                        |              |                  | STACK        | PROBE       | FILTER<br>BOX       | LAST IMP       |                           | EXHAUST  |
| [port-inch] | (24-hr)       | [minute]           | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]   | [" Hg]                      | [ft <sup>3</sup> ]                      | inlet        | outlet           |              |             | [°F]                |                | O <sub>2</sub><br>[% vol] |          |
|             | 837           | 0                  | L                    | 1201                 | 1 1201                 | rai                         | 387,10                                  | mer          | outiet           |              |             | r.1                 | [.]4           |                           | [% vol]  |
| 5           |               | 40                 |                      | -0,64                | 0,40                   | 3,0                         | 890.59                                  | -            | 76               | 691          | 325         | 1                   | /              | · 3,8                     | 110      |
|             |               | 10                 | -443                 |                      |                        |                             |                                         | .79          |                  |              |             | _/                  | 65             |                           | 16,2     |
| 0           |               | 20                 | -443                 |                      | 0,40                   | 3.0                         | 894.07                                  | : 81         | 77               | 691          | 325         |                     | 65             | 3.7                       | 16.3     |
| U           |               | 30                 |                      | 0.64                 | 0.40                   | 3,5                         | 897.57                                  | 83           | 78               | 691          | 323         |                     | 65             | 3,8                       | 16.2     |
| T           |               | 40 <sup>·</sup>    | -4.50                | 0.62                 | 0,39                   | 4.0                         | 901.04                                  | 85           | 79               | 691          | 320         |                     | 64             | 3,7                       | 16.3     |
| Н           |               | 50                 |                      | 0.64                 | 0.40                   | 4.5                         | 904.55                                  | RG           | 81               | 691          | 320         |                     | 63             | 3.7                       | 16,3     |
|             |               | 60                 |                      | 0.64                 | 0.40                   | 5.0                         | 908.09                                  | 87           | <u><u>S</u>I</u> | 6.91         | 211         |                     | 63             | 3.7                       | 16.3     |
|             |               |                    |                      | POST                 | -South /               | PRE-NOR                     |                                         | CHECK        | or -             | 0.010        | 511.<br>11. |                     |                |                           |          |
|             |               |                    |                      |                      |                        |                             |                                         | ~//~ ~/~     |                  | 0 0 10       | 179         |                     |                |                           |          |
|             | 944           |                    |                      |                      |                        |                             | 908.30                                  |              | [<br>]           |              |             |                     |                |                           |          |
| N           | <u>· / .</u>  |                    |                      | -0.50                | 0.32                   | 3.0                         | 911.49                                  | 81           | 83               | 684          | 322         |                     | 1-1            | 45                        | 150      |
| 0           |               | 70                 | -1 3/1               |                      |                        | 4.0                         |                                         |              |                  |              |             |                     | 67             | -                         | 15.6     |
|             |               | 80                 | -4.34                |                      | 0.32                   |                             | 914,69                                  | 88           | 83               | 684          | 323         |                     | 63             | 4.4                       | 15.7     |
| R           | -             | 90                 |                      | 0.50                 | 0,32                   | 4.0                         | 917,88                                  | 89           | 84               | 684          | 317         | · .                 | 64             | 4,3                       | 15,8     |
|             |               | 100                | -4.69                | 0.50                 | 0,32                   | 4.5                         | 921.08                                  | 90           | 85               | 685          | 320         |                     | 64             | 4.4                       | 15,7     |
| H           |               | 110                |                      | 0.50                 | 0.32                   | 5.0                         | 924.27                                  | 90           | 86               | 687          | 326         |                     | 65             | 4,3                       | 15.8     |
|             |               | 120                |                      | 0,50                 | 0.32                   | 5.0                         | 927.48                                  | 91           | 86               | .686         | 317         |                     | 65             | 4.3                       | 15.8     |
|             |               |                    |                      |                      |                        |                             |                                         |              |                  |              |             |                     | 42             | - 7.2                     | 13.0     |
|             |               |                    |                      |                      |                        |                             |                                         |              |                  |              | :           | )-                  |                |                           |          |
|             |               | 1                  |                      |                      |                        |                             |                                         |              |                  |              | ······      |                     |                |                           |          |
|             |               |                    |                      |                      |                        |                             |                                         |              |                  |              |             |                     |                |                           | <u> </u> |
|             |               | l                  |                      |                      |                        |                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <del>,</del> |                  |              |             |                     | ļ              |                           | <u> </u> |
| AVERAGE     |               |                    | -4.47                |                      | 0.359                  |                             | 10.17                                   | 84.          | Ø                | 688          |             |                     |                | 4.1                       | 16.0     |
|             | <u>₩</u>      | 1                  | mple Train           |                      |                        |                             | n. Hg                                   |              |                  | Pitot Tube   | PreTest     | <b>0</b> @          |                |                           |          |
|             |               | Le:<br>Contraction | ak Checks:           | Post Test            | ft <sup>3</sup>        | @_ <u>ˈ(O_</u> iı           | n. Hg                                   |              | *****            | Leak Checks: | Post Test   | @                   | <u>5</u> in. 1 | H₂O                       |          |

CONSOL ENERGY.

اله بنا ب

. .; . . â.î. Libbi

a∂**a**kut itu

· · · ·

.

...iŭii...

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |                      |                       |                             |                  |            |              |             | _                   |                  |              | Page             | of              |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|----------------------|-----------------------|-----------------------------|------------------|------------|--------------|-------------|---------------------|------------------|--------------|------------------|-----------------|
| TEST ID     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | AHO-                 | 4                    |                       | METER BOX                   | JU-5             | CAL. D     | ATA: delta H | 2.015       | Comments:           |                  |              |                  |                 |
| PLANT       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s        | CR/FGD PI            |                      |                       | TOT TUBE DESC               |                  |            | Y            | 1.0!        |                     |                  | · · · ·      |                  |                 |
| LOCATION    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ater Outlet          | ESP Inlet            |                       | BE LENGTH [ft]              |                  |            | C(p)         |             |                     |                  |              |                  |                 |
| DATE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1-95                 | <del>.</del>         |                       | OZZLE ID [inch]             |                  |            | SOX SETTING  | 325         |                     |                  |              |                  |                 |
| OPERATOR(S  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100      | LR D                 | /                    | 3                     | 6H <sub>2</sub> O (Assumed) | ·(-              |            | ITR SETTING  | 325         |                     |                  |              |                  | 0               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79.      | -2                   |                      |                       | FILTER ID                   |                  |            | T'X-SECTION  | circ ?      | rect ?<br>DUCT AREA | other:           |              | 1 X(             | - 7             |
| BAR. PRESS. | [" H <b>g</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.      | 10                   |                      |                       | K FACTOR                    | 0.90             | BUCI       | DIMENSIONS   |             | JUUCI AREA          |                  |              | 05               |                 |
| TRAVERSE    | CLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE   | STATIC               | ρπότ                 | METER DIFF            | METER                       | METER            | METER      | TEMP         | STACK       | PROBE               | FILTER           | LAST IMP     |                  | EXHAUST         |
| POINT       | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME     | PRES                 | HEAD                 | PRESSURE              | VACUUM                      | READING          |            | F]           | TEMP        | TEMP                | BOX              | TEMP         | 0 <sub>2</sub>   | CO <sub>2</sub> |
| [port-inch] | (24-hr)<br>835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [minute] | [" H <sub>z</sub> 0] | [" H <sub>z</sub> 0] | [" H <sub>z</sub> 0]  | [" Hg]                      | [ft²]<br>184.100 | inlet      | outlet       | [°F]        | [°F]                | [°F]             | [°F]         | [% vol]          | [% vol]         |
| Δ.          | and the second se | 0        |                      |                      | )/                    |                             |                  | <i>r</i> ~ | <u></u>      | . 302       | 202                 | YTNA             | 47           | 5.4              | 1113            |
| A-1         | 843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       | in -                 | 0.50                 | 0.45                  | 2.0                         | 187.525          | 57         | 58           |             | 293                 | 9104             |              | <u> </u>         | 14.7            |
| A-1         | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20       | -1320.               | 0.49                 | 0.44                  | 2.0                         | 190.892          | 57         | 58           | 30.2        | . 293               | ļ                | 47           | 5.4              | 14.1            |
| A-1         | Q35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30       |                      | 0.47                 | 0.42                  | 2.0                         | 174.345          | 59         | . 60 .       | 304         | 291                 | ļļ               | 47           |                  | ļ               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | æ        | v .                  |                      | )en                   | k chick 0                   | Lesinth          |            |              |             |                     |                  |              |                  |                 |
|             | 0910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,30      |                      |                      |                       |                             | 194.6.50         |            |              |             |                     |                  |              |                  | ·               |
| B-1         | 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15040    |                      | .0.77                | 0.69                  | ふら                          | 193.845          | . 61       | 63           | 237         | 294                 | al 439 maana     | 51           | 4.6              | 15.6            |
| 3-1         | 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T)       |                      | 0.20                 | 0.72                  | 4.0                         | 203. NS          | . 65 -     | 65           | 301         | 2.89                | rin-veç o si     | 49           | 4.5.             | 15.6            |
| 3-1         | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (j)      |                      | 10.77                | 0.69                  | 4,5                         | 207.652          | 67         | 66           | 301         | 295                 |                  | 49           | 4.5.             | 15.6            |
|             | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |                      |                       | at clean                    |                  | H a        |              |             |                     |                  |              |                  | 12.3            |
|             | 942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to       |                      |                      | /-                    |                             | 207.800          |            |              |             |                     |                  |              |                  |                 |
| C-1         | 956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8570     | 1979<br>- 1940       | 0.82                 | .0.73                 | 4.0                         | 212.214          | .68        | 68           | 278         | 313                 |                  | 52           | · · ·            |                 |
| Col         | 1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -13.34               | 0.82                 | 3.73                  | 5.0                         | 216,61           | .70        | 69           | .284        | 223                 | dia and a second | 19           | .4.6             | 15.5            |
| C-1         | 1016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10071    | (7-97                | 0.02                 |                       | 5.0                         | 221.023          | . 70       | 70           | · Z}S       | 281                 |                  | 52           | 4.6              | 15.5            |
|             | 10160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |                      | 0.000                |                       |                             | 2                |            | .0           |             |                     |                  |              | 410              | 13,5            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120      |                      |                      | 14                    | il deet (                   | PEQ 7int         |            |              |             |                     |                  |              |                  |                 |
| -           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120      |                      |                      |                       |                             | .721.300         |            |              |             |                     |                  |              |                  |                 |
| D-1         | 1032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      |                      | 0.45                 | 12:41                 | 2.5                         | 224.73           | .71        | .71          | 270         | <u>288</u>          |                  | 55           | 5.8              | 74.3            |
| D-1         | 1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110      |                      | 0:45                 | .48                   | 3.D                         | 225,07           | 72         | 71           | 270         | 280                 | -                | 54           | 5.8              | 14.3            |
| D-1         | 1052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120      | -13.53               | ·6.41                | .ij]                  | 3.0                         | 231,526          | 72         | 72           | 270         | 284                 | -                | 54           | 5.8              | 14.3            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      | <u> </u>             |                       |                             | ·                |            |              |             | <u> </u>            |                  | <b>.</b>     |                  |                 |
| AVERAGE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | -13.37               | 0.623                | 0.569                 |                             | 46.751           | 65         | .9           | ZB7.8       |                     |                  |              | 5.1              | 15.0            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sa       | ample Train          | Pre Test             | 0.000 ft <sup>3</sup> |                             | n. Hg            |            | -            | Pitot Tub   |                     | OK @             |              | H <sub>2</sub> O |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Le       | ak Checks            | Post Test            | <u>0_000ft</u> 3      | @ <u>7</u> i                | n. Hg            |            |              | Leak Checks | : Post Tes          | <u>ok</u> @      | <u>l</u> in. | H <sub>2</sub> O |                 |

CONSOLENERGY

.

÷.,,

ا ا بالاستفادة

NOTE: Purge for 10 minutes at end of sampling.

 $\bigcirc$ 

; ដាដែរ

بالقائية سطحته

- <del>4</del>46 4 - 6

|             |               | <u>UN</u>      | Td             | <u>)</u>             |                          | Sec.                        |                     |            |                  |               |              |             |                           | Page (           | of              |
|-------------|---------------|----------------|----------------|----------------------|--------------------------|-----------------------------|---------------------|------------|------------------|---------------|--------------|-------------|---------------------------|------------------|-----------------|
| TEST ID     |               |                | FGD-           | 4                    |                          | METER BOX                   | N4                  | CAL.       | DATA: delta H    | 1.983         | Comments:    |             |                           | · • 3•           |                 |
| PLANT       |               | s              | CR/FGD PI      | ant 4                | PI                       | TOT TUBE DESC               | 5-54                |            |                  | 0.960         |              |             |                           |                  |                 |
| LOCATION    |               |                | FGD Inle       | et                   | PRO                      | DBE LENGTH [ft]             | 6,                  |            |                  | 0.807         |              |             |                           |                  |                 |
| DATE        |               |                | 26/03          |                      | 4                        | OZZLE ID [inch]             | 133/16 0.185        | FILTER     | ;<br>BOX SETTING | 325           | -            |             |                           |                  |                 |
| OPERATOR(   | 5)            |                | JAN            |                      |                          | %H <sub>2</sub> O (Assumed) | 7.6                 | PROBE      | HTR SETTING      | 325           |              |             |                           |                  |                 |
| AMBIENT TEI |               |                | 60             |                      |                          | FILTER ID                   |                     |            | CT X-SECTION     | circ ?        | rect?        | other:      |                           | ]                |                 |
| BAR. PRESS. | [" Hg]        | Ž              | 9.7            | 5                    | J                        | K FACTOR                    | 0,805 0,848         | DÚC        | T DIMENSIONS     |               | DUCT AREA    |             |                           | -                |                 |
| TRAVERSE    | 0.00%         |                |                |                      | <u></u> .                |                             | (5)                 |            |                  |               |              |             | -                         |                  |                 |
| POINT       | CLOCK<br>TIME | SAMPLE<br>TIME | STATIC<br>PRES | PITOT<br>HEAD        | METER DIFF<br>PRESSURE   | METER<br>VACUUM             | METER<br>READING    |            |                  | STACK         | PROBE        | FILTER      | LAST IMP                  |                  | EXHAUST         |
| [port-inch] | (24-hr)       | [minute]       | [" H₂0]        | [" H <sub>2</sub> 0] | [" H <sub>2</sub> 0]     | (" Hg]                      | [ft <sup>3</sup> ]  | l<br>inlet | oF]<br>outlet    | TEMP<br>[°F]  | TEMP<br>[°F] | вох<br>[°F] | TEMP<br>[ <sup>°</sup> F] | 0 <sub>2</sub>   | CO <sub>2</sub> |
|             | 08:35         | 0              |                | <u> </u>             | 1 201                    | L (191                      | 441,00              | inter      | ouler            | 1.1           | [,]          | 1,1         | [ [,]                     | [% vol]          | [% vol]         |
| South       | 08:45         | 10             | 8.3            | 1.17                 | 0.94                     | 3.0                         | 446,38              | 71         | 65               | 305           | 325          | 327         | 47                        | 5,5.             | 14.6            |
|             | 08:55         | 20             | 7              | /                    | 1                        | 3.0                         | 451.76              | 78         | 67               | /             | . 326        | 326         | 47                        | 1                |                 |
|             | 09:05         | 30             | -(             | - (                  |                          | 3.0                         | 457.14              | 83         | 69               |               | 328          | 325         |                           | 5.4              | 14.7            |
|             | 69:15         |                |                | }                    | 1                        |                             | 462.51              |            |                  | //            | 324          |             | 51                        | 5.4              | 14.7            |
|             | 09:25         | 40 -           | (              | /                    | (                        | 3.0                         |                     | 86         | 72               |               |              | 325         | 52                        | 5,4              | 14.7            |
| <u></u>     | 09:35         | 50             |                |                      |                          | 3.0                         | 167.96              | 87         | 74               |               | 328          | 325         | 79                        | 5.4              | 17.7            |
|             | 0(, ))        | 60             |                | (                    | <u> </u>                 | 3-0                         | 473.36              | 89         | 76               |               | 324          | 326         | 50                        | 5.4              | 14.7            |
|             |               | leal c         | lech:          | ledd S.              | kep                      | (                           | \$2.36              |            |                  |               |              |             |                           |                  |                 |
|             |               |                |                | 010                  | 11                       |                             |                     |            |                  |               |              |             |                           |                  |                 |
| North       | 09,55         |                |                |                      |                          |                             | 473.60              |            |                  |               |              |             |                           |                  |                 |
|             | 10:05         | 70             | 8.6            | 0,82                 | 0.70                     | 3.0                         | 478.44              | 84         | 78               | 285           | 321          | 325         | .48                       | 6.2.             | 13.9            |
|             | 10:15         | 80             | 1              | (                    | 6                        | 2.5                         | 483.16              | 88         | 78               | 7             | 379          | 324         | 46                        | 6.0 -            | 14,1            |
|             | 10:25         | 90             |                |                      |                          | 2.5                         | 487.95              | 90         | 80               |               | 329          | 325         | 47                        | 6.1              | 140             |
|             | 10:35         | 100            |                | (                    | /                        | 2.5                         | 492-73              | 90         | 80               |               | 3歲7          | 326         | 49                        | 6.0              | 14.1            |
|             | 10:45         | 110            |                | (                    | (                        | 7.5                         | 497.49              | 91         | 81               |               | 323          | 325         | 49                        | 6,0              | 14.1            |
|             | 10:55         | 120            | )              | j                    | $\rightarrow$            | 2.5                         | 502.24              | 22         | 81               | $\rightarrow$ | 323          | 326         | 49                        | 5.9              | 14.2            |
|             |               |                |                |                      |                          |                             | 28.64               |            |                  |               |              | 000         |                           |                  | 17.4            |
|             |               |                |                |                      |                          |                             |                     |            |                  |               | :            |             | <br>                      |                  |                 |
|             |               |                |                |                      |                          |                             |                     |            |                  |               |              |             |                           |                  |                 |
|             |               |                |                | 1, 0)                |                          |                             |                     |            |                  |               |              |             |                           |                  | ļ               |
|             |               |                | 8.45           | Mrs/                 | 0 2 2                    |                             | 11.00               |            |                  |               |              | ******      | 1                         |                  | 1.0 20          |
| AVERAGE     |               |                | -              | 0,987                | 0.82                     |                             | 61.00               |            | 80.4             | 295           |              | - 11.4      |                           | 5.73             | 14.38           |
|             | <u>z_</u>     |                | mple Train     | Pre Test             | dend Stopft <sup>3</sup> | @ <u>/v</u> ir<br>@ / 2 ir  | ז. <b>Hg</b><br>אומ |            |                  | Pitot Tube    |              | NA @        |                           | H₂O              |                 |
|             | B             |                | k Checks:      | Post Test            | derd step ft3            | <u>ir</u> ir                | ь пд<br>разветение  |            |                  | Leak Checks:  | Post Test    | <u></u> @   |                           | H <sub>2</sub> O |                 |
| CONSOL      | -NERGT.A      | i- ner         | ze ha          | - 10 n               | in ØA                    | H=1.0                       |                     |            |                  |               |              | NOTE        | : Purge for 10            | minutes at er    | nd of sampling. |

ф. 1.

: ដា ដើ

. . . .

|   |             |             |          |                                    |                          |                      |                             |         |           |              |              |           |                        |                   | Page             | of              |
|---|-------------|-------------|----------|------------------------------------|--------------------------|----------------------|-----------------------------|---------|-----------|--------------|--------------|-----------|------------------------|-------------------|------------------|-----------------|
|   | TEST ID     |             |          | sтк - 🕽                            | 2 TES                    | フォチ                  | METER BOX                   | N-3     | CAL. D    | ATA: delta H | 1.982        | Comments: |                        |                   |                  |                 |
|   | PLANT       |             | s        | CR/FGD PI                          | ant 4                    | Pl                   | FOT TUBE DESC               | E-11    |           | Y            | <u>1.026</u> |           |                        |                   |                  |                 |
|   | LOCATION    |             |          | Stack                              |                          | PRO                  | BELENGTH [ff]               |         |           | С(р)         |              |           |                        |                   |                  |                 |
|   | DATE        |             | 1-2      | <u>6</u> -C<br>, B<br>++ 0<br>++ 0 | ) 5                      |                      | OZZLE ID [inch]             |         |           | BOX SETTING  | 325          |           |                        |                   | · ··· · · · · ·  |                 |
| - | OPERATOR(S) |             | <u> </u> | <u>, B</u>                         | <u>. S .</u>             | %                    | 6H <sub>2</sub> O (Assumed) |         |           | HTR SETTING  | 250          |           |                        | ·                 |                  |                 |
| : | AMBIENT TEM |             |          | <u>&gt;4</u>                       |                          |                      | FILTER ID                   |         |           | T X-SECTION  | circ ?       | rect ?    | other:                 |                   |                  |                 |
| : | BAR. PRESS. | (" Hg]      | L        | 173                                |                          |                      | K FACTOR                    | 1.59    | $\frown$  |              |              |           | 283.53 ft <sup>2</sup> |                   |                  |                 |
|   | TRAVERSE    | CLOCK       | SAMPLE   | STATIC                             | ΡΙΤΟΤ                    | METER DIFF           | METER                       | METER   | <br>METER |              | STACK        | PROBE     |                        |                   | METER E          | YHAUST          |
|   | POINT       | TIME        | TIME     | PRES                               | HEAD                     | PRESSURE             | VACUUM                      | READING | [o        |              | TEMP         | TEMP      | BOX                    | темр              | 02               | CO <sub>2</sub> |
|   | [port-inch] | (24-hr)     | [minute] | [" H₂0]                            | [" H <sub>2</sub> 0]     | [" H <sub>2</sub> 0] | [" Hg]                      | [ft³]   | inlet     | outlet       | [°F]         | [°F]      | [°F]                   | [°F]              | [% vol]          | [% vol]         |
|   |             | <u>0835</u> | 0        |                                    |                          |                      |                             | 056.80  |           |              |              |           |                        |                   |                  |                 |
|   | -10.00      |             | 10       |                                    | .76                      | 1.20                 | 2.5                         | 062.56  | 5         | حاحا         | 126          | 221       | 240                    | 55                | 6.)              | 14.0            |
| ~ | -33.33      | w ;         | 20 -     | ·. 142                             | 1.10                     | 1.72                 | 4.5                         | 069.34  | 73        | 68           | 125          | 244       | 291                    | 49                | S.9              | 14.2            |
| A | -67.50      |             | 30       |                                    | -1,15                    | 1.80                 | 5                           | 076.27  | 75        | 69           | 125          | 259       | 317                    | 47                | 5.9              | 14.2            |
| - |             |             |          |                                    |                          |                      |                             |         |           |              |              |           |                        |                   |                  |                 |
|   |             |             |          |                                    | $\mathbf{X}, \mathbf{C}$ | RESTA                | IRT                         | 076.40  |           |              |              |           |                        |                   |                  |                 |
| - | -10.00      |             | 40       |                                    | 576                      | 1.20                 | 3.5                         | 082.12  | 74        | 20           | 127          | 255       | 328                    | 46                | 6.1              | 14.0            |
| 0 | -33.33      |             | 50 -     | .809                               | 1.10                     | ンンン                  | Ľ٦                          | 088.93  | 78        | 1            | 127          | 258       | 333                    | 79 ·              | ۱. ک             | 14.0            |
| ß | -67.50      |             | 60       |                                    | 1.15                     | 1.80                 | S                           | 095.92  | 80        | フム           | 127          | 250       | 332                    | 50                | 6.0              | 14.1            |
| - |             |             |          | •                                  |                          |                      |                             |         |           |              |              |           |                        |                   |                  |                 |
| - |             |             |          |                                    | L,C.                     | REST                 | ART                         | 096.05  |           |              |              |           |                        | -                 |                  |                 |
|   | -10.00      |             | 70 .     |                                    | - 8 L                    | 1.30                 | 5                           | 102.00  | 81        | 74           | 128          | 255       | 329                    | 50                | 6.1              | 14.0            |
|   | -33.33      |             | 80 -     | .650 .                             | 1.10                     | 1.72                 | 5                           | 108.88  | 83        | 75           | 126          | 257       | 331                    | ナナ                | 0.و/             | .14.1           |
| C | -67.50      |             | 90       |                                    | 115                      | 1.80                 | 2                           | 115.91  | 85        | 76           | 127          | 258       | 232                    | ++                | 0. یا            | 14.1            |
|   |             |             |          |                                    |                          |                      |                             |         |           |              |              |           |                        |                   |                  |                 |
| : |             |             |          |                                    | L, C.                    | RESTA                | ART                         | 116.04  | <b>x</b>  |              |              |           |                        |                   |                  |                 |
|   | -10.00      |             | 100      |                                    | -16                      | 1.20                 | 4                           | 121.84  | 83        | 76           | 126          | 251       | 327                    | 44                | 0.يا             | 14.1            |
|   | -33.33      |             | 110 -    | .635                               | 1.10                     | 1.72                 | న                           | 128.67  | 60        | 78           | 127          | 256       | 330                    | 46                | 5.9              | 14.2            |
| 0 | -67.50      |             | 120      |                                    | 1.15                     | 1.80                 | 5                           | 135.70  | 86        | 78           | 127          | 256       | 330                    | 47                | 5.9              | 14.2            |
| - |             | 1057        |          |                                    |                          |                      |                             |         |           |              |              |           | :                      |                   |                  |                 |
| - | AVERAGE     |             |          | 6.709                              | 1.001                    | 1.58Z                |                             | 78.51   | 76        |              | 126.5        |           |                        |                   | 6.0              | 14.1            |
| : | <b></b>     | 100         |          | ample Train                        |                          |                      |                             |         |           |              | Pitot Tube   |           | OK@                    | ~                 | H <sub>2</sub> O |                 |
|   |             |             | Le       | ak Checks:                         | Post Test                | _ <u>_0 \</u> < ft³  | @i                          | n. Hg   |           |              | Leak Checks  | Post Test | <u>oK@</u>             | $\frac{1}{1}$ in. | H <sub>2</sub> O |                 |

للا بي مد ا بي

SCR/FGD Hg SAMPLING PROGRAM, PLANT 4 - ONTARIO HYDRO SAMPLING TRAIN DATA

| Location                                          |                    | Econ Out                 | AirHtr Out                          | FGD Inlet       | Stack          |                        | _                      | FGD Inlet             |           |                        |                      | FGD Inlet              |                      | Econ Out               | AirHtr Out                                                         |                | Stack                |
|---------------------------------------------------|--------------------|--------------------------|-------------------------------------|-----------------|----------------|------------------------|------------------------|-----------------------|-----------|------------------------|----------------------|------------------------|----------------------|------------------------|--------------------------------------------------------------------|----------------|----------------------|
| Date                                              |                    | Unit 2<br>01/24/2005     | Unit 2<br>01/24/2005                | 01/24/2005      | Unit 2         |                        | Unit 2<br>01/25/2005 0 | Unit 2<br>1/25/2005 0 |           |                        | Unit 2<br>01/25/2005 | Unit 2<br>31/25/2005 ( | Unit 2<br>01/25/2005 | Unit 2<br>01/26/2005   | Unit 2<br>01/26/2005                                               |                | Unit 2<br>01/26/2005 |
| Start Time                                        |                    | 1130                     | 1130                                | 1130            | 1130           |                        |                        | 900                   |           |                        |                      | 1255                   |                      | 835                    | 835                                                                |                | 835                  |
| Stop Time                                         |                    | 1341                     | 1359                                | 1345            | 1345           | 1109                   |                        | 1115                  |           | 1304                   | AI.                  | 1515                   | 1533                 |                        |                                                                    | 1055           | 1057                 |
| Test Number<br>Sample Type                        |                    | ECON-1<br>OH-Hg          | PHO-1<br>PH-HO                      | FGD-1<br>OH-Hg  | STK-1<br>OH-Hg | ECON-2<br>OH-Hg        |                        | FGD-2<br>OH-Hg        |           | ECON-3<br>OH-Hg        | _                    | CHHG<br>OHHG           | STK-3<br>OH-Hg       |                        |                                                                    | PED-4          | STK4<br>OHHg         |
| Y factor of dry gas meter -                       |                    | 786.0                    | 1.010                               | 096.0           | 1.026          | 0.987                  |                        | 0.96.0                |           | 0.987                  |                      | 0.96.0                 | 1.026                | 1                      | 0                                                                  | 0.960          | 1.026                |
| Gas Volume<br>Delta H of dry gas meter            | #,<br># H,0        | 41.92<br>0.41            | 41.92 42.86 64.18<br>0.41 0.48 0.97 | 64.18<br>0.97   | 75.40          | 39.86<br>0.36          | 43.32<br>0.48          | 59.25<br>0.82         | 76.28     | 40.94                  | 49.15<br>0.61        | 59.10<br>0.79          | 78.04<br>1.56        | 40.17<br>0.36          | 46.75<br>0.57                                                      | 61.00<br>0.82  | 78.51                |
| Meter Temperature                                 |                    | 71.3                     | 62.4                                | 71.8            | 74.7           | 73.2                   |                        | 72.9                  |           | 84.3                   | 76.3                 | 83.9                   | 80.2                 |                        | 65.9                                                               | 80.4           | 76.1                 |
| C Factor of pitot tube                            | inchoe             | 0.838                    | 0.846                               | 0.835           | 0.806          | 0.838                  |                        | 0.835                 |           | 0.838                  | 0.846                | 0.835                  | 0.806                |                        | 0.846                                                              | 0.835          | 0.806                |
| A n (area of nozzle)                              |                    | 0.00020                  | 0.00019                             | 0.00019         | 0.00025        | 0.00020                |                        | 0.00019               |           | 0.00020                | 0.00019              | 0.00019                | 0.00025              |                        | 0.00019                                                            | 0.00019        | 0.00025              |
| Area of Stack (Single of Dual) - ft <sup>2</sup>  |                    | 725.0                    | 544.4                               |                 | 283.5          | 725.0                  |                        |                       |           | 725.0                  | 544.4                |                        | 283.5                |                        | 544.4                                                              |                | 283.5                |
|                                                   | gm                 | 78.1                     | 15.6                                | 99.D            |                | 83.7                   | 72.4                   |                       |           | 78.7                   | 87.3                 | 98.3                   | 245.8                |                        | 85.9                                                               | 105.4          | 256.4                |
| Sample Time<br>Barometric Pressure -              | - Hg               | 021<br>29.92             | 28.82                               | 021<br>29.92    | 120<br>29.92   | 071<br>29.79           | 021<br>29.79           | 62.62                 |           | 29.76                  | 23.76                | 021                    | 29.76                |                        | 17.<br>17.<br>17.<br>17.<br>17.<br>17.<br>17.<br>17.<br>17.<br>17. | 021            | 27.62                |
| Static Pressure                                   | ч H <sub>2</sub> 0 | 4.40                     | -12.97                              | 8.50            |                | 4.60                   | -13.30                 |                       |           | 4.66                   | -13.31               | 9.00                   | -0.52                |                        | -13.37                                                             | 8.45           | -0.71                |
| % Oxygen<br>% Carbon Diovido                      |                    | 9.9<br>1<br>1            | 5.1                                 | 5.6             | 6 G F          | 4.4                    | 0<br>10<br>10<br>10    |                       | 6.0       | 3.5                    | 5.3                  | 5.6                    | 6.0                  |                        | 5.1<br>5                                                           | 5.7            | 9.0                  |
| % N <sub>2</sub> + CO                             |                    | 80.0                     | 0.01<br>0.67                        | 80.0            | 6.67           | 79.9                   | 6.67                   | 79.9                  | 19.9      | 80.1                   | 79.8                 | 6.67                   | 79.9                 | 29.9                   | 79.9                                                               | 1.9.9          | 6.67                 |
| Stack Temp (Dry Bulb) -                           | ĥ                  | 682                      | 286                                 | 219             | 125            | 673                    | 280                    |                       | 125       | 675                    | 285                  | 295                    | 125                  |                        | 288                                                                | 295            | 127                  |
| Stack Temp (Wet Bulb) "S" sample (rms vet head) - | ۴.<br>۲.           | 0 647                    | 0.527                               | 1 000           | 10 D 27        | 0 564                  | 0.538                  | 0 065                 | 0 048     | 0 500                  | 0.576                | 870 0                  | 0 987                | 0 566                  | 0.672                                                              | 0.087          | * 004                |
| Dust Wt.                                          | gm                 | 5.4040                   | 1.1700                              | 0.0005          | 0.0080         | 5.3862                 | 2.3996                 | 0.0001                | 0.0055    | 5.6593                 | 2.7024               | 0.0011                 | 0.0081               | 6.0508                 | 5.5082                                                             | 0.0002         | 0.0040               |
| Sample Volume                                     | DSCF               | 41.14                    | 43.78                               | 61.29           | 76.64          | 38.81                  | 44.39                  | 56.20                 | 77.09     | 39.01                  | 48.66                | 54.87                  | 78.11                | 38.26                  | 47.15                                                              | 56.95          | 79.11                |
| ABS ST PRES                                       | -Hg                | 29.60                    | 28.97                               | 30.55           | 29.87          | 29.45                  | 28.81                  | 30.43                 | 29.74     | 29.42                  | 28,78                | 30.42                  | 29.72                | 29.40                  | 1.435                                                              | 30.35          | ₹<br>8<br>8<br>8     |
| ABS ST TEMP                                       | çc                 | 1142                     | 746                                 | 679             | 585            | 1133                   | 740                    | 673                   | 585       | 1135                   | 745                  | 755                    | 585                  | 1148                   | 748                                                                | 755            | 587                  |
|                                                   | vapor              |                          | U, 1                                |                 | 871            | 76                     | 5 3                    | 2.5                   | 4771      | 20.0                   | 2.7                  |                        | 47 20                | 2.0                    | 2.7                                                                | 9.U            | 7.51                 |
| Dry Molecular Weight                              | b/ib-mole          | 30.5                     | 30.60                               | 30.54           | 30.51          | 30.72                  | 30.58                  | 30.53                 | 30.50     | 30.76                  | 30.60                | 30.54                  | 30,50                | 30.72                  | 30,60                                                              | 30.53          | 30.50                |
| Wet Molecular Weight                              | lb/lb-mole         | 29.72                    | 29.66                               | 29.65           | 28.91          | 29.55                  | 29.68                  | 29.66                 | 28.92     | 29.66                  | 29.61                | 29.57                  | 28.88                | 29.62                  | 29.61                                                              | 29.53          | 28.84                |
| % EXCESS AIR                                      |                    | 20.5                     | 31.9                                | 36.1<br>1 9 2 9 | 38.8           | 24.1<br>N 908          | 33.6<br>0 929          | 37.0<br>0.920         | 39.8      | 19.8                   | 33.6                 | 36.1<br>1 977          | 39.8<br>0 871        | 24.1                   | 31.9                                                               | 37.0           | 39.8                 |
| Wet Mole Frac.                                    |                    | 0.082                    | 0.075                               | 0.071           | 0.128          | 0.092                  | 0.071                  | 0.070                 | 0.126     | 0.087                  | 0.078                | 0.078                  | 0.129                | 0.087                  | 0.079                                                              | 0.080          | 0.132                |
| Gas Velocity, Direct                              | ft/sec             | 65.65<br>2 0 0 0 0 0 0 0 |                                     | 61.81           | 76.64          | 61.39                  | 49.33                  | 60.56                 | 60"11     | 62.76<br>2 720 000     | 55.58                | 63.66                  | 78.11                | 61.89                  | 53.51                                                              | 65.09          | 79.11                |
| DSCFM                                             | ÷                  | 2,000,000,2              |                                     | 1 012 944       | 1,503,784      | 2,5/U,524<br>1 111 988 | 1,028,839              | U<br>1 028 839        | 1 027 702 | 2,730,058<br>1 140 529 | 2/C'CL2(1)           | U<br>1 141 944         | 1,328,192            | 2,692,060<br>1 110 785 | 1, 147, 528                                                        | U<br>1 092 071 | 1.040,803            |
| DSCFM (rounded)                                   | <del>,</del> .     | 1,199,300                | 1,012,900                           | 1,012,900       | 1,025,100      | 1,112,000              | 1,028,800              | 1,028,800             | 1,027,700 | 1,140,500              | 1,141,900            | 1,141,900              | 1,037,900            | 1,110,800              | 1,092,100                                                          | 1,092,100      | 1,042,600            |
| DSCMM<br>Evenes Air Even DSCFM                    |                    | 33,964                   | 28,687                              | 28,687          | 29,032         | 31,492                 | 29,137                 | 29,137                | 29,105    | 32,300                 | 32,340               | 32,340                 | 29,394               | 31,457                 | 30,927                                                             | 30,927         | 29,526               |
| CALCULATED FIRING RATE:                           |                    | 40.1'7 <u>26</u>         | 5                                   | ccc, 147        |                | 10,000                 | 105,101                | 047 <sup>4</sup> 04 J | 900'70'   |                        | 005'700              | 505,000                | 105'501              | 1000'7500              | toninzo                                                            | CCT HE         | COTICAL              |
|                                                   | lb/min             | 7,413                    | 5,719                               | 5,538           | 5,494          | 6,758                  | 5,806                  | 5,657                 | 5,539     | 7,179                  | 6,444                | 6,320                  | 5,594                | 699'9                  | 6,167                                                              | 5,932          | 5,552                |
|                                                   | ib/hr              | 700',                    |                                     | 332,257         | 329,666        | 405,461                | 0,034<br>348,346       | 339,414               | 332,348   | 430,720                | 386,642              | 379,206                | 335,659              | 400,156                | 369,997                                                            | 355,946        | 333,115              |
| Wet                                               | lb/hr              | 453,090                  | 349,511                             | 338,451         | 335,812        | 411,594                | 353,615                | 344,548               | 337,375   | 437,235                | 392,490              | 384,942                | 340,736              | 406,704                | 376,051                                                            | 361,771        | 338,566              |
| CALCULALED FIKING KALE:<br>Dry                    | tons/hr            | 222.4                    | 171.6                               | 166.1           | 164.8          | 202.7                  | 174.2                  | 169.7                 | 166.2     | 215.4                  | 193.3                | 189.6                  | 167.8                | 200.1                  | 185.0                                                              | 178.0          | 166.6                |
| Wet                                               | tons/hr            | 226.5                    | 174.8                               | 169.2           | 167.9          | 205.8                  | 176.8                  | 172.3                 | 168.7     | 218.6                  | 196.2                | 192.5                  | 170.4                | 203.4                  | 188.0                                                              | 180.9          | 169.3                |
| MEAT INFUT:<br>MM Btu/hr                          |                    | 6.122                    | 4.723                               | 4.573           | 4.538          | 5.540                  | 4.759                  | 4.637                 | 4.541     | 5,885                  | 5.283                | 5.181                  | 4.586                | 5.507                  | 5.092                                                              | 4.898          | 4.584                |
| PARTICULATE LOADING:                              |                    |                          |                                     |                 | -              |                        |                        |                       |           |                        |                      |                        |                      | •                      |                                                                    |                | -                    |
| Grains/DSCF                                       |                    | 2.0267                   | ç                                   | 0,0001          | 0.0016         | 2.1415                 | 0.8340                 | 0.0000                | 0.0011    | 2.2386                 | 0.8569               | 0,0003                 | 0.0016               | 2.4405                 | 1.8024                                                             | 0.0001         | 0.0008               |
| IbMM Btu -                                        |                    | 3.40                     | 92.0                                | 0.00            | 0.00           | 3.69                   | 1.55                   | 0.00                  | 0,00      | 3.72                   | 1.59                 | 0.0                    | 0.00                 | 4.22                   | 3.32                                                               | 0.00           | 00.0                 |
| Ash Production                                    | lb/hr              | 37,363                   | ~                                   | 27,910          | 27,692         | 35,235                 | 30,271                 | 29,495                | 28,881    | 37,430                 | 33,599               | 32,953                 | 29,169               | 33,133                 | 30,636                                                             | 29,472         | 27,582               |
| Bagouse Ash<br>Bottom Ach                         |                    | 20,841                   |                                     | 1 000           | 14<br>27 £70   | 20,419                 | 7,357                  | 0 100                 | 10        | 21,891                 | 8,390                | 30 050                 | 14.24<br>20.455      | 23,245                 | 16,878                                                             | 1              | 6,97<br>97 575       |
| Percent Fly Ash                                   |                    | 55.8%                    |                                     | %0.0            | 0.1%           | 58.0%                  | 24.3%                  | %0.0                  | %0.0      | 58.5%                  | 25.0%                | 0.0%                   | 0.0%                 | 70.2%                  | 55.1%                                                              | %0.0           | %0.0                 |
| " ISOKINETIC                                      |                    | 104.28                   | 101.84                              | 100.12          | 70.79          | 106,09                 | 101.67                 | 93.14                 | 71.03     | 103.97                 | 100.40               | 97.84                  | 71.27                | 104.69                 | 101.73                                                             | 96.70          | 71.85                |
|                                                   |                    |                          |                                     |                 |                |                        |                        |                       | _         |                        |                      |                        |                      |                        |                                                                    |                |                      |

-

10 10

ŝ

-

| Impinger Components Wts & Volumes      | ECON-1        | AHO-1  | FGD-1    | STK-1    | ECON-2             | AHO-2       | FGD-2     | STK-2     | ECON-3          | AHO.3  | FGD-3     | STK-3     | ECON-4    | AHO-4  | FGD4         | STK-4     |
|----------------------------------------|---------------|--------|----------|----------|--------------------|-------------|-----------|-----------|-----------------|--------|-----------|-----------|-----------|--------|--------------|-----------|
| Filter Wt., g                          | 5.4040        | 1.1700 | 50005    | 0.3278   | 5.3862             | 2.3996      | 0.0001    | 0.3375    | 5.6593          | 2.7024 | 0.0011    | 0,3303    | 6.0508    | 5.5082 | 0.0002       | 0.3297    |
| ppb Hg                                 | 17            | 283    |          |          | 15                 | 653         | <5.0      |           | 16              | 314    | \$5.0     | 5.0       | 19        | 379    | 8.8          | \$5.0     |
| total ug                               | 0.09          | 0.33   |          | 5.00     | 0.08               | 1.57        | <5.00E-03 |           | 0.09            | 0.85   | <5.00E-03 | <5.00E-03 | 0.11      | 2.09   | <5.00E-03    | <5.00E-03 |
| ug/dscm                                | 0.08          | 0.27   |          |          | 0.07               | 1.25        | <3.14E-03 | <2.29E-03 | 0.08            | 0.62   | <3.22E-03 | <2.26E-03 | 0.11      | 1.56   | <3.10E-03    | <2.23E-03 |
|                                        |               |        |          |          |                    |             |           |           |                 |        | •         |           |           |        |              |           |
| Prope Kinse volume, mi                 | 182           | 160    |          | 109      | 0/1                | 126         | 101       | 001       | 198             | 123    | 32        | 117       | 166       | 128    | 104          | 116       |
| Analytical Hg, ng/mi                   | <u>0</u><br>₽ | 1.6    | 1.5      | 1.7      | ₹<br>10            | ÷           | ₽.<br>V   | 1.7       | <u>0</u> .<br>V | 0.12   | 07        | Q.1.0     | Q.1.<br>2 | 4.0    | 1.0          | 1.9       |
| ug/dscm                                | <0.16         | 0.21   | 0.09     | 60'0     | <0.15              | 0.11        | <0.06     | 0.08      | <0.18           | 60.0>  | <0.06     | <0.05     | <0.15     | <0.10  | <0.05        | 0.10      |
|                                        |               |        |          |          |                    |             |           |           |                 |        |           |           |           |        |              |           |
| Heated Umbilical Line Rinse volume, ml | 121           | 148    | 109      | AN       | 38                 | 209         | 88        | Ą         | 106             | 130    | 121       | AN        | 88        | 129    | 88           | AN        |
| Analytical Hg, ng/ml                   | 1.7           | 2.5    | 0.15     |          | 3.5                | 1.5         | 2.1       |           | 1.3             | 1.1    | 2.6       |           | 22        | 2.6    | 1.4          |           |
| ug/dscm                                | 0.18          | 0.30   | <0.06    |          | 0.31               | 0.25        | 0.12      |           | 0.12            | 0.10   | 0.20      |           | 0.18      | 0.25   | 0.08         |           |
|                                        |               |        |          |          |                    |             |           |           |                 |        |           |           |           |        |              |           |
| KCi volume, mi                         | 523           | 524    |          |          | 539                | 523         | 535       | 672       | 525             | 529    | 543       | 687       | 522       |        | 550          | 869       |
| Analytical Hg, ng/ml                   | 12.1          | 15.3   |          |          | 11.5               | 14.3        | 23.0      | 6.0       | 11.9            | 16.6   | 24.7      | 20.2      | 8.8       |        | 18.2         | 0.2       |
| ug/dscm                                | 5.43          | 6.47   |          | <0.12    | 5.64               | 5.95        | 7.73      | 0.28      | 5.66            | 6.37   | 7.58      | <0.05     | 4.24      | 4.90   | 6.21         | <0.06     |
|                                        |               |        |          |          |                    |             |           |           |                 |        |           |           |           |        |              |           |
| Nitric/Peroxide volume, mi             | 175           | 175    |          |          | 175                | 175         | 177       | 183       | 176             | 176    | 175       | 176       | 175       | 175    | 175          | 175       |
| Analytical Hg, ng/ml                   | 2.7           | 0.2    |          |          | 0.2                | <u>40.2</u> | 010       | <0.20     | 40.2            | 40.2   | Q<br>10   | <0.20     | 0.3       | <0.2   | <0.2<br>40.2 | <0.20     |
| ug/dscm                                | 0.41          | <0.03  |          |          | 0.03               | <0.03       | <0.02     | <0.02     | <0.03           | <0.03  | <0.02     | <0.02     | 0.05      | <0.03  | <0.02        | <0.02     |
|                                        | 274           | 245    |          |          | 946                |             | ų         | 170       |                 | 010    | 070       | 1         |           |        | 140          | 1         |
|                                        | 147           |        | 1+7<br>7 | ***      | 9 <del>;</del>     | ţ           | ą :       | 2         | <del>1</del>    |        |           | 241       |           | 747    | 147          | 147       |
|                                        | 2'n' '        |        |          | 2.2      | 0.5                |             |           |           | 2               |        |           | 5         |           |        | 7.0          | 4         |
| ng/ascm                                | 4.09          | \$0.05 |          | 0.10     | 4.43               | 0.08        | 0.03      | 0.08      | 3.08            | 0,15   | <0.03     | 0.07      |           | \$0.0¥ | 0,03         | 0,04      |
| KMnO4-Acid Rinse volume. ml            | 100           | 100    |          | 100      | 100                | 1001        | 100       | 100       |                 | 100    | 100       | 100       | 10        |        | 100          |           |
| Analytical Ho. no/mi                   | 1             | 1.5    |          | 20       |                    |             |           | 14        |                 | v<br>V | -<br>-    | ÷         |           | 10     |              | V         |
| ug/dscm                                | 60.0×         | 0.12   | 0.08     | <0.05    | 50 <sup>.</sup> 0⊽ | 60.0        | 0.08      | 0.06      | 0.13            | 20.0≻  | 0.07      | 0.05      | 0.14      | ľ      | 60.0         | v         |
|                                        |               |        |          |          |                    |             |           |           |                 |        |           |           |           |        |              |           |
|                                        |               |        |          |          |                    |             |           |           |                 |        | ·         |           |           |        |              |           |
| Particutate, ug/m <sup>3</sup>         | 670,0         | 0.267  | 2.88E-03 | 2.30E-03 | 0.074              | 1.245       | 3.14E-03  | 2.29E-03  | 0.082           | 0.616  | 3.22E-03  | 2.26E-03  | 0.106     | 1.563  | 3.10E-03     | 2.23E-03  |
| Particulate, mg/sec                    | 0.0331        | 0.1227 | 1,37E-03 | 1.11E-03 | 0.0316             | 0.5774      | 1.49E-03  | 1.11E-03  | 0.0344          | 0.2881 | 1.54E-03  | 1.11E-03  | 0.0463    | 0.7255 | 1.50E-03     | 1.10E-03  |
| Percent of Total                       | 0,76          | 3.60   | 0.04     | 0.61     | 0.68               | 16.09       | 0.04      | 0.44      | 0.88            | 8.29   | 0.04      | 0.89      | 1.25      | 22.50  | 0.05         | 0.84      |
| Oxidized Fraction, ug/m <sup>3</sup>   | 5.76          | 6.97   | 7.18     | 0.21     | 6.11               | 6.31        | 7.91      | 0.35      | 5.96            | 6.57   | 7.85      | 0.12      | 4.57      | 5.25   | 6.35         | 0.16      |
| Oxidized Fraction, mg/sec              | 2.4182        | 3.2022 | 3.4043   | 0.101    | 2.6272             | 2.9227      | 3.7620    | 0.172     | 2.5000          | 3.0720 | 3.7437    | 0.056     | 1.9954    | 2.4351 | 3.0622       | 0.079     |
| Percent of Total                       | 55.29         | 93.86  | 98.19    | 55.71    | 56.89              | 81.42       | 98.29     | 68.69     | 64.25           | 88.43  | 98.39     | 45.20     | 53.67     | 75.51  | 97.71        | 60.12     |
| Elemental Fraction, ug <sup>2</sup>    | 4.58          | 0.19   | 0.13     | 0.16     | 4.55               | 0.19        | 0.13      | 0,16      | 3.23            | 0.24   | 0.13      | 0.14      | 3.84      | 0.14   | 0.15         | 0.10      |
| Elemental Fraction, mg/sec             | 1.9226        | 0.0365 | 0.0613   | 0.079    | 1.9595             | 0.0894      | 0.0641    | 0.077     | 1.3568          | 0.1138 | 0,0598    | 0,067     | 1,6765    | 0.0641 | 0.0701       | 0.051     |
| Percent of Total                       | 43.96         | 2.54   | 1.77     | 43.68    | 42.43              | 2.49        | 1.67      | 30.86     | 34.87           | 3.28   | 1.57      | 53.91     | 45.09     | 1.99   | 2.24         | 39.04     |
| Total ug/m <sup>3</sup>                | 10.43         | 7.43   | 7.31     | 0.38     | 10.73              | 7.75        | 8.05      | 0.5166    | 9.28            | 7.42   | 7.98      | 0.2544    | 8.52      | 6.95   | 6.50         | 0.2673    |
| Total mg/sec                           | 4.3739        | 3.4117 | 3.4670   | 0.182    | 4.6183             | 3.5896      | 3.8276    | 0.251     | 3.8912          | 3.4739 | 3.8050    | 0.12      | 3.7182    | 3.2247 | 3.1338       | 0.132     |
|                                        |               |        |          |          |                    |             |           |           | •               | •      |           | F         |           | ,      |              | •         |

a alla alla alla

17 IZ ...

. . . . .

. I. . . .

FGA in Aitot Survey Offeet = 36"

1/24/05

North Port w/ offict 11

64 16 52" 5 " 44 30'

Static = 8,56 " Angle 285 F 0,8557 0° .) () 2-86 0,8460 0 285 (175 285 Ø,

South Port

64 28" 16" 58 " 5" Y1 " 30

Spakie = 8,51;

 $\mathcal{D}^{o}$ 

 $\partial^{2}$ 

 $o^{2}$ 

150°F 1,195 157°F 1.080 153°F 1,10 152

 $\mathcal{O}$ 

| ,                        |                           | Axial Flo                             | w Check         |                      |          |          |
|--------------------------|---------------------------|---------------------------------------|-----------------|----------------------|----------|----------|
| Location Stat            |                           | יי חו <u>י</u>                        |                 | Barometric<br>Static | 29.65    | <u> </u> |
|                          |                           |                                       | ft <sup>2</sup> |                      |          |          |
| Time <u>1400-</u>        |                           | Агеа                                  | IL              | Dry Bulb             |          |          |
| Tube I.D. <u><u></u></u> | <u>53</u> %O <sub>2</sub> |                                       | <b>.</b>        | Wet Bulb             | <u> </u> |          |
| C-Factor K.C.            | <u>B.S.</u> % CO          | -                                     |                 | % H <sub>2</sub> 0   |          |          |
| Operator <u>(s)</u>      | % N <sub>2</sub>          | · · · · · · · · · · · · · · · · · · · |                 | W.M.Wt               |          |          |
| POR                      | RT/ DISTA                 | NCE   TEMP                            | DELTA P         | VELOCITY             | Null     | 1        |
| POI                      | NT [" From                | Wall] [°F]                            | [" H₂O]         | [Ft/Sec]             | Angle    |          |
| A-1                      | 1 10.                     | 0 127.1                               |                 | .7500                |          |          |
| A-2                      | 2 33.                     | 3 124.1                               |                 | 1.281                |          | ] _      |
| A-3                      | 3 67.                     | 5 124.0                               | 2 C             | 1.361                |          |          |
|                          |                           |                                       |                 |                      |          | 1        |
| B-1                      | 1 10                      | )                                     |                 |                      |          | ]        |
| B-2                      | 2 33.                     | 3                                     |                 |                      |          | 1        |
| B-3                      | 3 67.                     | 5                                     |                 |                      |          | 1        |
|                          |                           |                                       |                 |                      |          | 1        |
| C-1                      | 1 10                      | )                                     |                 |                      |          | 1        |
| C-2                      | 2 33.                     | 3                                     |                 |                      |          | .]       |
| C-3                      | 3 67.                     | 5                                     |                 |                      |          | 1        |
|                          |                           |                                       |                 |                      |          | 1        |
| D-1                      | 1 10                      | )                                     |                 |                      |          |          |
| D-2                      | 2 33.                     | 3                                     |                 |                      |          | 1        |
| D-3                      | 3 67.                     | 5                                     |                 |                      | · · ·    | 1        |

2

Average Maximum

Minimum SDEV

 $h \geq 1$ 

.4486

| DATA SUMMAR               | Y |  |
|---------------------------|---|--|
| Velocity, [fps]           |   |  |
| acfm                      |   |  |
| scfm                      |   |  |
| dscfm                     |   |  |
| Ex Air Free cfm           |   |  |
| Est. MM Btu/hr Heat Input |   |  |
| Est. Firing Rate, Ib/hr   |   |  |

# **APPENDIX B**

;

10 T.B.

i int.

;

the second second

Plant Process Data

#### CONSOL Energy - DOE / EPRI Mercury Tests

10 H 10

3

•

### Plant 4 Operating Data - Unit 1 (1/19/05 - 1/21/05)

| Description             | Units   | Test # 1 | Test # 2         | Test # 3 | Test # 4 |
|-------------------------|---------|----------|------------------|----------|----------|
| Total Coal Flow         | TPH     | 168.1    | 163.7            | 162.2    | 168.0    |
| Gross Generation        | MW      | 460      | 460              | 458      | 459      |
| Feedwater Flow          | KLBH    | 3125.41  | 3091.33          | 3063.07  | 3134.92  |
| Main Steam Flow         | KLBH    | 3343.78  | 3344.49          | 3325.81  | 3337.82  |
| Feedwater Pressure      | PSIG    | 2826.4   | 2824.7           | 2818.6   | 2822.2   |
| SH Outlet Pressure      | PSIG    | 2547.6   | 2548.7           | 2545.7   | 2544.2   |
| Economizer Gas Out Temp | deg F   | 709.9    | 716.2            | 720.4    | 723.2    |
| Air Heater Gas Out Temp | deg F   | 280.5    | 284.0            | 288.0    | 285.3    |
| Economizer Outlet O2    | %       | 3.30     | 3.38             | 3.33     | 3.35     |
| FGD Inlet Temp          | deg F   | 280.0    | 282.0            | 296.0    | 284.0    |
| FGD Blowdown Flow       | GPM     | ~ 1000   | ~ 1000           | ~ 1000   | ~ 1000   |
| FGD ME Wash Flow        | Gallons | 11660    | 14625            | 26325    | 0        |
| FGD Makeup Water Flow   | Gallons | 2992     | 3658             | 3995     | 3000     |
| FGD Additive Feed Flow  | GPM     | 112      | 94               | 99       | 88       |
| FGD Inlet SO2           | PPM     | 885      | 814.2            | 769.6    | 654      |
| FGD Inlet NOx           | PPM     | -<br>-   |                  |          |          |
| Stack Temp              | deg F   | 121.2    | 122.5            | 122.1    | 122.9    |
| Stack SO2               | PPM     | 156.9    | 146.8            | 141.2    | 118.4    |
| Stack NOx               | PPM     | 220.0    | 254.6            | 266.8    | 248.4    |
| Stack O2                | PPM     | 6.1      | 5.85             | 5.85     | 5.8      |
| Stack CO2               | PPM     | 11.5     | 11.5             | 11.6     | 11.4     |
| Stack Gas Flow          | SCFM    | 1126500  | 1144 <b>4</b> 46 | 1139283  | 1137875  |

### CONSOL Energy - DOE / EPRI Mercury Tests

- **- - - -**

10 1 CC ...

#### Plant 4 Operating Data - Unit 2 (1/24/05 - 1/26/05)

| Description             | Units   | Test # 1  | Test # 2  | Test # 3  | Test # 4  |
|-------------------------|---------|-----------|-----------|-----------|-----------|
| Total Coal Flow         | TPH     | 160.8     | 163.2     | 162.4     | 161.4     |
| Gross Generation        | MW      | 459       | 458       | 458       | 457       |
| Feedwater Flow          | KLBH    | 2,965.1   | 3,024.9   | 3,002.4   | 3,010.1   |
| Main Steam Flow         | KLBH    | 3,288.2   | 3,288.0   | 3,288.0   | 3,285.7   |
| Feedwater Pressure      | PSIG    | 2,761.5   | 2,765.9   | 2,765.0   | 2,763.2   |
| SH Outlet Pressure      | PSIG    | 2,533.3   | 2,534.0   | 2,534.4   | 2,532.3   |
| Economizer Gas Out Temp | deg F   | 693.7     | 682.4     | 687.5     | 700.5     |
| Air Heater Gas Out Temp | deg F   | 280.2     | 276.8     | 281.1     | 284.4     |
| Economizer Outlet O2    | %       | 3.20      | 3.24      | 3.19      | 3.19      |
| SCR NH3 Feed Rate       | LBH     | 220       | 238       | 236       | 256       |
| FGD Inlet Temp          | deg F   | 294       | 291       | 295       | 296       |
| FGD Blowdown Flow       | GPM     | 1,000     | 979       | 987       | 965       |
| FGD ME Wash Flow        | Gallons | 56,000    | 61,600    | 56,000    | 56,000    |
| FGD Makeup Water Flow   | Gallons | 0         | 0         | 0         | 0         |
| FGD Additive Feed Flow  | GPM     | 79.5      | 114.0     | 105.5     | 89.8      |
| FGD Inlet SO2           | PPM     | 840       | 769       | 735       | 621       |
| FGD Inlet NOx           | PPM     |           |           |           |           |
| Stack Temp              | deg F   | 122.3     | 122.7     | 122.3     | 123.4     |
| Stack SO2               | PPM     | 70.8      | 56.0      | 53.3      | 54.7      |
| Stack NOx               | PPM     | 83.7      | 85.2      | 89.4      | 86.9      |
| Stack O2                | PPM     |           |           |           |           |
| Stack CO2               | PPM     | 11.6      | 11.7      | 11.8      | 11.4      |
| Stack Gas Flow          | SCFM    | 1,111,992 | 1,129,667 | 1,123,488 | 1,143,206 |

# **APPENDIX C**

1 CHT 1 T

10 m

1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J. 1. J.

5

# Flue Gas Mercury Data

- Summary of Ontario-Hydro Impinger Analyses Data Sheets
- Recovery Data Sheets

Logie Distribution: They Unit 1 Project No.: Sample Date: 0.5 Lac Location: Econ Out Task: Test: Operator: Initial Vol Total ug **Rinse Vol** Gain Final Vol ppb Hg Sample ID Bottle # Description of Hg mL mL mL mL Filter/Solids s 177 Probe & Filter Rinse 1 1A Heated Line Rinse 75 2 1B 300 150 87 <u>537</u> З KCI Impingers 2 174 4 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 75 3 100 50 - 6 244 5 4 KMnO<sub>4</sub> Impingers 200 100 6 5 KMnO₄ Acid Rinse 00 Filter Gross wt: 6.9257g Filter Tare wt: 1.5262g Filter Net wt: 5. 2995 g Probe/Line Rinse wt: Condensate Total: 90.7 ml ø Filter Net wt: 5.2995 g Total Particulate wt: 5.299.5g 1-19.05 Date: Recovered By: emit Location: AHO Task: Test: 1 Operator: Initial Vol **Rinse Vol** Gain Final Vol Total ug Sample ID Bottle # ppb Hg Description of Hg mL mL mL mL 9 s Filter/Solids 143 Probe & Filter Rinse 1A 98 Heated Line Rinse 8 1B Ĝ KCI Impingers 300 50 78 528 2 75 50 174 10 3 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 100 243 200 7 4 KMnO<sub>4</sub> Impingers 11\_ KMnO₄ Acid Rinse 12 5 00 100 Filter Gross wt: 3.4433 g Filter Tare wt: 1.8058 g Filter Net wt: 1.6375 g Condensate Total: 75. 4 ml Probe/Line Rinse wt: Total Particulate wt: 7.6375 g Filter Net wt/. 6375g Date: 1-19-05 Recovered By: rhit Task: Location; FGD In Test: Operator: Initial Vol Rinse Vol Final Vol Gain Total ug Sample ID Description ppb Hg Bottle # mL mL mL mL of Hg S Filter/Solids 17 1A Probe & Filter Rinse £4 /3 84 14 -18 Heated Line Rinse 300 <u>559</u> 150 2 KCI Impingers 10 75 100 3 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger o200 50 - 6 4 KMnO<sub>4</sub> Impingers 244 KMnO₄ Acid Rinse 100 100 8 5 Filter Gross wt: D. 1499 g Filter Net wt: 0.0024 g ð Condensate Total: // 4 / ml Probe/Line Rinse wt: Filter Tare wt: 0.1475 Total Particulate wt: 0.0024 g Filter Net wt: 0.002 9 g Date:\_/-/9- 05 Recovered By Zint Kizh Location: Stack Task: Test: Operator: Rinse Vol Initial Vol Final Vol Total ug Gain Sample ID Bottle # Description ppb Hg of Hg mL mL mL mL 23 s Filter/Solids 19 Probe & Filter Rinse /0 1A 1B **Heated Line Rinse** 680 20 300 50 230 2 KCI Impingers 100 21 3 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 75 حر 245 22 4 KMnO<sub>4</sub> Impingers 200 50 5 23 5 KMnO₄ Acid Rinse 00 100 Filter Gross wt: - 4046 Filter Net wt: 0.0002, g α Filter Tare wt: 0. 7067 Probe/Line Rinse wt: \_\_\_\_\_g Condensate Total: 237.2 ml g Filter Net wt: 0.0002g Total Particulate wt: o. ooo2 g Date: 1-19-05 Recovered By: Total ug Sample ID Description ppb Hg of Hg 3 in. Filter Blank Thimble Blank 24 KCI Blank

i,

25

<u>26</u> 27 HNO₃ / H2O2 Blank KMnO₄ Blank

HNO<sub>3</sub> / HCI Blank

chit 1

| Distribution: | Hathum - Locke |  |
|---------------|----------------|--|
| Project No.:  | 1621-87        |  |
| Sample Date:  | 1-20-05        |  |
|               |                |  |

w 24 Location: Econ Out Task:

Operator: Sand 2

| Sample ID | Bottle # | Description                                              | Initial Vol<br>mL | Rinse Vol<br>mL | Gain<br>mL | Final Vol<br>mL | ppb Hg | Total ug<br>of Hg |
|-----------|----------|----------------------------------------------------------|-------------------|-----------------|------------|-----------------|--------|-------------------|
|           | S        | Filter/Solids 2                                          |                   |                 |            |                 |        |                   |
| 28        | 1A       | Probe & Filter Rinse                                     |                   | :               |            | 188             |        |                   |
| 29        | 1B       | Heated Line Rinse                                        |                   |                 |            | 111             |        |                   |
| 30        | 2        | KCI impingers                                            | 300               | 150             | 87         | 537             |        |                   |
| 3/        | 3        | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | /00               | 75              | 0          | 175             |        |                   |
| 32        | 4        | KMnO <sub>4</sub> Impingers                              | 200               | 50              | -4         | 246             |        |                   |
| 33        | 5        | KMnO <sub>4</sub> Acid Rinse                             |                   | 100             |            | 100             |        |                   |

Test:

Filter Tare wt: <u>7639</u> Filter Net wt: <u>657639</u>

Probe/Line Rinse wt: \_\_\_\_\_g Total Particulate wt: 6.5763 g

Condensate Total: 91.5 ml

Date:

1-20.05

Ω Recovered By:

| Location; | АНО      | _ Task: _ / .                                            | Test:             | _2_             | Operator   | Jem             |        |                   |
|-----------|----------|----------------------------------------------------------|-------------------|-----------------|------------|-----------------|--------|-------------------|
| Sample ID | Bottle # | Description                                              | Initial Vol<br>mL | Rinse Vol<br>mL | Galn<br>mL | Final Vol<br>mL | ppb Hg | Total ug<br>of Hg |
|           | s        | Filter/Solids /o                                         |                   |                 |            |                 |        |                   |
| 34        | 1A       | Probe & Filter Rinse                                     |                   |                 |            | 120             |        |                   |
| 35        | 1B       | Heated Line Rinse                                        |                   |                 |            | 104             |        |                   |
| 36        | 2        | KCI Impingers                                            | 300               | 150             | 74         | 524             |        |                   |
| 37        | 3        | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100               | 75              | - 2        | 173             |        |                   |
| 38        | 4        | KMnO <sub>4</sub> Impingers                              | 200               | 50              | - 8        | 242             |        |                   |
| 39        | 5        | KMnO <sub>4</sub> Acid RInse                             |                   | 100             |            | /00             |        |                   |

Filter Gross wt: 2.3274 g Filter Tare wt: 1.629.3 g Filter Net wt: 0.6981g Filter Net wt: <u>0.698/g</u> Probe/Line Rinse wt: <u>6</u>g Total Particulate wt: <u>6.698/g</u>

Condensate Total: 7/.7 ml

Qu Recovered By:\_\_\_

| Recovered By: | Qu       |                                                          |                   |                 | Date:_/-   | 20-0            | 5 |
|---------------|----------|----------------------------------------------------------|-------------------|-----------------|------------|-----------------|---|
| Location      | : FGD In | Zmit<br>Task:                                            | <u>.</u> Test:    | 2               | Operator   | fift            |   |
| Sample ID     | Bottle # | Description                                              | Initial Vol<br>mL | Rinse Vol<br>mL | Gain<br>mL | Final Vol<br>mL |   |
|               | S        | Filter/Solids /8                                         |                   |                 |            |                 |   |
| 40            | 1A       | Probe & Filter Rinse                                     |                   |                 |            | 77              |   |
| 41            | _1B      | Heated Line Rinse                                        |                   |                 |            | 80              |   |
| 42            | 2        | KCI Impingers                                            | 300               | 150             | 105        | 555             |   |
| 43            | 3        | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100               | 75              | 0          | 175             |   |
| 44            | 4        | KMnO <sub>4</sub> Impingers                              | 200               | 50              | -7         | 243             |   |
| 45            | 5        | KMnO₄ Acid Rinse                                         |                   | 100             |            | 100             |   |

Filter Gross wt: Filter Tare wt: Filter Net wt: Control of the second sec

Recovered By:

Filter Net wt: 0.0004 g Probe/Line Rinse wt: \_\_\_\_\_ g Total Particulate wt: 0.060 4 g

Condensate Total: 107.5 ml

1-20-05 Date:

2hit ĺ Location: Stack Task: Test: Operator: Keith Initial Vol Rinse Vol Gain Final Vol Total ug Sample ID Bottle # Description ppb Hg mL тL mL mL of Hg s Filter/Solids 24 105 46 1A Probe & Filter Rinse \* ----1B Heated Line Rinse 683 233 47 300 2 KCI Impingers 50 48 75 50 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 100 2 177 3 200 49 KMnO₄ Impingers 4 246 4 \*\*\* KMnO₄ Acid RInse 50 5 100 100

Filter Gross wt: 6. 7/ 46 g Filter Tare wt: 6. 4/ 16 g \_g Filter Net wt: 0.0030 g

Filter Net wt: 4.6030 g Probe/Line Rinse wt: \_\_\_\_\_g Total Particulate wt: \_\_\_\_\_g

Condensate Total: 243.3 ml

Recovered By:\_ 1 Date: 1-20-05

| Sample ID | Description                   | ppb Hg | Total ug<br>of Hg |
|-----------|-------------------------------|--------|-------------------|
|           | 3 in. Filter Blank            |        |                   |
|           | Thimble Blank                 |        |                   |
|           | KCI Blank                     |        |                   |
|           | HNO <sub>3</sub> / H2O2 Blank |        |                   |
| 5/        | KMnO₄ Blank                   |        |                   |
|           | HNO <sub>3</sub> / HCI Blank  |        |                   |

|75 243 100

ppb Hg

Total ug

of Hg

emit 1

|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  | Um                                                                                                           | 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |         |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
| Distribution:<br>Project No                                                                                                                                                                                       | With 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in - Locke                                                                                                                                                                                                                                                                                                                                                                                                           | <u>-</u>                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |         |                   |
| Sample Date:                                                                                                                                                                                                      | 1-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-05                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |         |                   |
| Location:                                                                                                                                                                                                         | Econ Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Task: 1                                                                                                                                                                                                                                                                                                                                                                                                              | Test                                                                                                                                             | 3                                                                                                            | Operator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glory                                                                                                                                                                                      | _       |                   |
| Sample ID                                                                                                                                                                                                         | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                          | initial Vol<br>mL                                                                                                                                | Rinse Vol<br>mL                                                                                              | Gain<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Final Vol<br>mL                                                                                                                                                                            | ppb Hg  | Total ug<br>of Hg |
|                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Filter/Solids 3                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  | <u> </u>                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                          | ļ       |                   |
| <u>52</u><br>53                                                                                                                                                                                                   | 1A<br>1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170                                                                                                                                                                                        |         | <u> </u>          |
| 54                                                                                                                                                                                                                | 1B<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heated Line Rinse<br>KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                   | 300                                                                                                                                              | 150                                                                                                          | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 524                                                                                                                                                                                        |         | +                 |
| 55                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                             | 160                                                                                                                                              | 7.5                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175                                                                                                                                                                                        |         |                   |
| 56                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO₄ Impingers                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                              | 50                                                                                                           | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245                                                                                                                                                                                        |         |                   |
| 57<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                                                                                                                                       | 1.6452g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probe/Line Rinse wt:                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                              | insate Total;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /00<br>77.3                                                                                                                                                                                | <br>_mł | ļ                 |
| Recovered By:_                                                                                                                                                                                                    | Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                              | Date: <u>/</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.05                                                                                                                                                                                      | -       |                   |
| Location:                                                                                                                                                                                                         | и<br><u>ано</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zent                                                                                                                                                                                                                                                                                                                                                                                                                 | Test:                                                                                                                                            | 3                                                                                                            | Operator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Juni                                                                                                                                                                                       |         |                   |
| Sample ID                                                                                                                                                                                                         | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Initial Vol<br>mL                                                                                                                                | Rinse Vol<br>mL                                                                                              | Gain 4<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Final Vol<br>mL                                                                                                                                                                            | ppb Hg  | Total ug<br>of Hg |
|                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Filter/Solids //                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |         |                   |
| 58                                                                                                                                                                                                                | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121                                                                                                                                                                                        |         |                   |
| 59<br>60                                                                                                                                                                                                          | 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                                              | 150                                                                                                          | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | //8<br>523                                                                                                                                                                                 |         |                   |
| 61                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KCI ImpIngers<br>HNO₃/H₂O₂ Impinger                                                                                                                                                                                                                                                                                                                                                                                  | /00                                                                                                                                              | 75                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175                                                                                                                                                                                        |         |                   |
| 62                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO <sub>4</sub> Impingers                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                              | 50                                                                                                           | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 246                                                                                                                                                                                        |         | · · · ·           |
| 63                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO₄ Acid Rinse                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                  | 100                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                        | • •     |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt<br>Recovered By:_                                                                                                                                            | /. 4/ 78 g<br>2• / 345 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                                                                                                        | <u></u>                                                                                                                                          | Conde                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.0<br>20- 0.                                                                                                                                                                             |         |                   |
| Location:                                                                                                                                                                                                         | FGD In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Task:                                                                                                                                                                                                                                                                                                                                                                                                                | Test;                                                                                                                                            |                                                                                                              | Operator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jeff.                                                                                                                                                                                      |         |                   |
| Sample ID                                                                                                                                                                                                         | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Initial Vol<br>mL                                                                                                                                | Rinse Vol<br>mL                                                                                              | Gain<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Final Vol<br>mL                                                                                                                                                                            | ppb Hg  | Total ug<br>of Hg |
| 64                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Filter/Solids /9                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 135                                                                                                                                                                                        |         |                   |
| 65                                                                                                                                                                                                                | <u>1A</u><br>1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Probe & Filter Rinse<br>Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                         |         |                   |
| 6.2                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neated Line Milae                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | // m                                                                                                                                                                                       |         |                   |
| 66                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                        | 366                                                                                                                                              | 150                                                                                                          | 11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |         |                   |
| 66                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                            | 300                                                                                                                                              | /50<br>75                                                                                                    | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 566                                                                                                                                                                                        |         |                   |
| 66<br>67<br>68                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                                                                              | /50<br>75<br>50                                                                                              | - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |         |                   |
| 66<br>67<br>68<br>69                                                                                                                                                                                              | 2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                             | /00                                                                                                                                              | 75                                                                                                           | <i>i</i> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                            |         |                   |
| 66<br>67<br>68<br>29<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                                                                                                                     | 2<br>3<br>4<br>5<br>• · /5 { } g<br>• · /4 7 3 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                         | /00<br>200                                                                                                                                       | 75<br>50<br>/00                                                                                              | - 3<br>nsate Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 566<br>176<br>247                                                                                                                                                                          |         |                   |
| 66<br>67<br>68<br>29<br>iller Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                                                                                                                      | $2$ $3$ $4$ $5$ $\circ ./5 ( \{ g \ g \ o, /4 7 3 \ g \ o, / 5 \ g \ g \ g \ g \ g \ g \ g \ g \ g \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:                                                                                                                                                                                                                                                                                                                                          | /00<br>200                                                                                                                                       | 75<br>50<br>/00                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 566<br>176<br>247<br>100<br>124.9                                                                                                                                                          | 5       |                   |
| 66<br>67<br>68<br>7<br>7<br>7<br>11ter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:_                                                                                                           | $2$ $3$ $4$ $5$ $\circ ./5 ( \{ g \ g \ o, /4 7 3 \ g \ o, / 5 \ g \ g \ g \ g \ g \ g \ g \ g \ g \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                         | / 0 0<br>2 0 0<br>0. 0// 3 g<br>0. 0// 3 g<br>0. 0// 5 g                                                                                         | 75<br>50<br>/00<br>Conder                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 566<br>176<br>247<br>100<br>124.9<br>28-03                                                                                                                                                 | 5       | Total ug<br>of Hg |
| 66<br>67<br>68<br>29<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                       | 2<br>3<br>4<br>5<br>0 · /5 (8 g<br>0 · /7 7 g<br>0 · / / 5 g<br>J<br>Stack<br>Bottle #<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:                                                                                                                                                                                                                                                                                | / 0 0<br>2 0 0<br>0 0 // 5 0<br>0 0 0<br>0 0 // 5 0<br>Test:                                                                                     | 75<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 544<br>176<br>247<br>100<br>124.9<br>28-03<br>Keith<br>Final Vol                                                                                                                           | 5       |                   |
| 66<br>67<br>68<br>29<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                       | $2$ $3$ $4$ $5$ $0 \cdot / 5 (8 g$ $0 \cdot / 7 3 g$ $2 \circ / / 5 g$ $\int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse                                                                                                                                                                                                    | / 0 0<br>2 0 0<br>0 0 // 5 0<br>0 0 0<br>0 0 // 5 0<br>Test:                                                                                     | 75<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 544<br>176<br>247<br>100<br>124.9<br>28-03<br>Keith<br>Final Vol                                                                                                                           | 5       |                   |
| 66<br>67<br>68<br>29<br>Wilter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID                                                                                          | $2$ $3$ $4$ $5$ $0 \cdot / 5 (8 g$ $0 \cdot / 7 3 g$ $2 \circ / / 5 g$ $\int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse                                                                                                                                                                               | / 0 0<br>2 0 0<br>0 0 // 5 0<br>0 0 0<br>0 0 // 5 0<br>Test:<br>Initial Vol<br>mL                                                                | 75<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 544<br>176<br>247<br>180<br>124.9<br>28-03<br>Keith<br>Final Vol<br>mL                                                                                                                     | 5       |                   |
| 66<br>67<br>68<br>29<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br>20<br>7/                                                                              | $2$ $3$ $4$ $5$ $\circ ./5 (f g)$ $\circ ./773 g$ $2 \circ ./75 g$ $J \sim$ Stack Bottle # S $1A$ $1B$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers                                                                                                                                                                                       | / 0 0<br>2 0 0<br>0 0 // 5 0<br>0 0 // 5 0<br>0 0 // 5 0<br>Test:<br>Initial Vol<br>mL<br>3 & ⇔                                                  | 75<br>50<br>/ 30<br>Conder<br>3<br>Rinse Vol<br>mL                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 544<br>176<br>247<br>100<br>124.9<br>28-05<br>Keith<br>Final Vol<br>mL<br>111<br><br>684                                                                                                   | 5       |                   |
| 66<br>67<br>68<br>69<br>iller Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br>70<br>7/<br>72                                                                         | $2$ $3$ $4$ $5$ $\circ ./5 (f g)$ $\circ ./773 g$ $2 \circ ./75 g$ $J \sim$ Stack Bottle # S 1A 1B 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                     | / 0 0<br>2 0 0<br>2 0 0<br>0 9<br>0 0//5 9<br>Test:<br>Initial Vol<br>mL<br>3 & 0<br>/ 0 0                                                       | 75<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>75                                             | /<br>3<br>nsate Total:<br>Date: /-<br>Operator:<br>Gain<br>mL<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 4 4<br>176<br>247<br>100<br>124.9<br>2.5-05<br>KerTh<br>Final Vol<br>mL<br>111<br>-<br>684<br>175                                                                                        | 5       |                   |
| 66<br>67<br>67<br>29<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br>20<br>7/                                                                              | $2$ $3$ $4$ $5$ $0 \cdot / 5 (8 g$ $0 \cdot / 7 3 g$ | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers                                                                                                                                              | / 0 0<br>2 0 0<br>0 0 // 5 0<br>0 0 // 5 0<br>0 0 // 5 0<br>Test:<br>Initial Vol<br>mL<br>3 & ⇔                                                  | 75<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>75<br>50                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 4 4<br>176<br>247<br>100<br>124.9<br>20-00<br>Kesth<br>Final Vol<br>mL<br>111<br>                                                                                                        | 5       |                   |
| 66<br>67<br>67<br>68<br>29<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>1<br>1<br>1<br>9<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                             | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 . / 4 7 3 \\ 9 \\ 6 . / 4 7 3 \\ 9 \\ 6 . / 1 5 \\ 9 \\ 9 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \cdot 4 / 5 \\ 9 \\ 7 \cdot 4 / 7 \\ 9 \\ 9 \\ 7 \cdot 7 \\ 9 \\ 9 \\ 9 \\ 7 \cdot 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                     | / 0 0<br>2 0 0<br>0 0// 5 g<br>0 g<br>0 0// 5 g<br>Test:<br>Initial Vol<br>mL<br>3 & 0<br>/ 0 0<br>2 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 | 75<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>75<br>50<br>/ 00<br>Conder                     | <br>nsate Total:<br>Date:<br>Operator: _<br>Gain<br>mL<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 5 4 4<br>176<br>247<br>100<br>124.9<br>2.5-05<br>KerTh<br>Final Vol<br>mL<br>111<br>-<br>684<br>175                                                                                        | ppb Hg  |                   |
| 66<br>67<br>67<br>68<br>29<br>7<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Cocation:<br>Cocation:<br>Cocation:<br>20<br>7/<br>72<br>71<br>72<br>73<br>74<br>Filter Gross wt:<br>Filter Gross wt: | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ \circ . / 5 (8 \\ 9 \\ \circ . / 7 \\ 3 \\ 9 \\ \circ . / 1 \\ 5 \\ 9 \\ 9 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ . / 1 \\ 5 \\ 0 \\ . / 2 \\ 9 \\ 9 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\ . 0 \\$                                                                                                                                                                                                                     | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Total Particulate wt:<br>Total Particulate wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:                                                                         | / 0 0<br>2 0 0<br>0 0// 5 g<br>0 g<br>0 0// 5 g<br>Test:<br>Initial Vol<br>mL<br>3 & 0<br>/ 0 0<br>2 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 | 7.5<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>7.5<br>50<br>/ 25<br>50<br>/ 25<br>50<br>/ 25 | <br>nsate Total:<br>Date:<br>Operator: _<br>Gain<br>mL<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | $5 \frac{4}{176}$ $\frac{7}{176}$ $\frac{247}{100}$ $\frac{124.9}{124.9}$ $\frac{124.9}{124.9}$ $\frac{124.9}{11}$ $\frac{111}{11}$ $\frac{684}{175}$ $\frac{245}{150}$ $\frac{241.4}{11}$ | ppb Hg  | Total ug<br>of Hg |
| 66<br>67<br>67<br>68<br>67<br>69<br>70<br>79<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                        | 2     3     4     5     5     6 . / / 7.3 g     9     6 . / / 7.3 g     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt: 9                                                                        | / 0 0<br>2 0 0<br>2 0 0<br>9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0                                                                      | 7.5<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>/ 50<br>/ 50<br>/ 50<br>/ 50<br>/ 50          | <br>nsate Total:<br>Date:<br>Operator: _<br>Gain<br>mL<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | $5 \frac{4}{176}$ $\frac{7}{176}$ $\frac{247}{100}$ $\frac{124.9}{124.9}$ $\frac{124.9}{124.9}$ $\frac{124.9}{11}$ $\frac{111}{11}$ $\frac{684}{175}$ $\frac{245}{150}$ $\frac{241.4}{11}$ | ppb Hg  |                   |
| 66<br>67<br>67<br>68<br>67<br>69<br>70<br>79<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                        | 2     3     4     5     0 . /5 (8 g     0 . /473 g     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt: o<br>Probe/Line Rinse wt:<br>Total Particulate wt: o<br>Description<br>n. Filter Blank<br>himble Blank | / 0 0<br>2 0 0<br>2 0 0<br>9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0                                                                      | 7.5<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>7.5<br>50<br>/ 25<br>50<br>/ 25<br>50<br>/ 25 | <br>nsate Total:<br>Date:<br>Operator: _<br>Gain<br>mL<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | $5 \frac{4}{176}$ $\frac{7}{176}$ $\frac{247}{100}$ $\frac{124.9}{124.9}$ $\frac{124.9}{124.9}$ $\frac{124.9}{11}$ $\frac{111}{11}$ $\frac{684}{175}$ $\frac{245}{150}$ $\frac{241.4}{11}$ | ppb Hg  |                   |
| 66<br>67<br>67<br>68<br>67<br>69<br>70<br>79<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                        | 2     3     4     5     0 /5 (8 g     0 /7 3 g     0 / 5 g     0 / 5 g     0 / 5 g     0 / 5 g     0 / 5 g     1A     1B     2     3     4     5     0 // 5 3 g     0 // 5 g     1 // 5 g     0 // 5 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt: 0<br>Description<br>n. Filter Blank<br>KCI Blank                                            | / 0 0<br>2 0 0<br>2 0 0<br>9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0                                                                      | 7.5<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>7.5<br>50<br>/ 25<br>50<br>/ 25<br>50<br>/ 25 | <br>nsate Total:<br>Date:<br>Operator: _<br>Gain<br>mL<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | $5 \frac{4}{176}$ $\frac{7}{176}$ $\frac{247}{100}$ $\frac{124.9}{124.9}$ $\frac{124.9}{124.9}$ $\frac{124.9}{11}$ $\frac{111}{11}$ $\frac{684}{175}$ $\frac{245}{150}$ $\frac{241.4}{11}$ | ppb Hg  |                   |
| 66<br>67<br>67<br>68<br>67<br>69<br>70<br>79<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                        | 2<br>3<br>4<br>5<br>$\circ ./5 (8 g)$<br>$\circ ./7 3 g$<br>$\circ ./7 g$<br>$\int f g$<br>Stack<br>Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>$\circ ./7 5 g$<br>$0 \cdot f g$<br>$0 \cdot$                                                                                                                                                                                                                                                                                  | HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids 2.5<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt: o<br>Probe/Line Rinse wt:<br>Total Particulate wt: o<br>Description<br>n. Filter Blank<br>himble Blank | / 0 0<br>2 0 0<br>2 0 0<br>9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0 9<br>0                                                                      | 7.5<br>50<br>/ 20<br>Conder<br>3<br>Rinse Vol<br>mL<br>/ 50<br>7.5<br>50<br>/ 25<br>50<br>/ 25<br>50<br>/ 25 | <br>nsate Total:<br>Date:<br>Operator: _<br>Gain<br>mL<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | $5 \frac{4}{176}$ $\frac{7}{176}$ $\frac{247}{100}$ $\frac{124.9}{124.9}$ $\frac{124.9}{124.9}$ $\frac{124.9}{11}$ $\frac{111}{11}$ $\frac{684}{175}$ $\frac{245}{150}$ $\frac{241.4}{11}$ | ppb Hg  |                   |

. . . . . . . . .

10 10

121

2mit 1

| Distribution                                                          | With                            | - Locho                                                                   | ,                                | Capit                                 |                      |                   |          |                   |
|-----------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|----------------------------------|---------------------------------------|----------------------|-------------------|----------|-------------------|
| Project No.:                                                          |                                 | um - Locke                                                                |                                  |                                       |                      |                   |          |                   |
| Sample Date:                                                          | 1-2                             | 1.0.5<br>zbut                                                             | -                                | ,                                     |                      | _                 |          |                   |
| Location:                                                             | Econ Out                        | Task:                                                                     | . Test                           |                                       | Operator:            | Day               | -        |                   |
| Sample ID                                                             | Bottle #                        | Description                                                               | Initial Vol                      | Rinse Vol                             | Gain                 | FinalWol          | ppb Hg   | Total ug          |
|                                                                       | <u> </u>                        |                                                                           | mL                               | mL                                    | mL                   | mL                | PP#118   | of Hg             |
| · · · · · · · · · · · · · · · · · · ·                                 | S                               | Filter/Solids 4                                                           | ļ                                |                                       |                      | <u> </u>          | ·        |                   |
| 76                                                                    | 1A                              | Probe & Filter Rinse                                                      |                                  |                                       |                      | 227               |          |                   |
| 77                                                                    | 1B                              | Heated Line Rinse                                                         | 300                              | 1000                                  | 87                   | 173               |          |                   |
| 78                                                                    | 2                               | KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | /00                              | 150                                   | 0/                   | <u>537</u><br>174 |          |                   |
| 58                                                                    | 4                               | KMnO <sub>4</sub> Impingers                                               | 200                              | 50                                    | - 5                  | 245               |          | ·                 |
| 8/                                                                    | 5                               | KMnO₄ Acid Rinse                                                          |                                  | 100                                   |                      | 100               |          |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                 | 1.46470                         | Probe/Line Rinse wt:                                                      | 7.1277 g<br>0 g<br>7.1277 g      | Conde                                 | ensate Total:        | 90.]              | ml       |                   |
| Recovered By:                                                         | Ju                              |                                                                           |                                  |                                       | Date:_/-             | 21-05             | -        |                   |
|                                                                       | /                               | unet ,                                                                    |                                  | ./                                    |                      | Λ ,               |          |                   |
| Location:                                                             | AHO                             | Task:                                                                     | Test:                            | 7                                     | Operator:            | 7                 |          |                   |
| Sample ID                                                             | Bottle #                        | Description                                                               | Initial Vol<br>mL                | Rinse Vol<br>mL                       | Gain a<br>mL         | Final Vol<br>mL   | ppb Hg   | Total ug          |
|                                                                       | s                               | Filter/Solids /2                                                          |                                  |                                       |                      | 102               |          | of Hg             |
| 82                                                                    | 1A                              | Probe & Filter Rinse                                                      |                                  |                                       |                      | 88                |          | <u> </u>          |
| 83                                                                    | 1B                              | Heated Line Rinse                                                         |                                  |                                       | ·                    | 139               |          |                   |
| 84                                                                    | 2                               | KCI Impingers                                                             | 300                              | 150                                   | 89                   | 539               |          | <b></b>           |
| 85                                                                    | 3                               | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                  | 100                              | 75                                    | 0                    | 175               |          |                   |
| 84                                                                    | 4                               | KMnO <sub>4</sub> Impingers                                               | 200                              | 50                                    | - 5                  | 245               |          |                   |
| 87                                                                    | 5                               | KMnO <sub>4</sub> Acid Rinse                                              |                                  | 100                                   |                      | 100               |          |                   |
| filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                 | 1.1699 9                        | Probe/Line Rinse wt:                                                      | / <u>5973</u> g<br>09<br>7.5973g | Conde                                 | ensate Totai:        |                   |          |                   |
| Recovered By:                                                         | Jer                             |                                                                           |                                  | -                                     | Date:/-              | 21-0.             | 5        |                   |
| Location;                                                             | الا<br>FGD Io                   | Zunet 1                                                                   | Test:                            | 4                                     | Operator:            | 0.16              |          |                   |
|                                                                       |                                 |                                                                           |                                  | · · · · · · · · · · · · · · · · · · · |                      | / Y\              |          |                   |
| Sample ID                                                             | Bottle #                        | Description                                                               | Initial Vol<br>mL                | Rinse Vol<br>mL                       | Gain<br>mL           | ' Finàl Vol<br>mL | ppb Hg   | Total ug<br>of Hg |
|                                                                       | S                               | Filter/Solids 20                                                          |                                  |                                       |                      |                   |          | 01113             |
| 88                                                                    | 1A                              | Probe & Filter Rinse                                                      |                                  |                                       |                      | 127               |          |                   |
| 89                                                                    | -1B                             | Heated Line Rinse                                                         |                                  |                                       | u <b>-</b> u · · · · | 107               |          |                   |
| 90                                                                    | 2                               | KCI Impingers                                                             | 360                              | 150                                   | 112                  | 562               |          |                   |
| 91                                                                    | 3                               | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                  | 100                              | 75                                    | 1                    | 176               |          |                   |
| 92                                                                    | 4                               | KMnO <sub>4</sub> Impingers                                               | 200                              | 50                                    | -3                   | 247               |          |                   |
| 93                                                                    | 5                               | KMnO <sub>4</sub> Acid Rinse                                              |                                  | 100                                   |                      | 100               |          |                   |
| ilter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By: | <u>0.1479</u> 9<br>0.01349<br>1 | Probe/Line Rinse wt:<br>Total Particulate wt:                             | <u> </u>                         | Conde                                 | nsate Total:         | 121.4<br>21- 05   |          |                   |
|                                                                       | 0                               | 2lout 1                                                                   |                                  | 1                                     |                      |                   |          |                   |
| Location:                                                             | Stack                           | Task:                                                                     | Test:                            |                                       |                      | Keith             | <u>ر</u> |                   |
| Sample ID                                                             | Bottle #                        | Description                                                               | Initial Vol                      | Rinse Vol                             | Gain                 | Final Vol         | ppb Hg   | Total ug          |
|                                                                       | s                               | Filter/Solids 26                                                          | mL                               | mL .                                  | mL                   | mL.               |          | of Hg             |
| 94                                                                    |                                 | Probe & Filter Rinse                                                      |                                  |                                       |                      | 109               |          |                   |
| /                                                                     | 1B                              | Heated Line Rinse                                                         |                                  |                                       |                      | · · · /           |          |                   |
| 95                                                                    | 2                               | KCI Impingers                                                             | 300                              | 150                                   | 240                  | 690               |          |                   |
| 96                                                                    | 3                               | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                  | 100                              | 75                                    | 0                    | 175               |          |                   |
| 97                                                                    | 4                               | KMnO₄ Impingers                                                           | 200                              | 50                                    | - 4                  | 244               |          |                   |
| 98                                                                    | 5                               | KMnO₄ Acid Rinse                                                          |                                  | 100                                   |                      | 140               |          |                   |
| iller Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>ecovered By:_ | 0.415/9<br>0.41349<br>200/79    | Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:           | g                                | Conde                                 | nsate Totat: _       |                   |          |                   |
| · · · · · · · · · · · · · · · · · · ·                                 |                                 |                                                                           |                                  |                                       |                      |                   |          |                   |
| Sample ID                                                             |                                 | Description                                                               | ppb Hg                           | Total ug                              |                      |                   |          |                   |
|                                                                       | 3                               | in. Filter Blank                                                          |                                  | of Hg                                 |                      |                   |          |                   |
|                                                                       |                                 | himble Blank                                                              |                                  |                                       |                      |                   |          |                   |
|                                                                       | 100                             | KCI Blank                                                                 |                                  |                                       |                      |                   |          |                   |
|                                                                       |                                 | O₃ / H2O2 Blank<br>≺MnO₄ Blank                                            |                                  |                                       |                      |                   |          |                   |
|                                                                       |                                 | IO <sub>3</sub> / HCI Blank                                               |                                  |                                       |                      |                   |          |                   |
|                                                                       |                                 |                                                                           |                                  | Ji                                    |                      |                   |          |                   |

• • • • • • •

11.1.201

10 I I I

a

---

| Project No | Test    | Date     | Loc.    | Operator | Sample ID # | Task    | Description          | Anal No. | Hg   |       |
|------------|---------|----------|---------|----------|-------------|---------|----------------------|----------|------|-------|
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 1           | 1       | PROBE & FILTER RINSE | 20050377 |      | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 2           | 1       | HEATED LINE RINSE    | 20050378 |      | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 3           | 1       | KCL IMPINGER         | 20050379 | 11.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 4           | . 1     | HNO3/H2O2 IMPINGER   | 20050380 | 0.5  | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 5           | 1       | KMNO4 IMPINGER       | 20050381 | 23.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 6           | 1       | KMNO4 ACID RINSE     | 20050382 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 7           | 1       | PROBE & FILTER RINSE | 20050383 | 1.0  | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 8           | 1       | HEATED LINE RINSE    | 20050384 | 1.7  | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 9           | 1       | KCL IMPINGER         | 20050385 | 12.3 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 10          | 1       | HNO3/H2O2 IMPINGER   | 20050386 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 11          | 1       | KMNO4 IMPINGER       | 20050387 | 0.4  | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 12          | 1       | KMNO4 ACID RINSE     | 20050388 | 1.5  | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 13          | 1       | PROBE & FILTER RINSE | 20050389 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 14          | 1       | HEATED LINE RINSE    | 20050390 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 15          | 1       | KCL IMPINGER         | 20050391 | 21.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 16          | 1       | HNO3/H2O2 IMPINGER   | 20050392 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 17          | 1       | KMNO4 IMPINGER       | 20050393 | 2.4  | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 18          | 1       | KMNO4 ACID RINSE     | 20050394 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 19          | 1       | PROBE & FILTER RINSE | 20050395 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 20          | 1       | KCL IMPINGER         | 20050396 | 1.3  | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 21          | 1       | HNO3/H2O2 IMPINGER   | 20050397 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 22          | 1       | KMNO4 IMPINGER       | 20050398 | 2.3  | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 23          | 1       | KMNO4 ACID RINSE     | 20050399 | <1.0 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 24          | #VALUE! | KCL BLANK            | 20050400 | <0.2 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 25          | #VALUE! | HNO3/H2O2 BLANK      | 20050401 | <0.2 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 26          | #VALUE! | KMNO4 BLANK          | 20050402 | <0.2 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 27          | #VALUE! | HNO3/HCL BLANK       | 20050403 | <0.2 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 28          | 1       | PROBE & FILTER RINSE | 20050404 | <1.0 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 29          | 1       | HEATED LINE RINSE    | 20050405 | <1.0 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 30          | 1       | KCL IMPINGER         | 20050406 | 11.9 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 31          | 1       | HNO3/H2O2 IMPINGER   | 20050407 | 0.5  | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 32          | 1       | KMNO4 IMPINGER       | 20050408 | 17.3 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 33          | 1       | KMNO4 ACID RINSE     | 20050409 | 1.8  | ng/ml |

a salat da 1941 a

| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 34 | 1       | PROBE & FILTER RINSE | 20050410 | <1.0 | ng/ml |
|---------|---------|----------|---------|---------|----|---------|----------------------|----------|------|-------|
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 35 | 1       | HEATED LINE RINSE    | 20050411 |      | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 36 | 1       | KCL IMPINGER         | 20050412 |      | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 37 | 1       | HNO3/H2O2 IMPINGER   | 20050413 |      | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 38 | 1       | KMNO4 IMPINGER       | 20050414 |      | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 39 | 1       | KMNO4 ACID RINSE     | 20050415 |      | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 40 | 1       | PROBE & FILTER RINSE | 20050416 |      | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 41 | 1       | HEATED LINE RINSE    | 20050417 | <1.0 | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 42 | 1       | KCL IMPINGER         | 20050418 | 22.7 | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 43 | 1       | HNO3/H2O2 IMPINGER   | 20050419 | 0.4  | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 44 | 1       | KMNO4 IMPINGER       | 20050420 | 1.4  | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 45 | 1       | KMNO4 ACID RINSE     | 20050421 | 1.1  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 46 | 1       | PROBE & FILTER RINSE | 20050422 | <1.0 | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 47 | 1       | KCL IMPINGER         | 20050423 | 1.0  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 48 | 1       | HNO3/H2O2 IMPINGER   | 20050424 | <0.2 | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 49 | 1       | KMNO4 IMPINGER       | 20050425 | 6.3  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 50 | 1       | KMNO4 ACID RINSE     | 20050426 | 2.0  | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | #VALUE! | #VALUE! | 51 | #VALUE! | KMNO4 BLANK          | 20050427 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 52 | 1       | PROBE & FILTER RINSE | 20050428 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 53 | 1       | HEATED LINE RINSE    | 20050429 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 54 | 1       | KCL IMPINGER         | 20050430 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 55 | 1       | HNO3/H2O2 IMPINGER   | 20050431 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 56 | 1       | KMNO4 IMPINGER       | 20050432 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 57 | 1       | KMNO4 ACID RINSE     | 20050433 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 58 | 1       | PROBE & FILTER RINSE | 20050434 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 59 | 1       | HEATED LINE RINSE    | 20050435 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 60 | 1       | KCL IMPINGER         | 20050436 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 61 | 1       | HNO3/H2O2 IMPINGER   | 20050437 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 62 | 1       | KMNO4 IMPINGER       | 20050438 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 63 | 1       | KMNO4 ACID RINSE     | 20050439 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 64 | 1       | PROBE & FILTER RINSE | 20050440 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 65 | 1       | HEATED LINE RINSE    | 20050441 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 66 | 1       | KCL IMPINGER         | 20050442 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 67 | 1       | HNO3/H2O2 IMPINGER   | 20050443 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 68 | 1       | KMNO4 IMPINGER       | 20050444 |      | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 69 | 1       | KMNO4 ACID RINSE     | 20050445 | 1.5  | ng/ml |
|         |         |          |         |         |    |         |                      |          |      |       |

.

4 is \$1. 1. 11 -

| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE!            | 70       | 1            | PROBE & FILTER RINSE | 20050446 | <1.0 ng/ml              |
|---------|---------|----------|---------|--------------------|----------|--------------|----------------------|----------|-------------------------|
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE!            | 71       | 1            | KCL IMPINGER         | 20050447 | 0.9 ng/ml               |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE!            | 72       | 1            | HNO3/H2O2 IMPINGER   | 20050448 | 0.2 ng/ml               |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE!            | 73       | 1            | KMNO4 IMPINGER       | 20050449 | 9.1 ng/ml               |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE!            | 74       | 1            | KMNO4 ACID RINSE     | 20050450 | <1.0 ng/ml              |
| 1621-87 | #VALUE! | 02/01/05 | #VALUE! | #VALUE!            | 75       | ,<br>#VALUE! | KMNO4 BLANK          | 20050451 | <0.2 ng/ml              |
| 1621-87 | #VALUE: | 02/01/05 | ECONOUT | #VALUE!            | 76       | 1            | PROBE & FILTER RINSE | 20050452 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE!            | 77       | 1            | HEATED LINE RINSE    | 20050453 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE!            | 78       | 1            | KCL IMPINGER         | 20050454 | 8.2 ng/ml               |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE!            | 79       | 1            | HNO3/H2O2 IMPINGER   | 20050455 | 0.4 ng/ml               |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE!            | 80       | 1            | KMNO4 IMPINGER       | 20050456 | 8.0 ng/ml               |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE!            | 81       | 1            | KMNO4 ACID RINSE     | 20050457 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE!            | 82       | 1            | PROBE & FILTER RINSE | 20050458 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE!            | 83       | 1            | HEATED LINE RINSE    | 20050459 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE!            | 84       | 1            | KCL IMPINGER         | 20050460 | 9.9 ng/ml               |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE!            | 85       | 1            | HNO3/H2O2 IMPINGER   | 20050460 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE!            | 86       | 1            | KMNO4 IMPINGER       | 20050461 | 1.3 ng/ml               |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE!            | 87       | 1            | KMNO4 ACID RINSE     | 20050463 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE!            | 88       | 1            | PROBE & FILTER RINSE | 20050460 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE!            | 89       | 1            | HEATED LINE RINSE    | 20050465 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE!            | 90       | 1            | KCL IMPINGER         | 20050466 | 11.7 ng/ml              |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE!            | 90<br>91 | 1            | HNO3/H2O2 IMPINGER   | 20050400 | <1.0 ng/ml              |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE!            | 92       | 1            | KMNO4 IMPINGER       | 20050467 | 2.6 ng/ml               |
| 1621-87 |         |          | FGDIN   | #VALUE!<br>#VALUE! | 92<br>93 | 1            | KMN04 IMFINGER       | 20050468 | <1.0 ng/ml              |
| 1621-87 | 4<br>4  | 02/01/05 | STACK   | #VALUE!<br>#VALUE! | 93<br>94 | 1            | PROBE & FILTER RINSE | 20050409 | <1.0 ng/ml              |
|         |         | 02/01/05 |         |                    | 94<br>95 | 1            | KCL IMPINGER         | 20050470 | 0.7 ng/ml               |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE!            |          | 1            | HNO3/H2O2 IMPINGER   | 20050471 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE!            | 96<br>07 | •            |                      | 20050472 | •                       |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE!            | 97       | 1            | KMNO4 IMPINGER       | 20050473 | 4.3 ng/ml<br><1.0 ng/ml |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE!            | 98       | 1            | KMNO4 ACID RINSE     |          | 0                       |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 99       | 1            |                      | 20050475 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 100      | 1            | HNO3/H2O2 IMPINGER   | 20050476 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 101      | 1            | KMNO4 IMPINGER       | 20050477 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 102      | 1            | KMNO4 ACID RINSE     | 20050478 | <1.0 ng/ml              |
| 1621-87 | #VALUE! | 02/01/05 | #VALUE! | #VALUE!            | 103      | #VALUE!      | KMNO4 BLANK          | 20050479 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 104      | 1            | KCL IMPINGER         | 20050480 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 105      | 1            | HNO3/H2O2 IMPINGER   | 20050481 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 106      | 1            | KMNO4 IMPINGER       | 20050482 | <0.2 ng/ml              |
| 1621-87 | 4       | 02/01/05 | IMP     | #VALUE!            | 107      | 1            | KMNO4 ACID RINSE     | 20050483 | <1.0 ng/ml              |
|         |         |          |         |                    |          |              |                      |          |                         |

¥0. : .

: 2.1 1.12

e renta de la d

i i d

# Run 1 Particulate in Thimbles by ASTM D6722, Direct Combustion

| ANALNUM  | SAMPLE | DATE     | DESCR              | Hg    |     |
|----------|--------|----------|--------------------|-------|-----|
| 20050611 | 1      | 01/19/05 | ECON OUT 1 THIMBLE | 0.015 | PPM |
| 20050612 | 9      | 01/19/05 | AHO-1 THIMBLE      | 0.462 | PPM |
| 20050615 | 2      | 01/20/05 | ECON OUT 2 THIMBLE | 0.015 | PPM |
| 20050616 | 10     | 01/20/05 | AHO-2 THIMBLE      | 0.080 | PPM |
| 20050619 | 3      | 01/20/05 | ECON OUT 3 THIMBLE | 0.014 | PPM |
| 20050620 | 11     | 01/20/05 | AHO-3 THIMBLE      | 0.098 | PPM |
| 20050623 | 4      | 01/21/05 | ECON OUT 4 THIMBLE | 0.018 | PPM |
| 20050624 | 12     | 01/21/05 | AHO-4 THIMBLE      | 0.095 | PPM |

NIST 1633B (also used as Continuing Calibration Verification)

PPM

51 14

2 ARGE 11

|       | <br>······································ |       |      |      |
|-------|--------------------------------------------|-------|------|------|
| 1633B |                                            | 0.153 | 109% | good |
| 1633B |                                            | 0.153 | 109% | good |

130 °

# Run 2 Filters by ASTM 6414, Acid Digestion/CVAA

| ANALNUM  | SAMPLE | DATE     | DESCR              | Hg   |           |
|----------|--------|----------|--------------------|------|-----------|
| 20050613 | 17     | 01/19/05 | FGD-1 47 MM        | <5.0 | ng/filter |
| 20050614 | 23     | 01/19/05 | STK-1 3-IN FILTER  | <5.0 | ng/filter |
| 20050617 | 18     | 01/20/05 | FGD-2 47 MM FILTER | <5.0 | ng/filter |
| 20050618 | 24     | 01/20/05 | STK-2 3-IN FILTER  | <5.0 | ng/filter |
| 20050621 | 19     | 01/20/05 | FGD-3 47 MM FILTER | <5.0 | ng/filter |
| 20050622 | 25     | 01/20/05 | STK-3 3-IN FILTER  | <5.0 | ng/filter |
| 20050625 | 20     | 01/21/05 | FGD-4 47 MM FILTER | <5.0 | ng/filter |
| 20050626 | 26     | 01/21/05 | STK-4 3-IN FILTER  | <5.0 | ng/filter |

| NIST 1633B |  | PPM   |     |      |
|------------|--|-------|-----|------|
| 1633B      |  | 0.128 | 91% | good |

| Continuing Calibration Verification | ng/ml         |   |
|-------------------------------------|---------------|---|
| 1641d 8 ppb                         | 8.2 103% good | d |
| 1641d 8ppb                          | 8.2 103% good | d |
| 1641d 8ppb                          | 8.2 103% good | d |
| 1641d 8ppb                          | 8.3 104% good | d |

1

DESCRIPTION ECON OUT 1 THIMBLE UNIT 1 DATE SAMPLED 01/19/05 SAMPLE NUMBER 1

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050611

## ANALYSIS REPORT

4

| PROXIMATE          | (Dry)%       |       | ULTIMATE | (Dry)% | MAJOR ASH ELEM         | (Dry)%                 |
|--------------------|--------------|-------|----------|--------|------------------------|------------------------|
| Ash                |              | 94.18 | Carbon   | 5.36   | Silicon                | 49.39                  |
| <u>MISC. (As E</u> | <u>)et.)</u> |       | Ash      | 94.18  | A1203<br>Ti02<br>Fo202 | 27.19<br>1.41<br>10.76 |
| MERCURY            | 0.015 PPM    |       |          |        | Fe203<br>Ca0           | 1.70                   |
|                    |              |       |          |        | MgO<br>Na2O            | 0.99<br>0.54           |
|                    |              |       |          |        | K20<br>P205            | 2.52<br>0.27           |
| ,                  |              |       |          |        | SO3<br>UND             | 0.57<br>4.66           |

AS DETERMINED MOISTURE: 0.06 %

#### DISTRIBUTION:

J. WITHUM J. LOCKE S. TSENG

. .. .. .....

DESCRIPTION AHO-1 THIMBLE UNIT 1 DATE SAMPLED 01/19/05 SAMPLE NUMBER 9

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050612

| PROXIMATE              | (Dry)%    |       | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM              | (Dry)%                        |
|------------------------|-----------|-------|---------------|---------------|-----------------------------|-------------------------------|
| Ash                    |           | 93.82 | Carbon<br>Ash | 5.66<br>93.82 | Silicon<br>Al2O3            | 47.81<br>25.91                |
| <u>MISC. (As Det.)</u> |           |       | ASII          | 90.02         | TiO2                        | 1.31                          |
| MERCURY                | 0.462 PPM |       |               |               | Fe2O3<br>CaO<br>MgO<br>Na2O | 11.31<br>1.53<br>0.91<br>0.48 |
|                        |           |       | Taria<br>An   |               | K20<br>P205<br>S03<br>UND   | 2.36<br>0.22<br>0.45<br>7.71  |

ANALYSIS REPORT

AS DETERMINED MOISTURE: 0.30 %

| DI | STRIBUTION: |
|----|-------------|
| п. | 177711184   |

J. WITHUM J. LOCKE S. TSENG

Approved for transmittal

. e.

DESCRIPTION FGD-1 47 MM UNIT 1 DATE<sup>.</sup> SAMPLED 01/19/05 SAMPLE NUMBER 17

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050613

#### ANALYSIS REPORT

#### MISC. (As Det.)

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  |             |
| S.  | TSENG       |

DESCRIPTION STK-1 3-IN FILTER UNIT 1 DATE SAMPLED 01/19/05 SAMPLE NUMBER 23

ł

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050614

ANALYSIS REPORT

MISC. (As Det.)

MERCURY <5.0 NG/FIL

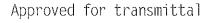
DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION ECON OUT 2 THIMBLE UNIT 1 DATE SAMPLED 01/20/05 SAMPLE NUMBER 2

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050615

#### MAJOR ASH ELEM (Dry)% <u>(Dry)%</u> ULTIMATE PROXIMATE (Dry)% 96.44 Carbon 3.18 Silicon 51.04 Ash 96.44 A1203 26.56 Ash Ti02 1.45 MISC. (As Det.) Fe203 10.98 1,69 MERCURY 0.015 PPM CaO Mg0 0.96 Na20 0.58 2.35 K20 P205 0.29 0.55 S03 UND 3.55

ANALYSIS REPORT


AS DETERMINED MOISTURE: 0.12 %

-

Ludia

## DISTRIBUTION:

J. WITHUM J. LOCKE S. TSENG



DESCRIPTION AHO-2 THIMBLE UNIT 1 DATE SAMPLED 01/20/05 SAMPLE NUMBER 10

1

通り湯

10

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050616

| PROXIMATE              | (Dry)%    |      | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|------------------------|-----------|------|---------------|---------------|------------------|----------------|
| Ash                    | 97        | 7.02 | Carbon<br>Ash | 2.56<br>97.02 | Silicon<br>Al2O3 | 51.34<br>26.30 |
| <u>MISC. (As Det.)</u> |           |      | 7311          | 57.02         | Ti02<br>Fe203    | 1.45<br>11.74  |
| MERCURY                | 0.080 PPM |      |               |               | CaO<br>MgO       | 1.72           |
|                        |           |      |               |               | Na20<br>K20      | 0.54           |
|                        |           |      |               |               | P205<br>S03      | 0.28<br>0.56   |
|                        |           |      |               |               | UND              | 2.82           |

ł.

ANALYSIS REPORT

AS DETERMINED MOISTURE: 0.31 %

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |

DESCRIPTION FGD-2 47 MM FILTER UNIT 1 DATE SAMPLED 01/20/05 SAMPLE NUMBER 18

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050617

ł

ŀ

ANALYSIS REPORT

MISC. (As Det.)

;

i,

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |
|     |             |

DESCRIPTION STK-2 3-IN FILTER UNIT 1 DATE SAMPLED 01/20/05 SAMPLE NUMBER 24

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050618**  ļ

ANALYSIS REPORT

MISC. (As Det.)

ł

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |
|     |             |

| DESCRIPTION   | ECON OUT 3 THIMBLE |
|---------------|--------------------|
|               | UNIT 1             |
| DATE SAMPLED  | <i>01/20/05</i>    |
| SAMPLE NUMBER | 3                  |

⊦

ļ

١

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050619** 

#### ANALYSIS REPORT

| PROXIMATE | (Dry)%    |      | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|-----------|-----------|------|---------------|---------------|------------------|----------------|
| Ash       | 96        | 5.94 | Carbon<br>Ash | 2.95<br>96.94 | Silicon<br>Al2O3 | 51.79<br>26.34 |
| MISC. (As | Det.)     |      | ASI           | 90,94         | Ti02<br>Fe203    | 1.46<br>10.82  |
| MERCURY   | 0.014 PPM |      |               |               | CaO              | 1.75           |
|           |           |      |               |               | MgO<br>Na2O      | 0.97<br>0.56   |
|           |           |      |               |               | K20              | 2.42           |
|           |           |      |               |               | P205             | 0.31           |
|           |           |      |               |               | S03              | 0.45           |
|           |           |      |               |               | UND              | 3.13           |

AS DETERMINED MOISTURE: 0.10 %

#### DISTRIBUTION: J, WITHUM

J. LOCKE S. TSENG

Approved for transmittal

ŧ

ЦŞ.

ļ

| DESCRIPTION   | AHO-3 THIMBLE   |
|---------------|-----------------|
|               | UNIT 1          |
|               | <i>01/20/05</i> |
| SAMPLE NUMBER | 11              |

ł

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050620** 

### ANALYSIS REPORT

| PROXIMATE              | (Dry)%     | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM       | (Dry)%                |
|------------------------|------------|---------------|---------------|----------------------|-----------------------|
| Ash                    | 96.91      | Carbon<br>Ash | 2.84<br>96.91 | Silicon<br>Al2O3     | 51.83                 |
| MISC. (As )<br>MERCURY | 0.098 PPM  |               |               | TiO2<br>Fe2O3<br>CaO | 1.43<br>11.04<br>1.71 |
| HEROORT                | 0,000 1111 |               |               | MgO<br>Na2O          | 0.96                  |
|                        |            |               |               | K20<br>P205          | 2.34<br>0.27          |
|                        |            |               |               | SO3<br>UND           | 0.36<br>3.31          |

AS DETERMINED MOISTURE: 0.27 %

#### DISTRIBUTION: J. WITHUM J. LOCKE

S. TSENG

Approved for transmittal

λ.,

DESCRIPTION FGD-3 47 MM FILTER UNIT 1 DATE SAMPLED 01/20/05 SAMPLE NUMBER 19

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050621

ANALYSIS REPORT

ŧ

MISC. (As Det.)

1.127

الد ومحمد العم

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |
|     |             |

 $\cdot$ 

DESCRIPTION STK-3 3-IN FILTER UNIT 1 DATE SAMPLED 01/20/05 SAMPLE NUMBER 25

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050622

1

ANALYSIS REPORT

MISC. (As Det.)

an Lua

107

:

Д. — Ар. Г. А.

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |
|     |             |

DESCRIPTION ECON OUT 4 THIMBLE UNIT 1 DATE SAMPLED 01/21/05 DATE LOGGED SAMPLE NUMBER 4 DATE COMPLETEL PROJECT NUMBER

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050623

#### ANALYSIS REPORT

| PROXIMATE        | (Dry)%       | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM            | (Dry)%                       |
|------------------|--------------|---------------|---------------|---------------------------|------------------------------|
| Ash              | 95.87        | Carbon<br>Ash | 3.47<br>95.87 | Silicon<br>Al2O3          | 53.34<br>25.73               |
| <u>MISC. (As</u> | <u>Det.)</u> | 7311          | 53.07         | Ti02<br>Fe203             | 1.43<br>9.03                 |
| MERCURY          | 0.018 PPM    |               |               | CaO<br>MgO<br>Na2O<br>K2O | 1.55<br>1.02<br>0.61<br>2.53 |
|                  |              |               |               | P205<br>S03<br>UND        | 0.13<br>0.55<br>4.08         |

AS DETERMINED MOISTURE: 0.08 %

t

핸디맨

au 1.44 ....

### DISTRIBUTION:

J. WITHUM J. LOCKE S. TSENG

DESCRIPTION AHO-4 THIMBLE UNIT 1 DATE SAMPLED 01/21/05 SAMPLE NUMBER 12

ŧ

,

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050624

#### (<u>Dry)%</u> MAJOR ASH ELEM (Dry)<u>%</u> ULTIMATE PROXIMATE (Dry)% 53.89 2.45 Silicon Carbon 96.98 Ash 25.81 96.98 A1203 Ash 1.41 Ti02 MISC. (As Det.) Fe203 9.16 1.48 CaO 0.095 PPM MERCURY 1.01 Mg0 0.61 Na2O K20 2.510.11P205 0.44 S03 3.57 UND

ANALYSIS REPORT

AS DETERMINED MOISTURE: 0.18 %

100

. It. and the last

#### DISTRIBUTION: J. WITHUM J. LOCKE

S. TSENG

ł

DESCRIPTION FGD-4 47 MM FILTER UNIT 1 DATE SAMPLED 01/21/05 SAMPLE NUMBER 20

)

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050625

ANALYSIS REPORT

MISC. (As Det.)

4

للد الشي ن

i dili i LL

6.4 AL:

MERCURY <5.0 NG/FIL

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION STK-4 3-IN FILTER UNIT 1 DATE SAMPLED 01/21/05 SAMPLE NUMBER 26

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050626** 

э

#### ANALYSIS REPORT

ł

MISC. (As Det.)

فللأرباليقي أر

i di i L

:

L ............

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  |             |
| J.  | LOCKE       |
| S.  | TSENG       |

| Distribution:                                                           | With                    | me-Loche                                                 | -                                | 2ln               | t          | 2                 |        |                   |
|-------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|----------------------------------|-------------------|------------|-------------------|--------|-------------------|
| Project No.:                                                            | 162                     | 1.87                                                     | -                                |                   |            |                   |        |                   |
| Sample Date:                                                            | /-29                    |                                                          | •                                |                   |            |                   |        |                   |
| Location:                                                               | Econ Out                | Zenit 2                                                  | Test:                            |                   | Operator:  | Hauf              |        |                   |
|                                                                         |                         |                                                          | Initial Vol                      | Rinse Vol         | Gain       | FinalVol          | ppb Hg | Total ug          |
| Sample ID                                                               | Bottle #                | Description                                              | mL                               | mL                | mL         | ու                | hhn uð | of Hg             |
|                                                                         | S                       | Filter/Solids 5                                          |                                  |                   |            |                   |        |                   |
| 1                                                                       | 1A                      | Probe & Filter Rinse                                     | ۱.                               |                   |            | 182               |        |                   |
| 2                                                                       | 18                      | Heated Line Rinse                                        |                                  |                   |            | 121               |        |                   |
| 3                                                                       | 2                       | KCI Impingers                                            | 300                              | 150               | 7_3        | 523               |        |                   |
| 4                                                                       | 3                       | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100                              | 75                | 0          | 175               |        |                   |
| 5                                                                       | 4                       | KMnO₄ Impingers                                          | 200                              | 50                | - 3        | 247               |        |                   |
| <u> </u>                                                                | 5                       | KMnO₄ Acid Rinse                                         |                                  | 100               |            | 100               |        |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                   | 1.6474 g                | Probe/Line Rinse wt:                                     | 5.4040 g<br>5.4040 g<br>5.4040 g | Conde             |            | 78.1              |        |                   |
| Recovered By:_                                                          | Yn                      |                                                          |                                  |                   | Date: 📝    | -24-0.            | 5      |                   |
|                                                                         | 0                       | 24mil 3                                                  |                                  | ,                 | <u> </u>   | Δ.                |        |                   |
| Location:                                                               | AHO                     | Task: <u>2</u>                                           | Test:                            | /                 | Operator:  | Jen               |        |                   |
| Sample ID                                                               | Bottle #                | Description                                              | Initial Vol<br>mL                | Rinse Vol<br>mL   | Gain<br>mL | ⊄final Vol<br>mL  | ppb Hg | Total ug<br>of Hg |
|                                                                         |                         | Filter/Solids /3                                         |                                  |                   | 1111-5     |                   |        | - or ng           |
|                                                                         | <u>S</u>                | 1 1000000                                                |                                  | 1                 |            | 160               |        |                   |
|                                                                         | <u>1A</u>               | Probe & Filter Rinse                                     |                                  |                   |            | 148               |        |                   |
| ę<br>0                                                                  | 1B                      | Heated Line Rinse                                        | 300                              | 1-2               | -7//       |                   |        | +                 |
| 1                                                                       | 2                       | KCI Impingers                                            |                                  | /50               | - 19       | 524               |        |                   |
| <u>ر</u> ٥                                                              | 3                       | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100                              | 75                | 0          | 175               |        |                   |
|                                                                         | 4                       | KMnO <sub>4</sub> Impingers                              | 200                              | 50                | - 1        | 246               |        |                   |
| 12                                                                      | 5                       | KMnO <sub>4</sub> Acid Rinse                             |                                  | /00               |            | 100               |        | <u> </u>          |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:_ | 1.5/02 g<br>1./700g     | Probe/Line Rinse wt:<br>Total Particulate wt:            |                                  | Conde             |            | 75.6              |        |                   |
| Location:                                                               | FGD In                  | Unit _ 2 .                                               | Test:                            | 1                 | Operator:  | Jell              |        |                   |
|                                                                         |                         | 1                                                        | Initial Vol                      | Rinse Vol         | Gain       | / V↓<br>Final Vol |        | Total ug          |
| Sample ID                                                               | Bottle #                | Description                                              | mL                               | mL                | mL         | mL                | ppb Hg | of Hg             |
|                                                                         | S                       | Filter/Solids 34                                         |                                  |                   |            |                   |        |                   |
| 13                                                                      | 0<br>1A                 | Probe & Filter Rinse                                     |                                  |                   |            | 108               |        |                   |
|                                                                         |                         |                                                          |                                  | <u> </u>          |            | 109               |        |                   |
|                                                                         | 1B                      | Heated Line Rinse                                        |                                  | 150               | 94         | 544               |        |                   |
| /5_                                                                     | 2                       | KCI Impingers                                            | 300                              |                   | - <u> </u> |                   |        |                   |
| 16                                                                      | 3                       | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | /00                              | 75                | - 3        | 175               |        | <u> </u>          |
| 17                                                                      | 4                       | KMnO₄ Impingers                                          | 200                              | 50                | - 3        | 247               |        |                   |
| 18                                                                      | 5                       | KMnO₄ Acid Rinse                                         |                                  | 100               | L          | 100               | l      | 1                 |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:  | 0.40250<br>0.00050<br>1 | Probe/Line Rinse wt:<br>Total Particulate wt:            |                                  | Conde             | Date:      | 99.0              | 5      |                   |
| Location:                                                               | Stack                   | Task: 2                                                  | Test                             |                   | Operator   | Kuth              | ر ا    |                   |
| Sample ID                                                               | Bottle #                | Description                                              | Initial Vol                      | Rinse Vol         | Gain       | Final Vol         | ppb Hg | Total up          |
| ·                                                                       | _                       |                                                          | mL                               | mL.               | mL.        | mL                |        | of Hg             |
|                                                                         | S                       | Filter/Solids 27                                         |                                  |                   |            | 1.0               |        |                   |
|                                                                         | 1A                      | Probe & Filter Rinse                                     |                                  | ļ                 |            | 104               |        |                   |
| ~                                                                       | 1B                      | Heated Line Rinse                                        | <u> </u>                         |                   |            |                   |        | <u> </u>          |
| 20                                                                      | 2                       | KCI Impingers                                            | 300                              | 150               | 222        | 672               |        | <u> </u>          |
| 2/                                                                      | 3                       | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100                              | 75                | 7          | 182               |        | <u> </u>          |
|                                                                         | 4                       | KMnO₄ Impingers                                          | 200                              | 50                | -4         | 244               |        |                   |
| 22                                                                      | 5                       | KMnO <sub>4</sub> Acid Rinse                             |                                  | 100               | }          | 100               |        |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By:_ | 0 40050                 | Probe/Line Rinse wt:                                     |                                  | Conde             |            | 238.1             |        |                   |
|                                                                         | V                       |                                                          | T                                | Te4-1             | 1          |                   |        |                   |
| Sample ID                                                               |                         | Description                                              | ppb Hg                           | Total ug<br>of Hg |            |                   |        |                   |
| •                                                                       | 2                       | in. Filter Blank                                         |                                  |                   | ľ          |                   |        |                   |
|                                                                         |                         | Thimble Blank                                            |                                  |                   |            |                   |        |                   |
| 24                                                                      |                         | KCl Blank                                                |                                  |                   |            |                   |        |                   |
| 25                                                                      | HN                      | IO <sub>3</sub> / H2O2 Blank                             |                                  |                   |            |                   |        |                   |
| 26                                                                      |                         | KMnO <sub>4</sub> Blank                                  |                                  |                   |            |                   |        |                   |
| 27                                                                      | Н                       | NO <sub>3</sub> / HCI Blank                              | <u> </u>                         | I                 | J          |                   |        |                   |
|                                                                         |                         |                                                          |                                  |                   |            |                   |        |                   |

1 1 1

: 21 G

- -

. IL. .... And ....

.

zento 2 Distribution: Withum Project No.: 1621. Sample Date: 25. ス 2 Operator: Location: Econ Out Task: Test: Initial Vol Gain Final Vol Total ug **Rinse Vol** ppb Hg Bottle # Description Sample ID mL of Hg mL mL mL Filter/Solids s 70 Probe & Filter Rinse 28 1A 98 Heated Line Rinse 29 **1B** 89 539 300 50 KCl Impingers 30 2 75 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 100 0 175 3 31 246 200 50 -4 ふん 4 KMnO₄ Impingers KMnO₄ Acid Rinse 33 00 100 5 Filter Gross wt: 6-7910 g Filter Tare wt. 1.4048 g Filter Net wt: 53 862 g Filter Net wt: 5: 3862g Condensate Total: 83.7 ml 0 Probe/Line Rinse wt: Total Particulate wt: 53822g 1-25-05 Recovered By: Date: Zhut Task: 2 Test: Operator: Location: AHO Initial Vol **Rinse Vol** Gain Final Vol Total ug ppb Hg Bottle # Sample ID Description of Hg mL mL mL mL Filter/Solids 14 s 126 Probe & Filter Rinse 34 1A 209 1B Heated Line Rinse 35 73 300 523 36 KCI Impingers 150 2 175 75 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 100 37 3 0 200 244 50 2 KMnO<sub>4</sub> Impingers 38 4 39 KMnO₄ Acid Rinse 100 100 5 Filter Gross wt: <u>4.03/5 g</u> Filter Net wt: 2.3796 g Condensate Total: 72.4 ml Probe/Line Rinse wt: Total Particulate wt: 2.39969 Filter Net wt 2 399 <u>k g</u> 1-25-05 Date: Recovered By: Unit え Task: 2 Test: Operator: Location: FGD In Final Vol Total ug Initial Vol Rinse Vol Gain ppb Hg Bottle # Description Sample ID mi. mL mL mL of Hg 35 Filter/Solids s Probe & Filter Rinse 40 1A 10 89 535 41 18 Heated Line Rinse 150 85 300 Y2. 2 KCI Impingers 75 2 177 43 3 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 100 50 - .5 44 4 KMnO₄ Impingers 200 45 KMnO₄ Acid Rinse 100 100 45 5 Filter Net wt: 0.000/ g Filter Gross wt: 0.39 88 g Condensate Total: 89.5 ml Probe/Line Rinse wt: \_\_\_ ф Filter Tare wt: 0 3987g Filter Net wt: 0.000/g Total Particulate wt: o. oo o / g 1-25-05 Recovered By: Date: 2hut Operator: Kuth ぇ Location: Stack Task: Test; **Rinse Vol** Final Vol Total ug Initial Vol Gain ppb Hg Sample ID Bottle # Description mL. mL mL տե of Hg 31 s Filter/Solids 46 Probe & Filter Rinse 1A 100 Heated Line Rinse 1B 47 300 150 222 672 KCI Impingers 2 183 48 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 75 8 3 100 245 5 50 49 4 KMnO₄ Impingers 200 -50 5 KMnO<sub>4</sub> Acid Rinse 00 100 Filter Gross wt: <u>0.9089</u> g Filter Tare wt: <u>0.9037</u> g Filter Net wt. o. o655 g Condensate Total: 235. 2 ml Probe/Line Rinse wt: 0 Filter Net wt: 0.005.5 g Total Particulate wt: 0.0055 g Date: /-25. 05 Recovered By: Total ug Description Sample ID ppb Hg of Hg 3 in, Filter Blank Thimble Blank

KCI Blank HNO<sub>3</sub> / H2O2 Blank KMnO<sub>4</sub> Blank HNO<sub>3</sub> / HCI Blank

2

|   | Distribution:                                         | Mith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | un - Locke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                     |                                        |                                       |
|---|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|
|   | Project No.:                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                     |                                        |                                       |
|   | Sample Date:                                          | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                     |                                        |                                       |
|   | Location:                                             | Econ Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Task: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operator:                                                                                                                               | gray_                                                                                                                                                               |                                        |                                       |
|   | Sample ID                                             | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initial Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gain<br>mL                                                                                                                              | Final Vol<br>mL                                                                                                                                                     | ppb Hg                                 | Total ug<br>of Hg                     |
|   |                                                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Filter/Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                     |                                        |                                       |
|   | 56                                                    | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                       | 198                                                                                                                                                                 |                                        |                                       |
|   | 57                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         | 106                                                                                                                                                                 |                                        |                                       |
|   | 58                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                      | 525                                                                                                                                                                 |                                        |                                       |
|   | 59                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                       | 176                                                                                                                                                                 |                                        |                                       |
|   | 60                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO <sub>4</sub> Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~2                                                                                                                                      | 248                                                                                                                                                                 |                                        |                                       |
|   | 61                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO <sub>4</sub> Acid Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | 100                                                                                                                                                                 | ······································ |                                       |
|   | Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt: | 1.6412g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probe/Line Rinse wt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.6593 g<br>0 g<br>5.6593 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                         | 78.7                                                                                                                                                                |                                        |                                       |
|   | Recovered By:_                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date: /                                                                                                                                 | - 25. 0                                                                                                                                                             | .5                                     |                                       |
|   | Location:                                             | AHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zenet 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operator:                                                                                                                               | Jum                                                                                                                                                                 |                                        | · · · · · · · · · · · · · · · · · · · |
|   | Sample ID                                             | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initial Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gain<br>mL                                                                                                                              | Final Vol<br>mL                                                                                                                                                     | ppb Hg                                 | Total ug<br>of Hg                     |
|   |                                                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Filter/Solids /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                     |                                        | ļ                                     |
|   | 62                                                    | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]                                                                                                                                       | 123                                                                                                                                                                 |                                        | ļ                                     |
|   | ٤3                                                    | 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         | 130                                                                                                                                                                 |                                        |                                       |
|   | 44                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79                                                                                                                                      | 529                                                                                                                                                                 |                                        |                                       |
|   | 65                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                       | 176                                                                                                                                                                 |                                        |                                       |
|   | 44                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO₄ Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                       | 250                                                                                                                                                                 |                                        |                                       |
|   | 47                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KMnO₄ Acid Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | 100                                                                                                                                                                 |                                        | ii                                    |
|   | Recovered By:_                                        | y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date:                                                                                                                                   | - 25. 00                                                                                                                                                            |                                        |                                       |
|   | Location                                              | Ø<br>FGD In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zent 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operator:                                                                                                                               | 0.11-                                                                                                                                                               |                                        |                                       |
|   | Location:                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Task:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>Binse Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operator:                                                                                                                               | 4                                                                                                                                                                   |                                        | Totalua                               |
|   | Location:<br>Sample ID                                | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Task:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test:<br>Initial Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Operator:<br>Gain<br>mL                                                                                                                 | Final Vol<br>mL                                                                                                                                                     | ppb Hg                                 | Total ug<br>of Hg                     |
|   | Sample ID                                             | Bottle #<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Task:<br>Description<br>Filter/Solids36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial Voi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rinse Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain                                                                                                                                    | Final Vol<br>mL                                                                                                                                                     | ppb Hg                                 |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Task:     2       Description       Filter/Solids     36       Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initial Voi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rinse Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain                                                                                                                                    | Final Vol<br>mL<br>95                                                                                                                                               | ppb Hg                                 |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>. 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Task:     2       Description       Filter/Solids       36       Probe & Filter Rinse       Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gain<br>mL                                                                                                                              | Final Vol<br>mL<br>95<br>121                                                                                                                                        | ppb Hg                                 |                                       |
| · | Sample ID                                             | Bottle #<br>S<br>1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Task:     2       Description       Filter/Solids     36       Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initial Voi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rinse Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain                                                                                                                                    | Final Vol<br>mL<br>95                                                                                                                                               | ppb Hg                                 |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>. 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Task:     2       Description       Filter/Solids       36       Probe & Filter Rinse       Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gain<br>mL<br>93                                                                                                                        | Final Vol<br>mL<br>95<br>121<br>543<br>175                                                                                                                          | ppb Hg                                 |                                       |
|   | Sample ID<br><u>/</u> &<br>(9)<br>70<br>7/<br>72      | Bottle #<br>S<br>1A<br>1B<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Task: <u>2</u><br>Description<br>Filter/Solids <u>3</u><br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initial Vol<br>mL<br>3 o D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gain<br>mL<br>93                                                                                                                        | Final Vol<br>mL<br>95<br>121<br>543                                                                                                                                 | ppb Hg                                 |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Task: <u>2</u><br>Description<br>Filter/Solids <u>3</u><br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Initial Vol<br>mL<br>3 4 D<br>/ 2 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rinse Vol<br>mL<br>/ <u>50</u><br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gain<br>mL<br>93                                                                                                                        | Final Vol<br>mL<br>95<br>121<br>543<br>175                                                                                                                          | ppb Hg                                 |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>$o \cdot 3 ? (f) g$<br>$o \cdot 3 ? 7 \circ g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Task: <u>2</u><br>Description<br>Filter/Solids <u>36</u><br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>KMnO <sub>4</sub> Impingers<br>KMnO <sub>4</sub> Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial Vol<br>mL<br>3 ◦ ∞<br>/ ◦ ∞<br>Z ◦ ∞<br>Z ◦ ∞<br>Z ◦ ∞<br>Z ◦ ∞<br>Z ◦ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rinse Vol<br>mL<br>/50<br>75<br>50<br>/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain<br>mL<br>93<br>o<br>- 2<br>nsałe Totał:                                                                                            | Final Vol<br>mL<br>95<br>121<br>543<br>175<br>248<br>160<br>98.3                                                                                                    | ml                                     |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.398/g<br>0.3970g<br>0.370g<br>0.05/fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Task: <u>2</u><br>Description<br>Filter/Solids <u>36</u><br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>KMnO <sub>4</sub> /H <sub>2</sub> O <sub>2</sub> Impinger<br>KMnO <sub>4</sub> Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial Vol       mL       3 • φ       / • φ       / • φ       δ• φ       φ       g       φ       g       φ       g       φ       g       φ       g       φ       g       φ       g       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ    ψ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rinse Vol<br>mL<br>/ S O<br>7 S<br>S O<br>/ Ocs<br>Conde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gain mL<br>mL<br>93<br>0<br>- 2<br>nsate Totat:                                                                                         | Final Vol<br>mL<br>95<br>121<br>543<br>175<br>248<br>160<br>98.3                                                                                                    | ml                                     |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39 [6] g<br>0.39 [7 o g<br>0.39 [1 o g<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Task: <u>2</u><br>Description<br>Filter/Solids <u>3</u> &<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>KMnO <sub>4</sub> /H <sub>2</sub> O <sub>2</sub> Impinger<br>KMnO <sub>4</sub> Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br><u>2</u><br>Task: <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initial Vol<br>mL<br>3 ◦ ⊘<br>/ õ ⊘<br>Z 0 ⊘<br>δ: 0 ፩ // g<br>⊙: õ ፩ // g<br>Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rinse Vol<br>mL<br>/50<br>75<br>50<br>/00<br>Conde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gain<br>mL<br>93<br>o<br>- 2<br>nsate Totat:<br>Date:                                                                                   | Final Vol<br>mL<br>95<br>121<br>543<br>175<br>248<br>160<br>98.3                                                                                                    | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.398/g<br>0.3970g<br>0.4570g<br>0.4570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0.570g<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Impingers         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Zmml       2         Task:       2         Description                                                                                                                                                                                                                                                                                                                              | Initial Vol       mL       3 • φ       / • φ       / • φ       δ• φ       φ       g       φ       g       φ       g       φ       g       φ       g       φ       g       φ       g       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ       φ    ψ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rinse Vol<br>mL<br>/ S O<br>7 S<br>S O<br>/ Ocs<br>Conde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gain mL<br>mL<br>93<br>0<br>- 2<br>nsate Totat:                                                                                         | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kuth                                                                                   | ml                                     |                                       |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39[6] g<br>0.39[70.9<br>0.40 // 9<br>J<br>Stack<br>Bottle #<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Task:     2       Description       Filter/Solids     36       Probe & Filter Rinse       Heated Line Rinse       KCI Impingers       HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger       KMnO <sub>4</sub> Impingers       KMnO <sub>4</sub> Acid Rinse       Filter Net wt:       Probe/Line Rinse wt:       Total Particulate wt:       Zure       Description       Filter/Solids     3.2.                                                                                                                                                                                                                                                                                                                                                             | Initial Vol<br>mL<br>3 ◦ ⊘<br>/ ō ♡<br>ス ○ ♡<br>2 ○ ♡<br>5 · ○ 0, // g<br>⊙ · △ 0 // g<br>O · △ 0 // g<br>Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rinse Vol<br>mL<br>/.5 0<br>7.5<br>5 0<br>/ 0 0<br>Conde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gain<br>mL<br>93<br>o<br>- 2<br>nsate Total:<br>Date:<br>Operator:<br>Gain                                                              | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kuth<br>Final Vol<br>mL                                                                | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>$o \cdot 3 / \xi / g$<br>$o \cdot 3 / 7 \circ g$<br>$\int - \cdot$<br>Stack<br>Bottle #<br>S<br>1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         24,                                                                                                                                                                                                                                                                                                                                                                                                                     | Initial Vol<br>mL<br>3 ◦ ⊘<br>/ ō ♡<br>ス ○ ♡<br>2 ○ ♡<br>5 · ○ 0, // g<br>⊙ · △ 0 // g<br>O · △ 0 // g<br>Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rinse Vol<br>mL<br>/.5 0<br>7.5<br>5 0<br>/ 0 0<br>Conde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gain<br>mL<br>93<br>o<br>- 2<br>nsate Total:<br>Date:<br>Operator:<br>Gain                                                              | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.6<br>KuTh<br>Final Vol                                                                      | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39[8]/[9]<br>0.39[7]0.9<br>0.007/[9]<br>Stack<br>Bottle #<br>S<br>1A<br>1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       32.         Probe & Filter Rinse         Heated Line Rinse                                                                                                                                                                                                                                                                                                                      | Initial Vol<br>mL<br>3 • 0<br>/ 0 0<br>2 00<br>2 00<br>2 00<br>2 00<br>2 00<br>2 00<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rinse Vol<br>mL<br>/.5 0<br>7.5<br>5 C<br>/ 0 Conde<br>.3<br>Rinse Vol<br>mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gain<br>mL<br>93<br>o<br>- 2<br>nsate Total:<br>Date:<br>Operator:<br>Gain<br>mL                                                        | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kuth<br>Final Vol<br>mL<br>II.7<br>-                                                   | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>$o \cdot 3 / \{ / g \\ 0 \cdot 3 / 7 \circ g \\ 0 \cdot 0 / / g \\ 0 \cdot 0 / g$                                                                                                              | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       32.         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers                                                                                                                                                                                                                                                                                                | Initial Vol<br>mL<br><u>عمی</u><br><u>ممی</u><br><u>ممی</u><br><u>و</u><br><u>ممی</u><br><u>ا</u><br><u>ممی</u><br><u>و</u><br><u>ممی</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinse Vol<br>mL<br>/ 5 0<br>7 5<br>5 0<br>/ 6 0<br>Conde<br>3<br>Rinse Vol<br>mL<br>/ 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain<br>mL<br>93<br>o<br>- 2<br>nsate Total:<br>Date:<br>Operator:<br>Gain                                                              | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kiith<br>Final Vol<br>mL<br>                                                           | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39[5]/[9]/[9]/[9]/[9]/[9]/[9]/[9]/[9]/[9]/[9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       32.         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                               | Initial Vol<br>mL<br>3 ◦ ⊘<br>/ ō ♡<br>Z ̄ ♡<br>Z Ŏ ♡<br>Z | Rinse Vol<br>mL<br>/.5 0<br>7.5<br>5 0<br>/ 0 0<br>Conde<br>3<br>Rinse Vol<br>mL<br>/.5 0<br>7.5<br>( 0 0<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gain<br>mL<br>93<br>- 2<br>nsate Total:<br>Date:<br>Qperator:<br>Gain<br>mL<br>237<br>/                                                 | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kiith<br>Final Vol<br>mL<br>1/7<br>-<br>487<br>/76                                     | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>$a \cdot 3 / \xi / g$<br>$a \cdot 3$ | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       3 2.         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Arid Rinse                                                                                                                                                                                          | Initial Vol<br>mL<br><u>عمی</u><br><u>ممی</u><br><u>ممی</u><br><u>و</u><br><u>ممی</u><br><u>ا</u><br><u>ممی</u><br><u>و</u><br><u>ممی</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u><br><u>م</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinse Vol<br>mL<br>/ 5 0<br>7 5<br>5 0<br>/ 0 0<br>Conde<br>3<br>Rinse Vol<br>mL<br>/ 5 0<br>7 5<br>5 0<br>/ 0 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gain<br>mL<br>93<br>o<br>- 2<br>nsate Total:<br>Date:<br>Operator:<br>Gain<br>mL                                                        | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kuth<br>Final Vol<br>mL<br>//7<br>-<br>487<br>/76<br>247                               | ml<br>,5                               | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.398/909<br>0.39709<br>0.40709<br>0.40709<br>Stack<br>Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Task:       2         Description         Filter/Solids       3 &         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Impingers         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       3 2.         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         KOI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt: | Initial Vol<br>mL<br>3 ◦ Ø<br>/ õ Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>3 ◦ Ø<br>1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rinse Vol<br>mL<br>/.5 0<br>7.5<br>.5 0<br>/ 0 6<br>Rinse Vol<br>mL<br>/.5 0<br>.5 0<br>/ 5 | Gain<br>mL<br>93<br>0<br>- 2<br>nsate Total:<br>Date:<br><br>Operator:<br>Gain<br>mL<br><br>Gain<br>mL<br><br>- 3<br>7<br>/<br>/<br>- 3 | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kiith<br>Final Vol<br>mL<br>1/7<br>-<br>487<br>/76                                     | ml<br><b>5</b><br>)<br>ppb Hg          | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.398/909<br>0.39709<br>0.40709<br>0.40709<br>Stack<br>Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Task:       2         Description         Filter/Solids       3 &         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Impingers         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       3 2.         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         KOI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         Filter Net wt: | Initial Vol<br>mL<br>3 ◦ Ø<br>/ õ Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>3 ◦ Ø<br>1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rinse Vol<br>mL<br>/ 5 0<br>7 5<br>5 0<br>/ 0 0<br>Rinse Vol<br>mL<br>/ 5 0<br>/ 5 0<br>/ 5 0<br>/ 0 0<br>Conder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gain<br>mL<br>93<br>0<br>- 2<br>Date:<br>Operator: _<br>Gain<br>mL<br><br>237<br>/<br>- 3<br>nsate Total: _                             | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>Kuth<br>Final Vol<br>mL<br>1/7<br>487<br>/76<br>247<br>/76<br>247<br>/76               | ml<br><b>"5"</b><br>ppb Hg<br>ml       | of Hg                                 |
|   | Sample ID                                             | Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.398/909<br>0.39709<br>0.40709<br>0.40709<br>Stack<br>Bottle #<br>S<br>1A<br>1B<br>2<br>3<br>4<br>5<br>0.39709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709<br>0.40709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Task:       2         Description         Filter/Solids       36         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Impingers         KMnO <sub>4</sub> Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         Filter/Solids       3.2.         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger         KMnO <sub>4</sub> Acid Rinse         KMnO <sub>4</sub> Acid Rinse                                                                                                                | Initial Vol<br>mL<br>3 ◦ Ø<br>/ õ Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>2 0 Ø<br>3 ◦ Ø<br>1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rinse Vol<br>mL<br>/ 5 0<br>7 5<br>5 0<br>/ 0 0<br>Rinse Vol<br>mL<br>/ 5 0<br>/ 5 0<br>/ 5 0<br>/ 5 0<br>/ 0 0<br>Conder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain<br>mL<br>93<br>0<br>- 2<br>Date:<br>Operator: _<br>Gain<br>mL<br><br>237<br>/<br>- 3<br>nsate Total: _                             | Final Vol<br>mL<br>95<br>/2/<br>543<br>/75<br>248<br>/60<br>98.3<br>-25.0<br>KuTh<br>Final Vol<br>mL<br>1/7<br>-<br>487<br>/76<br>247<br>/76<br>247<br>/00<br>245.8 | ml<br><b>"5"</b><br>ppb Hg<br>ml       | of Hg                                 |

an an

4

|                                                       |                 | <i>b i</i>                                                                |                      | Un                | to.                                   | 2                    |          |                   |
|-------------------------------------------------------|-----------------|---------------------------------------------------------------------------|----------------------|-------------------|---------------------------------------|----------------------|----------|-------------------|
| Distribution:                                         | 24 the          | im - Loche                                                                |                      |                   |                                       |                      |          |                   |
| Project No.:                                          | 1-21            | 21.87                                                                     | •                    |                   |                                       |                      |          |                   |
| Sample Date:                                          |                 |                                                                           |                      | ./                |                                       | 4.                   |          |                   |
| Location:                                             | Econ Out        | Task:                                                                     | Test:                |                   | Operator:                             | Day                  |          |                   |
| Sample ID                                             | Bottle #        | Description                                                               | Initial Vol<br>mL    | Rinse Vol<br>mL   | Gain<br>mL                            | Final Vol<br>mL      | ppb Hg   | Total ug<br>of Hg |
|                                                       | S               | Filter/Solids 8                                                           |                      |                   |                                       |                      |          |                   |
| 80                                                    | <u>′ 1A</u>     | Probe & Filter Rinse                                                      |                      |                   |                                       | 146                  |          |                   |
| 8/                                                    | <u>1B</u>       | Heated Line Rinse                                                         |                      |                   |                                       | 88                   |          |                   |
| 82                                                    | 2               | KCI Impingers                                                             | 300                  | 156               | 72                                    | 522                  |          |                   |
| 83                                                    | 3               | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                  | 100                  | 75                | 0                                     | 175                  |          |                   |
| 84                                                    | 4               | KMnO₄ Impingers                                                           | 200                  | 50                | - /                                   | 249                  |          |                   |
| <u> </u>                                              | 5               | KMnO <sub>4</sub> Acid Rinse                                              |                      | 100               | !                                     | 100                  |          |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt: | 1.57079         | Probe/Line Rinse wt:                                                      | 6 9                  | Conde             |                                       | 77.4                 |          |                   |
| Recovered By:_                                        | Ju              |                                                                           |                      |                   | Date: /                               | - 26. 0              | 5        |                   |
| Location:                                             | AHO             | Task: 2                                                                   | Test:                | 4                 | Operator:                             | Qui                  |          |                   |
| Location.                                             |                 |                                                                           |                      | Rinse Vol         | · · · · · · · · · · · · · · · · · · · | //                   |          | Total ug          |
| Sample ID                                             | Bottle #        | Description                                                               | Initial Vol<br>mL    | mL                | Gain<br>mL                            | 'Final Vol<br>mL     | ppb Hg   | of Hg             |
| 61                                                    | S               | Filter/Solids /6                                                          |                      |                   |                                       | 178                  |          |                   |
| 86                                                    | 1A<br>4B        | Probe & Filter Rinse                                                      |                      |                   |                                       | 128<br>129           |          |                   |
| <u> </u>                                              | 1B              | Heated Line Rinse                                                         | •                    | 150               | 82                                    | 532                  |          |                   |
| 89                                                    | 2               | KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 300                  | 75                | 0                                     | 175                  |          |                   |
| 90                                                    | 4               |                                                                           | /00                  | 50                | - 3                                   | 247                  |          |                   |
| 9/                                                    | 4               | KMnO₄ Impingers<br>KMnO₄ Acid Rinse                                       | 200                  | /00               | ت                                     | 100                  | ·        |                   |
| Filter Gross wt:                                      | · · · ·         |                                                                           | 5.5482 0             |                   |                                       |                      | L        | <u>.</u>          |
| Recovered By:_                                        | Ju              | Elnet ,                                                                   |                      |                   | Date: /                               | -26-0.               | <u>s</u> |                   |
| Location:                                             | FGĎ In          |                                                                           | Test:<br>Initial Vol | 4<br>Rinse Vol    | Operator:<br>Gain                     | Juff<br>Final Vol    |          | Total ug          |
| Sample ID                                             | Bottle #        | Description                                                               | mL                   | mL                | mL                                    | mL                   | ppb Hg   | of Hg             |
| 92                                                    | S               | Filter/Solids 37                                                          |                      |                   |                                       | 104                  |          | <u> </u>          |
| 93                                                    | 1A<br>1B        | Probe & Filter Rinse                                                      |                      |                   |                                       | 88                   |          | <u> </u>          |
| 73                                                    | 2               | Heated Line Rinse                                                         | 300                  | 150               | 100                                   | 550                  |          |                   |
| 95                                                    | 3               | KCI Impingers<br>HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100                  | 75                | 0                                     | 175                  |          | <u> </u>          |
| 96                                                    | 4               | KMnO <sub>4</sub> Impingers                                               | 200                  | 50                | - 3                                   | 247                  |          |                   |
| 87                                                    | 5               | KMnO₄ Acid Rinse                                                          |                      | 100               |                                       | 100                  |          |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt: | 0.39580         | Filter Net wt:                                                            | <b>O</b> 9           | Conde             | nsate Total:                          | 105.4                | ml       |                   |
| Recovered By:_                                        | -Jr             | 7/mit                                                                     |                      |                   |                                       | <u>1 - 26 -</u><br>1 |          |                   |
| Location:                                             | Stack           | 241110 2<br>Task:                                                         | Test:                | <u> </u>          | Operator:                             | Keith                | ر<br>    |                   |
| Sample ID                                             | Bottle #        | Description                                                               | Initial Vol<br>mL    | Rinse Vol<br>mL   | Gain<br>mL                            | Final Vol<br>mL      | ppb Hg   | Total ug<br>of Hg |
|                                                       | S               | Filter/Solids 33                                                          |                      | ·                 |                                       |                      |          |                   |
| 98                                                    | 1A              | Probe & Filter Rinse                                                      |                      |                   |                                       | 116                  |          |                   |
|                                                       | 1B              | Heated Line Rinse                                                         |                      |                   |                                       |                      |          |                   |
| 99                                                    | 2               | KCI Impingers                                                             | 300                  | 150               | 248                                   | 698                  |          |                   |
| 100                                                   | 3               | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                  | /00                  | 75                | 0                                     | 175                  |          |                   |
| /0/                                                   | 4               | KMnO₄ Impingers                                                           | 200                  | 50                | - 3                                   | 247                  |          | ····              |
| 122                                                   | 5               | KMnO₄ Acid Rinse                                                          |                      | /00               |                                       | 160                  | l        | <u>l</u>          |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt: | <u>0.9040 g</u> | Probe/Line Rinse wt:                                                      | <u> </u>             | Conde             | nsate Total:                          | 256.4                | ml       |                   |
| Recovered By:_                                        | Ju              |                                                                           |                      |                   | Date: / /                             | 26-0.                | 5        |                   |
| Sample ID                                             |                 | Description                                                               | ppb Hg               | Total ug<br>of Hg |                                       |                      |          |                   |

5

. . ان شطق و .

:

. . h. . . . . . . . . .

| Project No | Test    | Date     | Loc.    | Operator | Sample ID # | Task    | Description          | Anal No. | Hg   |       |
|------------|---------|----------|---------|----------|-------------|---------|----------------------|----------|------|-------|
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 1           | 2       | PROBE & FILTER RINSE | 20050484 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 2           | 2       | HEATED LINE RINSE    | 20050485 | 1.7  | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 3           | 2       | KCL IMPINGER         | 20050486 | 12.1 | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 4           | 2       | HNO3/H2O2 IMPINGER   | 20050487 | 2.7  | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 5           | 2       | KMNO4 IMPINGER       | 20050488 | 19.3 | ng/ml |
| 1621-87    | 1       | 02/01/05 | ECONOUT | #VALUE!  | 6           | 2       | KMNO4 ACID RINSE     | 20050489 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 7           | 2       | PROBE & FILTER RINSE | 20050490 | 1.6  | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 8           | 2       | HEATED LINE RINSE    | 20050491 | 2.5  | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 9           | 2       | KCL IMPINGER         | 20050492 | 15.3 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 10          | 2       | HNO3/H2O2 IMPINGER   | 20050493 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 11          | 2       | KMNO4 IMPINGER       | 20050494 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | AHO     | #VALUE!  | 12          | 2       | KMNO4 ACID RINSE     | 20050495 | 1.5  | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 13          | 2       | PROBE & FILTER RINSE | 20050496 | 1.5  | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 14          | 2       | HEATED LINE RINSE    | 20050497 | <1.0 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 15          | 2       | KCL IMPINGER         | 20050498 | 22.4 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 16          | 2       | HNO3/H2O2 IMPINGER   | 20050499 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 17          | 2       | KMNO4 IMPINGER       | 20050500 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | FGDIN   | #VALUE!  | 18          | 2       | KMNO4 ACID RINSE     | 20050501 | 1.4  | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 19          | 2       | PROBE & FILTER RINSE | 20050502 | 1.7  | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 20          | 2       | KCL IMPINGER         | 20050503 | 0.4  | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 21          | 2       | HNO3/H2O2 IMPINGER   | 20050504 | <0.2 | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 22          | 2       | KMNO4 IMPINGER       | 20050505 | 0.9  | ng/ml |
| 1621-87    | 1       | 02/01/05 | STACK   | #VALUE!  | 23          | 2       | KMNO4 ACID RINSE     | 20050506 | <1.0 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 24          | #VALUE! | KCL BLANK            | 20050507 | <0.2 | ng/mi |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 25          | #VALUE! | HNO3/H2O2 BLANK      | 20050508 | <0.2 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 26          | #VALUE! | KMNO4 BLANK          | 20050509 | <0.2 | ng/ml |
| 1621-87    | #VALUE! | 02/01/05 | #VALUE! | #VALUE!  | 27          | #VALUE! | HNO3/HCL BLANK       | 20050510 | <0.2 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 28          | 2       | PROBE & FILTER RINSE | 20050511 | <1.0 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 29          | 2       | HEATED LINE RINSE    | 20050512 | 3.5  | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 30          | 2       | KCL IMPINGER         | 20050513 | 11.5 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | - 31        | 2       | HNO3/H2O2 IMPINGER   | 20050514 | 0.2  | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 32          | 2       | KMNO4 IMPINGER       | 20050515 | 19.8 | ng/ml |
| 1621-87    | 2       | 02/01/05 | ECONOUT | #VALUE!  | 33          | 2       | KMNO4 ACID RINSE     | 20050516 | <1.0 | ng/mi |

ւ շահետեւ է եել է

للافائية:. . . الدينيات. . . الا

| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 34 | 2       | PROBE & FILTER RINSE | 20050517 | 1.1  | ng/ml |
|---------|---------|----------|---------|---------|----|---------|----------------------|----------|------|-------|
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 35 | 2       | HEATED LINE RINSE    | 20050518 | 1.5  | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 36 | 2       | KCL IMPINGER         | 20050519 | 14.3 | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 37 | 2       | HNO3/H2O2 IMPINGER   | 20050520 | <0.2 | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 38 | 2       | KMNO4 IMPINGER       | 20050521 | 0.4  | ng/ml |
| 1621-87 | 2       | 02/01/05 | AHO     | #VALUE! | 39 | 2       | KMNO4 ACID RINSE     | 20050522 | 1.1  | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 40 | 2       | PROBE & FILTER RINSE | 20050523 | <1.0 | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 41 | 2       | HEATED LINE RINSE    | 20050524 | 2.1  | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 42 | 2       | KCL IMPINGER         | 20050525 | 23.0 | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 43 | 2       | HNO3/H2O2 IMPINGER   | 20050526 | <0.2 | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 44 | 2       | KMNO4 IMPINGER       | 20050527 | 0.2  | ng/ml |
| 1621-87 | 2       | 02/01/05 | FGDIN   | #VALUE! | 45 | 2       | KMNO4 ACID RINSE     | 20050528 | 1.3  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 46 | 2       | PROBE & FILTER RINSE | 20050529 | 1.7  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 47 | 2       | KCL IMPINGER         | 20050530 | 0.9  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 48 | 2       | HNO3/H2O2 IMPINGER   | 20050531 | <0.2 | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 49 | 2       | KMNO4 IMPINGER       | 20050532 | 0.7  | ng/ml |
| 1621-87 | 2       | 02/01/05 | STACK   | #VALUE! | 50 | 2       | KMNO4 ACID RINSE     | 20050533 | 1.4  | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | ECONOUT | #VALUE! | 51 | IMP     | KCL IMPINGER         | 20050534 | <0.2 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | ECONOUT | #VALUE! | 52 | IMP     | HNO3/H2O2 IMPINGER   | 20050535 | <0.2 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | ECONOUT | #VALUE! | 53 | IMP     | KMNO4 IMPINGER       | 20050536 | <0.2 | ng/mi |
| 1621-87 | #VALUE! | 02/01/05 | ECONOUT | #VALUE! | 54 | IMP     | KMNO4 ACID RINSE     | 20050537 | <1.0 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | #VALUE! | #VALUE! | 55 | #VALUE! | KMNO4 BLANK          | 20050538 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 56 | 2       | PROBE & FILTER RINSE | 20050539 | <1.0 | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 57 | 2       | HEATED LINE RINSE    | 20050540 | 1.3  | ng/mi |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 58 | 2       | KCL IMPINGER         | 20050541 | 11.9 | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 59 | 2       | HNO3/H2O2 IMPINGER   | 20050542 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 60 | 2       | KMNO4 IMPINGER       | 20050543 | 13.7 | ng/ml |
| 1621-87 | 3       | 02/01/05 | ECONOUT | #VALUE! | 61 | 2       | KMNO4 ACID RINSE     | 20050544 | 1.4  | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 62 | 2       | PROBE & FILTER RINSE | 20050545 | <1.0 | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 63 | 2       | HEATED LINE RINSE    | 20050546 | 1.1  | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 64 | 2       | KCL IMPINGER         | 20050547 | 16.6 | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 65 | 2       | HNO3/H2O2 IMPINGER   | 20050548 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 66 | 2       | KMNO4 IMPINGER       | 20050549 | 0.8  | ng/ml |
| 1621-87 | 3       | 02/01/05 | AHO     | #VALUE! | 67 | 2       | KMNO4 ACID RINSE     | 20050550 | <1.0 | ng/ml |
|         |         |          |         |         |    |         |                      |          |      |       |

: ailide

iiat⊾a ii.

م المشاري . . الد مرتبط . .

| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 68  | 2       | PROBE & FILTER RINSE | 20050551 | <1.0 | ng/ml |
|---------|---------|----------|---------|---------|-----|---------|----------------------|----------|------|-------|
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 69  | 2       | HEATED LINE RINSE    | 20050552 | 2.6  | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 70  | 2       | KCL IMPINGER         | 20050553 | 21.7 | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 71  | 2       | HNO3/H2O2 IMPINGER   | 20050554 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 72  | 2       | KMNO4 IMPINGER       | 20050555 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | FGDIN   | #VALUE! | 73  | 2       | KMNO4 ACID RINSE     | 20050556 | 1.1  | ng/mi |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE! | 74  | 2       | PROBE & FILTER RINSE | 20050557 | <1.0 | ng/ml |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE! | 75  | 2       | KCL IMPINGER         | 20050558 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE! | 76  | 2       | HNO3/H2O2 IMPINGER   | 20050559 | <0.2 | ng/ml |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE! | 77  | 2       | KMNO4 IMPINGER       | 20050560 | 0.6  | ng/mi |
| 1621-87 | 3       | 02/01/05 | STACK   | #VALUE! | 78  | 2       | KMNO4 ACID RINSE     | 20050561 | 1.2  | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | #VALUE! | #VALUE! | 79  | #VALUE! | KMNO4 BLANK          | 20050562 | <0.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE! | 80  | 2       | PROBE & FILTER RINSE | 20050563 | <1.0 | ng/ml |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE! | 81  | 2       | HEATED LINE RINSE    | 20050564 | 2.2  | ng/ml |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE! | 82  | 2       | KCL IMPINGER         | 20050565 | 8.8  | ng/ml |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE! | 83  | 2       | HNO3/H2O2 IMPINGER   | 20050566 | 0.3  | ng/ml |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE! | 84  | 2       | KMNO4 IMPINGER       | 20050567 | 15.9 | ng/ml |
| 1621-87 | 4       | 02/01/05 | ECONOUT | #VALUE! | 85  | 2       | KMNO4 ACID RINSE     | 20050568 | 1.5  | ng/ml |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE! | 86  | 2       | PROBE & FILTER RINSE | 20050569 | <1.0 | ng/ml |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE! | 87  | 2       | HEATED LINE RINSE    | 20050570 | 2.6  | ng/ml |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE! | 88  | 2       | KCL IMPINGER         | 20050571 | 12.3 | ng/ml |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE! | 89  | 2       | HNO3/H2O2 IMPINGER   | 20050572 | <0.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE! | 90  | 2       | KMNO4 IMPINGER       | 20050573 | <0.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | AHO     | #VALUE! | 91  | 2       | KMNO4 ACID RINSE     | 20050574 | <1.0 | ng/ml |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE! | 92  | 2       | PROBE & FILTER RINSE | 20050575 | <1.0 | ng/ml |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE! | 93  | 2       | HEATED LINE RINSE    | 20050576 | 1.4  | ng/ml |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE! | 94  | 2       | KCL IMPINGER         | 20050577 | 18.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE! | 95  | 2       | HNO3/H2O2 IMPINGER   | 20050578 | <0.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE! | 96  | 2       | KMNO4 IMPINGER       | 20050579 | 0.2  | ng/ml |
| 1621-87 | 4       | 02/01/05 | FGDIN   | #VALUE! | 97  | 2       | KMNO4 ACID RINSE     | 20050580 | 1.5  | ng/ml |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE! | 98  | 2       | PROBE & FILTER RINSE | 20050581 | 1.9  | ng/ml |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE! | 99  | 2       | KCL IMPINGER         | 20050582 | <0.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE! | 100 | 2       | HNO3/H2O2 IMPINGER   | 20050583 | <0.2 | ng/ml |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE! | 101 | 2       | KMNO4 IMPINGER       | 20050584 | 0.4  | ng/ml |
| 1621-87 | 4       | 02/01/05 | STACK   | #VALUE! | 102 | 2       | KMNO4 ACID RINSE     | 20050585 | <1.0 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | FGDIN   | #VALUE! | 103 | IMP     | KCL IMPINGER         | 20050586 | <0.2 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | FGDIN   | #VALUE! | 104 | IMP     | HNO3/H2O2 IMPINGER   | 20050587 | <0.2 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | FGDIN   | #VALUE! | 105 | IMP     | KMNO4 IMPINGER       | 20050588 | <0.2 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | FGDIN   | #VALUE! | 106 | IMP     | KMNO4 ACID RINSE     | 20050589 | <1.0 | ng/ml |
| 1621-87 | #VALUE! | 02/01/05 | #VALUE! | #VALUE! | 107 | #VALUE! | KMNO4 BLANK          | 20050590 | <0.2 | ng/ml |
|         |         |          |         |         |     |         |                      |          |      | -     |

انىڭىلىنىڭ ئىشى ئەشلەت ، مەن بىلىشە ، مەن بىلىرىمى ، مەن بىلىرىمى ، م

in a the first of the second 
# Run 1 Particulate in Thimbles by ASTM D6722, Direct Combustion

|          |        |          | -                  |       |     |
|----------|--------|----------|--------------------|-------|-----|
| ANALNUM  | SAMPLE | DATE     | DESCR              | Hg    |     |
| 20050627 | 5      | 01/24/05 | ECON OUT 1 THIMBLE | 0.017 | PPM |
| 20050628 | 13     | 01/24/05 | AHO-1 THIMBLE      | 0.283 | PPM |
| 20050631 | 7      | 01/25/05 | ECON OUT 2 THIMBLE | 0.015 | PPM |
| 20050632 | 14     | 01/25/05 | AHO-2 THIMBLE      | 0.653 | PPM |
| 20050635 | 6      | 01/25/05 | ECON OUT 3 THIMBLE | 0.016 | PPM |
| 20050636 | 15     | 01/25/05 | AHO-3 THIMBLE      | 0.314 | PPM |
| 20050639 | 8      | 01/26/05 | ECON OUT 4 THIMBLE | 0.019 | PPM |
| 20050640 | 16     | 01/26/05 | AHO-4 THIMBLE      | 0.379 | PPM |
|          |        |          |                    |       |     |

| NIST 1633B (also used as Continuing Calibration Verification) | PPM   |      |      |
|---------------------------------------------------------------|-------|------|------|
| 1633B                                                         | 0.153 | 109% | good |
| 1633B                                                         | 0.153 | 109% | good |
|                                                               |       |      |      |

# Run 2 Filters by ASTM 6414, Acid Digestion/CVAA

1.4.4

1

-i

;

- . الحصيمية المعالمية

| ANALNUM  | SAMPLE | DATE     | DESCR             | Hg     |           |
|----------|--------|----------|-------------------|--------|-----------|
| 20050629 | 34     | 01/24/05 | FGD-1 3-IN FILTER | <5.0   | ng/filter |
| 20050630 | 27     | 01/24/05 | STK-1 3-IN FILTER | <5.0   | ng/filter |
| 20050633 | 35     | 01/25/05 | FGD-2 3-IN FILTER | <5.0   | ng/filter |
| 20050634 | 31     | 01/25/05 | STK-2 3-IN FILTER | <5.0   | ng/filter |
| 20050637 | 36     | 01/25/05 | FGD-3 3-IN FILTER | <5.0   | ng/filter |
| 20050638 | 32     | 01/25/05 | STK-3 3-IN FILTER | <5.0   | ng/filter |
| 20050641 | 37     | 01/26/05 | FGD-4 3-IN FILTER | <5.0   | ng/filter |
| 20050642 | 33     | 01/26/05 | STK-4 3-IN FILTER | <5.0   | ng/filter |
| 20050644 | 47-B   | 01/26/05 | 47-B 47 MM FILTER | <5.0   | ng/filter |
| 20050645 | 3IN-B  | 01/26/05 | 3IN-B 3-IN FILTER | <5.0   | ng/filter |
| 20050643 | THM-B  | 01/26/05 | THM-B THIMBLE     | <0.005 | PPM       |

| 0.128 | 91% | good  |
|-------|-----|-------|
|       |     |       |
| ng/ml |     |       |
|       | ¥   | ng/ml |

| 1641d 8 ppb | 0.2 | 10376 | 9000 |
|-------------|-----|-------|------|
| 1641d 8ppb  | 8.2 | 103%  | good |
| 1641d 8ppb  | 8.2 | 103%  | good |
| 1641d 8ppb  | 8.3 | 104%  | good |

DESCRIPTION ECON OUT 1 THIMBLE UNIT 2 DATE SAMPLED 01/24/05 SAMPLE NUMBER 5 DATE LOGGED DATE COMPLE PROJECT NUM

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050627

ł

#### ANALYSIS REPORT

| PROXIMATE | (Dry)%    | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|-----------|-----------|---------------|---------------|------------------|----------------|
| Ash       | 95.52     | Carbon<br>Ash | 4.19<br>95.52 | Silicon<br>Al2O3 | 49.24<br>24.14 |
| MISC. (As | Det.)     | A211          | 90.0L         | Ti02<br>Fe203    | 1.40<br>12.98  |
| MERCURY   | 0.017 PPM |               |               | CaO<br>MgO       | 1.64<br>1.05   |
|           |           |               |               | Na20<br>K20      | 0.54<br>2.39   |
|           |           |               |               | P205<br>S03      | 0.30<br>0.53   |
|           |           |               |               | UND              | 5.79           |

AS DETERMINED MOISTURE: 0.19 %

٨

日本種

al di

;

يلد مديد المد

#### DISTRIBUTION: J. WITHUM J LOCKF

J. LOCKE S. TSENG

DESCRIPTION AHO-1 THIMBLE UNIT 2 DATE SAMPLED 01/24/05 SAMPLE NUMBER 13

,\*

P

ai. 1.1a

197

الد مديديا بد

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050628

#### ANALYSIS REPORT

| PROXIMATE        | (Dry)%    | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|------------------|-----------|---------------|---------------|------------------|----------------|
| Ash              | 93.28     | Carbon<br>Ash | 5.52<br>93.28 | Silicon<br>Al2O3 | 48.07<br>23.35 |
| <u>MISC. (As</u> | Det.)     | ASII          | 30.20         | Ti02<br>Fe203    | 1.32<br>12.81  |
| MERCURY          | 0.283 PPM |               |               | CaO<br>MgO       | $1.50 \\ 1.01$ |
|                  |           |               |               | Na20<br>K20      | 0.53           |
|                  |           |               |               | P205<br>S03      | 0.28<br>0.78   |
|                  |           |               |               | UND              | 8.02           |

AS DETERMINED MOISTURE: 0.35 %

#### DISTRIBUTION: J. WITHUM J. LOCKE

S. TSENG

Approved for transmittal

DESCRIPTION FGD-1 3-IN FILTER UNIT 2 DATE SAMPLED 01/24/05 SAMPLE NUMBER 34

ł

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050629

#### ANALYSIS REPORT

MISC. (As Det.)

du 1.6

1.107

:

L. .... Li. . . .

MERCURY <5.0 NG/FIL

ŀ

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

ŧ

DESCRIPTION STK-1 3-IN FILTER UNIT 2 DATE SAMPLED 01/24/05 SAMPLE NUMBER 27

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050630

ANALYSIS REPORT

MISC. (As Det.)

्राम् स्टिन्स

db. 1.13. . . .

i. i liki. i

:

MERCURY <5.0 NG/FIL

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

ï

| DESCRIPTION                   | ECON OUT 2 THIMBLE<br>INIT 2 | -                                                                                                              |   |
|-------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|---|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/25/05                     | DATE LOGGED 02/03/05<br>DATE COMPLETED 03/09/05<br>PROJECT NUMBER 1621-87 -<br>ANALYTICAL NUMBER <b>050631</b> | - |

#### ANALYSIS REPORT

| PROXIMATE | (Dry)%       |       | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM                                  | (Dry)%                                               |
|-----------|--------------|-------|---------------|---------------|-------------------------------------------------|------------------------------------------------------|
| Ash       | (            | 93.83 | Carbon<br>Ash | 5.68<br>93.83 | Silicon<br>Al2O3                                | 47 . 65<br>26 . 35                                   |
| MISC. (As | <u>Det.)</u> |       |               |               | Ti02<br>Fe203                                   | 1.37<br>9.91                                         |
| MERCURY   | 0.015 PPM    |       |               |               | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.44<br>0.93<br>0.50<br>2.41<br>0.35<br>0.53<br>8.56 |

AS DETERMINED MOISTURE: 0.27 %

غلك ماليقي ف

-i 1.401

÷ 2

ы ы. ы. <u>ы</u> . .

•

# DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION AHO-2 THIMBLE UNIT 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER 14

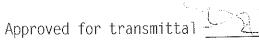
ł

40 J 16.

and the second

:

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050632 ş


#### ANALYSIS REPORT

| PROXIMATE        | <u>(Dry)%</u> | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | <u>(Dry)%</u>  |
|------------------|---------------|---------------|---------------|------------------|----------------|
| Ash              | 93.18         | Carbon<br>Ash | 6.45<br>93.18 | Silicon<br>Al2O3 | 48.11<br>26.00 |
| <u>MISC. (As</u> | Det.)         | 7.511         |               | Ti02<br>Fe203    | 1.37<br>10.23  |
| MERCURY          | 0.653 PPM     |               |               | CaO              | 1.46<br>0.92   |
|                  |               |               |               | MgO<br>Na2O      | 0.47           |
|                  |               |               |               | K20<br>P205      | 2.38<br>0.33   |
|                  |               |               |               | S03              | 0.65           |
|                  |               |               |               | UND              | 8.08           |

AS DETERMINED MOISTURE: 0.37 %

#### DISTRIBUTION: J. WITHUM J. LOCKE

| S. ISENG |
|----------|
|          |



DESCRIPTION FGD-2 3-IN FILTER UNIT 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER 35

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050633

ANALYSIS REPORT

MISC. (As Det.)

10 11 12

10

MERCURY <5.0 NG/FIL

۱

1

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

Approved for transmittal

٤

. معرب رویه

DESCRIPTION STK-2 3-IN FILTER UNIT 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER 31

ŧ

3

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050634

ANALYSIS REPORT

MISC. (As Det.)

64 L 21

and Later A

MERCURY <5.0 NG/FIL

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

ł

| DESCRIPTION                   | ECON OUT 3 THIMBLE<br>UNIT 2 |                              |
|-------------------------------|------------------------------|------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/25/05                     | DATE LOGGED<br>DATE COMPLETE |
| SALLEL NOTIDEN                | 0                            | PROJECT NUMBE                |

Ł

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050635

#### ANALYSIS REPORT

| <u>PROXIMATE</u> | (Dry)%       | ULTIMATE        | (Dry)%                     | MAJOR ASH ELEM             | (Dry)%               |
|------------------|--------------|-----------------|----------------------------|----------------------------|----------------------|
| Ash              | 93.6         | 4 Carbon<br>Ash | 6.24<br>93.64              | Silicon<br>Al2O3           | 49.70<br>26.71       |
| <u>MISC. (As</u> | <u>Det.)</u> | ASII            | <b>50</b> , 0 <del>4</del> | Ti02<br>Fe203              | 1.42<br>9.71         |
| MERCURY          | 0.016 PPM    |                 |                            | CaO                        | 1.45<br>0.95         |
|                  |              |                 |                            | MgO<br>Na2O<br>K2O<br>P2O5 | 0.49<br>2.47<br>0.39 |
|                  |              |                 |                            | SO3<br>UND                 | 0.42<br>6.29         |

AS DETERMINED MOISTURE: 0.22 %

. . . . . . . . . . . . .

L. L. L.

;

. . IL .... . . . . . . . . . .

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION AHO-3 THIMBLE UNIT 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER 15

11111

1. . il l'hi . . .

1. áilí I. I.

2

...لا. متطلطيا الغر

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050636

ŧ

#### ANALYSIS REPORT

| PROXIMATE | (Dry)%       | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|-----------|--------------|---------------|---------------|------------------|----------------|
| Ash       | 91.72        | Carbon<br>Ash | 7.45<br>91.72 | Silicon<br>Al2O3 | 48.48<br>26.48 |
| MISC. (As | <u>Det.)</u> | ASII          | J1.72         | Ti02<br>Fe203    | 1.38<br>9.74   |
| MERCURY   | 0.314 PPM    |               |               | CaO<br>MgO       | 1.37<br>0.92   |
|           |              |               |               | Na20<br>K20      | 0.51<br>2.49   |
|           |              |               |               | P205<br>S03      | 0.38<br>0.73   |
|           |              |               |               | UND              | 7.52           |

AS DETERMINED MOISTURE: 0.28 %

#### DISTRIBUTION: J. WITHUM J. LOCKE

| S. | TSENG |
|----|-------|
|    |       |

DESCRIPTION FGD-3 3-IN FILTER UNIT 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER 36

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050637 )

è

ANALYSIS REPORT

ı

MISC. (As Det.)

ì

21 H

:

h. ... tu lite

MERCURY <5.0 NG/FIL

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION STK-3 3-IN FILTER UNIT 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER 32

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050638

#### ANALYSIS REPORT

MISC. (As Det.)

i

4

11. A. 1.

110

;

L. .... fuel to

MERCURY <5.0 NG/FIL

ŧ

ŀ

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |
|     |             |

*:*...

DESCRIPTION ECON OUT 4 THIMBLE UNIT 2 DATE SAMPLED 01/26/05 SAMPLE NUMBER 8

Ļ

¥

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050639

ł

#### ANALYSIS REPORT

| PROXIMATE        | <u>(Dry)%</u> | ULTIMATE      | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|------------------|---------------|---------------|---------------|------------------|----------------|
| Ash              | 94.96         | Carbon<br>Ash | 5.00<br>94.96 | Silicon<br>Al2O3 | 50.78<br>26.93 |
| <u>MISC. (As</u> | <u>Det.)</u>  | ASII          | 94.90         | Ti02<br>Fe203    | 1.53<br>8.69   |
| MERCURY          | 0.019 PPM     |               |               | CaO              | 1.52<br>0.91   |
|                  |               |               |               | MgO<br>Na2O      | 0.52           |
|                  |               |               |               | K20<br>P205      | 2.36<br>0.50   |
|                  |               |               |               | SO3<br>UND       | 0.42<br>5.84   |

AS DETERMINED MOISTURE: 0.19 %

- The second 
1. . all all

1.62

:

. الم --- ، اسم الم

## DISTRIBUTION:

| J. | WITHON |
|----|--------|
| J. | LOCKE  |
| S. | TSENG  |

DESCRIPTION AHO-4 THIMBLE UNIT 2 DATE SAMPLED 01/26/05 SAMPLE NUMBER 16

DATE LOGGED 02/03/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050640

## ANALYSIS REPORT

| PROXIMATE        | (Dry)%       |      | ULTIMATE | (Dry)%        | MAJOR ASH ELEM   | (Dry)%         |
|------------------|--------------|------|----------|---------------|------------------|----------------|
| Ash              | 9            | 2.91 | Carbon   | 6.49<br>92.91 | Silicon<br>Al2O3 | 50.68<br>25.89 |
| <u>MISC. (As</u> | <u>Det.)</u> |      | Ash      | 94.91         | Ti02<br>Fe203    | 1.47<br>9.00   |
| MERCURY          | 0.379 PPM    |      |          |               | CaO<br>MgO       | 1.51<br>0.89   |
|                  |              |      |          |               | Na20<br>K20      | 0.46           |
|                  |              |      |          |               | P205             | 0.46           |
|                  |              |      |          |               | SO3<br>UND       | 0.58<br>6.80   |

AS DETERMINED MOISTURE: 0.28 %

۲

通信に

q

an 1....

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION FGD-4 3-IN FILTER UNIT 2 DATE SAMPLED 01/26/05 SAMPLE NUMBER 37

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050641

ŧ

1

ANALYSIS REPORT

MISC. (As Det.)

11

107

والله ومروانية المراجع

MERCURY <5.0 NG/FIL

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

DESCRIPTION STK-4 3-IN FILTER UNIT 2 DATE SAMPLED 01/26/05 SAMPLE NUMBER 33

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050642** 

ANALYSIS REPORT

MISC. (As Det.)

ŧ

١

= ≩ k

i.

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |
|     |             |

Approved for transmittal

ķ

Thimble + filter numbers 143 Pinit ! Stack Aut Quit Form Ero Out Keith, greff. 47 mm Thimb Gay: Themelo з" Tert 23 9 17 t l 24 18 10 2 2) z5 19 11 3 3 えん えの 12 4 2 Init 2 Stach En Quit Day: S AH. Out FGDen Keeto 2.ff Jun 13 14 Test 34 27 ) [ 31 35 ン 32 36 15 3 33 37 3″ Themb-4 Themal Juff Zinit 2 test 1.2.3.4 3″ 34 0.4025 35 0. 3987 35 0. 3970

5-3958 37

2mit 1

| •             | i ja niko ini ana ana sa ka ka |
|---------------|--------------------------------|
| Distribution: | Withun - Locke_                |
| Project No.:  | 1621-87                        |
| Sample Date:  | 1-21-05                        |
|               |                                |

:

.

. . ألد محمد المعمد أن المع

| Sample Date:                                                                                                                                                                   | 121                                                                                                                                                                                   | - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                 |                                  |                 |          |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|----------------------------------|-----------------|----------|-------------------|
| Location:                                                                                                                                                                      | Blank                                                                                                                                                                                 | Task: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test:                                     | 4               | Operator:                        | Juff            |          |                   |
| Sample ID                                                                                                                                                                      | Bottle #                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initlai Vol<br>mL                         | Rinse Vol<br>mL | Gain<br>mL                       | Final Vol<br>mL | ppb Hg   | Total ug<br>of Hg |
|                                                                                                                                                                                | S                                                                                                                                                                                     | Filter/Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                                  |                 |          |                   |
|                                                                                                                                                                                | 1 <b>A</b>                                                                                                                                                                            | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                 |                                  |                 |          |                   |
|                                                                                                                                                                                | 1B                                                                                                                                                                                    | Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                 |                                  |                 |          | ·                 |
| 99                                                                                                                                                                             | 2                                                                                                                                                                                     | KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                       | 150             |                                  | 450             |          | <u> </u>          |
| /00                                                                                                                                                                            | 3                                                                                                                                                                                     | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                       | 75              |                                  | 175             |          |                   |
| 101                                                                                                                                                                            | 4                                                                                                                                                                                     | KMnO₄ Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                       | 50              |                                  | 250             |          |                   |
| 102                                                                                                                                                                            | 5                                                                                                                                                                                     | KMnO₄ Acid Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 100             |                                  | 100             |          |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                                                                                                          | 9                                                                                                                                                                                     | Probe/Line Rinse wt:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                         | Conde           | nsate Total:                     |                 | ml       |                   |
| Recovered By:                                                                                                                                                                  | L rene                                                                                                                                                                                | e Elist<br>Task:                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                 |                                  | 21-05           |          |                   |
| Location:                                                                                                                                                                      | Imp                                                                                                                                                                                   | Task:                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test:                                     |                 | Operator:                        | Final Vol       |          |                   |
| Sample ID                                                                                                                                                                      | Bottle #                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initial Vol<br>mL                         | Rinse Vol<br>mL | Galn<br>mL                       | Final Vol<br>mL | ppb Hg   | Total ug<br>of Hg |
|                                                                                                                                                                                | S                                                                                                                                                                                     | Filter/Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                                  |                 |          | ļ                 |
|                                                                                                                                                                                | 1A                                                                                                                                                                                    | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                 |                                  |                 |          | <b></b>           |
|                                                                                                                                                                                | 1B                                                                                                                                                                                    | Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                 |                                  |                 |          |                   |
| 104                                                                                                                                                                            | 2                                                                                                                                                                                     | KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                       | 150             |                                  | 450             |          | ļ                 |
| /05                                                                                                                                                                            | 3                                                                                                                                                                                     | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                       | 75              |                                  | 175             |          |                   |
| 106                                                                                                                                                                            | 4                                                                                                                                                                                     | KMnO <sub>4</sub> Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                       | 50              |                                  | 250             |          |                   |
| /07                                                                                                                                                                            | 5                                                                                                                                                                                     | KMnO₄ Acid Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 100             |                                  | 100             |          |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                                                                                                          | g                                                                                                                                                                                     | Probe/Line Rinse wt:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>9                                    | Conde           |                                  |                 |          |                   |
| Recovered By:                                                                                                                                                                  | V                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                 |                                  | · 2/- 0         | <u> </u> |                   |
| Location:                                                                                                                                                                      | FGD In                                                                                                                                                                                | Task:                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                 | Operator:                        |                 |          |                   |
| Sample ID                                                                                                                                                                      | Bottle #                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initial Vol<br>mL                         | Rinse Vol<br>mL | Gain<br>mL                       | Final Vol<br>mL | ppb Hg   | Total ug<br>of Hg |
|                                                                                                                                                                                | S                                                                                                                                                                                     | Filter/Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                                  |                 |          |                   |
|                                                                                                                                                                                | 1A                                                                                                                                                                                    | Probe & Filter Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | · · · ·         |                                  |                 |          | <u> </u>          |
|                                                                                                                                                                                | 1B                                                                                                                                                                                    | Heated Line Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                 |                                  |                 |          | <u> </u>          |
|                                                                                                                                                                                | 2                                                                                                                                                                                     | KCI Impingers                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                                  |                 |          | <u> </u>          |
| 1                                                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                 |                                  |                 |          |                   |
| µ                                                                                                                                                                              | 3                                                                                                                                                                                     | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                 |                                  |                 |          |                   |
|                                                                                                                                                                                | 3<br>4                                                                                                                                                                                | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger<br>KMnO <sub>4</sub> Impingers                                                                                                                                                                                                                                                                                                                                                                      |                                           |                 |                                  |                 |          |                   |
|                                                                                                                                                                                |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | <u> </u>        |                                  |                 |          |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                                                                                                          | 4<br>5<br>9                                                                                                                                                                           | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:                                                                                                                                                                                                                                                                                                                                                                                |                                           | Conde           | ensate Total:                    |                 | ml       |                   |
| Filter Tare wt:                                                                                                                                                                | 4<br>5<br>9<br>9                                                                                                                                                                      | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                                                                                       | g                                         | Conde           |                                  |                 |          |                   |
| Filter Tare wt:<br>Filter Net wt:                                                                                                                                              | 4<br>5<br>9<br>9                                                                                                                                                                      | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                                                                                       | 9<br>9                                    |                 |                                  |                 |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:_                                                                                                                            | 4<br>5<br>9<br>9                                                                                                                                                                      | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                                                                                                                                                                                                                                       | 9<br>9                                    |                 | Date:<br>Operator:               |                 |          | Total ug<br>of Hg |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>5<br>8<br>5<br>8<br>5<br>8<br>5<br>8<br>5                                                                                                | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:                                                                                                                                                                                                                                                                                                                                              | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>9<br>9<br>5tack<br>Bottle #                                                                                                                                       | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description                                                                                                                                                                                                                                                                                                                               | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>9<br>Stack<br>Bottle #<br>S                                                                                                                                       | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description<br>Filter/Solids                                                                                                                                                                                                                                                                                                              | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>5<br>5<br>5<br>5<br>5<br>5<br>1<br>4                                                                                                                              | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse                                                                                                                                                                                                                                                                                      | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>1<br>4<br>1<br>8                                                                                                               | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers                                                                                                                                                                                                                                                | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>5tack<br>Bottle #<br>5<br>1A<br>1B<br>2                                                                                                                           | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger                                                                                                                                                                                                                          | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:                                                                                                                | 4<br>5<br>9<br>9<br>5tack<br>Bottle #<br>5<br>1A<br>1B<br>2<br>3                                                                                                                      | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers                                                                                                                                                                                                                                                | 9<br>9<br>Test:                           | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID                                                                                                   | 4<br>5<br>9<br>9<br>5<br>5<br>5<br>5<br>5                                                                                                                                             | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse                                                                                                                                                                                            | 9<br>9<br>Test:<br><br>                   | Rinse Vol       | Date:<br>Operator:<br>Gain       | Final Vol       |          |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:                                                                           | 4<br>5<br>9<br>9<br>5<br>5<br>5<br>5<br>9<br>9<br>9<br>9<br>9<br>5<br>5<br>5<br>9<br>9                                                                                                | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:                                                                                                                                                                          | 9<br>9<br>Test:<br><br>mL                 | Rinse Vol<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol       | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID                                                                                                   | 4<br>5<br>9<br>9<br>9<br>5<br>5<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                      | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:                                                                                                                                                                     | 9<br>9<br>1<br>1<br>1<br><br><br>         | Rinse Vol<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Tare wt:                                                        | 4<br>5<br>9<br>9<br>9<br>8<br>5<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                 | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:                                                                                                                                                                     | 9<br>9<br>1<br>1<br>1<br><br><br>         | Rinse Vol<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:                                      | 4<br>5<br>9<br>9<br>9<br>8<br>5<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                 | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                            | 9<br>9<br>1<br>1<br>1<br><br><br>         | Rinse Voi<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By: | 4<br>5<br>9<br>9<br>9<br>5<br>tack<br>Bottle #<br>5<br>1A<br>1B<br>2<br>3<br>4<br>5<br>9<br>9<br>9<br>9<br>9<br>9                                                                     | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Task:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₄/H₂O₂ Impinger<br>KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description                                                                                                 | 9<br>7<br>Initial Vol<br>9<br>9<br>9<br>9 | Rinse Voi<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By: | 4<br>5<br>9<br>9<br>5<br>5<br>5<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>3<br>3<br>3<br>4<br>5<br>3<br>3<br>4<br>5<br>5<br>3<br>3<br>4<br>5<br>3<br>3<br>3<br>3<br>3<br>3 | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:                                                                                                                                            | 9<br>7<br>Initial Vol<br>9<br>9<br>9<br>9 | Rinse Voi<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By: | 4<br>5<br>9<br>9<br>5<br>5<br>5<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>3<br>3<br>3<br>4<br>5<br>3<br>3<br>4<br>5<br>5<br>3<br>3<br>4<br>5<br>3<br>3<br>3<br>3<br>3<br>3 | KMnO₄ Impingers<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>Filter/Solids<br>Probe & Filter Rinse<br>Heated Line Rinse<br>KCI Impingers<br>HNO₃/H₂O₂ Impinger<br>KMnO₄ Acid Rinse<br>Filter Net wt:<br>Probe/Line Rinse wt:<br>Total Particulate wt:<br>Description<br>In. Filter Blank                                                                                                         | 9<br>7<br>Initial Vol<br>9<br>9<br>9<br>9 | Rinse Voi<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By: | 4<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                      | KMnO₄ Impingers         KMnO₄ Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Task:                                                                                                                                                                                                                                                                                                                                                   | 9<br>7<br>Initial Vol<br>9<br>9<br>9<br>9 | Rinse Voi<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |
| Filter Tare wt:<br>Filter Net wt:<br>Recovered By:<br>Location:<br>Sample ID<br><br>Filter Gross wt:<br>Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt:<br>Recovered By: | 4<br>5<br>9<br>9<br>9<br>5tack<br>Bottle #<br>5<br>1A<br>1B<br>2<br>3<br>4<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9             | KMnO₄ Impingers         KMnO₄ Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Task:         Description         Filter/Solids         Probe & Filter Rinse         Heated Line Rinse         KCI Impingers         HNO₃/H₂O₂ Impinger         KMnO₄ Acid Rinse         Filter Net wt:         Probe/Line Rinse wt:         Total Particulate wt:         Description         In, Filter Blank         Thimble Blank         KCi Blank | 9<br>7<br>Initial Vol<br>9<br>9<br>9<br>9 | Rinse Voi<br>mL | Date:<br>Operator:<br>Gain<br>mL | Final Vol<br>mL | ppb Hg   |                   |

5

.

Zinto

Distribution: \_\_\_\_\_ Project No.: \_\_\_\_\_\_

1

3

Hathur

16210

Sample Date: FGD IN Operator Location: Task' Test<sup>\*</sup> Initial Vol **Rinse Vol** Gain Final Total ug ppb Hg Sample ID Bottle # Description of Hg mL mL mL mL Filter/Solids s Probe & Filter Rinse 1A 1B Heated Line Rinse 103 KCI Impingers 3 < 0 150 450 2 104 75 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 100 175 3 200 50 250 105 4 KMnO<sub>4</sub> Impingers 100 00 KMnO₄ Acid Rinse 106 5 Filter Gross wt: Filter Net wt: Q Probe/Line Rinse wt: Condensate Total: ml Filter Tare wt: \_g g Total Particulate wt: Filter Net wt: g g Date: 1-26-05 Recovered By: Test: Operator Location: AHO Task: Total ug Initial Vol **Rinse Vol** Gain Final Vol ppb Hg Sample ID Bottle # Description mL mL mL of Hg mL Filter/Solids S Probe & Filter Rinse 1A 1B Heated Line Rinse 2 KCI Impingers HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 3 KMnO₄ Impingers 4 KMnO<sub>4</sub> Acid Rinse 5 Filter Net wt: Filter Gross wt: \_g g Filter Tare wt: Probe/Line Rinse wt: g Condensate Total: m g Total Particulate wt: Filter Net wt: .g g Date: Recovered By:\_ Location: FGD In Task: Test: Operator Total ug Initial Vol **Rinse Vol** Gain Final Vol Description ppb Hg Sample ID Bottle # mĹ mL mL mL of Hg s Filter/Solids Probe & Filter Rinse 1A Heated Line Rinse 1B KCI Impingers 2 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 3 KMnO<sub>4</sub> Impingers 4 KMnO₄ Acid Rinse 5 Filter Net wt: Filter Gross wt: g q Probe/Line Rinse wt; Condensate Total: ml Filter Tare wt: g g Filter Net wt: g Total Particulate wt: g Recovered By: Date: Test Operator: Location: Stack Task: Initial Vol Rinse Vol Gain Final Vol Total ug ppb Hg Description Sample ID Bottle # of Hg mL mL mL ml s Filter/Solids Probe & Filter Rinse 1A 1B Heated Line Rinse 2 KCI Impingers 3 HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> Impinger 4 KMnO₄ Impingers KMnO₄ Acid Rinse 5 Filter Gross wt: Filter Net wt: g a Probe/Line Rinse wt: Condensate Total: ml Filter Tare wt: g g Total Particulate wt: Filter Net wt: σ g Recovered By: Date:\_ Total ug Description ppb Hg Sample ID

 
 Sample ID
 Description
 ppb Hg
 Total ug of Hg

 3 in. Filter Blank
 Thimble Blank

 Thimble Blank
 KCI Blank

 KCI Blank
 HNO<sub>3</sub> / H2O2 Blank

 HNO<sub>3</sub> / H2O2 Blank
 HNO<sub>3</sub> / HCI Blank

4

Which 2 che 24 Test: Operator: Æ. Initial Vol Rinse Vol Gain Final Vol

3

| Location:                                             | Econ Out     | _ Task:                                                  | Test:             |                 | Operator:    | Any             |            |                   |
|-------------------------------------------------------|--------------|----------------------------------------------------------|-------------------|-----------------|--------------|-----------------|------------|-------------------|
| Sample ID                                             | Bottle #     | Description                                              | Initial Vol<br>mL | Rinse Vol<br>mL | Gain<br>mL   | Final Vol<br>mL | ppb Hg     | Total ug<br>of Hg |
|                                                       | S            | Filter/Solids                                            |                   |                 |              |                 |            |                   |
|                                                       | 1A           | Probe & Filter Rinse                                     |                   |                 |              | -               |            |                   |
|                                                       | 1B           | Heated Line Rinse                                        |                   |                 |              |                 |            |                   |
| 51                                                    | 2            | KCI Impingers                                            | 300               | 150             |              | 450             |            |                   |
| ي ج                                                   | 3            | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger | 100               | 75              |              | 175             |            |                   |
| 53                                                    | 4            | KMnO₄ Impingers                                          | 200               | 50              |              | 250             |            | 1                 |
| 54                                                    | 5            | KMnO₄ Acid Rinse                                         |                   | 100             |              | 100             | ****       |                   |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt: |              | Probe/Line Rinse wt:                                     | 9                 | Conde           |              |                 |            |                   |
| Recovered By:_                                        | <del>/</del> | ····· · · ·                                              |                   |                 | Date: /-     | 25-05           | <u>-</u> . |                   |
| Location:                                             | ано 🖉        | Task:                                                    |                   |                 | Operator:    |                 |            | r                 |
| Sample ID                                             | Bottle #     | Description                                              | lnitial Vol<br>mL | Rinse Vol<br>mL | Gain<br>mL   | Final Vol<br>mL | ppb Hg     | Total ug<br>of Hg |
|                                                       | S            | Filter/Solids                                            |                   |                 |              |                 |            | ļ                 |
|                                                       | 1A           | Probe & Filter Rinse                                     |                   |                 |              |                 |            | ļ                 |
|                                                       | 1B           | Heated Line Rinse                                        |                   |                 |              |                 |            |                   |
|                                                       | 2            | KCI Impingers                                            |                   |                 |              |                 |            |                   |
|                                                       | 3            | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger |                   |                 |              |                 |            |                   |
|                                                       | 4            | KMnO₄ Impingers                                          |                   |                 |              |                 |            |                   |
|                                                       | 5            | KMnO₄ Acid Rinse                                         |                   |                 |              |                 |            |                   |
| Recovered By:_                                        |              | <b>—</b>                                                 | 7 1               |                 |              |                 |            |                   |
| Location:                                             | FGD In       | Task:                                                    | Test:             |                 | Operator:    |                 |            |                   |
| Sample ID                                             | Bottle #     | Description                                              | Initial Vol<br>mL | Rinse Vol<br>mL | Gain<br>mL   | Final Vol<br>mL | ppb Hg     | Total ug<br>of Hg |
|                                                       | S            | Filter/Solids                                            |                   |                 |              |                 |            |                   |
|                                                       | 1A           | Probe & Filter Rinse                                     |                   |                 |              |                 |            |                   |
|                                                       | 1B           | Heated Line Rinse                                        |                   | · .             |              |                 |            |                   |
|                                                       | 2            | KCI Impingers                                            | · · ·             |                 |              |                 |            |                   |
|                                                       | 3            | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger |                   |                 |              |                 |            |                   |
|                                                       | 4            | KMnO <sub>4</sub> Impingers                              |                   |                 |              |                 |            |                   |
|                                                       | 5            | KMnO₄ Acid Rinse                                         |                   |                 |              |                 |            | <u> </u>          |
| Filter Gross wt:<br>Filter Tare wt:<br>Filter Net wt: | 9            |                                                          |                   |                 | nsate Total: |                 | .ml        |                   |
| Recovered By:_                                        |              |                                                          |                   |                 | Date:        |                 |            |                   |
| Location:                                             | Stack        | Task:                                                    | Test:             |                 | Operator:    |                 |            |                   |
| Sample ID                                             | Bottle #     | Description                                              | Initial Vol<br>mL | Rinse Vol<br>mL | Gain<br>mL   | Final Vol<br>mL | ppb Hg     | Total ug<br>of Hg |
|                                                       | S            | Filter/Solids                                            |                   | •               |              |                 |            |                   |
|                                                       | 1A           | Probe & Filter Rinse                                     |                   |                 |              |                 |            |                   |
|                                                       | 1B           | Heated Line Rinse                                        |                   |                 |              |                 |            |                   |
|                                                       | 2            | KCI Impingers                                            |                   |                 |              |                 |            |                   |
|                                                       | 3            | HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger |                   |                 |              |                 |            |                   |
|                                                       |              | · · · · · · · · · · · · · · · · · · ·                    |                   |                 |              |                 |            |                   |

\_g

\_9

\_g

KMnO₄ Impingers KMnO₄ Acid Rinse 5 Filter Gross wt: g Filter Tare wt: Filter Net wt: g

4

Filter Net wt: . Probe/Line Rinse wt: Total Particulate wt: . g

Condensate Total: mŧ

Recovered By:

.

Distribution: <u>2/12</u> Project No.: Sample Date: <u>/ · 2</u>

Location: Econ Out

25-

e 5

Task:

S.

| Sample ID | Description                   | ppb Hg | Total ug<br>of Hg |
|-----------|-------------------------------|--------|-------------------|
|           | 3 in. Filter Blank            |        |                   |
|           | Thimble Blank                 |        |                   |
|           | KCI Blank                     |        |                   |
|           | HNO <sub>3</sub> / H2O2 Blank |        |                   |
| 55        | KMnO₄ Blank                   |        |                   |
|           | HNO <sub>3</sub> / HCI Blank  |        |                   |

Date:

DESCRIPTION THM-B THIMBLE BLANK DATE SAMPLED 01/26/05 SAMPLE NUMBER THM-B

ł.

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050643

ANALYSIS REPORT

MISC. (As Det.)

ł

ili lis.

1

:

الديد الدراغة

MERCURY <0.005 PPM

r

| DIS | STRIBUTION: |  |
|-----|-------------|--|
| J.  | WITHUM      |  |
| J.  | LOCKE       |  |
| S.  | TSENG       |  |
|     |             |  |

Approved for transmittal

• الجريد

۶

DESCRIPTION 47-B 47 MM FILTER BLANK DATE SAMPLED 01/26/05 SAMPLE NUMBER 47-B

ı

DATE LOGGED 02/03/05 DATE COMPLETED 03/04/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050644

ANALYSIS REPORT

MISC. (As Det.)

1

11

1.152...

And the second second

۶

MERCURY <5.0 NG/FIL

| DIS | STRIBUTION: |
|-----|-------------|
| J.  | WITHUM      |
| J.  | LOCKE       |
| S.  | TSENG       |

DESCRIPTION 3IN-B 3-IN FILTER BLANK DATE SAMPLED 01/26/05 SAMPLE NUMBER 3IN-B

DATE LOGGED 02/03/05 DATE COMPLETED 02/11/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050645

ł

ANALYSIS REPORT

i.

MISC. (As Det.)

10 N 10

197

L. . . . . . . . .

MERCURY <5.0 NG/FIL

DISTRIBUTION: J. WITHUM J. LOCKE S. TSENG

Approved for transmittal

## **APPENDIX D**

e v

- 11 a main

an Juan . . .

1997 - 1987 - 1

;

. . Ik. .... to Law

ĺ∳.c≞

на. RPR

-1.2

### **Process Material Data**

- Coal Analysis Data Sheets
- Bottom Ash Analysis Data Sheets
- Limestone Slurry Solids Analysis Data Sheets
- Limestone Slurry Filtrate Analysis Data Sheets
- Ash Analysis Data Sheets
- FGD Slurry Solids Analysis Data Sheets
- FGD Slurry Filtrate Data Sheets
- FGD Makeup Water Analysis Data Sheets

| DESCRIPTION   | AS-FIRED COAL |
|---------------|---------------|
|               | UNIT 1 TEST 1 |
| DATE SAMPLED  |               |
| SAMPLE NUMBER | COAL-U1T1     |

ì,

11 I I I

19

-4  ŧ

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050682

ŧ

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                                                                |                                                  | ULTIMATE                                                                            | (Dry)%                                                 | MAJOR ASH ELEM<br>Ignited at 750 C              | %                                               |
|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon<br>Sulfur, Total<br>BTU/1b<br>MAF BTU/1b | 7.77<br>38.08<br>54.15<br>1.39<br>13683<br>14836 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine<br>Sulfur, Total<br>Ash<br>Oxygen (DIFF) | 77.74<br>4.63<br>1.56<br>0.144<br>1.39<br>7.77<br>6.77 | Silicon<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO<br>MgO | 50.01<br>27.77<br>1.29<br>12.63<br>1.73<br>1.00 |
| MAR BT0710<br>MISC. (As Det.)<br>Hg 0.091 PP                                    |                                                  | olygen (Dirr)                                                                       | 0.17                                                   | Na20<br>K20<br>P205<br>S03<br>UND               | 0.55<br>2.28<br>0.18<br>1.68<br>0.88            |

AS DETERMINED MOISTURE: 2.00 %

## DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

ł

| DESCRIPTION   | AS-FIRED COAL    |
|---------------|------------------|
|               | UNIT 1 TESTS 2&3 |
| DATE SAMPLED  |                  |
| SAMPLE NUMBER | COAL-U1T2T3      |

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050683

#### ANALYSIS REPORT

ŧ

| PROXIMATE (Dry)%                                         |                        | ULTIMATE                                   | (Dry)%                         | MAJOR ASH ELEM<br>Ignited at 750 C | %                               |
|----------------------------------------------------------|------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon                   | 8.24<br>38.40<br>53.36 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 77.01<br>4.81<br>1.61<br>0.143 | Silicon<br>Al203<br>Ti02           | 50.46<br>26.57<br>1.34<br>12.73 |
| Sulfur, Total<br>BTU/1b<br>MAF BTU/1b<br>MISC. (As Det.) | 1.45<br>13686<br>14915 | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 1.45<br>8.24<br>6.74           | Fe2O3<br>CaO<br>MgO<br>Na2O<br>K2O | 1.69<br>0.98<br>0.53<br>2.29    |
| Hg 0.110 PP                                              | М                      |                                            |                                | P205<br>S03<br>UND                 | 0.25<br>1.62<br>1.54            |

AS DETERMINED MOISTURE: 1.89 %

1

12

1. **1.82**...

. **i**. . . . . . . . . . .

### DISTRIBUTION:

| 5. | ISENG  |
|----|--------|
| J. | LOCKE  |
| J. | WITHUM |

 $\overline{}$ 



10 I I I I

. 16. . . . . . . . . . . . .

#### CONSOL ENERGY INC. RESEARCH & DEVELOPMENT ANALYTICAL LABORATORY 4000 BROWNSVILLE ROAD, SOUTH PARK, PA 15129

| DESCRIPTION   | AS-FIRED COAL |
|---------------|---------------|
|               | UNIT 1 TEST 4 |
| DATE SAMPLED  |               |
| SAMPLE NUMBER | COAL-U1T4     |

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050684** 

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                       |                         | ULTIMATE                                   | (Dry) <u>%</u>                 | MAJOR ASH ELEM<br>Ignited at 750 C | <u>%</u>                        |
|----------------------------------------|-------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 11.85<br>37.32<br>50.83 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 74.83<br>4.65<br>1.58<br>0.157 | Silicon<br>Al203<br>Ti02           | 54.52<br>26.87<br>1.09          |
| Sulfur, Total<br>BTU/1b<br>MAF BTU/1b  | 1.19<br>13205<br>14980  | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 1.19<br>11.85<br>5.74          | Fe2O3<br>CaO<br>MgO<br>Na2O        | $9.17 \\ 1.50 \\ 1.17 \\ 0.63 $ |
| MISC. (As Det.)                        |                         |                                            |                                | K20<br>P205                        | 2.90<br>0.11                    |
| Hg 0.066 PF                            | M                       |                                            |                                | SO3<br>UND                         | 1.24<br>0.80                    |

AS DETERMINED MOISTURE: 1.37 %

#### DISTRIBUTION:

| S. | TSENG  |
|----|--------|
| J. | LOCKE  |
| J. | WITHUM |

| DESCRIPTION   | AS-FIRED COAL |
|---------------|---------------|
|               | UNIT 2 TEST 1 |
| DATE SAMPLED  | 01/24/05      |
| SAMPLE NUMBER | COAL-U2T1     |

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050685

÷

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                                                                |                                                  | ULTIMATE                                                                            | (Dry)%                                                 | MAJOR ASH ELEM                                                              | %                                                                                      |
|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon<br>Sulfur, Total<br>BTU/1b<br>MAF BTU/1b | 8.40<br>38.57<br>53.03<br>1.66<br>13764<br>15026 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine<br>Sulfur, Total<br>Ash<br>Oxygen (DIFF) | 77.39<br>4.72<br>1.52<br>0.141<br>1.66<br>8.40<br>6.17 | Ignited at 750 C<br>Silicon<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO<br>MgO<br>Na2O | $\begin{array}{r} 49.70\\ 24.10\\ 1.15\\ 16.77\\ 1.68\\ 1.16\\ 0.57\\ 0.57\end{array}$ |
| <u>MISC. (As Det.)</u>                                                          |                                                  |                                                                                     |                                                        | K20<br>P205                                                                 | 2.58<br>0.22                                                                           |
| Hg 0.145 PP                                                                     | М                                                |                                                                                     |                                                        | SO3<br>UND                                                                  | 1.52<br>0.55                                                                           |

AS DETERMINED MOISTURE: 1.83 %

ł

11 J.

#### DISTRIBUTION: S. TSENG

#### J. LOCKE J. WITHUM

| DESCRIPTION   | AS-FIRED COAL    |
|---------------|------------------|
|               | UNIT 2 TESTS 2&3 |
| DATE SAMPLED  | 01/25/05         |
| SAMPLE NUMBER | COAL-U2T2T3      |

ŧ

ł

đ

غلت المقدمين

1.02

:

,

- . IL. . . . . . . . . . . . . .

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050686 ι

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                                        |                                | ULTIMATE                                                    | (Dry)%                                         | MAJOR ASH ELEM<br>Ignited at 75 C        | %                                       |
|---------------------------------------------------------|--------------------------------|-------------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon<br>Sulfur, Total | 8.69<br>36.26<br>55.05<br>1.59 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine<br>Sulfur, Total | 76.66<br>4.67<br>1.46<br>0.135<br>1.59<br>8.69 | Silicon<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO | 51.13<br>23.98<br>1.05<br>15.05<br>2.81 |
| BTU/1b<br>MAF BTU/1b<br>MISC. (As Det.)                 | 13663<br>14963                 | Ash<br>Oxygen (DIFF)                                        | 6.80                                           | MgO<br>Na2O<br>K2O                       | 0.72<br>0.65<br>1.86                    |
| Hg 0.163 PP                                             | M                              |                                                             |                                                | P205<br>S03<br>UND                       | 0.35<br>1.54<br>0.86                    |

AS DETERMINED MOISTURE: 1.49 %

#### DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

| DESCRIPTION   | AS-FIRED COAL   |
|---------------|-----------------|
|               | UNIT 2 TEST 4   |
| DATE SAMPLED  | <i>01/26/05</i> |
| SAMPLE NUMBER | COAL-U2T4       |

}

¥

}

đ

11 I II

1.03.

;

DATE LOGGED 02/07/05 DATE COMPLETED 03/02/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050687

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                       |                        | ULTIMATE                                   | (Dry)%                         | MAJOR ASH ELEM<br>Ignited at 75 C | %                             |
|----------------------------------------|------------------------|--------------------------------------------|--------------------------------|-----------------------------------|-------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 8.28<br>35.46<br>56.26 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 77.44<br>4.77<br>1.53<br>0.151 | Silicon<br>Al2O3<br>TiO2          | 50.50<br>28.16<br>1.41        |
| Sulfur, Total<br>BTU/1b<br>MAF BTU/1b  | 1.38<br>13761<br>15003 | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 1.38<br>8.28<br>6.45           | Fe2O3<br>CaO<br>MgO<br>Na2O       | 11.76<br>1.58<br>0.95<br>0.53 |
| <u>MISC. (As Det.)</u>                 |                        |                                            |                                | K20<br>P205                       | 2.35<br>0.47                  |
| Hg 0.113 PF                            | Μ                      |                                            |                                | SO3<br>UND                        | 1.39<br>0.90                  |

AS DETERMINED MOISTURE: 1.61 %

#### DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

Approved for transmittal

ł.

·--;

)

| DESCRIPTION   | MILL REJECTS        |
|---------------|---------------------|
|               | UNIT 1 TEST 1       |
| DATE SAMPLED  |                     |
| SAMPLE NUMBER | <i>REJECTS U1T1</i> |

٢

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050688

.

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                       |                         | ULTIMATE                                   | (Dry)%                         | MAJOR ASH ELEM<br>Ignited at 750 C | <u>%</u>                      |
|----------------------------------------|-------------------------|--------------------------------------------|--------------------------------|------------------------------------|-------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 14.88<br>35.77<br>49.35 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 69.43<br>4.25<br>1.32<br>0.085 | Silicon<br>Al203<br>Ti02           | 45.98<br>22.24<br>1.22        |
| Sulfur, Total<br>BTU/1b<br>MAF BTU/1b  | 3.20<br>12413<br>14583  | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 3.20<br>14.88<br>6.84          | Fe2O3<br>CaO<br>MgO<br>Na2O        | 21.31<br>2.18<br>0.81<br>0.48 |
| MISC. (As Det.)                        |                         |                                            |                                | K20<br>P205                        | 1.63<br>0.35                  |
| Hg 0.426 PP                            | М                       |                                            |                                | SO3<br>UND                         | 1.62<br>2.18                  |

AS DETERMINED MOISTURE: 1.50 %

10 J. 1997

ىكى قىقلىر

#### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

1

DESCRIPTION MILL REJECTS UNIT 2 TEST 1 DATE SAMPLED 01/24/05 SAMPLE NUMBER REJECTS U2T1

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050689** 

#### ANALYSIS REPORT

1

| PROXIMATE (Dry)%                       |                         | ULTIMATE                                   | (Dry)%                         | MAJOR ASH ELEM<br>Ignited at 750 C | %                             |
|----------------------------------------|-------------------------|--------------------------------------------|--------------------------------|------------------------------------|-------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 39.74<br>28.78<br>31.48 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 46.83<br>2.82<br>0.81<br>0.074 | Silicon<br>Al203<br>Ti02           | 45.27<br>17.97<br>0.88        |
| Sulfur, Total<br>BTU/1b<br>MAF BTU/1b  | 6.07<br>8456<br>14033   | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 6.07<br>39.74<br>3.66          | Fe2O3<br>CaO<br>MgO<br>Na2O        | 24.07<br>4.66<br>0.85<br>0.28 |
| MISC. (As Det.)                        |                         |                                            |                                | K20<br>P205                        | 1.03<br>0.22                  |
| Hg 0.783 PI                            | РМ                      |                                            |                                | SO3<br>UND                         | 3.81<br>0.96                  |

AS DETERMINED MOISTURE: 0.82 %

1.10

:

. . IL . . . . . . . . . . . .

#### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

DESCRIPTION MILL REJECTS UNIT 2 TEST 2 DATE SAMPLED 01/25/05 SAMPLE NUMBER REJECTS U2T2

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050690

1

۱

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                       |                         | ULTIMATE                                   | (Dry)%                         | <u>MAJOR ASH ELEM</u><br>Ignited at 750 C | <u> </u>                                    |
|----------------------------------------|-------------------------|--------------------------------------------|--------------------------------|-------------------------------------------|---------------------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 46.20<br>30.88<br>22.92 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 39.74<br>2.37<br>0.66<br>0.059 | Silicon<br>Al2O3<br>TiO2                  | 28.75<br>11.82<br>0.46                      |
| Sulfur, Total<br>BTU/lb<br>MAF BTU/lb  | 8.74<br>6899<br>12823   | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 8.74<br>46.20<br>2.23          | Fe2O3<br>CaO<br>MgO<br>Na2O               | 40.41<br>8.41<br>0.89<br>0.21               |
| MISC. (As Det.)                        |                         |                                            |                                | K20<br>P205                               | $\begin{array}{c} 0.81 \\ 0.13 \end{array}$ |
| Hg 2.33 PF                             | M                       |                                            |                                | SO3<br>UND                                | 8.17<br>-0.06                               |

ŧ

AS DETERMINED MOISTURE: 0.68 %

112 112

1

المن من المن المنه

#### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | MILL REJECTS 17:00 |
|---------------|--------------------|
|               | UNIT 2 TEST 3      |
|               | 01/25/05           |
| SAMPLE NUMBER | REJECTS U2T3       |

1

1

1

1.07

÷

الد حد غد الغد

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050691

1

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                       |                         | ULTIMATE                                   | (Dry)%                         | MAJOR ASH ELEM<br>Ignited at 750 C | <u>%</u>                      |
|----------------------------------------|-------------------------|--------------------------------------------|--------------------------------|------------------------------------|-------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 58.31<br>26.31<br>15.38 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 24.51<br>1.45<br>0.38<br>0.035 | Silicon<br>Al203<br>Ti02           | 25.07<br>6.85<br>0.33         |
| Sulfur, Total<br>BTU/lb<br>MAF BTU/lb  | 17.98<br>4502<br>10799  | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 17.98<br>58.31<br>2=66         | Fe2O3<br>CaO<br>MgO<br>Na2O        | 52.03<br>7.45<br>0.68<br>0.17 |
| MISC. (As Det.)                        |                         |                                            |                                | K20<br>P205                        | 0.72<br>0.04                  |
| Hg 2.63 PP                             | М                       |                                            |                                | SO3<br>UND                         | 7.95<br>-1.29                 |

AS DETERMINED MOISTURE: 0.44 %

DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | MILL REJECTS    |
|---------------|-----------------|
|               | UNIT 2 TEST 4   |
| DATE SAMPLED  | <i>01/26/05</i> |
| SAMPLE NUMBER | REJECTS U2T4    |

ŧ

11 H

4 j.127. .

. **Б**. .... іль. І. че

ŧ

DATE LOGGED 02/07/05 DATE COMPLETED 02/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050692

ŧ

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                       |                         | ULTIMATE                                   | (Dry)%                              | MAJOR ASH ELEM<br>Ignited at 750 C | %                             |
|----------------------------------------|-------------------------|--------------------------------------------|-------------------------------------|------------------------------------|-------------------------------|
| Ash<br>Volatile Matter<br>Fixed Carbon | 52.38<br>26.69<br>20.93 | Carbon<br>Hydrogen<br>Nitrogen<br>Chlorine | 32.41<br>1.95<br>0.53<br>0.036      | Silicon<br>Al2O3<br>TiO2           | 23.91<br>6.99<br>0.40         |
| Sulfur, Total<br>BTU/1b<br>MAF BTU/1b  | 14.97<br>5954<br>12503  | Sulfur, Total<br>Ash<br>Oxygen (DIFF)      | 14.97<br>52.38<br>2 <sup>2</sup> 28 | Fe2O3<br>CaO<br>MgO<br>Na2O        | 49.64<br>7.58<br>0.50<br>0.13 |
| MISC. (As Det.)                        |                         |                                            |                                     | K20<br>P205                        | 0.59<br>0.04                  |
| Hg 3.00 PF                             | РМ                      |                                            |                                     | SO3<br>UND                         | 8.54<br>1.68                  |

AS DETERMINED MOISTURE: 0.48 %

| DIS | STRIBUTION: |
|-----|-------------|
| S.  | TSENG       |
| J.  | LOCKE       |
| -   |             |

•,

J. WITHUM

Ļ,

DESCRIPTION BOTTOM ASH 16:30-16:40 UNIT 1 TEST 1 DATE SAMPLED 01/19/05 SAMPLE NUMBER BTMASH-U1T1

DATE LOGGED 02/07/05 DATE COMPLETED 03/16/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050693

#### ANALYSIS REPORT

+

| PROXIMATE (Dry)% | ULTIMATE                                 | (Dry)%                 | MAJOR ASH ELEM                                                                       | (Dry)%                                                                                                   |
|------------------|------------------------------------------|------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                  | 2.73 Carbon<br>2.02 Chlorine<br>Ash<br>, | 0.39<br>0.025<br>99.73 | Silicon<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | $51.91 \\ 25.87 \\ 1.36 \\ 13.81 \\ 1.45 \\ 0.89 \\ 0.48 \\ 2.18 \\ 0.14 \\ 0.04 \\ 1.87 \\ \end{array}$ |

AS DETERMINED MOISTURE: 0.01 %

ŧ

191

اللاء مدر فتقدأ غش

#### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | BOTTOM ASH 16:30 |
|---------------|------------------|
|               | UNIT 1 TESTS 2&3 |
|               | <i>01/20/05</i>  |
| SAMPLE NUMBER | BTMASH-U1T2T3    |

· •

\$

ŧ

į,

÷ . Edit i

:

.

DATE LOGGED 02/07/05 DATE COMPLETED 03/16/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050694

#### ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 99.99<br>0.00 | Carbon<br>Chlorine<br>Ash | 0.20<br>0.027<br>99.99 | Silicon<br>Al2O3<br>TiO2                 | 52.37<br>25.86<br>1.38                       |
| MISC. (As Det.)     |               | ,                         |                        | Fe2O3<br>CaO                             | 14.13<br>1.47                                |
| Hg 0.011 PP         | Μ             |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.90<br>0.47<br>2.19<br>0.16<br>0.01<br>1.06 |

AS DETERMINED MOISTURE: 0.01 %

## DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

| $\langle$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |
|-----------|-----------------------------------------|--|
| al        |                                         |  |

Approved for transmitt

\$

| DESCRIPTION | BOTTOM ASH 16:00-16:30<br>UNIT 2 TESTS 2&3 |         |          |                                   |   |
|-------------|--------------------------------------------|---------|----------|-----------------------------------|---|
|             | 01/25/05                                   | DATE CO | OMPLETED | 02/07/05<br>03/16/05<br>1621-87 - | • |

ANALYTICAL NUMBER 050697

1

ř

#### ANALYSIS REPORT

| PROXIMATE                                        | (Dry)% | ULTIMATE                  | (Dry) <u>%</u>         | MAJOR ASH ELEM                                                                       | (Dry)%                                          |
|--------------------------------------------------|--------|---------------------------|------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|
| Ash<br>Total Sulfur<br><u>MISC. (As De</u><br>Hg |        | Carbon<br>Chlorine<br>Ash | 1.93<br>0.035<br>98.16 | Silicon<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 51.0224.661.3314.961.350.920.462.230.220.802.05 |
|                                                  |        |                           |                        | SHE                                                                                  | 4,00                                            |

١

AS DETERMINED MOISTURE: 0.10 %

1.1.1

an last at

197

#### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

Approved for transmittal 2

DESCRIPTION UNIT 2 TEST 4 DATE SAMPLED SAMPLE NUMBER BTMASH-U2T4

DATE LOGGED 02/07/05 DATE COMPLETED 03/16/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050698

#### ANALYSIS REPORT

| PROXIMATE (Dry)%   |           |               | ULTIMATE                  | (Dry)%                   | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|-----------|---------------|---------------------------|--------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | ır        | 99.03<br>0.10 | Carbon<br>Chlorine<br>Ash | $1.12 \\ 0.048 \\ 99.03$ | Silicon<br>Al2O3<br>TiO2                 | 52.96<br>26.12<br>1.44                       |
| MISC. (As Det.)    |           |               | ,011                      |                          | Fe203<br>CaO                             | 12.62<br>1.45                                |
| Hg                 | 0.017 PPN | 1             |                           |                          | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.91<br>0.47<br>2.25<br>0.30<br>0.24<br>1.24 |

AS DETERMINED MOISTURE: 0.01 %

i,

| DIS | STRIBUTION: |
|-----|-------------|
| S.  | TSENG       |
| .1  | LOCKE       |

J. WITHUM

nittal

**Research and Development** www.consolenergy.com 4000 Brownsville Rd. South Park, PA 15129

#### BOTTOM ASH FILTRATE 16:30-16:40

e stik de liter

. . . . . . . . . . . . . . .

----į 1.446

> ŝ :

> > .

allation in the second second

:

Sample No.: BTMASH-U1T1 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050780 Analytical No.: Project No.: 1621 -087 -000

#### Submitter: S. TSENG

| Parameter              | <u>Water Result</u><br>(mg/L unless noted otherwise)<br>Value Value Units Avg Value |                                             |   |                                        | Quality Control Calculations |         |
|------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|---|----------------------------------------|------------------------------|---------|
| pH                     |                                                                                     |                                             |   |                                        | Ion Sum                      | 3452.19 |
| Acidity, CaCO3         |                                                                                     | 10 (1997) (1997) (1997)<br>10 (1997) (1997) |   |                                        | Option Origo                 | 57.07   |
| Alkalinity, CaCO3      |                                                                                     |                                             |   |                                        | Cation Sum                   | 57.07   |
| Hydroxide, CaCO3       |                                                                                     |                                             |   | · · · · · · · · · · · · · · · · · · ·  | Anion Sum                    | 60.87   |
| Carbonate, CaCO3       |                                                                                     |                                             |   |                                        | Ion Balance                  | 3.62    |
| Bicarbonate, CaCO3     |                                                                                     |                                             |   |                                        |                              |         |
| Total Suspended Solids |                                                                                     |                                             |   |                                        | % Ion Imbalance              | -3.22   |
| Total Dissolved Solids |                                                                                     |                                             |   |                                        |                              |         |
| Specific Conductivity  |                                                                                     |                                             |   |                                        |                              |         |
| Hardness               |                                                                                     |                                             |   |                                        |                              |         |
| Turbidity              |                                                                                     |                                             |   |                                        |                              |         |
| Osmotic Pressure       |                                                                                     |                                             |   | ····· ·····                            |                              |         |
| Dissolved Oxygen       |                                                                                     |                                             |   |                                        |                              |         |
| Ammonia, N             | <10                                                                                 |                                             |   |                                        |                              |         |
| Total Elements         |                                                                                     |                                             |   |                                        | 1                            |         |
| Aluminum               |                                                                                     |                                             | - |                                        | / <i>Hq</i> <1.              | 0 ng/mi |
| Calcium                | 326.80                                                                              |                                             |   | · · · · · · · · · · · · · · · · · · ·  | T                            |         |
| Iron                   | <1.25                                                                               |                                             |   |                                        | · ·                          |         |
| Magnesium              | 217.38                                                                              |                                             |   |                                        |                              |         |
| Manganese              |                                                                                     |                                             |   |                                        |                              |         |
| Potassium              | 68.44                                                                               |                                             |   |                                        |                              |         |
| Phosphorous            |                                                                                     |                                             |   |                                        |                              |         |
| Silicon                |                                                                                     |                                             |   | · · ·································· |                              |         |
| Sodium                 | 485.84                                                                              |                                             |   |                                        |                              |         |
| Chromium               |                                                                                     |                                             |   |                                        |                              |         |
| Anions:                |                                                                                     |                                             |   |                                        |                              |         |
| Sulfate                | 711.98                                                                              |                                             |   |                                        |                              |         |
| Chloride               | 1620                                                                                |                                             |   |                                        |                              |         |
| Nitrate, N             | 4.91                                                                                |                                             |   |                                        |                              |         |
| Nitrite, N             |                                                                                     |                                             |   | · · · · · · · · · · · · · · · · · · ·  |                              |         |
| Bromide                |                                                                                     |                                             |   |                                        |                              |         |
| Fluoride               |                                                                                     |                                             |   |                                        | ,                            |         |

These values have been reviewed and are approved for transmission.

Inst

# **BOTTOM ASH FILTRATE 16:30**

÷. 1.162.

:

•

. . **ال** . . . . الم الم

Sample No.: BTMASH-U1T2T3 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050781 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        | -      | <u>Nater Result</u><br>nless noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     |                         |                   |                                         |
|------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------|-------------------|-----------------------------------------|
| Parameter              | Value  | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units | Avg Value               | Quality Control C | alculations                             |
| pH                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | Ion Sum           | 3441.35                                 |
| Acidity, CaCO3         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | Cation Sum        | 60.18                                   |
| Alkalinity, CaCO3      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   | 50 50                                   |
| Hydroxide, CaCO3       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | Anion Sum         | 58.53                                   |
| Carbonate, CaCO3       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | lon Balance       | -1.63                                   |
| Bicarbonate, CaCO3     |        | TRILLING CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                         | % Ion Imbalance   | 1.39                                    |
| Total Suspended Solids |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | % ION Imparance   | 1.00                                    |
| Specific Conductivity  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Hardness               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | TOTO NELLING INDUSTRIAL |                   |                                         |
| Turbidity              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Osmotic Pressure       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Dissolved Oxygen       | <10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Ammonia, N             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Total Elements         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ·                       | 1                 | ng/m                                    |
| Aluminum               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | HG <1.0           | , ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Calcium                | 344.97 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         | $ \mathbf{J} $    | $\mathcal{O}$                           |
| Iron                   | <1.25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Magnesium              | 229.51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Manganese              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Potassium              | 70.65  | n sector and the sector of the |       |                         |                   |                                         |
| Phosphorous            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Silicon                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Sodium                 | 512.34 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Chromium               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Anions:                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Sulfate                | 762.09 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Chloride               | 1500   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Nitrate, N             | 4.92   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Nitrite, N             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Bromide                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |
| Fluoride               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                         |                   |                                         |

# BOTTOM ASH FILTRATE 16:00-16:30

1.11

1

ł 

:

Sample No.: BTMASH-U2T2T3 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050782 **Analytical No.:** Project No.: 1621 -087 -000

197/m 1

Submitter: S. TSENG

|                                                 |                         | Water Resul |       |           |                             |             |
|-------------------------------------------------|-------------------------|-------------|-------|-----------|-----------------------------|-------------|
| Parameter                                       | Value                   | Value       | Units | Avg Value | Quality Control C           | alculations |
| pH                                              |                         |             |       |           | Ion Sum                     | 3022.40     |
| Acidity, CaCO3                                  |                         |             |       |           | Cation Sum                  | 51.73       |
| Alkalinity, CaCO3<br>Hydroxide, CaCO3           |                         |             |       |           | Anion Sum                   | 51.14       |
| Carbonate, CaCO3<br>Bicarbonate, CaCO3          |                         |             |       |           | Ion Balance                 | -0.66       |
| Total Suspended Solids                          |                         |             |       |           | % Ion Imbalance             | 0.57        |
| Total Dissolved Solids<br>Specific Conductivity |                         |             |       |           |                             |             |
| Hardness<br>Turbidity                           | X 1 HURSTELLER (C. 1971 |             |       |           |                             |             |
| Osmotic Pressure                                |                         |             |       |           |                             |             |
| Dissolved Oxygen<br>Ammonia, N                  | <10                     |             |       |           |                             |             |
| Total Elements                                  |                         |             |       |           | ,/                          | har l       |
| Aluminum Calcium                                | 309.00                  |             |       |           | <i>Ak</i> <sub>1</sub> <1.0 |             |
| Iron                                            | <1.25<br>184.56         |             |       |           | 0                           |             |
| Magnesium<br>Manganese                          | 62.99                   |             |       |           |                             |             |
| Potassium<br>Phosphorous                        | 02.99                   |             |       |           |                             |             |
| Silicon<br>Sodium<br>Chromium                   | 448,86                  |             |       |           |                             |             |
| Anions:                                         |                         |             |       |           |                             |             |
| Sulfate<br>Chloride                             | 748.34                  |             |       |           |                             |             |
| Nitrate, N                                      |                         |             |       |           |                             |             |
| Nitrite, N<br>Bromide<br>Fluoride               |                         |             |       |           |                             |             |

# BOTTOM ASH FILTRATE 11:15-11:45

11. J. 11.

ali Jia.

Sample No.: BTMASH-U2T4 Date Received: 02/07/2005

Date Completed: 04/05/2005

Analytical No.: 20050783 Project No.: 1621 -087 -000

|                               | (mg/L  | <u>Water Resul</u><br>unless notec |                    |                                       |                    |             |
|-------------------------------|--------|------------------------------------|--------------------|---------------------------------------|--------------------|-------------|
| Parameter                     | Value  | Value                              | Units              | Avg Value                             | Quality Control Ca | alculations |
| pH                            |        |                                    |                    |                                       | lon Sum            | 2706.68     |
| Acidity, CaCO3                |        |                                    |                    |                                       | Cation Sum         | 49.56       |
| Alkalinity, CaCO3             |        |                                    |                    |                                       |                    | 40 50       |
| Hydroxide, CaCO3              | 1177   |                                    |                    | <u></u>                               | Anion Sum          | 43.56       |
| Carbonate, CaCO3              |        |                                    |                    |                                       | Ion Balance        | -7.67       |
| Bicarbonate, CaCO3            |        |                                    |                    |                                       | % Ion Imbalance    | 6.44        |
| Total Suspended Solids        |        |                                    |                    |                                       |                    | 0.77        |
| Total Dissolved Solids        |        | 15 Annalise and a state            |                    |                                       |                    |             |
| Specific Conductivity         |        |                                    |                    |                                       |                    |             |
| Hardness                      |        |                                    |                    |                                       |                    |             |
| Turbidity<br>Osmotic Pressure |        |                                    |                    |                                       |                    |             |
| Dissolved Oxygen              |        |                                    |                    |                                       |                    |             |
| Ammonia, N                    | <10    |                                    |                    |                                       |                    |             |
| Total Elements                |        |                                    |                    |                                       | 11                 | no la       |
| Aluminum                      |        |                                    |                    |                                       | <i>F19.</i> <1.0   | ng /m       |
| Calcium                       | 297.14 |                                    | · · · ·            | · · · · · · · · · · · · · · · · · · · | ()                 | 0           |
| Iron                          | <1.25  |                                    |                    |                                       | 0                  |             |
| Magnesium                     | 175.00 |                                    |                    | · · · · · · · · · · · · · · · · · · · |                    |             |
| Manganese                     |        |                                    |                    |                                       |                    |             |
| Potassium                     | 60.95  |                                    | na auror versiteli |                                       |                    |             |
| Phosphorous                   |        |                                    |                    |                                       |                    |             |
| Silicon                       |        | nar metalijiki di kara             | ·····              | · · · · · · · · · · · · · · · · · · · |                    |             |
| Sodium                        | 431,88 |                                    |                    |                                       |                    |             |
| Chromium                      |        |                                    |                    |                                       |                    |             |
| Anions:                       |        |                                    |                    |                                       |                    |             |
| Sulfate                       | 722.89 |                                    |                    |                                       |                    |             |
| Chloride                      | 1000   |                                    |                    |                                       |                    |             |
| Nitrate, N                    | 4,25   |                                    |                    |                                       |                    |             |
| Nitrite, N                    |        |                                    |                    |                                       |                    |             |
| Bromide                       |        |                                    |                    |                                       |                    |             |
| Fluoride                      |        |                                    |                    |                                       |                    |             |



10.140.0

al lui :

;

| LIMESTONE SLURRY SOLIDS 09:35 | Dute Completion of the theory                   | Project No.: 1621 - 087 - 000 |
|-------------------------------|-------------------------------------------------|-------------------------------|
| UNIT 1 TEST 1                 | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050699      |
| Sample No.: LS U1T1           | ••••••••••••••••••••••••••••••••••••••          |                               |
| <u>Proximate (Dry) %</u>      | <u>Ultimate (Dry) %</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 56.69                     | Carbon 11.67                                    | I.D.                          |
| Volatile Matter               | Hydrogen                                        | Soft.                         |
| Fixed Carbon                  | Nitrogen<br>Chlorine 0.0500                     | Hemi.                         |
|                               | Chlorine 0.0500<br>Sulfur, Total                | Fluid                         |
| BTU/lb<br>MAF BTU/lb          | Ash 56.69                                       |                               |
| MAP BI OND                    | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                               | Free Swelling Index                             | I.D.                          |
| <u>Grindability</u>           | FSI                                             | Soft.                         |
| HGI<br>At Moisture % 0.60     |                                                 | Hemi.                         |
|                               |                                                 | Fluid                         |
| 0.00                          | Trace Elements                                  | Tala                          |
| Sulfur Form (Dry)             |                                                 |                               |
| Pyritic Sulfur                |                                                 | Major Ash, Elem.              |
| Sulfate                       |                                                 | as Def                        |
| Organic                       |                                                 | SiO2 1.49                     |
| Sulfur, Total                 |                                                 | Al2O3 0.15                    |
|                               |                                                 | TiO2 0.01                     |
| Mise                          |                                                 | Fe2O3 0.14                    |
| Misc.                         | _                                               | CaO 53.60                     |
| <u>Analysis Value</u>         |                                                 | MgO 1.15                      |
|                               |                                                 | Na2O 0.06<br>K2O 0.03         |
|                               |                                                 | P2O5 0.08                     |
|                               | Hg 0.044 ppm                                    | SO3 0.29                      |
|                               | Fluorine                                        | Undetermined 43.00            |

# As Determined Moisture 0.60 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM



11 T

din Jula - c

an ingen

:

. **h**. . . . . . . . . . . . .

| LIMESTONE SLURRY SOLIDS 09:45 | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|-------------------------------|-------------------------------------------------|-------------------------------|
| UNIT 1 TEST 2                 | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050700      |
| Sample No.: LS U1T2           |                                                 |                               |
| <u>Proximate (Dry) %</u>      | <u>Ultimate (Dry) %</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 56.52                     | Carbon 11.34                                    | 1.D.                          |
| Volatile Matter               | Hydrogen                                        | Soft.                         |
| Fixed Carbon                  | Nitrogen<br>Chlorine 0.0700                     | Hemi.                         |
|                               | Sulfur, Total                                   | Fluid                         |
| BTU/lb                        | Ash 56.52                                       |                               |
| MAF BTU/lb                    | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                               | Free Swelling Index                             | I.D.                          |
| Grindability                  | FSI                                             | Soft.                         |
| HGI<br>At Moisture % 0.60     |                                                 | Hemi.                         |
| 0.00                          |                                                 | Fluid                         |
| 0.00                          | Trace Elements                                  |                               |
| Sulfur Form (Dry)             |                                                 |                               |
|                               |                                                 |                               |
| Pyritic Sulfur                |                                                 | <u>Major Ash Elem.</u>        |
| Sulfate<br>Organic            |                                                 | as pet.                       |
| -                             |                                                 | SiO2 1.45                     |
| Sulfur, Total                 |                                                 | Al2O3 0.22                    |
|                               |                                                 | TiO2 0.01                     |
| Mi <u>sc.</u>                 |                                                 | Fe2O3 0.17                    |
| MISC.                         |                                                 | CaO 53.39                     |
| Analysis <u>Value</u>         |                                                 | MgO 1.31                      |
| <u>Anaysis</u> <u>value</u>   |                                                 | Na2O 0.08                     |
|                               |                                                 | K2O 0.07<br>P2O5 0.10         |
|                               | Hg 0.045 ppm                                    | SO3 0.26                      |
|                               | •                                               | SUB 0.20                      |
|                               | Fluorine                                        | Undetermined 42.94            |

As Determined Moisture 0.60 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM



ւմ նենեն։ Հետ

. بلك النهر .

2

| LIMESTONE SLURRY SOLIDS 13:45 | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|-------------------------------|-------------------------------------------------|-------------------------------|
| UNIT 1 TEST 3                 | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050701      |
| Sample No.: LS U1T3           |                                                 |                               |
| Proximate (Dry) <u>%</u>      | <u>Ultimate (Dry) %</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 56.76                     | Carbon 11.58                                    | I.D.                          |
| Volatile Matter               | Hydrogen                                        | Soft.                         |
| Fixed Carbon                  | Nitrogen<br>Chlorine 0.0400                     | Hemi.                         |
|                               | Sulfur, Total                                   | Fluid                         |
| BTU/lb<br>MAF BTU/lb          | Ash 56.76                                       |                               |
|                               | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                               | Free Swelling Index                             | I.D.                          |
| Grindability                  | FSI                                             | Soft.                         |
| HGI<br>At Moisture % 0.73     |                                                 | Hemi.                         |
| 0.00                          |                                                 | Fluid                         |
| 0.00                          | Trace Elements                                  |                               |
| Sulfur Form (Dry)             |                                                 |                               |
| Pyritic Sulfur                |                                                 | <u>Major Ash Elem.</u>        |
| Sulfate<br>Organic            |                                                 | 95 pet.                       |
| -                             |                                                 | SiO2 1.17                     |
| Sulfur, Total                 |                                                 | Al2O3 0.16                    |
|                               |                                                 | TiO2 0.01                     |
| Mis <u>c.</u>                 |                                                 | Fe2O3 0.18<br>CaO 53.23       |
|                               |                                                 |                               |
| <u>Analysis Value</u>         |                                                 | MgO 1.47<br>Na2O 0.06         |
|                               |                                                 | K2O 0.02                      |
|                               |                                                 | P2O5 0.02                     |
|                               | Hg 0.038 ppm                                    | \$O3 0.24                     |
|                               | Fluorine                                        | Undetermined 43.37            |

As Determined Moisture 0.73 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM

Approved: \_



ale de la comunicada

| LIMESTONE SLURRY SOLIDS 09:15 | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|-------------------------------|-------------------------------------------------|-------------------------------|
| UNIT 1 TEST 4                 | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050702      |
| Sample No.: LS U1T4           |                                                 |                               |
| Proximate (Dry) <u>%</u>      | <u>Ultimate (Dry) %</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 56.92                     | Carbon 11.55                                    | 1.D.                          |
| Volatile Matter               | Hydrogen                                        | Soft.                         |
| Fixed Carbon                  | Nitrogen<br>Chlorine 0.1100                     | Hemi.                         |
|                               | Sulfur, Total                                   | Fluid                         |
| BTU/lb<br>MAF BTU/lb          | Ash 56.92                                       |                               |
| MAP BIOND                     | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                               | Free Swelling Index                             | I.D.                          |
| <u>Grindability</u>           | FSI                                             | Soft.                         |
| HGI<br>At Moisture % 0.76     |                                                 | Hemi.                         |
|                               |                                                 |                               |
| 0.00                          | Trace Elements                                  | Fluid                         |
| Sulfur Form (Dry)             |                                                 |                               |
|                               |                                                 |                               |
| Pyritic Sulfur                |                                                 | <u>Major Ash Elem.</u>        |
| Sulfate<br>Organic            |                                                 | 25 P.S.                       |
| -                             |                                                 | SiO2 1.76                     |
| Sulfur, Total                 |                                                 | Al2O3 0.18                    |
|                               |                                                 | TiO2 0.01                     |
| Misc.                         |                                                 | Fe2O3 0.18                    |
|                               |                                                 | CaO 53.58                     |
| <u>Analysis Value</u>         |                                                 | MgO 1.51                      |
|                               |                                                 | Na2O 0.05                     |
|                               |                                                 | K2O 0.03<br>P2O5 0.10         |
|                               | Hg 0.063 ppm                                    | SO3 0.34                      |
|                               | Fluorine                                        | Undetermined 42.26            |

As Determined Moisture 0.76 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM

\_\_\_\_\_



### Project No.: 1621 - 087 - 000 LIMESTONE SLURRY SOLIDS Date Completed: 04/04/2005 Date Received: 2/7/05 Analytical No.: 20050703 **UNIT 2 TEST 1** Submitted by: S. TSENG Sample No.: LS U2T1 Proximate (Dry) Ash Fusion Reducing Temp. °F <u>%</u> Ultimate (Dry) <u>%</u> I.D. 11,69 Carbon 56.84 Ash Soft. Hydrogen Volatile Matter Nitrogen **Fixed Carbon** Hemi. Chlorine 0.0700 Fluid Sulfur, Total BTU/lb 56.84 Ash MAF BTU/lb Oxygen (DIFF) Ash Fusion Oxidizing Temp. °F I.D. **Free Swelling Index** Grindability Soft. FSI HGI Hemi. At Moisture % 0.40 Fluid 0.00 **Trace Elements** Sulfur Form (Dry) **Pyritic Sulfur** Major Ash Elem. Sulfate as pet. Organic 1.49 SiO2 Sulfur, Total Al<sub>2</sub>O3 0.09 TiO2 0.00 Fe2O3 0.11 Misc. CaO 54.88 MgO 0.78 <u>Analysis</u> Value 0.04 Na2O 0.02 K20 P2O5 0.06 0.063 ppm Hg 0.20 SO3 Fluorine 42.33 Undetermined

As Determined Moisture 0.40 %

These values have been reviewed and are approved for transmission.

Distribution:

10 N N

÷

S. TSENG J. LOCKE J. WITHUM



| LIMESTONE SL             | STONE SLURRY SOLIDSDate Completed: 04/04/20052 TEST 2Date Received: 2/7/05Submitted by:S. TSENG |                           | Project No.:    | 1621 _ 087 -000                         |                     |
|--------------------------|-------------------------------------------------------------------------------------------------|---------------------------|-----------------|-----------------------------------------|---------------------|
| UNIT 2 TEST 2            |                                                                                                 |                           | Analytical No.: | 20050704                                |                     |
| Sample No.: LS           | 3 U2T2                                                                                          |                           | -               |                                         |                     |
| Proximate_               | <u>%</u>                                                                                        | Ultimate                  | <u>%</u>        | Ash Fusion Reduc                        | <u>ing Temp. °F</u> |
| Ash                      | 56.95                                                                                           | Carbon                    | 11.27           | I.D.                                    |                     |
| Volatile Matter          | 00.00                                                                                           | Hydrogen                  |                 | Soft.                                   |                     |
| Fixed Carbon             |                                                                                                 | Nitrogen                  | 0.4400          | Hemi.                                   |                     |
|                          |                                                                                                 | Chlorine<br>Sulfur, Total | 0.1100          | Fluid                                   |                     |
| BTU/lb                   |                                                                                                 | Ash                       | 56.95           | T I I I I I I I I I I I I I I I I I I I |                     |
| MAF BTU/lb               |                                                                                                 | Oxygen (DIFF)             |                 | Ash Fusion Oxidiz                       | ving Temp. °F       |
|                          |                                                                                                 | Erro Qualli               | a lador         | I.D.                                    | <u></u>             |
| <u>Grindability</u>      |                                                                                                 | <u>Free Swellin</u>       | ig maex         |                                         |                     |
| HG                       |                                                                                                 | FSI                       |                 | Soft.                                   |                     |
| At Moisture %            | 0.49                                                                                            |                           |                 | Hemi.                                   |                     |
|                          | 0.00                                                                                            | Trace Eleme               | ote             | Fluid                                   |                     |
|                          |                                                                                                 | Tace Liellie              | 11.5            |                                         |                     |
| Sulfur Form              |                                                                                                 |                           |                 |                                         |                     |
| Pyritic Sulfur           |                                                                                                 |                           |                 | <u>Major As</u>                         | h Elem              |
| Sulfate                  |                                                                                                 |                           |                 | 957                                     |                     |
| Organic                  |                                                                                                 |                           |                 | SiO2                                    | 1.67                |
| Sulfur, Total            |                                                                                                 |                           |                 | Al2O3                                   | 0.11                |
|                          |                                                                                                 |                           |                 | TiO2                                    | 0.00                |
|                          |                                                                                                 |                           |                 | Fe2O3                                   | 0.11                |
| <u>Misc.</u>             |                                                                                                 |                           |                 | CaO                                     | 55.01               |
| Analysia                 | /alua                                                                                           |                           |                 | MgO                                     | 0.91                |
| <u>Analysis</u> <u>\</u> | /alue                                                                                           |                           |                 | Na2O                                    | 0.05                |
|                          |                                                                                                 |                           |                 | K2O                                     | 0.01                |
|                          |                                                                                                 |                           | 0               | P2O5                                    | 0.09                |
|                          |                                                                                                 | Hg 0.06                   | 8 ppm           | SO3                                     | 0.25                |
|                          |                                                                                                 | Fluorine                  |                 | Undetermined                            | 41.79               |

As Determined Moisture 0.49 %

These values have been reviewed and are approved for transmission.

Distribution:

10 T. 10 ...

;

. . **h**. . . . . . . . . . . .

S. TSENG J. LOCKE J. WITHUM



# LIMESTONE SLURRY SOLIDS

### UNIT 2 TEST 3

Date Completed: 04/04/2005 Date Received: 2/7/05 Submitted by: S. TSENG Project No.: 1621 - 087 - 000

Analytical No.: 20050705

| Sample No.: LS U2T3       |                             |                               |
|---------------------------|-----------------------------|-------------------------------|
| Proximate (Dry) %         | <u>Ultimate (Dry) %</u>     | Ash Fusion Reducing Temp. °F  |
| Ash 56.93                 | Carbon 11.62                | I.D.                          |
| Volatile Matter           | Hydrogen                    | Soft.                         |
| Fixed Carbon              | Nitrogen<br>Chlorine 0.0800 | Hemi.                         |
|                           | Sulfur, Total               | Fluid                         |
| BTU/lb<br>MAF BTU/lb      | Ash 56.93                   |                               |
|                           | Oxygen (DIFF)               | Ash Fusion Oxidizing Temp. °F |
|                           | Free Swelling Index         | I.D.                          |
| <u>Grindability</u>       | FSI                         | Soft.                         |
| HGI<br>At Moisture % 0.52 |                             | Hemi.                         |
| 0.00                      |                             | Fluid                         |
| 0.00                      | <u>Trace Elements</u>       |                               |
| Sulfur Form (Dry)         |                             |                               |
| Pyritic Sulfur            |                             | <u>Major Ash Elem.</u>        |
| Sulfate<br>Organic        |                             | as Dert.                      |
| C C                       |                             | SiO2 1.62                     |
| Sulfur, Total             |                             | Al2O3 0.12                    |
|                           |                             | TiO2 0.01                     |
| Mico                      |                             | Fe2O3 0.13                    |
| Misc.                     |                             | CaO 55.15                     |
| <u>Analysis Value</u>     |                             | MgO 0.95                      |
|                           |                             | Na2O 0.04<br>K2O 0.00         |
|                           |                             | K2O 0.00<br>P2O5 0.08         |
|                           | Hg 0.060 ppm                | SO3 0.25                      |
|                           | 0                           |                               |
|                           | Fluorine                    | Undetermined 41.65            |

### As Determined Moisture 0.52 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM

Approved:



| LIMESTONE SLURRY SOLIDS UNIT 2 TEST 4 | Date Completed: 04/04/2005<br>Date Received: 2/7/05<br>Submitted by: S. TSENG | Project No.: 1621 - 087 - 000<br>Analytical No.: 20050706 |
|---------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|
| Sample No.: LS U2T4                   |                                                                               |                                                           |
| <u>Proximate (Dry) %</u>              | <u>Ultimate (Dry) %</u>                                                       | Ash Fusion Reducing Temp. °F<br>I.D.                      |
| Ash 57.02<br>Volatile Matter          | Carbon 11.65<br>Hydrogen                                                      | Soft.                                                     |
| Fixed Carbon                          | Nitrogen<br>Chlorine 0.0800                                                   | Hemi.                                                     |
| BTU/lb                                | Sulfur, Total<br>Ash 57.02                                                    | Fluid                                                     |
| MAF BTU/lb                            | Oxygen (DIFF)                                                                 | Ash Fusion Oxidizing Temp. °F                             |
|                                       | Free Swelling Index                                                           | I.D.                                                      |
| <u>Grindability</u><br>HGI            | FSI                                                                           | Soft.                                                     |
| At Moisture % 0.37                    |                                                                               | Hemi.                                                     |
| 0.00                                  | Trace Elements                                                                | Fluid                                                     |
| Sulfur Form (Dry)                     |                                                                               |                                                           |
| Pyritic Sulfur<br>Sulfate<br>Organic  |                                                                               | Major Ash Elem.                                           |
| -                                     |                                                                               | SiO2 1.70                                                 |
| Sulfur, Total                         |                                                                               | Al2O3 0.08                                                |
|                                       |                                                                               | TiO2 0.00<br>Fe2O3 0.09                                   |
| Misc.                                 |                                                                               | CaO 55.01                                                 |
|                                       | _                                                                             | MgO 0.70                                                  |
| <u>Analysis Value</u>                 |                                                                               | Na2O 0.03                                                 |
| % SOLIDS 13.5                         |                                                                               | K2O 0.02                                                  |
|                                       |                                                                               | P2O5 0.07                                                 |
| DENSITY 1.055                         | Hg 0.048 ppm<br>Fluorine                                                      | SO3 0.21                                                  |
|                                       | FIUOTITIE                                                                     | Undetermined 42.09                                        |

As Determined Moisture 0.37 %

These values have been reviewed and are approved for transmission.

Distribution:

- 14

11.12

3

S. TSENG J. LOCKE J. WITHUM

# LIMESTONE SLURRY FILTRATE 09:35

a sika a fara

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

÷ 

;

.

. . li. . . . . . . . . . . . . .

:

Sample No.: LS U1T1 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050784 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                        |                 | Water Result<br>nless noted           |       |                                                            |                    |               |
|----------------------------------------|-----------------|---------------------------------------|-------|------------------------------------------------------------|--------------------|---------------|
| Parameter                              | Value           | Value                                 | Units | Avg Value                                                  | Quality Control Ca | lculations    |
| рН                                     |                 |                                       |       |                                                            | Ion Sum            | 4432.03       |
| Acidity, CaCO3                         |                 | · · · · · · · · · · · · · · · · · · · |       |                                                            | Cation Sum         | 78.50         |
| Alkalinity, CaCO3                      |                 |                                       |       |                                                            | Anion Sum          | 77.03         |
| Hydroxide, CaCO3                       |                 |                                       |       |                                                            | Anion Sum          |               |
| Carbonate, CaCO3<br>Bicarbonate, CaCO3 |                 |                                       |       |                                                            | Ion Balance        | -1.13         |
| Total Suspended Solids                 |                 |                                       |       |                                                            | % Ion Imbalance    | 0.95          |
| Total Dissolved Solids                 |                 |                                       |       | , 11.7 <del>4 - Anne Courselland Anne Anne Co</del> rd II. |                    |               |
| Specific Conductivity                  |                 |                                       |       |                                                            |                    |               |
| Hardness                               |                 |                                       |       |                                                            |                    |               |
| Turbidity                              |                 |                                       |       |                                                            |                    |               |
| Osmotic Pressure                       |                 |                                       |       |                                                            |                    |               |
| Dissolved Oxygen                       | -40             |                                       |       |                                                            |                    |               |
| Ammonia, N                             | <10             |                                       |       |                                                            | ,                  | ,             |
| Total Elements                         |                 |                                       |       |                                                            | Hg <1.0            | nali          |
| Aluminum                               |                 |                                       |       |                                                            | 179 <1.0           | 1             |
|                                        | 461.88          |                                       |       |                                                            | 0                  | $\mathcal{O}$ |
| lron                                   | <1.25<br>313.30 |                                       |       |                                                            |                    |               |
| Magnesium<br>Manganese                 | 313.30          |                                       |       |                                                            |                    |               |
| Potassium                              | 90.40           |                                       |       | n                                                          |                    |               |
| Phosphorous                            |                 |                                       |       |                                                            |                    |               |
| Silicon                                |                 |                                       |       |                                                            |                    |               |
| Sodium                                 | 629.36          |                                       |       |                                                            |                    |               |
| Chromium                               |                 |                                       |       |                                                            |                    |               |
| Anions:                                |                 |                                       |       |                                                            |                    |               |
| Sulfate                                | 786,60          |                                       |       |                                                            |                    |               |
| Chloride                               | 2150            |                                       |       |                                                            |                    |               |
| Nitrate, N                             | 0.11            |                                       |       |                                                            |                    |               |
| Nitrite, N                             |                 |                                       |       |                                                            |                    |               |
| Bromide                                |                 |                                       |       |                                                            |                    |               |
| Fluoride                               | l               | 1                                     | 1     |                                                            |                    |               |

# **LIMESTONE SLURRY FILTRATE 09:45**

e el la marca

-4 1.64.1

. **1**. . . . . . . . . . .

Sample No.: LS U1T2 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050785 Analytical No.: Project No.: 1621 -087 -000

ng [m].

Submitter: S. TSENG

|                                   | (mg/L    | Water Resu<br>unless note                   | <u>ılt</u><br>d otherwise)              |           |                   |            |
|-----------------------------------|----------|---------------------------------------------|-----------------------------------------|-----------|-------------------|------------|
| Parameter                         | Value    | Value                                       | Units                                   | Avg Value | Quality Control C | alculation |
| pH                                |          |                                             |                                         |           | Ion Sum           | 3184.42    |
| Acidity, CaCO3                    |          |                                             |                                         |           | Cation Sum        | 55.24      |
| Alkalinity, CaCO3                 |          |                                             |                                         |           |                   |            |
| Hydroxide, CaCO3                  |          |                                             | ·····                                   |           | Anion Sum         | 53.9       |
| Carbonate, CaCO3                  |          |                                             |                                         |           | Ion Balance       | -1.3       |
| Bicarbonate, CaCO3                |          |                                             |                                         |           |                   |            |
| Total Suspended Solids            |          |                                             |                                         |           | % Ion Imbalance   | 1.1        |
| Total Dissolved Solids            | :        | Les Hills and States of the second          |                                         |           |                   |            |
| Specific Conductivity<br>Hardness |          |                                             |                                         |           |                   |            |
| Turbidity                         |          |                                             |                                         |           |                   |            |
| Osmotic Pressure                  |          | ······                                      |                                         | ·         |                   |            |
| Dissolved Oxygen                  | <10      |                                             |                                         |           |                   |            |
| Ammonia, N                        | <10      |                                             |                                         |           | ,                 |            |
| Total Elements                    |          |                                             |                                         |           | 16                | na         |
| Aluminum                          |          |                                             |                                         |           | F/g <1.           | 0 1191     |
| Calcium                           | 441.02   |                                             |                                         | ·····     | T                 | 0          |
| Iron                              | <1.25    |                                             |                                         |           |                   |            |
| Magnesium                         | 134.67   |                                             |                                         |           |                   |            |
| Manganese                         |          |                                             |                                         |           |                   |            |
| Potassium                         | 73.54    | verste vien als 2012 Version (vien name     | <u>ern he with part of the constant</u> |           |                   |            |
| Phosphorous                       |          |                                             |                                         |           |                   |            |
| Silicon                           | 1 100 12 |                                             | 1. (m)                                  |           |                   |            |
| Sodium                            | 466.13   |                                             |                                         |           |                   |            |
| Chromium                          |          |                                             |                                         |           |                   |            |
| Anions:                           |          |                                             |                                         |           |                   |            |
| Sulfate                           | 594.06   |                                             |                                         |           |                   |            |
| Chloride                          | 1475     |                                             |                                         |           |                   |            |
| Nitrate, N                        | <0.02    |                                             |                                         |           |                   |            |
| Nitrite, N                        |          | 1999 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                                         |           |                   |            |
| Bromide                           |          |                                             |                                         |           |                   |            |
| Fluoride                          |          |                                             |                                         |           |                   |            |

# **LIMESTONE SLURRY FILTRATE 13:45**

Sample No.: LS U1T3 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050786 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        | , <b>"</b>                              | Water Resu                                                                                                      |                                         |                                |                   |             |
|------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|-------------------|-------------|
| Parameter              | (mg/L<br>Value                          | Uniess note<br>Value                                                                                            | <u>d otherwise)</u><br>Units            | Avg Value                      | Quality Control C | alculations |
| pH                     |                                         |                                                                                                                 |                                         |                                | Ion Sum           | 2558.25     |
| Acidity, CaCO3         |                                         | ine. Children in the second | -99 (164 <b>- 44 e ) (</b> 17 - 17 - 17 | a <u>alini in presidanci i</u> | Cation Sum        | 43.13       |
| Alkalinity, CaCO3      |                                         |                                                                                                                 |                                         |                                | Callon Sum        | 40.10       |
| Hydroxide, CaCO3       | 1. 1. 1                                 |                                                                                                                 |                                         |                                | Anion Sum         | 44.14       |
| Carbonate, CaCO3       |                                         |                                                                                                                 |                                         |                                | Ion Balance       | 1.27        |
| Bicarbonate, CaCO3     |                                         |                                                                                                                 |                                         |                                |                   |             |
| Total Suspended Solids |                                         |                                                                                                                 |                                         |                                | % Ion Imbalance   | -1.15       |
| Total Dissolved Solids |                                         |                                                                                                                 |                                         |                                |                   |             |
| Specific Conductivity  |                                         |                                                                                                                 |                                         |                                |                   |             |
| Hardness               |                                         |                                                                                                                 |                                         |                                |                   |             |
| Turbidity              |                                         |                                                                                                                 |                                         |                                |                   |             |
| Osmotic Pressure       |                                         |                                                                                                                 | ter will approve the                    |                                |                   |             |
| Dissolved Oxygen       | <10                                     |                                                                                                                 |                                         |                                |                   |             |
| Ammonia, N             | ~10                                     |                                                                                                                 |                                         |                                | Ŧ                 |             |
| Total Elements         |                                         |                                                                                                                 |                                         |                                | 14                | · 191.      |
| Aluminum               |                                         |                                                                                                                 |                                         |                                | //9 <1.           | 0           |
| Calcium                | 333.63                                  |                                                                                                                 | 1                                       |                                |                   | $\vee$      |
| Iron                   | <1.25                                   |                                                                                                                 |                                         |                                |                   |             |
| Magnesium              | 103.17                                  |                                                                                                                 |                                         |                                |                   |             |
| Manganese              |                                         |                                                                                                                 |                                         |                                |                   |             |
| Potassium              | 54.14                                   | 11 and 123 and 123 areas and 12 areas                                                                           |                                         |                                |                   |             |
| Phosphorous            |                                         |                                                                                                                 |                                         |                                |                   |             |
| Silicon                | 201-00                                  |                                                                                                                 | an de para mora a Mile Anna a           |                                |                   |             |
| Sodium                 | 381.99                                  |                                                                                                                 |                                         |                                |                   |             |
| Chromium               |                                         |                                                                                                                 |                                         |                                |                   |             |
| Anions:                |                                         |                                                                                                                 |                                         |                                |                   |             |
| Sulfate                | 460.32                                  |                                                                                                                 |                                         |                                |                   |             |
| Chloride               | 1225                                    |                                                                                                                 |                                         |                                |                   |             |
| Nitrate, N             | <0.02                                   |                                                                                                                 |                                         |                                |                   |             |
| Nitrite, N             | ang |                                                                                                                 |                                         |                                |                   |             |
| Bromide                |                                         |                                                                                                                 |                                         |                                |                   |             |
| Fluoride               |                                         |                                                                                                                 |                                         | ļ                              |                   |             |

These values have been reviewed and are approved for transmission.

<1.0 11g/mL



واللا غاطية و

÷ 

÷ 3

.

. الا تسلفا الف

:

# **LIMESTONE SLURRY FILTRATE 09:15**

- 11 P 40 11 ----

1

197

Sample No.: LS U1T4 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050787 Analytical No.: Project No.: 1621 -087 -000

**Quality Control Calculations** 

3305.04

56.89

57.09

0.21

-0.18

Submitter: S. TSENG

% Ion Imbalance

| <u>Water Result</u><br>(mg/L unless noted otherwise) |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
|------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Parameter                                            | Value                                    | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units | Avg Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quality Con  |  |
| рН                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ion Sum      |  |
| Acidity, CaCO3                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cation Sum   |  |
| Alkalinity, CaCO3                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Hydroxide, CaCO3                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anion Sum    |  |
| Carbonate, CaCO3                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ion Balance  |  |
| Bicarbonate, CaCO3                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Total Suspended Solids                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % Ion Imbala |  |
| Total Dissolved Solids                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Specific Conductivity                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Hardness                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |  |
| Turbidity                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Osmotic Pressure                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Dissolved Oxygen                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Ammonia, N                                           | <10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Total Elements                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Aluminum                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ha           |  |
| Calcium                                              | 395.13                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , f          |  |
| Iron                                                 | <1.25                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            |  |
| Magnesium                                            | 176.80                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Manganese                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Potassium                                            | 70.99                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Phosphorous                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Silicon                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Sodium                                               | 478.53                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Chromium                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Anions:                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Sulfate                                              | 608.28                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Chloride                                             | 1575                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Nitrate, N                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Nitrite, N                                           |                                          | n juli de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | , rational contraction of the second s |              |  |
| Bromide                                              |                                          | 11. Charles Carlos Carl |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |
| Fluoride                                             | an a | 3 2510001.1.d.3.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | <ul> <li>I. Solidaji televit Ganatierio di Principali</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |

Hg <1.0 19/11/

# LIMESTONE SLURRY FILTRATE

224

111

-ţ i nili.

الد معدامة

Sample No.: LS U2T1 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050788 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

**Quality Control Calculations** Ion Sum 3219.97 113.51 Cation Sum 22.93 Anion Sum -196.08 Ion Balance % Ion Imbalance 66.39

| Parameter              | Value   | Value                   | Units  | Avg Value                                                                                                       |
|------------------------|---------|-------------------------|--------|-----------------------------------------------------------------------------------------------------------------|
| <b>0</b> [-]           |         |                         |        |                                                                                                                 |
| Acidity, CaCO3         |         | ······                  |        |                                                                                                                 |
| Alkalinity, CaCO3      |         |                         |        |                                                                                                                 |
| Hydroxide, CaCO3       |         |                         |        |                                                                                                                 |
| Carbonate, CaCO3       |         |                         |        |                                                                                                                 |
| Bicarbonate, CaCO3     |         |                         |        |                                                                                                                 |
| Total Suspended Solids |         |                         |        |                                                                                                                 |
| Total Dissolved Solids |         |                         |        |                                                                                                                 |
| Specific Conductivity  |         |                         |        |                                                                                                                 |
| Hardness               |         | New Province Statistics |        |                                                                                                                 |
| Turbidity              |         |                         |        |                                                                                                                 |
| Osmotic Pressure       |         |                         |        |                                                                                                                 |
| Dissolved Oxygen       |         |                         |        |                                                                                                                 |
| Ammonia, N             | <10     |                         |        |                                                                                                                 |
| Total Elements         |         |                         |        |                                                                                                                 |
| Aluminum               |         |                         |        |                                                                                                                 |
| Calcium                | 651.97  | an and a second of      |        |                                                                                                                 |
| Iron                   | 2,30    |                         |        |                                                                                                                 |
| Magnesium              | 500.46  |                         |        |                                                                                                                 |
| Manganese              |         |                         |        |                                                                                                                 |
| Potassium              | 117.80  |                         |        |                                                                                                                 |
| Phosphorous            |         |                         |        |                                                                                                                 |
| Silicon                |         |                         |        |                                                                                                                 |
| Södium                 | 844,41  |                         |        |                                                                                                                 |
| Chromium               |         |                         | 1      |                                                                                                                 |
| Anions:                |         |                         |        |                                                                                                                 |
| Sulfate                | 1085.33 |                         |        |                                                                                                                 |
| Chloride               | 3.00    |                         | ······ | , commente construction de la const |
| Nitrate, N             | 3.32    |                         |        |                                                                                                                 |
| Nitrite, N             |         |                         |        |                                                                                                                 |
| Bromide                |         |                         |        |                                                                                                                 |
| Fluoride               |         |                         |        |                                                                                                                 |
|                        | I I     | 1                       |        | •                                                                                                               |

Water Result (mg/L unless noted otherwise)

Hg <1.0 Ng/mL

# LIMESTONE SLURRY FILTRATE

a chu a dhu

. علت المفت في .

----( 107

:

.

. . h. ... u. h. .

Sample No.: LS U2T2 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050789 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                        |                 | <u>Nater Result</u><br>nless noted |       |           |                    |             |
|----------------------------------------|-----------------|------------------------------------|-------|-----------|--------------------|-------------|
| Parameter                              | Value           | Value                              | Units | Avg Value | Quality Control Ca | alculations |
| pH                                     |                 |                                    |       |           | Ion Sum            | 6187.72     |
| Acidity, CaCO3                         |                 |                                    |       |           | Cation Sum         | 112.61      |
| Alkalinity, CaCO3<br>Hydroxide, CaCO3  |                 |                                    |       |           | Anion Sum          | 107.00      |
| Carbonate, CaCO3<br>Bicarbonate, CaCO3 |                 |                                    |       |           | Ion Balance        | -3.18       |
| Total Suspended Solids                 |                 |                                    |       |           | % Ion Imbalance    | 2.55        |
| Total Dissolved Solids                 |                 |                                    |       |           |                    |             |
| Specific Conductivity<br>Hardness      |                 |                                    |       |           |                    |             |
| Turbidity<br>Osmotic Pressure          |                 |                                    |       |           |                    |             |
| Dissolved Oxygen                       |                 |                                    |       |           |                    |             |
| Ammonia, N                             | <10             |                                    |       |           |                    |             |
| Total Elements                         |                 |                                    |       |           |                    | nal         |
| Aluminum                               |                 |                                    |       |           | Hg 1.3             | M           |
| Calcium                                | 658.89          |                                    |       |           |                    | $\bigcirc$  |
| Iron<br>Magnesium                      | <1.25<br>490.49 |                                    |       |           |                    |             |
| Manganese                              | 118.30          |                                    |       |           |                    |             |
| Phosphorous<br>Silicon                 |                 |                                    |       |           |                    |             |
| Sodium<br>Chromium                     | 836.10          |                                    |       |           |                    |             |
| Anions:                                |                 |                                    |       |           |                    |             |
| Sulfate                                | 1108.94         |                                    |       |           |                    |             |
| Chloride                               | 2975            |                                    |       |           |                    |             |
| Nitrate, N<br>Nitrite, N               | <0.02           |                                    |       |           |                    |             |
| Bromide<br>Fluoride                    |                 |                                    |       |           |                    |             |

# LIMESTONE SLURRY FILTRATE

1

ł a.

:

. I. . . . . . . . . . .

Sample No.: LS U2T3 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050790 Analytical No.: Project No.: 1621 -087 -000

<1.0 ng/m/

| Parameter                |                                                                                                                 | <u>Water Result</u><br>unless noted<br>Value                                                                    | -                 | Avg Value                                     | Quality Control C | alculations |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------|-------------------|-------------|
| pH                       |                                                                                                                 |                                                                                                                 |                   |                                               | lon Sum           | 6136.12     |
| Acidity, CaCO3           |                                                                                                                 |                                                                                                                 |                   |                                               |                   | 100.00      |
| Alkalinity, CaCO3        |                                                                                                                 |                                                                                                                 |                   |                                               | Cation Sum        | 108.92      |
| Hydroxide, CaCO3         |                                                                                                                 | an ann an                                                                         |                   |                                               | Anion Sum         | 107.61      |
| Carbonate, CaCO3         |                                                                                                                 |                                                                                                                 |                   |                                               |                   | 0.74        |
| Bicarbonate, CaCO3       |                                                                                                                 |                                                                                                                 |                   |                                               | Ion Balance       | -0.74       |
| Total Suspended Solids   | y                                                                                                               |                                                                                                                 |                   |                                               | % Ion Imbalance   | 0.60        |
| Total Dissolved Solids   | , kan pang pang pang pang pang pang pang pa                                                                     |                                                                                                                 |                   |                                               |                   |             |
| Specific Conductivity    |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Hardness                 |                                                                                                                 |                                                                                                                 | n Ini Ini Angelan | ······································        |                   |             |
| Turbidity                |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Osmotic Pressure         | and <u>all and an and an an an</u>                                                                              | in a subset of the second s |                   | ······································        |                   |             |
| Dissolved Oxygen         |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Ammonia, N               | <10                                                                                                             | il devertiti tota deveriet.                                                                                     |                   |                                               |                   |             |
| Total Elements           |                                                                                                                 |                                                                                                                 |                   |                                               | , /               |             |
| Aluminum                 |                                                                                                                 |                                                                                                                 |                   |                                               | -HG <1.1          | ng/n        |
| Calcium                  | 610.69                                                                                                          |                                                                                                                 |                   |                                               | 1                 | 0           |
| Iron                     | <1,25                                                                                                           |                                                                                                                 |                   |                                               | 0                 |             |
| Magnesium                | 482.56                                                                                                          |                                                                                                                 |                   |                                               |                   |             |
| Manganese                |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Potassium                | 114.30                                                                                                          |                                                                                                                 |                   | - Anto Mali (Latan Bellingeraalen tara - 1    |                   |             |
| Phosphorous              |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Silicon                  |                                                                                                                 |                                                                                                                 |                   | n ( 12 halada a ann an sharadan a sharada a s |                   |             |
| Sodium                   | 823.98                                                                                                          |                                                                                                                 |                   |                                               |                   |             |
| Chromium                 | niter ()   (1999—1999) (1997) (1997) (1997)<br>Alfred States (1997) (1997) (1997)                               |                                                                                                                 | ni dan pana       |                                               |                   |             |
|                          |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Anions:                  | 1104.28                                                                                                         |                                                                                                                 |                   |                                               |                   |             |
| Sulfate                  | 3000                                                                                                            |                                                                                                                 |                   |                                               |                   |             |
| Chloride                 | 0.07                                                                                                            |                                                                                                                 |                   |                                               |                   |             |
| Nitrate, N<br>Nitrite, N | 0.07                                                                                                            |                                                                                                                 |                   |                                               |                   |             |
| Bromide                  | r, se desta de la composición de la com |                                                                                                                 |                   |                                               |                   |             |
| Fluoride                 |                                                                                                                 |                                                                                                                 |                   |                                               |                   |             |
| Fiuvilue                 | I                                                                                                               | I                                                                                                               |                   | 1                                             |                   |             |

Units

Water Result (mg/L unless noted otherwise)

Value

Value

<10

## LIMESTONE SLURRY FILTRATE

Parameter

Acidity, CaCO3

Hardness Turbidity

Ammonia, N

Fluoride

đ

Alkalinity, CaCO3

Hydroxide, CaCO3 Carbonate, CaCO3

Bicarbonate, CaCO3

**Osmotic Pressure Dissolved Oxygen** 

Total Suspended Solids **Total Dissolved Solids** Specific Conductivity

Ыd

Sample No.: LS U2T4 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050791 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

**Quality Control Calculations** Avg Value 6850.93 Ion Sum 122.29 Cation Sum 119.81 Anion Sum -1.26 Ion Balance 1.02 % Ion Imbalance

| Total Elements |        |
|----------------|--------|
| Aluminum       |        |
| Calcium        | 697.63 |

| Alunimuun   |         |      |  |
|-------------|---------|------|--|
| Calcium     | 697.63  |      |  |
| Iron        | <1.25   |      |  |
| Magnesium   | 540.12  |      |  |
| Manganese   |         |      |  |
| Potassium   | 128.96  |      |  |
| Phosphorous |         |      |  |
| Silicon     |         |      |  |
| Sodium      | 914.02  |      |  |
| Chromium    |         |      |  |
| Anions:     |         |      |  |
| Sulfate     | 1201.73 |      |  |
| Chloride    | 3350    |      |  |
| Nitrate, N  | 4,17    |      |  |
| Nitrite, N  |         | <br> |  |
| Bromide     |         |      |  |

Hg <1.0 ng/ml

| DESCRIPTION   | ESP HOPPER ASH 11:30-11:45 |
|---------------|----------------------------|
|               | UNIT 1 FIELD 1 SILO 2      |
| DATE SAMPLED  |                            |
| SAMPLE NUMBER | ESP ASH U1T1F1             |

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050723** 

# ANALYSIS REPORT

| PROXIMATE (Dry)%               | ULTIMATE                  | (Dry)%                 | <u>MAJOR ASH ELEM</u><br>Ignited at a C         | <u>%</u>                                             |
|--------------------------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash 94.32<br>Total Sulfur 0.19 | Carbon<br>Chlorine<br>Ash | 4.98<br>0.002<br>94.32 | Si02<br>A1203                                   | 48.79<br>26.85                                       |
| MISC. (As Det.)                |                           |                        | Ti02<br>Fe203                                   | 1.40<br>11.56                                        |
| Hg 0.204 ppm                   |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.57<br>0.95<br>0.51<br>2.38<br>0.23<br>0.48<br>5.28 |

AS DETERMINED MOISTURE: 0.21 %

¥

1

| DIS | STRIBUTION: |
|-----|-------------|
| S.  | TSENG       |
| J.  | LOCKE       |
| J.  | WITHUM      |

}

t

| DESCRIPTION                   | ESP HOPPER ASH 12:00-12:10<br>UNIT 1 FIELD 2 SILO 2 |                                                                                                                |
|-------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER |                                                     | DATE LOGGED 02/07/05<br>DATE COMPLETED 03/09/05<br>PROJECT NUMBER 1621-87 -<br>ANALYTICAL NUMBER <b>050724</b> |

# ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | <u>%</u>                                             |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 94.90<br>0.20 | Carbon<br>Chlorine<br>Ash | 4.36<br>0.002<br>94.90 | SiO2<br>A1203                                   | 48.94<br>26.79                                       |
| MISC. (As Det.)     |               |                           |                        | Ti02<br>Fe203                                   | 1.42<br>11.43                                        |
| Hg 0.210 p          | pm            |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.61<br>0.95<br>0.52<br>2.37<br>0.24<br>0.51<br>5.22 |

AS DETERMINED MOISTURE: 0.23 %

10.114

.....

# DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

ŝ

| DESCRIPTION                   | ESP HOPPER ASH 1<br>UNIT 1 FIELD 3 S |   |                         |                 |
|-------------------------------|--------------------------------------|---|-------------------------|-----------------|
| DATE SAMPLED<br>SAMPLE NUMBER | <b>+</b> ·· <b>-</b> ·               | L | <br>LOGGED<br>COMPLETED | + = / = · · · · |
| SAHLE NONDER                  | EST NON OITH O                       | - | <br>CT NUMBER           |                 |

05 05 -87 -PROJECT NUMBER 1021 ANALYTICAL NUMBER 050725

# ANALYSIS REPORT

۲

| PROXIMATE (Dry)%               | ULTIMATE (Dry)%                            | MAJOR ASH ELEM %<br>Ignited at a C                  |
|--------------------------------|--------------------------------------------|-----------------------------------------------------|
| Ash 94.73<br>Total Sulfur 0.17 | Carbon 4.71<br>Chlorine 0.002<br>Ash 94.73 | SiO2 50.95<br>A1203 26.86                           |
| MISC. (As Det.)                |                                            | Ti02 1.49<br>Fe203 9.87                             |
| Hg 0.217 ppm                   |                                            | CaO1.68MgO0.95Na2O0.49K2O2.31P2O50.36SO30.43UND4.61 |

AS DETERMINED MOISTURE: 0.24 %

1

L. ... the line

# DISTRIBUTION: S. TSENG

J. LOCKE J. WITHUM

| DESCRIPTION                   | ESP HOPPER ASH 13:30-14:00<br>UNIT 1 FIELD 4 SILO 2 |                    |
|-------------------------------|-----------------------------------------------------|--------------------|
| DATE SAMPLED<br>SAMPLE NUMBER | J.(                                                 | DATE LO<br>DATE CO |

ι

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050726

ķ

# ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | <u>%</u>                                             |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 95.38<br>0.20 | Carbon<br>Chlorine<br>Ash | 4.09<br>0.003<br>95.38 | Si02<br>A1203                                   | 49.97<br>26.94                                       |
| MISC. (As Det.)     |               |                           |                        | TiO2<br>Fe2O3                                   | 1.46<br>11.05                                        |
| Hg 0.186 pp         | m             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.66<br>0.97<br>0.53<br>2.37<br>0.29<br>0.50<br>4.26 |

AS DETERMINED MOISTURE: 0.25 %

111 III

197

الد من فيد أرغم

# DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

| DESCRIPTION                   | ESP HOPPER ASH 14:25-14:30<br>UNIT 1 FIELD 5 SILO 2 |                                                                                                                |
|-------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/19/05<br>ESP ASH U1T1F5                          | DATE LOGGED 02/07/05<br>DATE COMPLETED 03/09/05<br>PROJECT NUMBER 1621-87 -<br>ANALYTICAL NUMBER <b>050727</b> |

# ANALYSIS REPORT

| PROXIMATE          | <u>(Dry)%</u>   | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | <u>%</u>                                             |
|--------------------|-----------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfu | 95.36<br>r 0.18 | Carbon<br>Chlorine<br>Ash | 4.04<br>0.003<br>95.36 | Si02<br>A1203                                   | 49.83<br>26.53                                       |
| <u>MISC. (As D</u> | <u>et.)</u>     |                           |                        | Ti02<br>Fe203                                   | 1.44<br>11.03                                        |
| Hg                 | 0.185 ppm       |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.63<br>0.95<br>0.51<br>2.33<br>0.26<br>0.46<br>5.03 |

AS DETERMINED MOISTURE: 0.19 %

ŧ

1

er en

# DISTRIBUTION: S. TSENG

| J. | LOCKE  |
|----|--------|
| J. | WITHUM |

| DESCRIPTION                   | ESP HOPPER ASH 14:05-14:1<br>UNIT 1 FIELD 6 SILO 2 | 5                             |
|-------------------------------|----------------------------------------------------|-------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER |                                                    | DATE LOGGED<br>DATE COMPLETED |

02/07/05 D 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050728

# ANALYSIS REPORT

| PROXIMATE (Dry)%                                             |                    | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                                 | %                                               |
|--------------------------------------------------------------|--------------------|---------------------------|------------------------|----------------------------------------------------------------|-------------------------------------------------|
| Ash<br>Total Sulfur<br><u>MISC. (As_Det.)</u><br>Hg 0.188 pp | 95.38<br>0.19<br>m | Carbon<br>Chlorine<br>Ash | 4.17<br>0.003<br>95.38 | Ignited at a C<br>SiO2<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO<br>MgO | 50.50<br>26.80<br>1.46<br>11.21<br>1.64<br>0.96 |
|                                                              |                    |                           |                        | Na20<br>K20<br>P205<br>S03<br>UND                              | 0.52<br>2.34<br>0.25<br>0.48<br>3.84            |

AS DETERMINED MOISTURE: 0.22 %

Į.

1

197

DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

ł

| DESCRIPTION   | ESP HOPPER ASH 09:4 |      |                        |       |
|---------------|---------------------|------|------------------------|-------|
| DATE SAMPLED  |                     | DATE | LOGGED                 |       |
| SAMPLE NUMBER | ESP ASH U1T2F1      |      | COMPLETED<br>CT NUMBER | <br>- |

ANALYTICAL NUMBER 050729

## ANALYSIS REPORT

ŧ

| PROXIMATE (Dry)%       |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | %                                                    |
|------------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur    | 95.96<br>0.18 | Carbon<br>Chlorine<br>Ash | 3.66<br>0.002<br>95.96 | SiO2<br>A1203                                   | 49.82<br>26.35                                       |
| <u>MISC. (As Det.)</u> |               | 7.511                     | 50.50                  | Ti02<br>Fe203                                   | 1.43<br>12.23                                        |
| Hg 0.162 ppm           |               |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.59<br>0.94<br>0.51<br>2.25<br>0.23<br>0.46<br>4.19 |

AS DETERMINED MOISTURE: 0.19 %

1

44 J ....

# DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

5

ANALYTICAL NUMBER 050730

| DESCRIPTION | ESP HOPPER ASH 10:00-10:05<br>UNIT 1 FIELD 2 SILO 2 |                                                 |          |
|-------------|-----------------------------------------------------|-------------------------------------------------|----------|
|             | 01/20/05<br>ESP ASH U1T2F2                          | DATE LOGGED<br>DATE COMPLETED<br>PROJECT NUMBER | 03/09/05 |

# ANALYSIS REPORT

| PROXIMATE (Dry)%       |               | ULTIMATE                  | (Dry)%                 | <u>MAJOR ASH ELEM</u><br>Ignited at a C         | %                                                    |
|------------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur    | 95.79<br>0.18 | Carbon<br>Chlorine<br>Ash | 3.82<br>0.003<br>95.79 | Si02<br>A1203                                   | 49.23<br>25.79                                       |
| <u>MISC. (As Det.)</u> |               | 7.511                     |                        | Ti02<br>Fe203                                   | 1.42<br>12.02                                        |
| Hg 0.166 pp            | n             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.52<br>0.90<br>0.50<br>2.22<br>0.21<br>0.46<br>5.73 |

AS DETERMINED MOISTURE: 0.13 %

10 T. T. T.

al a state of the second

:

## DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 10:20-10:25        |   |           |     |          |
|---------------|-----------------------------------|---|-----------|-----|----------|
| DATE SAMPLED  | UNIT 1 FIELD 3 SILO 2<br>01/20/05 | Ĺ | DATE LOGO | GED | 02/07/05 |
| SAMPLE NUMBER | ESP ASH U1T2F3                    |   |           |     | 03/09/05 |

ANALYTICAL NUMBER 1621-87 ANALYTICAL NUMBER 050731

, j

ŧ

# ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | %                                                    |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 95.82<br>0.19 | Carbon<br>Chlorine<br>Ash | 3.74<br>0.003<br>95.82 | SiO2<br>A1203                                   | 50.03<br>26.61                                       |
| MISC. (As Det.)     |               | 7.611                     |                        | Ti02<br>Fe203                                   | 1.45<br>12.04                                        |
| Hg 0.098 p          | pm            |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.60<br>0.94<br>0.52<br>2.31<br>0.20<br>0.47<br>3.83 |

AS DETERMINED MOISTURE: 0.18 %

¥

# DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION                   | ESP HOPPER ASH 14:00-14:05<br>UNIT 1 FIELD 1 SILO 2 |                                                                                                         |
|-------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/20/05<br>ESP ASH U1T3F1                          | DATE LOGGED 02/07/05<br>DATE COMPLETED 03/09/05<br>PROJECT NUMBER 1621-87 -<br>ANALYTICAL NUMBER 050732 |

## ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | <u>%</u>                                             |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 96.22<br>0.17 | Carbon<br>Chlorine<br>Ash | 3.27<br>0.002<br>96.22 | SiO2<br>Al2O3                                   | 50.79<br>26.42                                       |
| MISC. (As Det.)     |               | ,                         |                        | Ti02<br>Fe203                                   | 1.47<br>11.53                                        |
| Hg 0.143 pp         | im            |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.66<br>0.96<br>0.52<br>2.30<br>0.24<br>0.43<br>3.68 |

AS DETERMINED MOISTURE: 0.16 %

ł

÷

11

1.00

# DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM



| DESCRIPTION                   | ESP HOPPER ASH 14:20-14<br>UNIT 1 FIELD 2 SILO 2 | :25                                             |     |
|-------------------------------|--------------------------------------------------|-------------------------------------------------|-----|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/20/05<br>ESP ASH U1T3F2                       | DATE LOGGED<br>DATE COMPLETED<br>DROJECT NUMPER | 037 |

)

Ŧ

DATE\_LOGGED 02/07/05 DATE\_COMPLETED 03/09/05 PROJECT\_NUMBER\_1621-87 -ANALYTICAL NUMBER 050733

# ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM<br>Ignited at a C                | %                                                    |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 96.17<br>0.16 | Carbon<br>Chlorine<br>Ash | 3.30<br>0.003<br>96.17 | Si02<br>A1203                                   | 50.15<br>26.16                                       |
| MISC. (As Det.)     |               | 7.017                     |                        | T102<br>Fe203                                   | 1.45<br>11.77                                        |
| Hg 0.151 pp         | m             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.62<br>0.94<br>0.50<br>2.25<br>0.23<br>0.41<br>4.52 |

AS DETERMINED MOISTURE: 0.09 %

10 T 12

i site

. Ц. .... Кал. I. н.

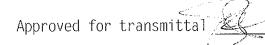
DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

ł

| DESCRIPTION                   | ESP HOPPER ASH 14:40-14:45<br>UNIT 1 FIELD 3 SILO 2 |      |                     |  |
|-------------------------------|-----------------------------------------------------|------|---------------------|--|
| DATE SAMPLED<br>SAMPLE NUMBER |                                                     | DATE | LOGGED<br>COMPLETED |  |

ł

09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050734


# ANALYSIS REPORT

| PROXIMATE              | (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|------------------------|-----------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu     | r         | 96.12<br>0.16 | Carbon<br>Chlorine<br>Ash | 3,47<br>0,003<br>96,12 | Si02<br>A1203<br>Ti02                    | 49.86<br>26.06<br>1.45                       |
| <u>MISC. (As Det.)</u> |           |               | 100                       |                        | Fe203<br>Ca0                             | $\begin{array}{c} 11.76\\ 1.61 \end{array}$  |
| Hg                     | 0.156 ppm | I             |                           | t.                     | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.94<br>0.49<br>2.26<br>0.25<br>0.41<br>4.91 |

AS DETERMINED MOISTURE: 0.12 %

1.12

DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM



| DESCRIPTION   | ESP HOPPER ASH 14:55-15:00        |                |       |
|---------------|-----------------------------------|----------------|-------|
| DATE SAMPLED  | UNIT 1 FIELD 4 SILO 2<br>01/20/05 | DATE LOGGED    | 02/07 |
| SAMPLE NUMBER | ESP ASH U1T3F4                    | DATE COMPLETED |       |

07/05 09/05 1621-87 -PROJECT NUMBER ANALYTICAL NUMBER 050735

ķ

# ANALYSIS REPORT

| PROXIMATE           | (Dry)%        | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                               |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 96.14<br>0.17 | Carbon<br>Chlorine<br>Ash | 3.33<br>0.002<br>96.14 | Si02<br>A1203<br>Ti02                           | 49.83<br>26.00<br>1.46                               |
| <u>MISC. (As De</u> | <u>)</u>      |                           |                        | Fe203                                           | 11.70                                                |
| Hg                  | 0.147 ppm     |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.61<br>0.94<br>0.49<br>2.25<br>0.23<br>0.42<br>5.07 |

AS DETERMINED MOISTURE: 0.07 %

3

191

DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

| DESCRIPTION | ESP HOPPER ASH 15:15-15:20<br>UNIT 1 FIELD 5 SILO 2 |                            |
|-------------|-----------------------------------------------------|----------------------------|
|             | 01/20/05<br>ESP ASH U1T3F5                          | DATE LOGGEL<br>DATE COMPLI |

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050736

ì

# ANALYSIS REPORT

| PROXIMATE          | (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|-----------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | ır        | 96.05<br>0.17 | Carbon<br>Chlorine<br>Ash | 3.48<br>0.003<br>96.05 | Si02<br>A1203<br>Ti02                    | 49.67<br>25.92<br>1.45                       |
| MISC. (As Det.)    |           |               | , lon                     | 50.00                  | Fe2O3<br>CaO                             | $11.70 \\ 1.61$                              |
| Hg                 | 0.160 ppn | 1             |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.93<br>0.49<br>2.25<br>0.22<br>0.43<br>5.33 |

AS DETERMINED MOISTURE: 0.07 %

k

# DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH<br>UNIT 1 FIELD 6 |        |       |           |          |  |
|---------------|----------------------------------|--------|-------|-----------|----------|--|
|               |                                  | 51LU Z | DATE  |           | 00107105 |  |
| DATE SAMPLED  |                                  |        |       | LOGGED    | 02,0,,00 |  |
| SAMPLE NUMBER | ESP ASH U1T3F6                   |        |       | COMPLETED |          |  |
|               |                                  |        | PROJE | CT NUMBER | 1621-87  |  |

ANALYSIS REPORT

ANALYTICAL NUMBER 050737

### (<u>Dry)%</u> PROXIMATE ULTIMATE MAJOR ASH ELEM (Dry)% (Dry)% Carbon 3.61 49.46 Ash 95,93 Si02 0.003 25.85 Total Sulfur **Chlorine** A1203 0.18 95.93 Ti02 Ash 1.46 Fe203 11.72 MISC. (As Det.) 1.62 CaO 0.157 ppm 0.93 Mg0 Hg Na20 0.48 K20 2.21 0.22 P205 S03 0.45 UND 5.60

AS DETERMINED MOISTURE: 0.12 %

# DISTRIBUTION:

ì

4

| З, | ISENG  |
|----|--------|
| J. | LOCKE  |
| J. | WITHUM |

| DESCRIPTION   | ESP HOPPER ASH 09:20-09:25 |         |            |                 |
|---------------|----------------------------|---------|------------|-----------------|
|               | UNIT 1 FIELD 1 SILO 2      |         |            |                 |
| DATE SAMPLED  | 01/21/05                   | DATE LO | )GGED      | 02/07/05        |
| SAMPLE NUMBER | ESP ASH U1T4F1             | DATE CO | OMPLETED - | <i>03/09/05</i> |
| 0             |                            | PROJECT | T MIIMRER  | 1621-87         |

PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050738

# ANALYSIS REPORT

,

| PROXIMATE           | (Dry)%        | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 96.43<br>0.18 | Carbon<br>Chlorine<br>Ash | 3.14<br>0.003<br>96.43 | SiO2<br>A12O3<br>TiO2                    | 52.31<br>25.63<br>1.44                       |
| MISC. (As Det.)     |               | 7.511                     | 50.10                  | Fe203<br>CaO                             | $10.16\\1.50$                                |
| Hg                  | 0.115 ppm     |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.97<br>0.55<br>2.41<br>0.15<br>0.44<br>4.44 |

AS DETERMINED MOISTURE: 0.11 %

1

# DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

Approved for transmitta

ž

| DESCRIPTION   | ESP HOPPER ASH 09:40-09:45<br>UNIT 1 FIELD 2 SILO 2 |                |          |
|---------------|-----------------------------------------------------|----------------|----------|
| DATE SAMPLED  | 01/21/05                                            | DATE LOGGED    | 00101100 |
| SAMPLE NUMBER | ESP ASH U1T4F2                                      | DATE COMPLETED |          |

ANALYTICAL NUMBER 1621-87

# ANALYSIS REPORT

ł

| PROXIMATE          | (Dry)%    |              | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|-----------|--------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfı |           | 6.47<br>0.18 | Carbon<br>Chlorine<br>Ash | 3.04<br>0.003<br>96.47 | Si02<br>A1203<br>Ti02                    | 52.00<br>25.38<br>1.45                       |
| MISC. (As Det.)    |           |              |                           |                        | Fe2O3<br>CaO                             | 10.56<br>1.54                                |
| Hg                 | 0.120 ppm |              |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.97<br>0.53<br>2.35<br>0.15<br>0.44<br>4.63 |

AS DETERMINED MOISTURE: 0.11 %

ł

# DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

ŧ

| DESCRIPTION                   | ESP HOPPER ASH 10:00-10:05<br>INIT 1 FIELD 3 SILO 2 |                                                                                                                |
|-------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/21/05<br>ESP ASH U1T4F3                          | DATE LOGGED 02/07/05<br>DATE COMPLETED 03/09/05<br>PROJECT NUMBER 1621-87 -<br>ANALYTICAL NUMBER <b>050740</b> |

#### ANALYSIS REPORT

| PROXIMATE          | (Dry)%          | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|-----------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | 96.62<br>r 0.18 | Carbon<br>Chlorine<br>Ash | 2.99<br>0.004<br>96.62 | Si02<br>A1203<br>Ti02                    | 51.53<br>25.39<br>1.45                       |
| MISC. (As D        | <u>et.)</u>     | //01                      |                        | Fe2O3<br>CaO                             | 10.27<br>1.53                                |
| Hg                 | 0.118 ppm       |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.96<br>0.53<br>2.36<br>0.17<br>0.44<br>5.37 |

AS DETERMINED MOISTURE: 0.14 %

ì

z. .

10

. . i a i

#### DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 10:20-10:25 |  |
|---------------|----------------------------|--|
|               | UNIT 1 FIELD 4 SILO 2      |  |
| DATE SAMPLED  |                            |  |
| SAMPLE NUMBER | ESP ASH U1T4F4             |  |

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **05074**1

#### ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 96.45<br>0.18 | Carbon<br>Chlorine<br>Ash | 2.98<br>0.004<br>96.45 | Si02<br>A1203<br>Ti02                    | 52.02<br>25.71<br>1.46                       |
| MISC. (As Det.)     |               | ASIT                      | 50.10                  | Fe2O3<br>CaO                             | $10.40 \\ 1.53$                              |
| Hg 0.119 pp         | m             |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.98<br>0.54<br>2.39<br>0.18<br>0.45<br>4.34 |

3

AS DETERMINED MOISTURE: 0.05 %

ş

1

DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

| Approved | for | transmittal |
|----------|-----|-------------|

| DESCRIPTION   | ESP HOPPER ASH<br>UNIT 1 FIELD 5 |   |                |  |
|---------------|----------------------------------|---|----------------|--|
| DATE SAMPLED  |                                  |   | DATE LOGGED    |  |
| SAMPLE NUMBER | ESP ASH U1T4F5                   | , | DATE COMPLETED |  |

07/05 09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050742

#### ANALYSIS REPORT

| <u>PROXIMATE (</u>  | Dry)%         | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                               |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 96.49<br>0.16 | Carbon<br>Chlorine<br>Ash | 3.13<br>0.003<br>96.49 | Si02<br>A1203<br>Ti02                           | 51.64<br>25.21<br>1.45                               |
| MISC. (As Det.      | <u>)</u>      |                           |                        | Fe203                                           | 10.55                                                |
| Hg O.               | 116 ppm       |                           |                        | Ca0<br>Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 1.54<br>0.97<br>0.52<br>2.32<br>0.16<br>0.39<br>5.25 |

AS DETERMINED MOISTURE: 0.05 %

ŀ

ŧ

#### DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

Approved for transmittal

í

| DESCRIPTION   | ESP_HOPPER_ASH_11:00-11:05 |  |
|---------------|----------------------------|--|
|               | UNIT 1 FIELD 6 SILO 2      |  |
| DATE SAMPLED  | 01/21/05                   |  |
| SAMPLE NUMBER | ESP ASH U1T4F6             |  |

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050743** 

#### ANALYSIS REPORT

| PROXIMATE (Dry)        | )%            | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                       |
|------------------------|---------------|---------------------------|------------------------|-------------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur    | 96.54<br>0.18 | Carbon<br>Chlorine<br>Ash | 2.97<br>0.003<br>96.54 | Si02<br>A1203<br>Ti02                           | 51.70<br>25.68<br>1.47                       |
| <u>MISC. (As Det.)</u> |               | 7.511                     | 50101                  | Fe203                                           | 10.38<br>1.57                                |
| Hg 0.118               | ppm           |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.97<br>0.53<br>2.38<br>0.19<br>0.46<br>4.67 |

AS DETERMINED MOISTURE: 0.13 %

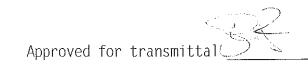
### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 13:54         |     |
|---------------|------------------------------|-----|
|               | UNIT 2 TEST 1 FIELD 1 SILO 1 |     |
| DATE SAMPLED  | 01/24/05                     | DAT |
| SAMPLE NUMBER | ESP ASH U2T1F1               | DAT |

DATE LOGGED 02/07/05. DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050744** 

#### , ANALYSIS REPORT


| PROXIMATE (Dr          | <u>ry)%</u>   | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|------------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur    | 93.03<br>0.24 | Carbon<br>Chlorine<br>Ash | 6.01<br>0.003<br>93.03 | SiO2<br>A1203<br>TiO2                    | 49.86<br>24.01<br>1.40                       |
| <u>MISC. (As Det.)</u> |               |                           |                        | Fe2O3<br>CaO                             | 10.71<br>1.51                                |
| Hg 0.24                | 17 ppm        |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.95<br>0.49<br>2.25<br>0.21<br>0.61<br>8.00 |

AS DETERMINED MOISTURE: 0.17 %

1

4.10-1 AND

#### DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM



| DESCRIPTION   | ESP HOPPER ASH 14:00         |    |
|---------------|------------------------------|----|
|               | UNIT 2 TEST 1 FIELD 2 SILO 1 |    |
| DATE SAMPLED  | 01/24/05                     | Di |
| SAMPLE NUMBER | ESP ASH U2T1F2               | Di |
|               |                              | 0  |

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050745** 

#### ANALYSIS REPORT

| PROXIMATE           | (Dry)%        | ULTIMATE                    | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|-----------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 93.15<br>0.24 | Carbon '<br>Chlorine<br>Ash | 5.99<br>0.003<br>93.15 | Si02<br>A1203<br>Ti02                    | 49.30<br>23.89<br>1.39                       |
| <u>MISC. (As De</u> | <u>et.)</u>   |                             | •••••                  | Fe2O3<br>CaO                             | 10.69<br>1.52                                |
| Hg                  | 0.239 ppm     |                             |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.94<br>0.49<br>2.25<br>0.21<br>0.59<br>8.73 |

AS DETERMINED MOISTURE: 0.17 %

19

1

| DIS | STRIBUTION: |
|-----|-------------|
| S.  | TSENG       |
| J.  | LOCKE       |
| J.  | WITHUM      |

| DESCRIPTION   | ESP HOPPER ASH 14:16         |
|---------------|------------------------------|
|               | UNIT 2 TEST 1 FIELD 3 SILO 1 |
| DATE SAMPLED  |                              |
| SAMPLE NUMBER | ESP ASH U2T1F3               |

DATE LOGGED 02/07/05 DATE COMPLETED 03/09/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050746

ł

ì.

#### ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 93.06<br>0.24 | Carbon<br>Chlorine<br>Ash | 6.21<br>0.004<br>93.06 | SiO2<br>A12O3<br>TiO2                           | 49.63<br>23.91<br>1.39                       |
| MISC. (As Det.)     |               |                           |                        | Fe203                                           | 10.77<br>1.51                                |
| Hg 0.246 pp         | m             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.95<br>0.50<br>2.28<br>0.19<br>0.61<br>8.26 |

AS DETERMINED MOISTURE: 0.21 %

18 1 P.

i.

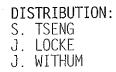
DISTRIBUTION: S. TSENG

J. LOCKE J. WITHUM

mittal

| DESCRIPTION   | ESP HOPPER ASH 14:26         |     |
|---------------|------------------------------|-----|
|               | UNIT 2 TEST 1 FIELD 4 SILO 1 |     |
| DATE SAMPLED  | 01/24/05                     | DAT |
| SAMPLE NUMBER | ESP ASH U2T1F4               | DAT |

DATE LOGGED 02/07/05 DATE COMPLETED 03/16/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050747** 


1

#### ANALYSIS REPORT

| PROXIMATE          | (Dry)%       |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|--------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | ır           | 93.06<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.08<br>0.004<br>93.06 | Silicon<br>Al203<br>Ti02                 | 49.65<br>24.08<br>1.32                       |
| <u>MISC. (As [</u> | <u>)et.)</u> |               | 7.511                     |                        | Fe2O3<br>CaO                             | 10.46<br>1.50                                |
| Hg                 | 0.179 PPM    |               |                           | ·                      | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.94<br>0.53<br>2.29<br>0.21<br>0.66<br>8.36 |

AS DETERMINED MOISTURE: 0.15 %

.



| DESCRIPTION   | ESP HOPPER ASH 14:36         |  |
|---------------|------------------------------|--|
|               | UNIT 2 TEST 1 FIELD 5 SILO 1 |  |
| DATE SAMPLED  | 01/24/05                     |  |
| SAMPLE NUMBER | ESP ASH U2T1F5               |  |

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050748** 

#### ANALYSIS REPORT

| PROXIMATE          | (Dry)%   |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|----------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfi | ur       | 93.15<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.25<br>0.003<br>93.15 | Silicon<br>Al2O3<br>TiO2                 | 49.92<br>24.55<br>1.33                       |
| MISC. (As          | Det.)    |               | 7.511                     | 50120                  | Fe2O3<br>CaO                             | 10.73<br>1.51                                |
| Hg                 | 0.240 PP | 1             |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.95<br>0.53<br>2.32<br>0.21<br>0.65<br>7.30 |

AS DETERMINED MOISTURE: 0.15 %

ą

DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

Approved for transmittal

١

| DESCRIPTION   | ESP HOPPER ASH 14:50         |                |                 |
|---------------|------------------------------|----------------|-----------------|
|               | UNIT 2 TEST 1 FIELD 6 SILO 1 |                |                 |
| DATE SAMPLED  | 01/24/05                     | DATE LOGGED    | <i>02/07/05</i> |
| SAMPLE NUMBER | ESP ASH U2T1F6               | DATE COMPLETED | <i>03/15/05</i> |
|               |                              |                | 1601 07         |

ķ

F

PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050749

#### ANALYSIS REPORT

| PROXIMATE (Dr       | <u>y)%</u>    | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 93.03<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.18<br>0.004<br>93.03 | Silicon<br>Al2O3<br>TiO2                 | 49.65<br>24.47<br>1.33                       |
| MISC. (As Det.)     |               | 101                       | 50.00                  | Fe203<br>Ca0                             | 10.75<br>1.50                                |
| Hg 0.23             | 0 PPM         |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.94<br>0.52<br>2.29<br>0.20<br>0.62<br>7.73 |

AS DETERMINED MOISTURE: 0.04 %

, and a state of the second 
**dia 1**1181 - 11 -

197

#### **DISTRIBUTION:** S. TSENG

| э. | IJLINU  |
|----|---------|
| J. | LOCKE   |
| υ. | LUUKL   |
| 1  | WITHUM  |
| J. | MILLUOL |

ł

| DESCRIPTION   | ESP HOPPER ASH 10:23         |
|---------------|------------------------------|
|               | UNIT 2 TEST 2 FIELD 1 SILO 1 |
| DATE SAMPLED  |                              |
| SAMPLE NUMBER | ESP ASH U2T2F1               |

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050750

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                                            |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                                                | (Dry)%                                                                          |
|-------------------------------------------------------------|---------------|---------------------------|------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Ash<br>Total Sulfur<br><u>MISC. (As Det.)</u><br>Hg 0.246 P | 92.84<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.40<br>0.002<br>92.84 | Silicon<br>Al2O3<br>TiO2<br>Fe2O3<br>CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3 | 46.66<br>23.67<br>1.28<br>10.88<br>1.42<br>0.94<br>0.49<br>2.24<br>0.23<br>0.64 |
|                                                             |               |                           |                        | UND                                                                           | 11.55                                                                           |

AS DETERMINED MOISTURE: 0.09 %

DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 10:44<br>UNIT 2 TEST 2 FIELD 2 SILO 1 |               |     |
|---------------|------------------------------------------------------|---------------|-----|
| DATE SAMPLED  |                                                      | LOGGED        | 02/ |
| SAMPLE NUMBER | ESP ASH U2T2F2                                       | <br>COMPLETED |     |

2/07/05 8/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050751

Ļ

#### ANALYSIS REPORT

| PROXIMATE          | (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|-----------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | ir        | 92.81<br>0.27 | Carbon<br>Chlorine<br>Ash | 6.36<br>0.002<br>92.81 | Silicon<br>Al2O3<br>TiO2                 | 48.96<br>24.50<br>1.34                       |
| MISC. (As Det.)    |           |               | 1011                      | 52104                  | Fe2O3<br>CaO                             | 11.68<br>1.49                                |
| Hg                 | 0.268 PPM |               |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.96<br>0.51<br>2.30<br>0.24<br>0.67<br>7.35 |

AS DETERMINED MOISTURE: 0.09 %

ş

3

# DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

DESCRIPTION ESP HOPPER ASH 10:59 UNIT 2 TEST 2 FIELD 3 SILO 1 DATE SAMPLED 01/25/05 SAMPLE NUMBER ESP ASH U2T2F3

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050752** 

#### ANALYSIS REPORT

| PROXIMATE (Dry)     |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.82<br>0.28 | Carbon<br>Chlorine<br>Ash | 6.31<br>0.002<br>92.82 | Silicon<br>Al2O3<br>TiO2                 | 48.76<br>24.42<br>1.34                       |
| MISC. (As Det.)     |               | 7.011                     |                        | Fe203<br>Ca0                             | $\begin{array}{c}11.48\\1.49\end{array}$     |
| Hg 0.268 F          | РРМ           |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.96<br>0.51<br>2.31<br>0.23<br>0.69<br>7.81 |

AS DETERMINED MOISTURE: 0.09 %



| DESCRIPTION   | ESP HOPPER ASH 11:12         |
|---------------|------------------------------|
|               | UNIT 2 TEST 2 FIELD 4 SILO 1 |
| DATE SAMPLED  | 01/25/05                     |
| SAMPLE NUMBER | ESP ASH U2T2F4               |

1

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050753

#### ANALYSIS REPORT

| PROXIMATE (Dry)     | <u>%</u>      | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.86<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.12<br>0.004<br>92.86 | Silicon<br>Al2O3<br>TiO2                 | 48.64<br>24.33<br>1.33                       |
| MISC. (As Det.)     |               |                           |                        | Fe2O3<br>CaO                             | $11.41 \\ 1.49$                              |
| Hg 0.262            | PPM           |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.96<br>0.50<br>2.29<br>0.23<br>0.64<br>8.18 |

AS DETERMINED MOISTURE: 0.09 %

#### DISTRIBUTION: S. TSENG

J. LOCKE J. WITHUM

DESCRIPTION ESP HOPPER ASH 11:23 UNIT 2 TEST 2 FIELD 5 SILO 1 DATE SAMPLED 01/25/05 SAMPLE NUMBER ESP ASH U2T2F5

٤

ł

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050754

#### ANALYSIS REPORT

| PROXIMATE (Dry)     | <u>%</u>      | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.86<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.24<br>0.002<br>92.86 | Silicon<br>Al2O3<br>TiO2                 | 48.43<br>24.23<br>1.33                       |
| MISC. (As Det.)     |               | 7.611                     |                        | Fe203<br>Ca0                             | $\begin{array}{c} 11.55\\ 1.49\end{array}$   |
| Hg 0.251            | PPM           |                           | · · ·                  | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.96<br>0.49<br>2.29<br>0.23<br>0.63<br>8.37 |

AS DETERMINED MOISTURE: 0.05 %

i

DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

ł

DESCRIPTION UNIT 2 TEST 2 FIELD 6 SILO 1 DATE SAMPLED 01/25/05 SAMPLE NUMBER ESP ASH U2T2F6

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050755** 

#### ANALYSIS REPORT

ş

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                               |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 92.86<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.49<br>0.002<br>92.86 | Silicon<br>Al2O3<br>TiO2                        | 48.92<br>24.30<br>1.34                               |
| MISC. (As Det.)     |               |                           | 54100                  | Fe203                                           | 11.51                                                |
| Hg 0.245 PF         | M             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.49<br>0.95<br>0.50<br>2.30<br>0.22<br>0.63<br>7.84 |

AS DETERMINED MOISTURE: 0.17 %

#### DISTRIBUTION: S. TSENG

J. LOCKE J. WITHUM

DESCRIPTION ESP HOPPER ASH 14:35 UNIT 2 TEST 3 FIELD 1 SILO 1 DATE SAMPLED 01/25/05 SAMPLE NUMBER ESP ASH U2T3F1

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050756

ŀ

#### ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | <u>(Dry)%</u>                                |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.67<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.49<br>0.003<br>92.67 | Silicon<br>Al2O3<br>TiO2                 | 48.95<br>24.42<br>1.34                       |
| MISC. (As Det.)     |               | ),3H                      | 02107                  | Fe2O3<br>CaO                             | 11.33                                        |
| Hg 0.257 Pl         | РМ .          |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.95<br>0.50<br>2.29<br>0.24<br>0.64<br>7.85 |

AS DETERMINED MOISTURE: 0.15 %

#### DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 14:49         |
|---------------|------------------------------|
|               | UNIT 2 TEST 3 FIELD 2 SILO 1 |
| DATE SAMPLED  | 01/25/05                     |
| SAMPLE NUMBER | ESP ASH U2T3F2               |

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050757

#### ANALYSIS REPORT

| <u>PROXIMATE (I</u> | <u>Dry)%</u>  | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.68<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.44<br>0.002<br>92.68 | Silicon<br>Al203<br>Ti02                        | 48.89<br>24.30<br>1.33                       |
| MISC. (As Det.)     | <u>)</u>      | ,                         |                        | Fe203                                           | 11.45<br>1.49                                |
| Hg 0.2              | 258 PPM       |                           |                        | Ca0<br>Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.96<br>0.49<br>2.28<br>0.24<br>0.66<br>7.91 |

AS DETERMINED MOISTURE: 0.11 %

1

#### DISTRIBUTION:

S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION                   | ESP HOPPER ASH 14:59<br>UNIT 2 TEST 3 FIELD 3 SILO 1 |                                                     |
|-------------------------------|------------------------------------------------------|-----------------------------------------------------|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/25/05<br>ESP ASH U2T3F3                           | DATE LOGGED (<br>DATE COMPLETED (<br>PROJECT NUMBER |

ł

02/07/05 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050758

#### ANALYSIS REPORT

| PROXIMATE (Dry         | <u>) %</u>    | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|------------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur    | 92.66<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.43<br>0.002<br>92.66 | Silicon<br>Al2O3<br>TiO2                 | 49.39<br>24.89<br>1.36                       |
| <u>MISC. (As Det.)</u> |               | //311                     | 0 - 1 0 0              | Fe2O3<br>CaO                             | $\begin{array}{c} 11.17\\ 1.50\end{array}$   |
| Hg 0.249               | РРМ           |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.97<br>0.51<br>2.35<br>0.25<br>0.65<br>6.96 |

AS DETERMINED MOISTURE: 0.15 %

- t 1.11

### DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 15:10                     |                |          |
|---------------|------------------------------------------|----------------|----------|
| DATE SAMPLED  | UNIT 2 TEST 3 FIELD 4 SILO 1<br>01/25/05 |                | 02/07/05 |
| SAMPLE NUMBER | ESP ASH U2T3F4                           | DATE COMPLETED |          |

PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050759

#### ANALYSIS REPORT

| PROXIMATE (Dry)     | <u>í</u>      | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.68<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.50<br>0.003<br>92.68 | Silicon<br>Al2O3<br>TiO2                 | 49.25<br>24.64<br>1.35                       |
| MISC. (As Det.)     |               |                           |                        | Fe203<br>CaO                             | $\begin{array}{c} 11.33\\ 1.47\end{array}$   |
| Hg 0.263 F          | РРМ           |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.95<br>0.51<br>2.31<br>0.24<br>0.66<br>7.29 |

AS DETERMINED MOISTURE: 0.13 %

17

4

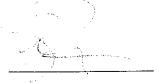
#### DISTRIBUTION: S. TSENG

| J. | LOCKE  |
|----|--------|
| J. | WITHUM |



DESCRIPTION UNIT 2 TEST 3 FIELD 5 SILO 1 DATE SAMPLED SAMPLE NUMBER ESP ASH U2T3F5

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050760


#### ANALYSIS REPORT

ı

| PROXIMATE (Dry      | <u>()%</u>    | ULTIMATE                                | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|-----------------------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.61<br>0.25 | Carbon<br>Chlorine<br>Ash               | 6.49<br>0.003<br>92.61 | Silicon<br>Al2O3<br>TiO2                 | 48.72<br>24.36<br>1.34                       |
| MISC. (As Det.)     |               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                        | Fe203<br>Ca0                             | 11.37<br>1.46                                |
| Hg 0.27             | l PPM         |                                         |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.95<br>0.49<br>2.31<br>0.24<br>0.62<br>8.14 |

AS DETERMINED MOISTURE: 0.11 %

#### DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM



DESCRIPTION ESP HOPPER ASH 15:35 UNIT 2 TEST 3 FIELD 6 SILO 1 DATE SAMPLED 01/25/05 SAMPLE NUMBER ESP ASH U2T3F6

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050761

#### ANALYSIS REPORT

| PROXIMATE (Dry)%                              |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                               |
|-----------------------------------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur<br>MISC. (As <u>Det.)</u> | 92.67<br>0.26 | Carbon<br>Chlorine<br>Ash | 6.47<br>0.003<br>92.67 | Silicon<br>Al2O3<br>TiO2<br>Fe2O3               | 48.88<br>24.50<br>1.34<br>11.40                      |
| Hg 0.266 PP                                   | М             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.47<br>0.96<br>0.51<br>2.34<br>0.24<br>0.64<br>7.72 |

AS DETERMINED MOISTURE: 0.11 %

#### DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

DESCRIPTION ESP HOPPER ASH 10:15 UNIT 2 TEST 4 FIELD 1 SILO 1 DATE SAMPLED 01/26/05 SAMPLE NUMBER ESP ASH U2T4F1

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050762

#### ANALYSIS REPORT

| PROXIMATE (Dry)%    |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                                  | (Dry)%                                               |
|---------------------|---------------|---------------------------|------------------------|-------------------------------------------------|------------------------------------------------------|
| Ash<br>Total Sulfur | 92.95<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.09<br>0.003<br>92.95 | Silicon<br>Al2O3<br>TiO2                        | 49.21<br>25.14<br>1.40                               |
| MISC. (As Det.)     |               |                           |                        | Fe203                                           | 10.38                                                |
| Hg 0.253 PI         | M             |                           |                        | CaO<br>MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 1.48<br>0.92<br>0.49<br>2.28<br>0.29<br>0.62<br>7.79 |

AS DETERMINED MOISTURE: 0.09 %

DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

Approved for transmittal

į.,

ţ

| DESCRIPTION                   | ESP HOPPER ASH 10:02<br>UNIT 2 TEST 4 FIELD 2 SIL | 01 |                               |  |
|-------------------------------|---------------------------------------------------|----|-------------------------------|--|
| DATE SAMPLED<br>SAMPLE NUMBER | 01/26/05<br>ESP ASH U2T4F2                        |    | DATE LOGGED<br>DATE COMPLETED |  |
| SAMILL NUMBER                 | LUI AUTI OLITIL                                   |    |                               |  |

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050763** 

#### ANALYSIS REPORT

| PROXIMATE (         | (Dry)%        | <u>ULTIMATE</u>           | (Dry)%                 | MAJOR ASH ELEM                           | (Dry) <u>%</u>                               |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.96<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.10<br>0.002<br>92.96 | Silicon<br>Al2O3<br>TiO2                 | 49.58<br>25.52<br>1.40                       |
| MISC. (As Det.      | <u>.)</u>     |                           |                        | Fe2O3<br>CaO                             | $\begin{array}{c}10.45\\1.46\end{array}$     |
| Hg O.               | .248 PPM      | . •                       |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.93<br>0.52<br>2.38<br>0.31<br>0.63<br>6.82 |

AS DETERMINED MOISTURE: 0.12 %

11 11 11

- 44

#### DISTRIBUTION:

| S. | TSENG  |
|----|--------|
| J. | LOCKE  |
| J. | WITHUM |

Approved for transmittal \_\_\_\_\_

| DESCRIPTION                   | ESP HOPPER ASH 10:27<br>UNIT 2 TEST 4 FIELD 3 SILO 1 |                                                 |          |
|-------------------------------|------------------------------------------------------|-------------------------------------------------|----------|
| DATE SAMPLED<br>SAMPLE NUMBER |                                                      | DATE LOGGED<br>DATE COMPLETED<br>PROJECT NUMBER | 03/15/05 |

J.

#### ANALYSIS REPORT

ANALYTICAL NUMBER 050764

| PROXIMATE           | (Dry)%        | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|---------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur | 92.96<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.03<br>0.003<br>92.96 | Silicon<br>Al2O3<br>TiO2                 | 50.16<br>25.45<br>1.41                       |
| MISC. (As Det       | <u>.)</u>     | , (611                    |                        | Fe2O3<br>CaO                             | 10.43<br>1.48                                |
| Hg O                | .245 PPM      |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.93<br>0.52<br>2.33<br>0.29<br>0.63<br>6.37 |

AS DETERMINED MOISTURE: 0.15 %

1

1

a. 1 - 11.1

### DISTRIBUTION: S. TSENG J. LOCKE

J. WITHUM

| DESCRIPTION   | ESP HOPPER ASH 10:37         |
|---------------|------------------------------|
|               | UNIT 2 TEST 4 FIELD 4 SILO 1 |
| DATE SAMPLED  |                              |
| SAMPLE NUMBER | ESP ASH U2T4F4               |

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050765

ŧ

#### ANALYSIS REPORT

| PROXIMATE          | (Dry)%      |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|-------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | r           | 92.98<br>0.24 | Carbon<br>Chlorine<br>Ash | 5.97<br>0.003<br>92.98 | Silicon<br>Al2O3<br>TiO2                 | 49.57<br>25.16<br>1.38                       |
| MISC. (As D        | <u>et.)</u> |               |                           | 52150                  | Fe203<br>Ca0                             | $\begin{array}{c}10.30\\1.46\end{array}$     |
| Hg                 | 0.238 PPM   | I             |                           |                        | Mg0<br>Na20<br>K20<br>P205<br>S03<br>UND | 0.92<br>0.53<br>2.35<br>0.30<br>0.61<br>7.42 |

AS DETERMINED MOISTURE: 0.09 %

11 - 11 - 11 - 1

191

1.1.

### DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

DESCRIPTION UNIT 2 TEST 4 FIELD 5 SILO 1 DATE SAMPLED O1/26/05 SAMPLE NUMBER ESP ASH U2T4F5

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER **050766** 

#### ANALYSIS REPORT

| PROXIMATE          | (Dry)%       |               | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|--------------------|--------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfu | ır           | 93.02<br>0.25 | Carbon<br>Chlorine<br>Ash | 5.90<br>0.003<br>93.02 | Silicon<br>Al2O3<br>TiO2                 | 49.82<br>25.61<br>1.41                       |
| MISC. (As [        | <u>)et.)</u> |               | 7.511                     | 50,01                  | Fe2O3<br>CaO                             | 10.25<br>1.47                                |
| Hg                 | 0.246 PPM    | I             |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.93<br>0.53<br>2.40<br>0.30<br>0.62<br>6.66 |

AS DETERMINED MOISTURE: 0.22 %

1

#### DISTRIBUTION: S. TSENG J. LOCKE J. WITHUM

DESCRIPTION ESP HOPPER ASH 10:58 UNIT 2 TEST 4 FIELD 6 SILO 1 DATE SAMPLED 01/26/05 SAMPLE NUMBER ESP ASH U2T4F6

DATE LOGGED 02/07/05 DATE COMPLETED 03/15/05 PROJECT NUMBER 1621-87 -ANALYTICAL NUMBER 050767

#### ANALYSIS REPORT

| PROXIMATE (Dry)        | <u> %</u>     | ULTIMATE                  | (Dry)%                 | MAJOR ASH ELEM                           | (Dry)%                                       |
|------------------------|---------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|
| Ash<br>Total Sulfur    | 93.02<br>0.25 | Carbon<br>Chlorine<br>Ash | 6.03<br>0.003<br>93.02 | Silicon<br>Al2O3<br>TiO2                 | 50.09<br>25.63<br>1.41                       |
| <u>MISC. (As Det.)</u> |               |                           |                        | Fe203<br>Ca0                             | 10.41<br>1.46                                |
| Hg 0.240               | РРМ           |                           |                        | MgO<br>Na2O<br>K2O<br>P2O5<br>SO3<br>UND | 0.94<br>0.53<br>2.38<br>0.30<br>0.62<br>6.23 |

AS DETERMINED MOISTURE: 0.18 %

3

| DIS | STRIBUTION: |
|-----|-------------|
| S.  | TSENG       |
| J.  | LOCKE       |
| J.  | WITHUM      |



| FGD SLURRY SOLIDS 13:05  | Date Complete               |
|--------------------------|-----------------------------|
| UNIT 1 TEST 1 MODULE 1A  | Date Receive<br>Submitted k |
| Sample No.: U1T1 FGDS-1A |                             |
| Proximate (Dry) %        | <u>Ultimate (Dr</u>         |
| Ash 99.92                | Carbon                      |

Date Completed: 04/04/2005 Date Received: 2/7/05 Submitted by: S. TSENG Project No.: 1621 - 087 - 000

Analytical No.: 20050707

| Proximate g                          | (Dry) <u>%</u> | <u>Ultimate (Dry) %</u>    |          | Ash Fusion Reduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing Temp. °F |
|--------------------------------------|----------------|----------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Ash                                  | 99.92          | Carbon 0.62                |          | I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| Volatile Matter                      | 00101          | Hydrogen                   |          | Soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Fixed Carbon                         |                | Nitrogen                   | <u> </u> | Hemi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                                      |                | Chlorine 0:6000            | OK       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| BTU/lb                               |                | Sulfur, Total<br>Ash 99.92 |          | Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| MAF BTU/lb                           |                | Oxygen (DIFF)              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                      |                |                            |          | Ash Fusion Oxidiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing Temp. °F |
| Grindability                         |                | Free Swelling Index        |          | I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| HGI                                  |                | FSI                        |          | Soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| At Moisture %                        | 4.47           |                            |          | Hemi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                                      | 0.00           |                            |          | Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                                      | 0.00           | <u>Trace Elements</u>      |          | T Tala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| <u>Sulfur Form</u>                   | <u>(Dry)</u>   |                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Pyritic Sulfur<br>Sulfate<br>Organic |                |                            |          | Section and the second section of the second se | Fermined.    |
| Sulfur, Total                        |                |                            |          | SiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.74         |
| Cultur, Total                        |                |                            |          | Al2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11         |
|                                      |                |                            |          | TiO2<br>Fe2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00<br>0.10 |
| <u>Misc.</u>                         |                |                            |          | CaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.53        |
| A                                    | /_1            |                            |          | MgO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.34         |
| <u>Analysis</u>                      | <u>/alue</u>   |                            |          | Na2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24         |
| % SOLIDS                             | 13.0           |                            |          | K2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06         |
|                                      |                | Hg 0.827 ppm               |          | P2O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03         |
| DENSITY                              | 1.115          |                            |          | SO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.18        |
|                                      |                | Fluorine                   |          | Undetermined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.67         |

#### As Determined Moisture 4.47 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM Approved:



| FGD SLURRY SOLIDS 13:05   | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 ~ 000       |
|---------------------------|-------------------------------------------------|-------------------------------------|
| UNIT 1 TEST 1 MODULE 1B   | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050708            |
| Sample No.: U1T1 FGDS-1B  | <b>-</b>                                        |                                     |
| <u>Proximate (Dry) %</u>  | Ultimate (Dry) <u>%</u>                         | <u>Ash Fusion Reducing Temp. °F</u> |
| Ash 90.24                 | Carbon 2.85                                     | I.D.                                |
| Volatile Matter           | Hydrogen                                        | Soft.                               |
| Fixed Carbon              | Nitrogen<br>Chlorine 0.3500                     | Hemi.                               |
|                           | Sulfur, Total                                   | Fluid                               |
| BTU/lb<br>MAF BTU/lb      | Ash 90.24                                       |                                     |
|                           | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F       |
|                           | Free Swelling Index                             | 1.D.                                |
| <u>Grindability</u>       | FSI                                             | Soft.                               |
| HGI<br>At Moisture % 4.12 |                                                 | Hemi.                               |
| 0.00                      | /                                               | Fluid                               |
| 0.00                      | Trace Elements                                  |                                     |
| Sulfur Form (Dry)         |                                                 |                                     |
| Pyritic Sulfur            |                                                 | Major Ash Elem                      |
| Sulfate                   |                                                 | as Det.                             |
| Organic                   |                                                 | SiO2 0.79                           |
| Sulfur, Total             |                                                 | Al2O3 0.08                          |
|                           |                                                 | TiO2 0.01                           |
| Misc.                     |                                                 | Fe2O3 0.11                          |
| <u>IMISC.</u>             |                                                 | CaO 43.80                           |
| <u>Analysis Value</u>     |                                                 | MgO 0.33                            |
|                           |                                                 | Na2O 0.16<br>K2O 0.04               |
| % SOLIDS 11.1             |                                                 | P2O5 0.04                           |
|                           | Hg 0.609 ppm                                    | SO3 41.13                           |
| DENSITY 1.098             | Fluorine                                        |                                     |
|                           |                                                 | Undetermined 13.51                  |

#### As Determined Moisture 4.12 %

Distribution:

1

1

- **h** - - - - - **h** - -

These values have been reviewed and are approved for transmission.

Approved:

S. TSENG J. LOCKE J. WITHUM



لل الملك.

. **1**. . . . . . . . . . . . .

| FGD SLURRY SOLIDS 11:00<br>UNIT 1 TEST 2 MODULE 1A<br>Sample No.: U1T2 FGDS-1A                    | Date Completed: 04/04/2005<br>Date Received: 2/7/05<br>Submitted by: S. TSENG                             | Project No.: 1621 - 087 - 000<br>Analytical No.: 20050709                                     |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Proximate (Dry) <u>%</u><br>Ash 103.14<br>Volatile Matter<br>Fixed Carbon<br>BTU/lb<br>MAF BTU/lb | Ultimate (Dry) %<br>Carbon 0.84<br>Hydrogen<br>Nitrogen<br>Chlorine 0.6300<br>Sulfur, Total<br>Ash 103.14 | <u>Ash Fusion Reducing Temp. °F</u><br>I.D.<br>Soft.<br>Hemi.<br>Fluid                        |
| Grindability<br>HGI<br>At Moisture % 4.03<br>0.00                                                 | Oxygen (DIFF)<br><u>Free Swelling Index</u><br>FSI<br><u>Trace Elements</u>                               | <u>Ash Fusion Oxidizing Temp. °F</u><br>I.D.<br>Soft.<br>Hemi.<br>Fluid                       |
| <u>Sulfur Form (Dry)</u><br>Pyritic Sulfur<br>Sulfate<br>Organic<br>Sulfur, Total                 |                                                                                                           | Major Ash Elem.AcDetSiO20.87Al2O30.14TiO20.01Fe2O30.13                                        |
| <u>Misc.</u><br><u>Analysis Value</u><br>% SOLIDS 12.9<br>DENSITY 1.113                           | Hg 0.871 ppm<br>Fluorine                                                                                  | CaO 42.15<br>MgO 0.36<br>Na2O 0.25<br>K2O 0.06<br>P2O5 0.02<br>SO3 49.68<br>Undetermined 6.33 |

As Determined Moisture 4.03 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM Approved:



in a na

11

4

| FGD SLURRY SOLIDS 11<br>UNIT 1 TEST 2 MODULE 7<br>Sample No.: U1T2 FGDS-                                | B Date Received: 2/7/05<br>Submitted by: S. TSENG                                                                                | Project No.: 1621 - 087 - 000<br>Analytical No.: 20050710                                                                                               |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Proximate</u> (Drγ) <u>%</u><br>Ash 91.54<br>Volatile Matter<br>Fixed Carbon<br>BTU/lb<br>MAF BTU/lb | <u>Ultimate (Dry) %</u><br>Carbon 2.39<br>Hydrogen<br>Nitrogen<br>Chlorine 0.3600<br>Sulfur, Total<br>Ash 91.54<br>Oxygen (DIFF) | Ash Fusion Reducing Temp. °F<br>I.D.<br>Soft.<br>Hemi.<br>Fluid<br>Ash Fusion Oxidizing Temp. °F                                                        |
| <u>Grindability</u><br>HGI<br>At Moisture % 5.32<br>0.00<br><u>Sulfur Form (Dry)</u>                    | <u>Free Swelling Index</u><br>FSI<br><u>Trace Elements</u>                                                                       | I.D.<br>Soft.<br>Hemi.<br>Fluid                                                                                                                         |
| Pyritic Sulfur<br>Sulfate<br>Organic<br>Sulfur, Total<br><u>Misc.</u>                                   |                                                                                                                                  | $\begin{tabular}{c} Major Ash Elem. \\ \hline @S & D = f \\ SiO2 & 0.73 \\ Al2O3 & 0.08 \\ TiO2 & 0.00 \\ Fe2O3 & 0.11 \\ CaO & 43.20 \\ \end{tabular}$ |
| <u>Analysis Value</u><br>% SOLIDS 7.4<br>DENSITY 1.070                                                  | Hg 0.712 ppm<br>Fluorine                                                                                                         | MgO 0.31<br>Na2O 0.16<br>K2O 0.03<br>P2O5 0.04<br>SO3 41.41<br>Undetermined 13.93                                                                       |

As Determined Moisture 5.32 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM Approved:

R\_\_\_\_



1.0

1

| FGD SLURRY SOLIDS 15:45      | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|------------------------------|-------------------------------------------------|-------------------------------|
| UNIT 1 TEST 3 MODULE 1A      | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050711      |
| Sample No.: U1T3 FGDS-1A     |                                                 |                               |
| Proximate (Dry) <u>%</u>     | Ultimate (Dry) <u>%</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 99.81                    | Carbon 0.68                                     | I.D.                          |
| Volatile Matter              | Hydrogen                                        | Soft.                         |
| Fixed Carbon                 | Nitrogen                                        | Hemi.                         |
|                              | Chlorine 0.6100                                 | Fluid                         |
| BTU/Ib                       | Sulfur, Total<br>Ash 99.81                      | Fluid                         |
| MAF BTU/lb                   | Oxygen (DIFF)                                   | Ach Fusien Ovidining Town     |
|                              |                                                 | Ash Fusion Oxidizing Temp. °F |
| <u>Grindability</u>          | Free Swelling Index                             | I.D.                          |
| HGI                          | FSI                                             | Soft.                         |
| At Moisture % 4.03           |                                                 | Hemi.                         |
| 0.00                         |                                                 | Fluid                         |
| 0.00                         | <u>Trace Elements</u>                           |                               |
| Sulfur Form (Dry)            |                                                 |                               |
| Pyritic Sulfur               |                                                 | Major Ash Elem                |
| Sulfate                      |                                                 | es Det.                       |
| Organic                      |                                                 | SiO2 0.77                     |
| Sulfur, Total                |                                                 | Al2O3 0.12                    |
|                              |                                                 | TiO2 0.01                     |
| Misc.                        |                                                 | Fe2O3 0.12                    |
|                              |                                                 | CaO 40.64<br>MgO 0.40         |
| <u>Analysis</u> <u>Value</u> |                                                 | Na2O 0.30                     |
| % SOLIDS 12.8                |                                                 | K2O 0.07                      |
|                              |                                                 | P2O5 0.03                     |
| DENSITY 1.117                | Hg 0.908 ppm                                    | SO3 49.37                     |
|                              | Fluorine                                        | Undetermined 8.17             |

#### As Determined Moisture 4.03 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM

Approved:



| FGD SLURRY SOLIDS 15:50  | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|--------------------------|-------------------------------------------------|-------------------------------|
| UNIT 1 TEST 3 MODULE 1B  | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050712      |
| Sample No.: U1T3 FGDS-1B | <b>,</b>                                        |                               |
| Proximate (Dry) <u>%</u> | <u>Ultimate (Dry) %</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 92.24                | Carbon 2.31                                     | I.D.                          |
| Volatile Matter          | Hydrogen                                        | Soft.                         |
| Fixed Carbon             | Nitrogen                                        | Hemi.                         |
|                          | Chlorine 0.4000<br>Sulfur, Total                | Fluid                         |
| BTU/lb                   | Ash 92.24                                       | T lala                        |
| MAF BTU/lb               | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                          | Fire - Orige Wings Indexe                       | I.D.                          |
| <u>Grindability</u>      | Free Swelling Index                             |                               |
| HGI                      | FSI                                             | Soft.                         |
| At Moisture % 5.46       |                                                 | Hemi.                         |
| 0.00                     | Trace Elements                                  | Fluid                         |
| Sulfur Form (Dry)        |                                                 |                               |
| Pyritic Sulfur           |                                                 | Major Ash Elem.               |
| Sulfate<br>Organic       |                                                 | as pet.                       |
| -                        |                                                 | SiO2 0.74                     |
| Sulfur, Total            |                                                 | Al2O3 0.10                    |
|                          |                                                 | TiO2 0.01<br>Fe2O3 0.12       |
| Misc.                    |                                                 | CaO 41.98                     |
|                          |                                                 | MgO 0.34                      |
| <u>Analysis Value</u>    |                                                 | Na2O 0.20                     |
| % SOLIDS 7.0             |                                                 | K2O 0.05                      |
|                          | Hg 0.744 ppm                                    | P2O5 0.05<br>SO3 41.79        |
| DENSITY 1.070            | Fluorine                                        | Undetermined 14.62            |

As Determined Moisture 5.46 %

These values have been reviewed and are approved for transmission.

Distribution:

1.0

10.00

. 181

-=

S. TSENG J. LOCKE J. WITHUM Approved:



| FGD SLURRY SOLIDS 11:20           | Date Completed: 04/04/2005                        | Project No.: 1621 - 087 - 000 |
|-----------------------------------|---------------------------------------------------|-------------------------------|
| UNIT 1 TEST 4 MODULE 1A           | Date Received: 2/7/05<br>Submitted by: S. TSENG ` | Analytical No.: 20050713      |
| Sample No.: U1T4 FGDS-1A          |                                                   |                               |
| Proximate (Dry) <u>%</u>          | <u>Ultimate (Dry) %</u>                           | Ash Fusion Reducing Temp. °F  |
| Ash 99.30                         | Carbon 0.78                                       | I.D.                          |
| Volatile Matter                   | Hydrogen                                          | Soft.                         |
| Fixed Carbon                      | Nitrogen                                          | Hemi.                         |
|                                   | Chlorine 0.5600<br>Sulfur, Total                  | Fluid                         |
| BTU/lb                            | Ash 99.30                                         | , laid                        |
| MAF BTU/lb                        | Oxygen (DIFF)                                     | Ash Fusion Oxidizing Temp. °F |
|                                   | Free Swelling Index                               | I.D.                          |
| <u>Grindability</u>               |                                                   |                               |
| HGI                               | FSI                                               | Soft.                         |
| At Moisture % 4.06                |                                                   | Hemi.                         |
| 0.00                              | Trace Elements                                    | Fluid                         |
|                                   |                                                   |                               |
| <u>Sulfur Form</u> ( <u>Dry</u> ) |                                                   |                               |
| Pyritic Sulfur                    |                                                   | <u>Major Ash Elem.</u>        |
| Sulfate                           |                                                   | as Del                        |
| Organic                           |                                                   |                               |
| Sulfur, Total                     |                                                   | SiO2 0.86<br>Al2O3 0.14       |
|                                   |                                                   | TiO2 0.01                     |
|                                   |                                                   | Fe2O3 0.13                    |
| <u>Misc.</u>                      | _                                                 | CaO 41.77                     |
| <u>Analysis Value</u>             |                                                   | MgO 0.33                      |
|                                   |                                                   | Na2O 0.23                     |
| % SOLIDS 13.1                     |                                                   | K2O 0.06<br>P2O5 0.05         |
|                                   | Hg 0.888 ppm                                      | SO3 49.64                     |
| DENSITY 1.120                     | Fluorine                                          | 303 48.04                     |
|                                   | Fluorine                                          | Undetermined 6.78             |

As Determined Moisture 4.06 %

These values have been reviewed and are approved for transmission.

Distribution:

states II o

1

-

S. TSENG J. LOCKE

J. WITHUM

Approved:



#### FGD SLURRY SOLIDS 11:25

#### UNIT 1 TEST 4 MODULE 1B Sample No.: U1T4 FGDS-1B

日本語

1

4

Date Completed: 04/04/2005 Date Received: 2/7/05 Submitted by: S. TSENG Project No.: 1621 - 087 - 000

Analytical No.: 20050714

| <u>Proximate (Dry) %</u>             | <u>Ultimate (Dry) %</u>     | Ash Fusion Reducing Temp. °F  |
|--------------------------------------|-----------------------------|-------------------------------|
| Ash 93.02                            | Carbon 2.06                 | I.D.                          |
| Volatile Matter                      | Hydrogen                    | Soft.                         |
| Fixed Carbon                         | Nitrogen<br>Chlorine 0.4800 | Hemi.                         |
|                                      | Sulfur, Total               | Fluid                         |
| BTU/lb<br>MAF BTU/lb                 | Ash 93.02                   |                               |
|                                      | Oxygen (DIFF)               | Ash Fusion Oxidizing Temp. °F |
| Grindability                         | Free Swelling Index         | I.D.                          |
| HGI                                  | FSI                         | Soft.                         |
| At Moisture % 5.83                   |                             | Hemi.                         |
| 0.00                                 | Trace Elements              | Fluid                         |
| <u>Sulfur Form (Dry)</u>             |                             |                               |
| Pyritic Sulfur<br>Sulfate<br>Organic |                             | Major Ash Elem.               |
| Sulfur, Total                        |                             | SiO2 0.77                     |
| Sunar, Fotor                         |                             | Al2O3 0.10<br>TiO2 0.01       |
|                                      |                             | Fe2O3 0.12                    |
| <u>Misc.</u>                         |                             | CaO 41.64                     |
|                                      |                             | MgO 0.31                      |
| <u>Analysis</u> <u>Value</u>         |                             | Na2O 0.19                     |
| % SOLIDS 6.9                         |                             | K2O 0.06                      |
|                                      | Ha 0.744 nom                | P2O5 0.04                     |
| DENSITY 1.074                        | Hg 0.744 ppm                | SO3 43.23                     |
|                                      | Fluorine                    | Undetermined 13.53            |

#### As Determined Moisture 5.83 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM Approved:



| FGD | SLU | IRRY | SOLIDS | 12:53 |
|-----|-----|------|--------|-------|
|     |     |      |        |       |

#### **UNIT 2 TEST 1 MODULE 2A**

Date Completed: 04/04/2005 Date Received: 2/7/05 Submitted by: S. TSENG Project No.: 1621 - 087 - 000

Analytical No.: 20050715

| Sample No.:              | : U2T1 F(      | GDS-2A   | Cushi               | accu by. 0.   | TOENO    |                   |                      |
|--------------------------|----------------|----------|---------------------|---------------|----------|-------------------|----------------------|
| Proximate                | <u>(Dry)</u>   | <u>%</u> | <u>Ultima</u>       | te (Dry)      | <u>%</u> | Ash Fusion Reduc  | <u>:ing Temp. °F</u> |
| As                       | sh 96          | 6.99     | Cart                | on 1.3        | 32       | I.D.              |                      |
| Volatile Matte           | er             |          | Hydrog              | jen           |          | Soft.             |                      |
| Fixed Carbo              | n              |          | Nitrog              |               |          | Hemi.             |                      |
|                          |                |          | Chlor<br>Sulfur, To |               | 0        | Fluid             |                      |
| BTU/                     |                |          |                     | \sh 96.9      | )9       | i luid            |                      |
| MAF BTU/                 | lb             |          | Oxygen (Dil         |               |          | Ash Fusion Oxidiz | <u>ing Temp. °F</u>  |
| <u>Grindabili</u>        | tv             |          | <u>Free Sv</u>      | veiling Index | <u>x</u> | I.D.              |                      |
|                          |                |          | I                   | -SI           |          | Soft.             |                      |
| HC<br>At Moisture        |                |          |                     |               |          | Hemi.             |                      |
|                          | 0.00           |          | <u>Trace El</u>     | ements        |          | Fluid             |                      |
| Sulfur For               | <u>m (Dry)</u> |          |                     |               |          |                   |                      |
| Pyritic Sulfu<br>Sulfate |                |          |                     |               |          | Major As          |                      |
| Organic                  |                |          |                     |               |          | as De             |                      |
| Sulfur, Total            |                |          |                     |               |          | SiO2              | 0.99                 |
| Sullui, Tota             | 1              |          |                     |               |          | Al2O3             | 0.06                 |
|                          |                |          |                     |               |          | TiO2              | 0.00                 |
| <u>Misc.</u>             |                |          |                     |               |          | Fe2O3<br>CaO      | 0.05<br>41.87        |
|                          |                |          |                     |               |          | MgO               | 0.29                 |
| <u>Analysis</u>          | <u>Value</u>   |          |                     | ·             |          | Na2O              | 0.22                 |
| % SOLIDS                 | 9.5            |          |                     |               |          | K2O               | 0.04                 |
|                          |                |          |                     |               |          | P2O5              | 0.02                 |
| DENSITY                  | 1.077          |          | Hg (                | ).607 ppm     |          | SO3               | 46.67                |
|                          |                |          | Fluorine            |               |          | Undetermined      | 9.79                 |

As Determined Moisture 4.52 %

These values have been reviewed and are approved for transmission.

Distribution:

4

S. TSENG J. LOCKE J. WITHUM

Approved:



#### FGD SLURRY SOLIDS 12:58

### UNIT 2 TEST 1 MODULE 2C

į.

4

Date Completed: 04/04/2005 Date Received: 2/7/05 Submitted by: S. TSENG Project No.: 1621 - 087 - 000

Analytical No.: 20050716

| Sample No.:         | U2T1 FGDS-2C     | Submitted            | by: 0. TOLING   |                   |              |
|---------------------|------------------|----------------------|-----------------|-------------------|--------------|
| Proximate           | . <u>(Dry) %</u> | <u>Ultimate (D</u>   | <u>ry) %</u>    | Ash Fusion Reduc  | ing Temp. °F |
| As                  | h 99.90          | Carbon               | 0.60            | I.D.              |              |
| Volatile Matte      |                  | Hydrogen             |                 | Soft.             |              |
| Fixed Carbo         | n                | Nitrogen             |                 | Hemi.             |              |
|                     |                  | Chlorine             | 0.6200          | Fluid             |              |
| BTU/I               | lb               | Sulfur, Total<br>Ash | 99.90           | Huid              |              |
| MAF BTU/            | lb               | Oxygen (DIFF)        | 00.00           | Ash Fusion Oxidiz | ing Temp. °F |
| Grindabili          | 4.7              | <u>Free Swellir</u>  | <u>ng Index</u> | I.D.              |              |
|                     |                  | FSI                  |                 | Soft.             |              |
| HC<br>At Moisture S |                  |                      |                 | Hemi.             |              |
|                     | 0.00             | Trace Elemer         | <u>nts</u>      | Fluid             |              |
| Sulfur For          | m (Dry)          |                      |                 |                   |              |
| Pyritic Sulfur      |                  |                      |                 | <u>Major As</u>   |              |
| Sulfate<br>Organic  |                  |                      |                 | 9.5 PG            | f            |
| -                   |                  |                      |                 | SiO2              | 1.27         |
| Sulfur, Total       |                  |                      |                 | Al2O3             | 0.12         |
|                     |                  |                      |                 | TiO2              | 0.01         |
| Mine                |                  |                      |                 | Fe2O3             | 0.08         |
| <u>Misc.</u>        |                  |                      |                 | CaO               | 40.12        |
| A                   | Melue            |                      |                 | MgO               | 0.33         |
| <u>Analysis</u>     | <u>Value</u>     |                      |                 | Na2O              | 0.30         |
| % SOLIDS            | 10.9             |                      |                 | K2O               | 0.07         |
|                     |                  |                      |                 | P2O5              | 0.00         |
| DENSITY             | 1.098            | Hg 0.562             | 2 ppm           | SO3               | 50.62        |
|                     |                  | Fluorine             |                 | Undetermined      | 7.08         |

#### As Determined Moisture 6.12 %

These values have been reviewed and are approved for transmission.

Approved:

Distribution:

S. TSENG J. LOCKE J. WITHUM



### FGD SLURRY SOLIDS 10:11

# UNIT 2 TEST 2 MODULE 2A Sample No.: U2T2 FGDS-2A

Date Completed: 04/04/2005 Date Received: 2/7/05 Submitted by: S. TSENG Project No.: 1621 - 087 - 000

Analytical No.: 20050717

| Proximate                            | <u>(Dry) %</u> | <u>Ultimate (Dr</u>       | <u>v) %</u>    | Ash Fusion Reduc  | ing Temp. °F  |
|--------------------------------------|----------------|---------------------------|----------------|-------------------|---------------|
| Ash                                  | 95.23          | Carbon                    | 1.83           | I.D.              |               |
| Volatile Matter                      |                | Hydrogen                  |                | Soft.             |               |
| Fixed Carbon                         | I              | Nitrogen                  |                | Hemi.             |               |
|                                      |                | Chlorine<br>Sulfur, Total | 0.4800         | Fluid             |               |
| BTU/lb                               |                | Ash                       | 95.23          | ridio             | ·             |
| MAF BTU/lb                           |                | Oxygen (DIFF)             |                | Ash Fusion Oxidiz | ing Temp. °F  |
| Crindahilita                         |                | Free Swellin              | <u>g Index</u> | I,D.              |               |
| <u>Grindability</u>                  | -              | FSI                       |                | Soft.             |               |
| HGI<br>At Moisture %                 |                |                           |                | Hemi.             |               |
|                                      | 0.00           | Trace Elemen              | <u>ts</u>      | Fluid             |               |
| Sulfur Forn                          | <u>1 (Dry)</u> |                           |                |                   |               |
| Pyritic Sulfur<br>Sulfate<br>Organic |                |                           |                |                   | l.            |
| Sulfur, Total                        |                |                           |                | SiO2              | 1.27          |
| Cunar, rota                          |                |                           |                | Al2O3<br>TiO2     | 0.07<br>0.00  |
|                                      |                |                           |                | Fe2O3             | 0.07          |
| <u>Misc.</u>                         |                |                           |                | CaO               | 43.37         |
| Apolycic                             | Value          | _                         |                | MgO               | 0.40          |
| _                                    |                |                           |                | Na2O              | 0.29          |
| % SOLIDS                             | 10.1           |                           |                | K2O               | 0.05<br>0.03  |
| DENSITY                              | 1.088          | Hg 0.592                  | ppm            | P2O5<br>SO3       | 0.03<br>45.43 |
|                                      | 1.000          | Fluorine                  |                | Undetermined      | 9.02          |

As Determined Moisture 4.60 %

These values have been reviewed and are approved for transmission.

Distribution:

1

1

•••

S. TSENG J. LOCKE J. WITHUM Approved:



1.0

10 | 12

1.1

| FGD SLURRY SOLI         | DS 10:16 |                  | pleted: 04/04/2005                  | Project No.:      | 1621 _ 087 -000 |
|-------------------------|----------|------------------|-------------------------------------|-------------------|-----------------|
| UNIT 2 TEST 2 MOI       | DULE 2C  |                  | ceived: 2/7/05<br>ited by: S. TSENG | Analytical No.:   | 20050718        |
| Sample No.: U2T2        | FGDS-2C  | Subini           | ted by. 0. IOLNO                    |                   |                 |
| Proximate (Dry)         | <u>%</u> | Ultimat          | e (Dry) <u>%</u>                    | Ash Fusion Reduc  | ing Temp. °F    |
| Ash                     | 97.80    | Carb             | on 0.60                             | I.D.              |                 |
| Volatile Matter         | 01.00    | Hydrog           |                                     | Soft.             |                 |
| Fixed Carbon            |          | Nitrog           |                                     | Hemi.             |                 |
|                         |          | Chlori           |                                     | Fluid             |                 |
| BTU/lb                  |          | Sulfur, To<br>A  | tai<br>sh 97.80                     | Fluid             |                 |
| MAF BTU/lb              |          | Oxygen (DIF      |                                     | Ash Fusien Onisia |                 |
|                         |          | • - ·            |                                     | Ash Fusion Oxidiz | ang remp. r     |
| <b>Grindability</b>     |          | <u>Free Sw</u>   | elling Index                        | l.D.              |                 |
| HGI                     |          | F                | SI                                  | Soft.             |                 |
| At Moisture % 3.4       | 2        |                  |                                     | Hemi.             |                 |
| 0.0                     | 0        |                  |                                     | Fluid             |                 |
| 0.0                     | 0        | <u>Trace Ele</u> | <u>ments</u>                        |                   |                 |
| <u>Sulfur Form</u> (Dry | )        |                  |                                     |                   |                 |
|                         |          |                  |                                     |                   |                 |
| Pyritic Sulfur          |          |                  |                                     | <u>Major As</u>   |                 |
| Sulfate<br>Organic      |          |                  |                                     | acs 3             | oct.            |
| -                       |          |                  |                                     | SiO2              | 1. <b>1</b> 5   |
| Sulfur, Total           |          |                  |                                     | Al2O3             | 0.06            |
|                         |          |                  |                                     | TiO2              | 0.00            |
| Misc.                   |          |                  |                                     | Fe2O3             | 0.05            |
| <u>misc.</u>            |          |                  |                                     | CaO               | 40.81           |
| <u>Analysis Value</u>   | L        |                  |                                     | MgO               | 0.29            |
|                         | -        |                  |                                     | Na2O              | 0.24            |
| % SOLIDS 11.0           |          |                  |                                     | K2O               | 0.04            |
|                         |          | Hg C             | .562 ppm                            | P2O5<br>SO3       | 0.01<br>51.29   |
| DENSITY 1.08            |          | U U              | loo= ppm                            | 303               | 01,29           |
|                         | ſ        | Fluorine         |                                     | Undetermined      | 6.06            |

As Determined Moisture 3.42 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG J. LOCKE J. WITHUM Approved:



| FGD SLURRY SOLIDS 14:02  | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|--------------------------|-------------------------------------------------|-------------------------------|
| UNIT 2 TEST 3 MODULE 2A  | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050719      |
| Sample No.: U2T3 FGDS-2A |                                                 |                               |
| Proximate (Dry) <u>%</u> | Ultimate (Dry) <u>%</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 94.29                | Carbon 1.69                                     | I.D.                          |
| Volatile Matter          | Hydrogen                                        | Soft.                         |
| Fixed Carbon             | Nitrogen                                        | Hemi.                         |
|                          | Chlorine 0.6200<br>Sulfur, Total                | Fluid                         |
| BTU/Ib                   | Ash 94.29                                       | Tud                           |
| MAF BTU/Ib               | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                          | Even Over Wenn Index                            | LD.                           |
| <u>Grindability</u>      | Free Swelling Index                             |                               |
| HGI                      | FSI                                             | Soft.                         |
| At Moisture % 2.51       |                                                 | Hemi.                         |
| 0.00                     | Trace Elements                                  | Fluid                         |
| <u>Sulfur Form (Dry)</u> |                                                 |                               |
| Pyritic Sulfur           |                                                 | <u>Major Ash Elem.</u>        |
| Sulfate<br>Organic       |                                                 | as Del.                       |
| -                        |                                                 | SiO2 1.24                     |
| Sulfur, Total            |                                                 | Al2O3 0.06                    |
|                          |                                                 | TiO2 0.00                     |
| <u>Misc.</u>             |                                                 | Fe2O3 0.06<br>CaO 42.21       |
|                          | <u> </u>                                        | MgO 0.31                      |
| <u>Analysis Value</u>    |                                                 | Na2O 0.22                     |
| % SOLIDS 9.5             |                                                 | K2O 0.03                      |
|                          |                                                 | P2O5 0.00                     |
| DENSITY 1.093            | Hg 0.639 ppm                                    | SO3 46.15                     |
|                          | Fluorine                                        | Undetermined 9.72             |

As Determined Moisture 2.51 %

These values have been reviewed and are approved for transmission.

Distribution:

S. TSENG

Approved:

J. LOCKE J. WITHUM

-

1.0.42

1.1



| FGD SLURRY SOLIDS 14:07<br>UNIT 2 TEST 3 MODULE 2C<br>Sample No.: U2T3 FGDS-2C | Date Completed: 04/04/2005<br>Date Received: 2/7/05<br>Submitted by: S. TSENG | Project No.: 1621 - 087 - 000<br>Analytical No.: 20050720 |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|
| <u>Proximate (Dry) %</u>                                                       | Ultimate (Dry) <u>%</u>                                                       | Ash Fusion Reducing Temp. °F                              |
|                                                                                | Carbon 0.66                                                                   | I.D.                                                      |
| Ash 97.56<br>Volatile Matter                                                   | Hydrogen                                                                      | Soft.                                                     |
| Fixed Carbon                                                                   | Nitrogen                                                                      |                                                           |
|                                                                                | Chlorine 0.5900                                                               | Hemi.                                                     |
| BTU/lb                                                                         | Sulfur, Total                                                                 | Fluid                                                     |
| MAF BTU/b                                                                      | Ash 97.56                                                                     |                                                           |
|                                                                                | Oxygen (DIFF)                                                                 | Ash Fusion Oxidizing Temp. °F                             |
|                                                                                | Free Swelling Index                                                           | I.D.                                                      |
| <u>Grindability</u>                                                            | FSI                                                                           | Soft.                                                     |
| HGI                                                                            | roi                                                                           |                                                           |
| At Moisture % 2.69                                                             |                                                                               | Hemi.                                                     |
| 0.00                                                                           | Trace Elements                                                                | Fluid                                                     |
| Sulfur Form (Dry)                                                              |                                                                               |                                                           |
| Pyritic Sulfur<br>Sulfate<br>Organic                                           |                                                                               | Major Ash Elem.                                           |
| -                                                                              |                                                                               | SiO2 1.18                                                 |
| Sulfur, Total                                                                  |                                                                               | Al2O3 0.07                                                |
|                                                                                |                                                                               | TiO2 0.00                                                 |
| Misc.                                                                          |                                                                               | Fe2O3 0.07                                                |
| <u>iviibu.</u>                                                                 | _                                                                             | CaO 41.34                                                 |
| <u>Analysis Value</u>                                                          |                                                                               | MgO 0.33                                                  |
|                                                                                |                                                                               | Na2O 0.26                                                 |
| % SOLIDS 10.5                                                                  |                                                                               | K2O 0.03<br>P2O5 0.01                                     |
|                                                                                |                                                                               |                                                           |

DENSITY 1.084

Hg 0.575 ppm

Fluorine

Undetermined 4.98

\$O3

51.73

As Determined Moisture 2.69 %

These values have been reviewed and are approved for transmission.

Distribution:

-

S. TSENG J. LOCKE J. WITHUM Approved:



| FGD SLURRY SOLIDS 09:38  | Date Completed: 04/04/2005                      | Project No.: 1621 - 087 - 000 |
|--------------------------|-------------------------------------------------|-------------------------------|
| UNIT 2 TEST 4 MODULE 2A  | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050721      |
| Sample No.: U2T4 FGDS-2A |                                                 |                               |
| Proximate (Dry) %        | <u>Ultimate (Dry) %</u>                         | Ash Fusion Reducing Temp. °F  |
| Ash 97.50                | Carbon 0.79                                     | I.D.                          |
| Volatile Matter          | Hydrogen                                        | Soft.                         |
| Fixed Carbon             | Nitrogen                                        | Hemi.                         |
|                          | Chlorine 0.6400<br>Sulfur, Total                | Fluid                         |
| BTU/lb                   | Ash 97.50                                       | T MM                          |
| MAF BTU/Ib               | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp, °F |
|                          | Free Swelling Index                             | 1.D.                          |
| <u>Grindability</u>      |                                                 |                               |
| HGI                      | FSI                                             | Soft.                         |
| At Moisture % 2.95       |                                                 | Hemi.                         |
| 0.00                     | Trace Elements                                  | Fluid                         |
| Sulfur Form (Dry)        |                                                 |                               |
| Pyritic Sulfur           |                                                 | <u>Major Ash ⋤lem.</u>        |
| Sulfate                  |                                                 | as Det                        |
| Organic                  |                                                 | SiO2 1.19                     |
| Sulfur, Total            |                                                 | Al2O3 0.07                    |
|                          |                                                 | TiO2 0.00                     |
| Misc.                    |                                                 | Fe2O3 0.06<br>CaO 40.71       |
|                          |                                                 | MgO 0.31                      |
| <u>Analysis Value</u>    |                                                 | Na2O 0.26                     |
|                          |                                                 | K2O 0.05                      |
|                          | Hg 0.592 ppm                                    | P2O5 0.01                     |
|                          | 0 11                                            | SO3 49.97                     |
|                          | Fluorine                                        | Undetermined 7.37             |

As Determined Moisture 2.95 %

These values have been reviewed and are approved for transmission.

Distribution:

1997 - 1987 - 19

S. TSENG J. LOCKE J. WITHUM Approved:



and the second

1. 1887. ·

4

| FGD SLURRY SOLIDS 09:  | Buto Completion of the theory                   | Project No.: 1621 - 087 - 000 |
|------------------------|-------------------------------------------------|-------------------------------|
| UNIT 2 TEST 4 MODULE 2 | Date Received: 2/7/05<br>Submitted by: S. TSENG | Analytical No.: 20050722      |
| Sample No.: U2T4 FGDS- |                                                 |                               |
| Proximate %            | <u>Ultimate %</u>                               | Ash Fusion Reducing Temp. °F  |
| Ash 97.70              | Carbon 0.59                                     | I.D.                          |
| Volatile Matter        | Hydrogen                                        | Soft.                         |
| Fixed Carbon           | Nitrogen                                        | Hemi.                         |
|                        | Chlorine 0.6400<br>Sulfur, Total                | Fluid                         |
| BTU/lb<br>MAF BTU/lb   | Ash 97.70                                       |                               |
|                        | Oxygen (DIFF)                                   | Ash Fusion Oxidizing Temp. °F |
|                        | Free Swelling Index                             | I.D.                          |
| <u>Grindability</u>    | FSI                                             | Soft.                         |
| HGI                    | 101                                             |                               |
| At Moisture % 3.25     |                                                 | Hemi.                         |
| 0.00                   | Trace Elements                                  | Fluid                         |
| Sulfur Form            |                                                 |                               |
|                        |                                                 |                               |
| Pyritic Sulfur         |                                                 | <u>Major Ash Elem.</u>        |
| Sulfate                |                                                 | as Det.                       |
| Organic                |                                                 | SiO2 1.18                     |
| Sulfur, Total          |                                                 | Al2O3 0.05                    |
|                        |                                                 | TiO2 0.00                     |
| Misc.                  |                                                 | Fe2O3 0.05                    |
|                        |                                                 | CaO 40.23                     |
| <u>Analysis Value</u>  |                                                 | MgO 0.33<br>Na2O 0.28         |
| % SOLIDS 9.4           |                                                 | K2O 0.04                      |
| 76 GOLIDO 9.4          |                                                 | P2O5 0.01                     |
| DENSITY 1.090          | Hg 0.616 ppm                                    | SO3 51.01                     |
|                        | Fluorine                                        | Undetermined 6.82             |

As Determined Moisture 3.25 %

These values have been reviewed and are approved for transmission.

Approved:

Distribution:

S. TSENG J. LOCKE J. WITHUM

### **FGD SLURRY FILTRATE 13:05**

e, 191

and the second second

Sample No.: U1T1 FGDS-1A Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050792 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                |         | Water Result<br>Inless noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                       |                   |                   |
|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------------------|-------------------|
| Parameter                      | Value   | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units | Avg Value                             | Quality Control C | alculations       |
| рН                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       | Ion Sum           | 50967.72          |
| Acidity, CaCO3                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | · · · · · · · · · · · · · · · · · · · | Cation Sum        | 805.05            |
| Alkalinity, CaCO3              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Hydroxide, CaCO3               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·     |                                       | Anion Sum         | 1004.25           |
| Carbonate, CaCO3               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       | Ion Balance       | 12.71             |
| Bicarbonate, CaCO3             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     |                                       | % Ion Imbalance   | -11.01            |
| Total Suspended Solids         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       | % Ion Impalance   | -11.01            |
| Total Dissolved Solids         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Specific Conductivity          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Hardness                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Turbidity                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Osmotic Pressure               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Dissolved Oxygen<br>Ammonia, N | <10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Ammonia, N                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Total Elements                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   | ngme              |
| Aluminum                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       | Hg 4.0            |                   |
| Calcium                        | 3910.37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   | $\langle \rangle$ |
| Iron                           | 1.42    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Magnesium                      | 4525.65 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Manganese                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Potassium                      | 753.97  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Phosphorous                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Silicon                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Sodium                         | 5021.37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Chromium                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Anions:                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Sulfate                        | 4059.71 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Chloride                       | 32500   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,     |                                       |                   |                   |
| Nitrate, N                     | 44.08   | A Construction of the American Construction o |       |                                       |                   |                   |
| Nitrite, N                     | ·       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                       |                   |                   |
| Bromide                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |
| Fluoride                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       |                   |                   |

These values have been reviewed and are approved for transmission.

gmL

### FGD SLURRY FILTRATE 13:05

같 11년

4

 Sample No.: U1T1 FGDS-1B Date Received: 02/07/2005 Date Completed: 04/05/2005 Analytical No.: 20050793 Project No.: 1621 -087 -000

Submitter: S. TSENG

| _                                     | <u>(mg/L ւ</u> | Water Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otherwise                                                                                                                                                     |                                                            |                   |             |
|---------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|-------------|
| Parameter                             | Value          | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                                                                                                                                         | Avg Value                                                  | Quality Control C | alculations |
| рН                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            | lon Sum           | 38216.08    |
| Acidity, CaCO3                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                      | Cation Sum        | 554.62      |
| Alkalinity, CaCO3<br>Hydroxide, CaCO3 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            | Anion Sum         | 765.94      |
| Carbonate, CaCO3                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Bicarbonate, CaCO3                    |                | al Andre Andre Internetion and Andre An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               | <u>, 19 (1977) (19 (19 (19 (19 (19 (19 (19 (19 (19 (19</u> | lon Balance       | 17.64       |
| Total Suspended Solids                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            | % Ion Imbalance   | -16.00      |
| Total Dissolved Solids                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Specific Conductivity                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Hardness                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Turbidity                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Osmotic Pressure                      |                | s virgi da da sina di si pri d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E ELLEquisions:                                                                                                                                               |                                                            |                   |             |
| Dissolved Oxygen<br>Ammonia, N        | <10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
|                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   | ,           |
| Total Elements                        |                | n an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |                                                            | ila 45            | ng/mc       |
| Aluminum<br>Calcium                   | 2981.17        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            | Hg 4.5            | ng /me      |
| Iron                                  | 3.99           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Magnesium                             | 3011.70        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Manganese                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Potassium                             | 506.33         | ile benn sen ser ser i se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                            |                   |             |
| Phosphorous                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
|                                       |                | an Madalitista dalam ay dama progr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               | ••••••••••••••••••••••••••••••••••••••                     |                   |             |
| Sodium                                | 3335.64        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Chromium                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Anions:                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Sulfate                               | 3936.56        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Chloride                              | 24000          | a vistinalasti, il piarasta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anda a du kaya in 100 in 100 in 100 in 100<br>ang ng pagga ulay kaya na ang pagga ulay k |                                                            |                   |             |
| Nitrate, N<br>Nitrite, N              | 99.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Bromide                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                            |                   |             |
| Fluoride                              |                | n in the state of |                                                                                                                                                               |                                                            |                   |             |



### FGD SLURRY FILTRATE 11:00

1

4 -

Sample No.: U1T2 FGDS-1A Date Received: 02/07/2005 Date Completed: 04/05/2005

20050794 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                               | •                | Water Resulf<br>Inless noted |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>)</u>  |                   |             |
|-----------------------------------------------|------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-------------|
| Parameter                                     | Value            | Value                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Avg Value | Quality Control C | alculations |
| ΕH                                            |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | lon Sum           | 50671.24    |
| Acidity, CaCO3                                |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Cation Sum        | 708.70      |
| Alkalinity, CaCO3                             |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Anion Sum         | 1049.28     |
| Carbonate, CaCO3                              |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Ion Balance       | 20.80       |
| Bicarbonate, CaCO3                            |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Total Suspended Solids Total Dissolved Solids |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | % Ion Imbalance   | -19.37      |
| Specific Conductivity<br>Hardness             |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Turbidity<br>Osmotic Pressure                 |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Dissolved Oxygen<br>Ammonia, N                | 10               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Total Elements                                |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Aluminum                                      |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Hg 4.8            | ng/mc       |
| Calcium                                       | 3447.08          | a Waldon de parte da bista   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   | 0           |
| Iron<br>Magnesium                             | <1.25<br>4002.58 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Magacescum<br>Potassium                       | 659.04           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Phosphorous<br>Silicon                        |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Sodium<br>Chromium                            | 4383.71          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Anions:                                       |                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Sulfate                                       | 3617,71<br>34500 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Nitrate, N<br>Nitrite, N                      | 13.8             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |             |
| Bromide<br>Fluoride                           |                  |                              | an paratanan ing kang dalam sa kanan sa<br>Salahan ng pang kang sa kanan sa kanan sa<br>Salahan ng pang kang sa kanan sa kang s<br>Salahan sa kang br>Salahan sa kang br>Salahan sa kang |           |                   |             |

### FGD SLURRY FILTRATE 11:05

1.1.1.1

1

1

4

i.

Sample No.: U1T2 FGDS-1B Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050795 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                               | <u>(mg/L u</u> | Water Result<br>Inless noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>otherwise)</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quality Control ( | algulations |
|-------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| Parameter                     | Value          | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units             | Avg Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quality Control C |             |
| рН                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lon Sum           | 36362.28    |
| Acidity, CaCO3                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cation Sum        | 560.19      |
| Alkalinity, CaCO3             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 700 50      |
| Hydroxide, CaCO3              |                | <ul> <li>Orthographic contraction of the second s</li></ul> |                   | STREET, STREET | Anion Sum         | 706.59      |
| Carbonate, CaCO3              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ion Balance       | 13.24       |
| Bicarbonate, CaCO3            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Ion Imbalance   | -11.56      |
| Total Suspended Solids        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % ION IMparance   | -11.00      |
| Total Dissolved Solids        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Specific Conductivity         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Hardness                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Turbidity<br>Osmotic Pressure |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Dissolved Oxygen              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Ammonia, N                    | 10             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
|                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ,           |
| Total Elements                |                | 5 11.12 11.11.11.11.11.11.11.11.11.11.11.11.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ngla        |
| Aluminum                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hg 5.7            | ng Im       |
| Calcium                       | 3044.15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | U           |
| Iron                          | 4.53           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Magnesium                     | 3017.89        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Manganese                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Potassium                     | 505.00         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 | e en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |             |
| Phosphorous                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Silicon                       | 000040         | 1. 1972 1971 1971 1971 1971 1971 1971 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Sodium                        | 3380.13        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Chromium                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Anions:                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Sulfate                       | 4478.75        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Chloride                      | 21500          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Nitrate, N                    | 97.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Nitrite, N                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Bromide                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |
| Fluoride                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |

These values have been reviewed and are approved for transmission.

ng /ml

### FGD SLURRY FILTRATE 15:45

1

111

 Sample No.: U1T3 FGDS-1A Date Received: 02/07/2005 Date Completed: 04/05/2005 Analytical No.: 20050796 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                       | <u>(mg/L ս</u>               | Water Resulf<br>Inless noted | otherwise) |           | Quality Cantural C |                |
|---------------------------------------|------------------------------|------------------------------|------------|-----------|--------------------|----------------|
| Parameter                             | Value                        | Value                        | Units      | Avg Value | Quality Control C  |                |
| 5H                                    |                              |                              |            |           | lon Sum            | 50628.59       |
| Acidity, CaCO3                        |                              |                              |            |           | Cation Sum         | 754.4 <b>7</b> |
| Alkalinity, CaCO3<br>Hydroxide, CaCO3 |                              |                              |            |           | Anion Sum          | 1024.59        |
| Carbonate, CaCO3                      |                              |                              |            |           |                    |                |
| Bicarbonate, CaCO3                    | ni ministra Elektronet de Mi |                              |            | ·····     | Ion Balance        | 16.90          |
| Total Suspended Solids                |                              |                              |            |           | % Ion Imbalance    | -15.18         |
| Specific Conductivity                 |                              |                              |            |           |                    |                |
| Hardness                              |                              |                              |            |           |                    |                |
| Turbidity<br>Osmotic Pressure         |                              |                              |            |           |                    |                |
| Dissolved Oxygen                      |                              |                              |            |           |                    |                |
| Ammonia, N                            | 10                           |                              |            |           |                    |                |
| Total Elements                        |                              |                              |            |           |                    | na l           |
| Aluminum                              |                              |                              |            |           | Hg 2.7             | ng/m           |
| Calcium                               | 3673.01                      |                              |            |           |                    | Ű              |
| Iron<br>Magnesium                     | 2.29<br>4276.17              |                              |            |           |                    |                |
| Manganese                             |                              |                              |            |           |                    |                |
| Potassium                             | 697.68                       |                              |            |           |                    |                |
| Phosphorous<br>Silicon                |                              |                              |            |           |                    |                |
| Sodium<br>Chromium                    | 4634.72                      |                              |            |           |                    |                |
| Anions:                               |                              |                              |            |           |                    |                |
| Sulfate                               | 3795.12<br>33500             |                              |            |           |                    |                |
| Nitrate, N                            | 11.2                         |                              |            |           |                    |                |
| Nitrite, N<br>Bromide<br>Fluoride     |                              |                              |            |           |                    |                |



### **FGD SLURRY FILTRATE 15:50**

10,100

đ 

. **i**. . . . . . . . . . . .

Sample No.: U1T3 FGDS-1B Date Received: 02/07/2005 Date Completed: 04/05/2005

20050797 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

| <b>D</b>                                         | <u>(mg/L u</u> | Water Result<br>Inless noted | •                                  | Avg Value                             | Quality Control 0   | alculations |
|--------------------------------------------------|----------------|------------------------------|------------------------------------|---------------------------------------|---------------------|-------------|
| Parameter                                        | Value          | Value                        | Units                              | Avy value                             | -                   |             |
| рН                                               |                |                              |                                    |                                       | lon Sum             | 36385.99    |
| Acidity, CaCO3                                   |                |                              |                                    |                                       | Cation Sum          | 521.81      |
| Alkalinity, CaCO3                                |                |                              |                                    |                                       | Anion Sum           | 728.67      |
| Hydroxide, CaCO3                                 |                |                              |                                    |                                       | Anion Sum           | 120.01      |
| Carbonate, CaCO3                                 |                |                              |                                    |                                       | Ion Balance         | 18.14       |
| Bicarbonate, CaCO3                               |                |                              |                                    |                                       | % Ion Imbalance     | -16.54      |
| Total Suspended Solids<br>Total Dissolved Solids |                |                              |                                    |                                       | 70 TOTT INTIDEIGNOC | 10.0-       |
|                                                  |                |                              |                                    |                                       |                     |             |
| Specific Conductivity<br>Hardness                |                |                              |                                    |                                       |                     |             |
| Turbidity                                        |                |                              |                                    |                                       |                     |             |
| Osmotic Pressure                                 |                |                              |                                    |                                       |                     |             |
| Dissolved Oxygen                                 |                |                              |                                    |                                       |                     |             |
| Ammonia, N                                       | <10            |                              |                                    |                                       |                     |             |
|                                                  | l · ·          |                              |                                    |                                       |                     | ,           |
| Total Elements                                   | ·····          |                              | a second contraction of the second |                                       | 11- 2.4             | Da/m        |
| Aluminum                                         |                |                              |                                    |                                       | Hg 3.6              | ng/m        |
| Calcium                                          | 2833.62        |                              |                                    | · · · · · · · · · · · · · · · · · · · |                     | U           |
| Iron                                             | 4.17           |                              |                                    |                                       |                     |             |
| Magnesium                                        | 2797.98        |                              |                                    |                                       |                     |             |
| Manganese                                        | 470.40         |                              |                                    |                                       |                     |             |
| Potassium                                        | 472.19         |                              |                                    |                                       |                     |             |
| Phosphorous                                      |                |                              |                                    |                                       |                     |             |
| Silicon                                          | 3174.58        |                              |                                    |                                       |                     |             |
| Sodium                                           | 3174.00        |                              | ·                                  |                                       |                     |             |
| Chromium                                         |                |                              |                                    |                                       |                     |             |
| Anions:                                          |                |                              |                                    |                                       |                     |             |
| Sulfate                                          | 4230.53        |                              |                                    |                                       |                     |             |
| Chloride                                         | 22500          |                              |                                    |                                       |                     |             |
| Nitrate, N                                       | 84.2           |                              |                                    |                                       |                     |             |
| Nitrite, N                                       |                |                              |                                    |                                       |                     |             |
| Bromide                                          |                |                              |                                    |                                       |                     |             |
| Fluoride                                         |                | 1                            |                                    |                                       |                     |             |

7/ml



## FGD SLURRY FILTRATE 11:20

1.44

1

1

he -- --- i ---

Sample No.: U1T4 FGDS-1A Date Received: 02/07/2005 Date Completed: 04/05/2005 Analytical No.: 20050798 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                        |                  | Nater Result<br>nless noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                 |                   |             |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|-------------------|-------------|
| Parameter                              | Value            | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                    | Avg Value                                                       | Quality Control C | alculations |
| 0 <b>H</b>                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 | Ion Sum           | 49220.75    |
| Acidity, CaCO3                         |                  | 9 (* 1 o annulannan dalami di 1971)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                 | Cation Sum        | 694.62      |
| Alkalinity, CaCO3                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   | 1017.41     |
| Hydroxide, CaCO3                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 | Anion Sum         | 1017.41     |
| Carbonate, CaCO3<br>Bicarbonate, CaCO3 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 | Ion Balance       | 20.33       |
| Total Suspended Solids                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 | % Ion Imbalance   | -18.85      |
| Total Dissolved Solids                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | , da ji bajimani se minima <u>nini siniste di</u> .             |                   |             |
| Specific Conductivity                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Hardness                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Turbidity                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Osmotic Pressure                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | La da haringina ta                       |                                                                 |                   |             |
| Dissolved Oxygen<br>Ammonia, N         | <10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   | N           |
|                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Total Elements                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 | Hg 4.0            | ng/ml       |
| Aluminum<br>Calcium                    | 3389.53          | Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 | ing 4.0           | 0.1         |
| Iron                                   | 2.14             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Magnesium                              | 3937.33          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | a analynyn feridau yn ar yw |                   |             |
| Manganese                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Potassium                              | 639.89           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Phosphorous                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Silicon                                | 4258.81          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Sodium<br>Chromium                     | 4200.01          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
|                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Anions:                                | 0474 40          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Sulfate Chloride                       | 3474,18<br>33500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Nitrate, N                             | 4.26             | Alexandra da compositiva de la compositiva de<br>encompositiva de la compositiva de la |                                          |                                                                 |                   |             |
| Nitrite, N                             |                  | Charles Million La comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a a an ann an |                                                                 |                   |             |
| Bromide                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |
| Fluoride                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                 |                   |             |

### **FGD SLURRY FILTRATE 11:25**

...الاشتقاد

. all all all .

÷ . i ili i

;

. . IL . . . . . . . . . . . .

Sample No.: U1T4 FGDS-1B Date Received: 02/07/2005 Date Completed: 04/05/2005

20050799 Analytical No.: Project No.: 1621 -087 -000

ng/mL

Submitter: S. TSENG

| Parameter                              | <u>(mg/L )</u><br>Value | <u>Water Resul</u><br>unless noted<br>Value | Avg Value | Quality Control 0 | alculations |
|----------------------------------------|-------------------------|---------------------------------------------|-----------|-------------------|-------------|
|                                        | Value                   | Value                                       |           | -                 |             |
| рН                                     |                         |                                             |           | Ion Sum           | 33483.01    |
| Acidity, CaCO3                         |                         |                                             |           | Cation Sum        | 507.21      |
| Alkalinity, CaCO3                      |                         |                                             |           | Anion Sum         | 659.33      |
| Hydroxide, CaCO3                       |                         |                                             |           | Amon Sum          | 009.00      |
| Carbonate, CaCO3<br>Bicarbonate, CaCO3 |                         |                                             |           | Ion Balance       | 14.73       |
| Total Suspended Solids                 |                         |                                             |           | % Ion Imbalance   | -13.04      |
| Total Dissolved Solids                 |                         |                                             |           | 70 Ion Imbalance  | 10.01       |
| Specific Conductivity                  |                         |                                             |           |                   |             |
| Hardness                               |                         |                                             |           |                   |             |
| Turbidity                              |                         |                                             |           |                   |             |
| Osmotic Pressure                       |                         |                                             |           |                   |             |
| Dissolved Oxygen                       |                         |                                             |           |                   |             |
| Ammonia, N                             | 10                      |                                             |           |                   |             |
|                                        |                         |                                             |           |                   | 4           |
| Total Elements                         |                         | and appropriate to be board and the         |           |                   | mg ml       |
| Aluminum                               |                         |                                             |           | Hg 4.2            | "J /mL      |
| Calcium                                | 2767.72                 |                                             |           |                   | V           |
| Iron                                   | 3,63                    |                                             |           |                   |             |
| Magnesium                              | 2738.40                 |                                             |           |                   |             |
| Manganese                              | 154.00                  |                                             |           |                   |             |
| Potassium                              | 454.20                  | to (and activity) and a                     |           |                   |             |
| Phosphorous                            |                         |                                             |           |                   |             |
| Silicon                                | 000007                  | en e    |           |                   |             |
| Sodium                                 | 3038.37                 |                                             |           |                   |             |
| Chromium                               |                         |                                             |           |                   |             |
| Anions:                                |                         |                                             |           |                   |             |
| Sulfate                                | 3615.30                 |                                             |           |                   |             |
| Chloride                               | 20500                   |                                             |           |                   |             |
| Nitrate, N                             | 82,5                    |                                             |           |                   |             |
| Nitrite, N                             |                         |                                             |           |                   |             |
| Bromide                                |                         |                                             |           |                   |             |
| Fluoride                               |                         |                                             |           |                   |             |

#### FGD SLURRY FILTRATE 12:53

1.1

10 10 10

-1 mm

₹ 

Sample No.: U2T1 FGDS-2A Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050800 Project No.: 1621 -087 -000

malml

Submitter: S. TSENG

| Parameter              |                                                | <u>Water Resul</u><br>unless noted<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | Avg Value                                     | Quality Control 0 | Calculations |
|------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------|-------------------|--------------|
|                        | ¥aiue                                          | Vulue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                               | lon Sum           | 44965.26     |
| pH<br>Acidity, CaCO3   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   | 44900.20     |
| Alkalinity, CaCO3      |                                                | 1 Translata Adam ay a fi a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                               | Cation Sum        | 690.57       |
| Hydroxide, CaCO3       | i da di kana kana kana kana kana kana kana kan | 19 - U.L. (S. X. K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | an a      | Anion Sum         | 895.17       |
| Carbonate, CaCO3       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               | lan Dalamaa       | 44.60        |
| Bicarbonate, CaCO3     |                                                | 2 212.0 Index Street of the Interference of |      | 1. C. C. CARLELLING II FARING COMMUNICATION - | Ion Balance       | 14.63        |
| Total Suspended Solids |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               | % Ion Imbalance   | -12.90       |
| Total Dissolved Solids |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Specific Conductivity  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Hardness               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Turbidity              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Osmotic Pressure       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ···· |                                               |                   |              |
| Dissolved Oxygen       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Ammonia, N             | 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Total Elements         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               | 11                | ma li        |
| Aluminum               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               | Hz <1.            | o malini     |
| Calcium                | 3639.67                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               | $\wedge$          | ()           |
| Iron                   | 1,98                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               | Ú                 | V            |
| Magnesium              | 3627.91                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Manganese              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Potassium              | 668.04                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | · · · · · · · · · · · · · · · · · · ·         |                   |              |
| Phosphorous            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Silicon                |                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                               |                   |              |
| Sodium                 | 4447.30                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Chromium               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Anions:                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Sulfate                | 2882.38                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Chloride               | 29500                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Nitrate, N             | 44.7                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Nitrite, N             |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Bromide                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |
| Fluoride               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                               |                   |              |



## **FGD SLURRY FILTRATE 12:58**

car o la

Sample No.: U2T1 FGDS-2C Date Received: 02/07/2005 Date Completed: 04/05/2005

20050801 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        | <u>(mg/L</u>                          | Water Resul<br>unless notec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | <u>l</u>                                                                                                        |                   |              |
|------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| Parameter              | Value                                 | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                                                                                                                                                                           | Avg Value                                                                                                       | Quality Control C | Calculations |
| pH                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 | lon Sum           | 49157.85     |
| Acidity, CaCO3         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 | Cation Sum        | 729.53       |
| Alkalinity, CaCO3      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Hydroxide, CaCO3       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 | Anion Sum         | 994.26       |
| Carbonate, CaCO3       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 | lon Balance       | 17.06        |
| Bicarbonate, CaCO3     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Total Suspended Solids |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 | % Ion Imbalance   | -15.36       |
| Total Dissolved Solids |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Specific Conductivity  |                                       | [11] The set of the |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Hardness               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Turbidity              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Osmotic Pressure       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Dissolved Oxygen       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Ammonia, N             | 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Total Elements         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   | nolui        |
| Aluminum               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ander (hoge) produced, fondjurg (* der 1er 1), for ".<br>1979 - State (* 1986) (* 1997) - State (* 1997)<br>1979 - State (* 1986) (* 1997) - State (* 1997)<br>1979 - State (* 1997) (* 1997) (* 1997) (* 1997) |                                                                                                                 | Hg 1.9            | ngland       |
| Calcium                | 3795.69                               | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                 |                   | v            |
| Iron                   | <1,25                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Magnesium              | 3869.88                               | 121 yuuni 111 yuuni 112 yuuni 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Manganese              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Potassium              | 706.67                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                           |                   |              |
| Phosphorous            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | to a function of the second |                   |              |
| Silicon                | · · · · · · · · · · · · · · · · · · · | (), <u>alışışırdan</u> yeşterin ev 'alı manı,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                 | , an ang ang ang ang ang ang ang ang ang                                                                        |                   |              |
| Sodium                 | 4685.44                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Chromium               | ar - i ani fi i ani i ain ani an      | ini (1900) in ann an 1900 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Anions:                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Sulfate                | 2897,32                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Chloride               | 33000                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Nitrate, N             | 45.8                                  | nie rubbie Andreas ( 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Nitrite, N             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Bromide                | r                                     | an independent oppertuiter ander<br>an opperation (data inder ander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                 |                   |              |
| Fluoride               | ei leie leien ei didisaitiet          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | py bahalanýmután sv                                                                                                                                                                                             |                                                                                                                 |                   |              |

### FGD SLURRY FILTRATE 10:11

1.0.4

101

 Sample No.: U2T2 FGDS-2A Date Received: 02/07/2005 Date Completed: 04/05/2005 Analytical No.: 20050802 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                      |                  | Water Result<br>Inless noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           |                   |             |
|--------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-------------------|-------------|
| Parameter                            | Value            | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Units | Avg Value | Quality Control C | alculations |
| Hq                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | Ion Sum           | 41714.65    |
| Acidity, CaCO3                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | Cation Sum        | 631.70      |
| Alkalinity, CaCO3                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | Anion Sum         | 834.52      |
| Hydroxide, CaCO3<br>Carbonate, CaCO3 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Bicarbonate, CaCO3                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | Ion Balance       | 15.55       |
| Total Suspended Solids               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | % Ion Imbalance   | -13.83      |
| Specific Conductivity<br>Hardness    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Turbidity<br>Osmotic Pressure        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Dissolved Oxygen                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | i         |                   |             |
| Ammonia, N                           | <10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Total Elements                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   | ngli        |
| Aluminum                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | Hg 1.3            | ng/mL       |
| Calcium                              | 3313.01          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Iron                                 | 1.69 3313.00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Magnesium<br>Manganese               | 3313.00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Potassium                            | 610,91           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Phosphorous<br>Silicon               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Sodium<br>Chromium                   | 4097,95          | n (2000) (1000) (2000) (2000)<br>2000) (2000) (2000) (2000) (2000)<br>2000) (2000) (2000) (2000) (2000) (2000)<br>2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (20 |       |           |                   |             |
| Anions:                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Sulfate<br>Chloride                  | 2673.03<br>27500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Nitrate, N<br>Nitrite, N             | 46.3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |                   |             |
| Bromide<br>Fluoride                  |                  | re - Alexandro and Alexandro<br>Alexandro and Alexandro and<br>Alexandro and Alexandro and<br>Alexandro and Alexandro and<br>Alexandro and Alexandro and Ale                                                                                                                                                                                                                                          |       |           |                   |             |



## **FGD SLURRY FILTRATE 10:16**

1

Sample No.: U2T2 FGDS-2C Date Received: 02/07/2005 Date Completed: 04/05/2005

20050803 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                          | -                                              | Nater Result<br>nless noted                                                                                                                |                |                                                                                                                 |                   |             |
|--------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| Parameter                | Value                                          | Value                                                                                                                                      | Units          | Avg Value                                                                                                       | Quality Control C | alculations |
| pH                       |                                                |                                                                                                                                            |                |                                                                                                                 | Ion Sum           | 49936.40    |
| Acidity, CaCO3           |                                                | 1111 Malaya Angeler (1997)                                                                                                                 |                | " " " popul nu reconcient desenance                                                                             | Option Our        | 950 40      |
| Alkalinity, CaCO3        |                                                |                                                                                                                                            |                |                                                                                                                 | Cation Sum        | 859.19      |
| Hydroxide, CaCO3         | n an an the state of the state of the          |                                                                                                                                            |                |                                                                                                                 | Anion Sum         | 946.89      |
| Carbonate, CaCO3         |                                                |                                                                                                                                            |                |                                                                                                                 | Ion Balance       | 5.93        |
| Bicarbonate, CaCO3       |                                                |                                                                                                                                            |                |                                                                                                                 | ION Dalance       | 0.90        |
| Total Suspended Solids   |                                                |                                                                                                                                            |                |                                                                                                                 | % Ion Imbalance   | -4.86       |
| Total Dissolved Solids   |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Specific Conductivity    |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Hardness                 |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Turbidity                |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Osmotic Pressure         |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Dissolved Oxygen         |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Ammonia, N               | <10                                            |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Total Elements           |                                                |                                                                                                                                            |                |                                                                                                                 | 7                 | /           |
| Aluminum                 |                                                |                                                                                                                                            |                |                                                                                                                 | Ha <1.0           | ng/mL       |
| Calcium                  | 4367.31                                        |                                                                                                                                            |                |                                                                                                                 |                   | 0           |
| Iron                     | <1.25                                          |                                                                                                                                            |                | . Tarrazla la la su altra da la como de la c  | O                 |             |
| Magnesium                | 4548.29                                        | Ward Antersteiner in der Staten                                                                                                            |                |                                                                                                                 |                   |             |
| Manganese                |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Potassium                | 836.90                                         |                                                                                                                                            |                | · ····································                                                                          |                   |             |
| Phosphorous              |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Silicon                  |                                                | ի վերջանի հեղենի։ Դեղութի ին եւ է հատուտ հեղու<br>                                                                                         |                |                                                                                                                 |                   |             |
| Sodium                   | 5651.44                                        |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Chromium                 | i ja ja ja ja ja kun sana kun na indi pina kip |                                                                                                                                            | hranni gradini | · · ··································                                                                          |                   |             |
| <b>A</b>                 |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Anions:                  | 202000                                         |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Sulfate                  | 3336.26<br>31000                               |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Chloride<br>Nitrate, N   | 44.3                                           |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Nitrate, N<br>Nitrite, N | 44.0                                           |                                                                                                                                            |                |                                                                                                                 |                   |             |
| Bromide                  |                                                | , sinan inggining inggin, si sani sani s<br>Sinan inggining ang si sani si sani si sani s<br>Sinan inggining ang si sani sani sani sani sa |                | a shi a sha a s |                   |             |
| Fluoride                 |                                                |                                                                                                                                            |                |                                                                                                                 |                   |             |
|                          | I                                              | I                                                                                                                                          | I              |                                                                                                                 |                   |             |

## FGD SLURRY FILTRATE 14:02

1 - F

1997 - 1987 - 1

a har a di

Sample No.: U2T3 FGDS-2A

Date Received: 02/07/2005

Date Completed: 04/05/2005

Analytical No.: 20050804 Project No.: 1621 -087 -000

Submitter: S. TSENG

| _ /                                   | <u>(mg/L ւ</u> | Water Result<br>Inless noted | otherwise) |           | Quality Control C | alculations |
|---------------------------------------|----------------|------------------------------|------------|-----------|-------------------|-------------|
| Parameter                             | Value          | Value                        | Units      | Avg Value | -                 |             |
| pH                                    |                |                              |            |           | lon Sum           | 38070.27    |
| Acidity, CaCO3                        |                |                              |            |           | Cation Sum        | 603.79      |
| Alkalinity, CaCO3<br>Hydroxide, CaCO3 |                |                              |            |           | Anion Sum         | 746.72      |
| Carbonate, CaCO3                      |                |                              |            |           |                   | 10.04       |
| Bicarbonate, CaCO3                    |                |                              |            |           | lon Balance       | 12.24       |
| Total Suspended Solids                |                |                              |            |           | % Ion Imbalance   | -10.58      |
| Total Dissolved Solids                |                |                              |            |           |                   |             |
| Specific Conductivity                 |                |                              |            |           |                   |             |
| Hardness                              |                |                              |            |           |                   |             |
| Turbidity                             |                |                              |            |           |                   |             |
| Osmotic Pressure                      |                | ······                       |            |           |                   |             |
| Dissolved Oxygen                      |                |                              |            |           |                   |             |
| Ammonia, N                            | <10            |                              |            |           |                   |             |
| Total Elements                        |                |                              |            |           |                   | nglim       |
| Aluminum                              |                |                              |            |           | Hg 1.3            | ngilml      |
| Calcium                               | 3122.81        |                              |            |           |                   | U           |
| Iron                                  | <1.25          |                              |            |           |                   |             |
| Magnesium                             | 3148.49        |                              |            |           |                   |             |
| Manganese                             |                |                              |            |           |                   |             |
| Potassium                             | 586.93         |                              |            |           |                   |             |
| Phosphorous                           |                |                              |            |           |                   |             |
| Silicon<br>Sodium                     | 4000.99        |                              |            |           |                   |             |
| Chromium                              | 4000.99        |                              |            |           |                   |             |
|                                       |                |                              |            |           |                   |             |
| Anions:                               |                |                              |            |           |                   |             |
| Sulfate                               | 2565.78        |                              |            |           |                   |             |
| Chloride                              | 24500          | a successive to a            |            |           |                   |             |
| Nitrate, N                            | 32.8           |                              |            |           |                   |             |
| Nitrite, N<br>Bromide                 |                |                              |            |           |                   |             |
| Fluoride                              |                |                              |            |           |                   |             |

### **FGD SLURRY FILTRATE 14:07**

1

··e 1

in -- -- i ---

Sample No.: U2T3 FGDS-2C Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050805 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                              | <u>(mg/L u</u> | Water Result<br>Inless noted                                                                                   | otherwise) |                                               |                   |             |
|----------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|-------------------|-------------|
| Parameter                                    | Value          | Value                                                                                                          | Units      | Avg Value                                     | Quality Control C | alculations |
| рH                                           |                |                                                                                                                |            |                                               | Ion Sum           | 48263.39    |
| Acidity, CaCO3                               |                |                                                                                                                |            |                                               | Cation Sum        | 807.07      |
| Alkalinity, CaCO3                            |                |                                                                                                                |            |                                               |                   |             |
| Hydroxide, CaCO3                             |                |                                                                                                                |            | a Massach Mitter (1997) (1997)                | Anion Sum         | 928.25      |
| Carbonate, CaCO3                             |                |                                                                                                                |            |                                               | Ion Balance       | 8.36        |
| Bicarbonate, CaCO3<br>Total Suspended Solids |                |                                                                                                                |            |                                               | % Ion Imbalance   | -6.98       |
| Total Dissolved Solids                       |                |                                                                                                                |            |                                               |                   |             |
| Specific Conductivity                        |                |                                                                                                                |            |                                               |                   |             |
| Hardness                                     |                |                                                                                                                |            | en poli ini ini ini ili ili ili ili ili ili i |                   |             |
| Turbidity                                    |                |                                                                                                                |            |                                               |                   |             |
| Osmotic Pressure                             |                |                                                                                                                |            |                                               |                   |             |
| Dissolved Oxygen                             |                |                                                                                                                |            |                                               |                   |             |
| Ammonia, N                                   | 10             |                                                                                                                |            |                                               |                   |             |
| Total Elements                               |                |                                                                                                                |            |                                               |                   | ng lui      |
| Aluminum                                     |                |                                                                                                                |            |                                               | Hg 1.0            | ng/m(       |
| Calcium                                      | 4145.00        |                                                                                                                |            | · ····································        |                   | -           |
| Iron                                         | <1.25          |                                                                                                                |            |                                               |                   |             |
| Magnesium                                    | 4277.07        |                                                                                                                |            |                                               |                   |             |
| Manganese<br>Potassium                       | 784.28         |                                                                                                                |            |                                               |                   |             |
| Phosphorous                                  | 104.20         | the second s |            |                                               |                   |             |
| Silicon                                      |                |                                                                                                                |            |                                               |                   |             |
| Sodium                                       | 5251.84        |                                                                                                                |            |                                               |                   |             |
| Chromium                                     |                | 1. C.S. giving Intelligious and                                                                                | :          | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.        |                   |             |
| Anions:                                      |                |                                                                                                                |            |                                               |                   |             |
| Sulfate                                      | 3150.18        |                                                                                                                |            |                                               |                   |             |
| Chloride                                     | 30500          |                                                                                                                |            |                                               |                   |             |
| Nitrate, N                                   | 35.0           |                                                                                                                |            |                                               |                   |             |
| Nitrite, N                                   |                |                                                                                                                |            |                                               |                   |             |
| Bromide                                      |                |                                                                                                                |            |                                               |                   |             |
| Fluoride                                     |                |                                                                                                                |            |                                               |                   |             |

## **FGD SLURRY FILTRATE 09:38**

----

1

199

÷ and the second

Sample No.: U2T4 FGDS-2A Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050806 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                      | -                                  | Water Result<br>Inless noted | •                         |           |                   |             |
|--------------------------------------|------------------------------------|------------------------------|---------------------------|-----------|-------------------|-------------|
| Parameter                            | Value                              | Value                        | Units                     | Avg Value | Quality Control C | alculations |
| рН                                   |                                    |                              |                           |           | Ion Sum           | 46286.42    |
| Acidity, CaCO3                       | 10 10000 g +44 09000025002100      | NUTRIAL AND AND THE SECTION  |                           |           | Cation Sum        | 772.61      |
| Alkalinity, CaCO3                    |                                    |                              |                           |           | Anion Sum         | 888.03      |
| Hydroxide, CaCO3<br>Carbonate, CaCO3 |                                    |                              |                           |           | Anion Sum         |             |
| Bicarbonate, CaCO3                   |                                    |                              |                           |           | Ion Balance       | 8.32        |
| Total Suspended Solids               |                                    |                              |                           |           | % Ion Imbalance   | -6.95       |
| Total Dissolved Solids               |                                    |                              |                           |           | 70 1011 Milouanou |             |
| Specific Conductivity                |                                    |                              |                           |           |                   |             |
| Hardness                             |                                    |                              |                           |           |                   |             |
| Turbidity                            |                                    |                              |                           |           |                   |             |
| Osmotic Pressure                     |                                    |                              | 1.19.00000000000000000000 |           |                   |             |
| Dissolved Oxygen                     |                                    |                              |                           |           |                   |             |
| Ammonia, N                           | <10                                |                              |                           |           |                   |             |
|                                      |                                    |                              |                           |           |                   | 1           |
| Total Elements                       | rrra analy. V. of the second state |                              |                           |           | Ua 1.0            | nglac       |
| Aluminum                             |                                    |                              |                           |           | Hg 1.0            | ng/mc       |
| Calcium                              | 3928.41                            |                              |                           |           |                   | v           |
| Iron                                 | 1.61                               |                              |                           |           |                   |             |
| Magnesium                            | 4067.27                            |                              |                           |           |                   |             |
| Manganese                            | 752.80                             |                              |                           |           |                   |             |
| Potassium                            | /52.00                             |                              |                           |           |                   |             |
| Phosphorous                          |                                    |                              |                           |           |                   |             |
| Silicon                              | 5121.87                            |                              |                           |           |                   |             |
| Sodium                               | 1 0121.07                          |                              |                           |           |                   |             |
| Chromium                             |                                    |                              |                           |           |                   |             |
| Anions:                              |                                    |                              |                           |           |                   |             |
| Sulfate                              | 3218.26                            |                              |                           |           |                   |             |
| Chloride                             | 29000                              |                              |                           |           |                   |             |
| Nitrate, N                           | 44.3                               |                              |                           |           |                   |             |
| Nitrite, N                           |                                    |                              |                           |           |                   |             |
| Bromide                              |                                    |                              |                           |           |                   |             |
| Fluoride                             |                                    |                              |                           |           |                   |             |

### FGD SLURRY FILTRATE 09:40

and see all

Sample No.: U2T4 FGDS-2C Date Received: 02/07/2005 Date Completed: 04/05/2005 Analytical No.: 20050807 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                                 |                                        | <u>Water Resul</u><br>Inless noted        | _                    | 1                                                                                                               |                   |             |
|-------------------------------------------------|----------------------------------------|-------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| Parameter                                       | Value                                  | Value                                     | Units                | Avg Value                                                                                                       | Quality Control C | alculations |
| Hq                                              |                                        |                                           |                      |                                                                                                                 | lon Sum           | 50415.24    |
| Acidity, CaCO3                                  |                                        |                                           |                      |                                                                                                                 | Cation Sum        | 693.77      |
| Alkalinity, CaCO3                               |                                        |                                           |                      |                                                                                                                 |                   |             |
| Hydroxide, CaCO3                                |                                        | - Herdinand March 1997                    |                      |                                                                                                                 | Anion Sum         | 1047.82     |
| Carbonate, CaCO3                                |                                        |                                           | . Data data kata dar |                                                                                                                 | lon Balance       | 21.66       |
| Bicarbonate, CaCO3                              |                                        | 5 - and an inclusion of the second second |                      |                                                                                                                 | % Ion Imbalance   | -20.33      |
| Total Suspended Solids                          |                                        |                                           |                      |                                                                                                                 | % ION INDUIANCE   | -20.33      |
| Total Dissolved Solids<br>Specific Conductivity |                                        |                                           |                      |                                                                                                                 |                   |             |
| Hardness                                        | ini i Cuin Cuin Marine ann an 1911 ann |                                           |                      |                                                                                                                 |                   |             |
| Turbidity                                       |                                        |                                           |                      |                                                                                                                 |                   |             |
| Osmotic Pressure                                |                                        |                                           |                      | a an                                                                        |                   |             |
| Dissolved Oxygen                                |                                        |                                           |                      |                                                                                                                 |                   |             |
| Ammonia, N                                      | 10                                     |                                           |                      |                                                                                                                 |                   |             |
| Total Elements                                  |                                        |                                           |                      |                                                                                                                 |                   | . / .       |
| Aluminum                                        |                                        |                                           |                      |                                                                                                                 | Hg 1.3            | hg/ml       |
| Calcium                                         | 3541.98                                |                                           |                      | a na stanisti n | -                 | 0'          |
| Iron                                            | <1.25                                  |                                           |                      |                                                                                                                 |                   |             |
| Magnesium                                       | 3649.58                                | an a  |                      |                                                                                                                 |                   |             |
| Manganese                                       |                                        |                                           |                      |                                                                                                                 |                   |             |
| Potassium                                       | 682.19                                 |                                           |                      |                                                                                                                 |                   |             |
| Phosphorous                                     |                                        |                                           |                      |                                                                                                                 |                   |             |
| Silicon                                         |                                        |                                           |                      |                                                                                                                 |                   |             |
| Sodium                                          | 4585.21                                |                                           |                      |                                                                                                                 |                   |             |
| Chromium                                        |                                        |                                           |                      |                                                                                                                 |                   |             |
| Anions:                                         |                                        |                                           |                      |                                                                                                                 |                   |             |
| Sulfate                                         | 2787.98                                |                                           |                      |                                                                                                                 |                   |             |
| Chloride                                        | 35000                                  | ······································    |                      |                                                                                                                 |                   |             |
| Nitrate, N                                      | 38.0                                   |                                           |                      |                                                                                                                 |                   |             |
| Nitrite, N                                      |                                        |                                           |                      |                                                                                                                 |                   |             |
| Bromide                                         |                                        |                                           |                      |                                                                                                                 |                   |             |
| Fluoride                                        |                                        |                                           |                      |                                                                                                                 |                   |             |



FGD MAKE-UP WATER 13:00

10 e 11 -

-

••• 1

. Her and the second second

Sample No.: FGD MAKEUP U1T1 Date Received: 02/07/2005

Date Completed: 04/05/2005

Analytical No.: 20050808 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                                       |                                             | Nater Result<br>nless noted                                                                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
|---------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| Parameter                             | Value                                       | Value                                                                                                           | Units                                  | Avg Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quality Control Ca | lculations |
| PH                                    |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ion Sum            | 9306.31    |
| Acidity, CaCO3                        | La chanter (1997) Provide La constant AVII. | JAM-INSIGITS                                                                                                    | III/III/III/III/III/III/III/III/III/II |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cation Sum         | 156.33     |
| Alkalinity, CaCO3<br>Hydroxide, CaCO3 |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anion Sum          | 165.79     |
| Carbonate, CaCO3                      |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Bicarbonate, CaCO3                    |                                             | ayayan da da kara ta kara ta kara da ka |                                        | set avlaski a di vizioni di Provinsi (Manistria). ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lon Balance        | 3.53       |
| Total Suspended Solids                |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Ion Imbalance    | -2.94      |
| Total Dissolved Solids                |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Specific Conductivity<br>Hardness     |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Turbidity<br>Osmotic Pressure         |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Dissolved Oxygen                      |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Ammonia, N                            | <10                                         |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Total Elements                        |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,]                 | melin      |
| Aluminum                              |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz <1.0            | .7)""(     |
| Calcium                               | 917.31                                      |                                                                                                                 |                                        | <u>internet in the second s</u> | ()                 |            |
| Iron                                  | 0.10                                        |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Magnesium<br>Manganese                | 679.16                                      |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Potassium                             | 198.57                                      | ingn gill (dilliging ing an air ing                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Phosphorous                           |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Silicon                               | la faladi ana kana sa yena peper peng       |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Sodium<br>Chromium                    | 1140.83                                     |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Anions:                               |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Sulfate                               | 1853.07                                     |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Chloride                              | 4500                                        |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Nitrate, N                            | 3.9                                         |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Nitrite, N<br>Bromide                 |                                             |                                                                                                                 |                                        | . Bilindinia niyingindalari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |            |
| Bromide<br>Fluoride                   |                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |



#### FGD MAKE-UP WATER 11:00

1 1

Sample No.: FGD MAKEUP U1T2 Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050809 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        | <u>(mg/L u</u>                                                                                                                                                                                                                    | Nater Result<br>nless noted                                                                                     | otherwise)                            |                                                       |                    |                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|--------------------|-----------------------|
| Parameter              | Value                                                                                                                                                                                                                             | Value                                                                                                           | Units                                 | Avg Value                                             | Quality Control Ca | alculations           |
| <b>DH</b>              |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | Ion Sum            | 8426.92               |
| Acidity, CaCO3         |                                                                                                                                                                                                                                   | attanténan dan kana ber tike tike kata tan                                                                      |                                       |                                                       | Options Dum        | 142.39                |
| Alkalinity, CaCO3      |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | Cation Sum         | 142.39                |
| Hydroxide, CaCO3       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                             |                                                                                                                 |                                       |                                                       | Anion Sum          | 148.69                |
| Carbonate, CaCO3       |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | Ion Balance        | 2.61                  |
| Bicarbonate, CaCO3     |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | IUII Dalance       | 2.01                  |
| Total Suspended Solids |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | % Ion Imbalance    | -2.16                 |
| Total Dissolved Solids |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Specific Conductivity  |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Hardness               |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Turbidity              |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Osmotic Pressure       |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Dissolved Oxygen       |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Ammonia, N             | <10                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                                       |                    |                       |
| Total Elements         |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | 1                  |                       |
| Aluminum               |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       | Hg <1.0            | mgml                  |
| Calcium                | 828.85                                                                                                                                                                                                                            |                                                                                                                 |                                       |                                                       |                    | $\mathcal{O}^{\circ}$ |
| Iron                   | 0.13                                                                                                                                                                                                                              |                                                                                                                 |                                       |                                                       | 0                  | -                     |
| Magnesium              | 609.90                                                                                                                                                                                                                            |                                                                                                                 |                                       |                                                       |                    |                       |
| Manganese              |                                                                                                                                                                                                                                   | a de la compania de l |                                       |                                                       |                    |                       |
| Potassium              | 170.14                                                                                                                                                                                                                            |                                                                                                                 |                                       |                                                       |                    |                       |
| Phosphorous            |                                                                                                                                                                                                                                   |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                                                       |                    |                       |
| Silicon                | t fan Sfileen de terstere de staat                                                                                                                                                                                                |                                                                                                                 | Shinid Stands and a                   | ru dağığırılarının ayan ayan ayan ayan ayan ayan ayan |                    |                       |
| Sodium                 | 1069.51                                                                                                                                                                                                                           |                                                                                                                 |                                       |                                                       |                    |                       |
| Chromium               | a profession que de la companya de<br>Companya de la companya de la company | );;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;                                                                          |                                       | : 1. Hülalananal bernebi lebbel Merre He              |                    |                       |
|                        |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Anions:                | 1700 50                                                                                                                                                                                                                           |                                                                                                                 |                                       | A B das <u>tele men hødelingsbildet bler</u> dit :    |                    |                       |
| Sulfate                | 1762.52                                                                                                                                                                                                                           |                                                                                                                 |                                       |                                                       |                    |                       |
| Chloride               | 3950                                                                                                                                                                                                                              |                                                                                                                 |                                       |                                                       |                    |                       |
| Nitrate, N             | 8.1                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                                       |                    |                       |
| Nitrite, N             |                                                                                                                                                                                                                                   |                                                                                                                 |                                       | ja se na          |                    |                       |
| Bromide                |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |
| Fluoride               |                                                                                                                                                                                                                                   |                                                                                                                 |                                       |                                                       |                    |                       |

Hg <1.0 mg/mL



FGD MAKE-UP WATER 15:40

1.1.1.1.1.1

10

4 ......

and day and

Sample No.: FGD MAKEUP U1T3 Date Received: 02/07/2005

Date Completed: 04/05/2005

20050810 Analytical No.: Project No.: 1621 -087 -000

<1.0 mg/ml

Submitter: S. TSENG

|                                      |                                               | Water Result<br>niess noted                                                                                    |                            |                                                 |                    |            |
|--------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|--------------------|------------|
| Parameter                            | Value                                         | Value                                                                                                          | Units                      | Avg Value                                       | Quality Control Ca | lculations |
| pH                                   |                                               |                                                                                                                |                            |                                                 | lon Sum            | 8277.87    |
| Acidity, CaCO3                       |                                               |                                                                                                                |                            |                                                 | Cation Sum         | 138.97     |
| Alkalinity, CaCO3                    |                                               |                                                                                                                |                            |                                                 | Anion Sum          | 146.55     |
| Hydroxide, CaCO3<br>Carbonate, CaCO3 |                                               |                                                                                                                | <u></u>                    |                                                 |                    |            |
| Bicarbonate, CaCO3                   |                                               |                                                                                                                |                            |                                                 | Ion Balance        | 3.19       |
| Total Suspended Solids               |                                               |                                                                                                                |                            |                                                 | % Ion Imbalance    | -2.65      |
| Total Dissolved Solids               |                                               |                                                                                                                | - <u></u>                  | , <u>19. Letter and a statistica statistica</u> |                    |            |
| Specific Conductivity                |                                               |                                                                                                                |                            |                                                 |                    |            |
| Hardness                             |                                               |                                                                                                                |                            |                                                 |                    |            |
| Turbidity                            |                                               |                                                                                                                |                            |                                                 |                    |            |
| Osmotic Pressure                     |                                               |                                                                                                                |                            |                                                 |                    |            |
| Dissolved Oxygen                     |                                               |                                                                                                                |                            |                                                 |                    |            |
| Ammonia, N                           | <10                                           |                                                                                                                |                            |                                                 |                    |            |
| Total Elements                       |                                               |                                                                                                                |                            |                                                 | Hg <1.0            | nalm       |
| Aluminum                             |                                               |                                                                                                                |                            |                                                 | Hg <1.0            |            |
| Calcium                              | 810.99                                        | - West With Market (chamber                                                                                    |                            |                                                 | ()                 | U          |
| Iron                                 | 0.07                                          |                                                                                                                |                            |                                                 | v                  |            |
| Magnesium                            | 595.92                                        |                                                                                                                |                            |                                                 |                    |            |
| Manganese                            | 164.96                                        |                                                                                                                |                            |                                                 |                    |            |
| Potassium                            | 104.90                                        |                                                                                                                |                            |                                                 |                    |            |
| Phosphorous<br>Silicon               |                                               |                                                                                                                |                            |                                                 |                    |            |
| Sodium                               | 1040.89                                       |                                                                                                                |                            |                                                 |                    |            |
| Chromium                             | y y di kana kana kana kana kana kana kana kan | , and the second se |                            | · ······                                        |                    |            |
| Anions:                              |                                               |                                                                                                                |                            | -                                               |                    |            |
| Sulfate                              | 1721.64                                       |                                                                                                                | and a second second second |                                                 |                    |            |
| Chloride                             | 3900                                          |                                                                                                                |                            |                                                 |                    |            |
| Nitrate N                            | 9.8                                           |                                                                                                                |                            |                                                 |                    |            |
| Nitrite, N                           |                                               | 1 <u>199</u> 1 (Athlew Herner) (1997)                                                                          | ·                          |                                                 |                    |            |
| Bromide                              |                                               |                                                                                                                |                            |                                                 |                    |            |
| Fluoride                             |                                               |                                                                                                                |                            | 1                                               |                    |            |



#### **FGD MAKE-UP WATER 11:15**

10

11.1

4 

Sample No.: FGD MAKEUP U1T4 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050811 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        |                                         | <u> Water Result</u><br>nless noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                           |                   |               |
|------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|-------------------|---------------|
| Parameter              | Value                                   | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                 | Avg Value                                                 | Quality Control C | alculations   |
| pH.                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | lon Sum           | 7294.38       |
| Acidity, CaCO3         | 19, 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | Cation Sum        | 123.13        |
| Alkalinity, CaCO3      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Hydroxide, CaCO3       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | Anion Sum         | 126.74        |
| Carbonate, CaCO3       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | Ion Balance       | 1.75          |
| Bicarbonate, CaCO3     |                                         | second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Total Suspended Solids |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | % Ion Imbalance   | -1.45         |
| Total Dissolved Solids |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Torrent translation in the            | www.www.com.com.com.com.com.com.com.com.com.com           |                   |               |
| Specific Conductivity  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Hardness               |                                         | (2011) 10 (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (20 |                                       |                                                           |                   |               |
| Turbidity              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Osmotic Pressure       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Dissolved Oxygen       | -10                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Ammonia, N             | <10                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | 1                 |               |
| Total Elements         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | 14                | ng/m          |
| Aluminum               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | TG <1.0           |               |
| Calcium                | 694.67                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | ()                | $\mathcal{O}$ |
| Iron                   | 0.08                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           | V                 |               |
| Magnesium              | 496.20                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Manganese              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Potassium              | 153.82                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | ······································                    |                   |               |
| Phosphorous            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Silicon                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 11/101 101/01/01 101/01/01/01/01/01/01/01/01/01/01/01/01/ |                   |               |
| Sodium                 | 1005.17                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Chromium               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Anions:                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Sulfate                | 1649,71                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Chloride               | 3250                                    | - 1920: Andrian de Tambres de 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |                                                           |                   |               |
| Nitrate, N             | 10.1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Nitrite, N             |                                         | <ul> <li>Astronomic Contraction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | te at strate i fonde fan Halfaden kaar het ferste de see  |                   |               |
| Bromide                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |
| Fluoride               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                           |                   |               |

<1.0 hg/ml



#### FGD MAKE-UP WATER 11:45

......

1

-4 1

- الا - مدرامه

Sample No.: FGD MAKEUP U2T1 Date Received: 02/07/2005

Date Completed: 04/05/2005

Analytical No.: 20050812 Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        |                                     | <u>Water Resul</u><br>Inless noted     |       |           |                   |                |
|------------------------|-------------------------------------|----------------------------------------|-------|-----------|-------------------|----------------|
| Parameter              | Value                               | Value                                  | Units | Avg Value | Quality Control ( | Calculations   |
| <b>DH</b>              |                                     |                                        |       |           | Ion Sum           | 31648.04       |
| Acidity, CaCO3         |                                     |                                        |       |           | Cation Sum        | 504.98         |
| Alkalinity, CaCO3      |                                     |                                        |       |           |                   | 040.40         |
| Hydroxide, CaCO3       |                                     |                                        |       |           | Anion Sum         | 613.12         |
| Carbonate, CaCO3       |                                     |                                        |       |           | Ion Balance       | 1 <b>1.2</b> 5 |
| Bicarbonate, CaCO3     | in and an entry of the California   |                                        |       |           | % Ion Imbalance   | -9.67          |
| Total Suspended Solids |                                     |                                        |       |           | % ION IMDAIANCe   | -9.07          |
| Total Dissolved Solids |                                     |                                        |       |           |                   |                |
| Specific Conductivity  |                                     |                                        |       |           |                   |                |
| Hardness               |                                     |                                        |       |           |                   |                |
| Turbidity              |                                     |                                        |       |           |                   |                |
| Osmotic Pressure       |                                     |                                        |       |           |                   |                |
| Dissolved Oxygen       | <10                                 |                                        |       |           |                   |                |
| Ammonia, N             |                                     |                                        |       |           |                   |                |
| Total Elements         |                                     |                                        |       |           | 1/                | na Ins         |
| Aluminum               |                                     |                                        |       |           | Hg <1.            | .0 ng/m        |
| Calcium                | 2798.04                             |                                        |       |           | 0                 | V              |
| Iron                   | 0.64                                |                                        |       |           | -                 |                |
| Magnesium              | 2565.96                             | ······································ |       |           |                   |                |
| Manganese              |                                     |                                        |       |           |                   |                |
| Potassium              | 489.87                              |                                        |       |           |                   |                |
| Phosphorous            |                                     |                                        |       |           |                   |                |
| Silicon                |                                     |                                        |       |           |                   |                |
| Sodium                 | 3259.80                             |                                        |       |           |                   |                |
| Chromium               |                                     |                                        |       |           |                   |                |
| Anions:                |                                     |                                        |       |           |                   |                |
| Sulfate                | 3033.73                             |                                        |       |           |                   |                |
| Chloride               | 19500                               |                                        | · · · |           |                   |                |
| Nitrate, N             | <0.02                               |                                        |       |           |                   |                |
| Nitrite, N             |                                     |                                        |       |           |                   |                |
| Bromide                |                                     |                                        |       |           |                   |                |
| Fluoride               | and an and a provide set of a small |                                        |       |           |                   |                |

These values have been reviewed and are approved for transmission.

1.0 ng/ml

### FGD MAKE-UP WATER 09:17

11.1

11 JL

्र हेल्ला

an trans. A

Sample No.: FGD MAKEUP U2T2 Date Received: 02/07/2005 Date Completed: 04/05/2005 Analytical No.: 20050813 Project No.: 1621 -087 -000

**Quality Control Calculations** 

34596.96

572.54

660.79

8.53

-7.16

Submitter: S. TSENG

Ion Sum

Cation Sum

Anion Sum

Ion Balance

% Ion Imbalance

|                        | <u>(mg/L ւ</u>                                                                                                  |                   |                              |           |
|------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|-----------|
| Parameter              | Value                                                                                                           | Value             | Units                        | Avg Value |
| рН                     |                                                                                                                 |                   |                              |           |
| Acidity, CaCO3         |                                                                                                                 |                   |                              |           |
| Alkalinity, CaCO3      |                                                                                                                 |                   |                              |           |
| Hydroxide, CaCO3       |                                                                                                                 |                   |                              |           |
| Carbonate, CaCO3       |                                                                                                                 |                   |                              |           |
| Bicarbonate, CaCO3     |                                                                                                                 |                   |                              |           |
| Total Suspended Solids |                                                                                                                 |                   |                              |           |
| Total Dissolved Solids |                                                                                                                 |                   |                              |           |
| Specific Conductivity  |                                                                                                                 |                   |                              |           |
| Hardness               |                                                                                                                 |                   |                              |           |
| Turbidity              |                                                                                                                 |                   |                              |           |
| Osmotic Pressure       |                                                                                                                 |                   |                              |           |
| Dissolved Oxygen       |                                                                                                                 |                   |                              |           |
| Ammonia, N             | 10                                                                                                              |                   |                              |           |
| Total Elements         |                                                                                                                 |                   |                              |           |
| Aluminum               |                                                                                                                 |                   |                              |           |
| Calcium                | 3173.55                                                                                                         | E COMPANY IN T    |                              |           |
|                        | 0.94                                                                                                            |                   |                              |           |
| Iron                   | 2938.35                                                                                                         |                   |                              |           |
| Magnesium              | 2930.35                                                                                                         |                   |                              |           |
| Manganese              | 549.83                                                                                                          |                   |                              |           |
| Potassium              | 049.00                                                                                                          |                   |                              |           |
| Phosphorous            |                                                                                                                 | e de la chaquara  |                              |           |
| Silicon                | 0040 54                                                                                                         |                   |                              |           |
| Sodium                 | 3642.54                                                                                                         |                   |                              |           |
| Chromium               |                                                                                                                 |                   |                              |           |
| Anions:                |                                                                                                                 |                   |                              |           |
| Sulfate                | 3291.75                                                                                                         |                   |                              |           |
| Chloride               | 21000                                                                                                           | - 1               |                              |           |
| Nitrate, N             | <0.02                                                                                                           |                   |                              |           |
| Nitrite, N             | n provinski se kolenis                                                                                          | SE SECONDERPRESE. | t u.du. Alabatiliter in 1977 |           |
| Bromide                |                                                                                                                 |                   |                              |           |
| Fluoride               | , gi ann an Ionach an Ion Mharanna air a' suitean an suitean an suitean an suitean an suitean suitean suitean s |                   | und miterminidergepen        |           |

the <1.0 ng/ml



#### FGD MAKE-UP WATER 13:30

10.42

H 17

1

and the second second second

Sample No.: FGD MAKEUP U2T3 Date Received: 02/07/2005 Date Completed: 04/05/2005

20050814 Analytical No.: Project No.: 1621 -087 -000

Submitter: S. TSENG

|                        | <u>(mg/L u</u>           | Water Result<br>niess noted              | <u>otherwise)</u>                       |                                           |                   |              |
|------------------------|--------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------|--------------|
| Parameter              | Value                    | Value                                    | Units                                   | Avg Value                                 | Quality Control C | Calculations |
| <b>DH</b>              |                          |                                          |                                         |                                           | lon Sum           | 28457.16     |
| Acidity, CaCO3         |                          |                                          | t daardal daalaa daalaa da boorda ah sh |                                           | Cation Sum        | 474.56       |
| Alkalinity, CaCO3      |                          |                                          |                                         |                                           | Callon Sum        | 474.00       |
| Hydroxide, CaCO3       | 1.110-1.011.1.01010.1014 |                                          |                                         |                                           | Anion Sum         | 539.80       |
| Carbonate, CaCO3       |                          |                                          |                                         |                                           | Ion Balance       | 7.70         |
| Bicarbonate, CaCO3     |                          |                                          |                                         |                                           |                   |              |
| Total Suspended Solids |                          |                                          |                                         |                                           | % Ion Imbalance   | -6.43        |
| Total Dissolved Solids |                          |                                          |                                         |                                           |                   |              |
| Specific Conductivity  |                          |                                          |                                         |                                           |                   |              |
| Hardness               |                          |                                          |                                         |                                           |                   |              |
| Turbidity              |                          |                                          |                                         |                                           |                   |              |
| Osmotic Pressure       |                          |                                          |                                         |                                           |                   |              |
| Dissolved Oxygen       |                          |                                          |                                         |                                           |                   |              |
| Ammonia, N             | 10                       |                                          |                                         |                                           |                   |              |
| Total Elements         |                          |                                          |                                         |                                           | /                 | n .          |
| Aluminum               |                          |                                          |                                         |                                           | Ha <1.            | o ng/mi      |
| Calcium                | 2693.57                  | **************************************   |                                         |                                           | 1                 | 0            |
| lron                   | 0.97                     |                                          |                                         |                                           | 0                 |              |
| Magneslum              | 2404.54                  | 2 (                                      |                                         |                                           |                   |              |
| Manganese              |                          |                                          |                                         |                                           |                   |              |
| Potassium              | 452.63                   |                                          |                                         |                                           |                   |              |
| Phosphorous            |                          |                                          |                                         |                                           |                   |              |
| Silicon                |                          |                                          |                                         |                                           |                   |              |
| Sodium                 | 3006.98                  |                                          |                                         |                                           |                   |              |
| Chromium               |                          |                                          |                                         |                                           |                   |              |
| Anions:                |                          |                                          |                                         |                                           |                   |              |
| Sulfate                | 2898.47                  |                                          |                                         |                                           |                   |              |
| Chloride               | 17000                    |                                          | 4 1977 (1997), (1997) (1997)<br>        |                                           |                   |              |
| Nitrate, N             | <0.02                    |                                          |                                         |                                           |                   |              |
| Nitrite, N             |                          | s <b>e-effette to the Base of A</b> ller |                                         | 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                   |              |
| Bromide                |                          |                                          |                                         |                                           |                   |              |
| Fluoride               |                          |                                          |                                         |                                           |                   |              |
|                        | •                        | •                                        | •                                       | -                                         |                   |              |

<1.0 ng/mC



### FGD MAKE-UP WATER 09:00

đ

1

Sample No.: FGD MAKEUP U2T4 Date Received: 02/07/2005 Date Completed: 04/05/2005

Analytical No.: 20050815 Project No.: 1621 -087 -000

**Quality Control Calculations** 

25299.25

400.75

489.88

11.58

-10.01

Submitter: S. TSENG

Ion Sum

Cation Sum

Anion Sum

Ion Balance

% Ion Imbalance

|                        | <u>)</u><br>(mg/L u |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
|------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Parameter              | Value               | Value                                                                                                                                                                                                                              | Units                                                                                                          | Avg Value                             |
| pH                     |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Acidity, CaCO3         |                     | ·                                                                                                                                                                                                                                  |                                                                                                                | · · · · · · · · · · · · · · · · · · · |
| Alkalinity, CaCO3      |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Hydroxide, CaCO3       |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Carbonate, CaCO3       |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Bicarbonate, CaCO3     |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Total Suspended Solids |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Total Dissolved Solids |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Specific Conductivity  |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Hardness               |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Turbidity              |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Osmotic Pressure       |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Dissolved Oxygen       |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Ammonia, N             | <10                 |                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                          |                                       |
| Total Elements         |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Aluminum               | A MONTA -           | renerative de la des la des la des la des la des de la des d<br>La desta de la d |                                                                                                                |                                       |
| Calcium                | 2225,20             | uladidinin kabil diserinta 1971).                                                                                                                                                                                                  |                                                                                                                |                                       |
| Iron                   | 0.77                |                                                                                                                                                                                                                                    |                                                                                                                | i                                     |
| Magnesium              | 1999.49             |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Manganese              |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Potassium              | 392.08              |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Phosphorous            |                     |                                                                                                                                                                                                                                    | ing to the second of the second s |                                       |
| Silicon                |                     |                                                                                                                                                                                                                                    | rangga pagaani a                                                                                               |                                       |
| Sodium                 | 2649.03             |                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                          |                                       |
| Chromium               |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
|                        |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Anions:                | 0520.60             |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Sulfate                | 2532,68             |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Chloride               | 15500               |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Nitrate, N             | <0.02               |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Nitrite, N             |                     |                                                                                                                                                                                                                                    | <u>Allaha (para ispano e</u>                                                                                   |                                       |
| Bromide                |                     |                                                                                                                                                                                                                                    |                                                                                                                |                                       |
| Fluoride               | 1                   |                                                                                                                                                                                                                                    |                                                                                                                |                                       |

they <1.0 mg/mC