
On-line Optimization-Based Simulators for

Fractured and Non-fractured Reservoirs

DE-FC26-01BC15313

Final Report

September 2, 2001 to August 31, 2005

Milind D. Deo
Department of Chemical and Fuels Engineering

University of Utah
Salt Lake City, Utah 84112

Disclaimer: This report was prepared an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, man-
ufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

i

Contributors
Professor Craig Forster
Professor Mikhael Skliar
Dr. Yi-kun Yang
Yao Fu
Ganesh Balasubramaniam

ii

Abstract

Oil field development is a multi-million dollar business. Reservoir simulation is
often used to guide the field management and development process. Reservoir
characterization and geologic modeling tools have become increasingly sophisti-
cated. As a result the geologic models produced are complex. Most reservoirs
are fractured to a certain extent. The new geologic characterization methods are
making it possible to map features such as faults and fractures, field-wide. Sig-
nificant progress has been made in being able to predict properties of the faults
and of the fractured zones.

Traditionally, finite difference methods have been employed in discretizing the
domains created by geologic means. For complex geometries, finite-element meth-
ods of discretization may be more suitable. Since reservoir simulation is a mature
science, some of the advances in numerical methods (linear, nonlinear solvers and
parallel computing) have not been fully realized in the implementation of most of
the simulators.

The purpose of this project was to address some of these issues.

• One of the goals of this project was to develop a series of finite-element simu-
lators to handle problems of complex geometry, including systems containing
faults and fractures.

• The idea was to incorporate the most modern computing tools;use of mod-
ular object-oriented computer languages,the most sophisticated linear and
nonlinear solvers, parallel computing methods and good visualization tools.

• One of the tasks of the project was also to demonstrate the construction
of fractures and faults in a reservoir using the available data and to assign
properties to these features.

• Once the reservoir model is in place, it is desirable to find the operating
conditions, which would provide the best reservoir performance. This can
be accomplished by utilization optimization tools and coupling them with
reservoir simulation. Optimization-based reservoir simulation was one of the
project goals.

• Providing remote access to the simulators developed was also one of the
project objectives.

The basic methods development is presented in Chapters 1-3. Development of
a flux continuous finite element algorithm is presented with example calculations
in Chapter 1. This is followed by discussion of three-dimensional, three-phase de-
velopment in Chapter 2. A different numerical method, the mixed finite element
method is presented in Chapter 3. Verification of the methods developed is de-
scribed in Chapter 4. Introduction to fractured reservoir simulation is provided in
Chapter 5 with an example of a fractured reservoir simulation study of a faulted
reservoir in North Sea. Chapter six contains several examples of two dimensional
simulations, while chapter 7 contains examples of three-dimensional simulation. In
Chapter 8 optimization techniques are discussed. Chapter 9 contains a roadmap
to use the remote programming interface for the fractured reservoir simulator.

iv

Contents

1 Formulation of the Control Volume Method 1
1.1 Introduction . 1
1.2 Governing equations . 3
1.3 Upstream weighting in the finite difference formulation 4
1.4 Preliminaries . 4
1.5 FEM and CVFE . 5
1.6 The Control Volume Method . 6

1.6.1 Control volume formulation 6
1.6.2 Control volume discretization 6
1.6.3 Formulation of partial residual functions 7
1.6.4 Upstream weighting . 10

1.7 Flux continuity . 11
1.7.1 CVM . 12
1.7.2 FEM and CVFE . 12

1.8 Mass conservation . 14
1.9 Numerical experiments . 15

1.9.1 Single triangle example . 15
1.9.2 Five-spot injection problem 17

1.10 Conclusions . 19

2 The Control Volume Finite Element Method 22
2.1 Synopsis . 22
2.2 Area Coordinate System and Interpolation Functions 22
2.3 Three-Dimensional, Two-Phase Control

Volume Formulation . 28
2.4 Three-Dimensional, Three-Phase

Simulations . 34

3 The Mixed Finite Element Method 38
3.1 Introduction . 38

3.1.1 The lowest order Raviart–Thomas space 38
3.2 Application of the MFEM in reservoir simulation 40
3.3 Multiphase MFE formulation . 40

v

3.3.1 Multiphase flow equations 40
3.3.2 Discretization . 41
3.3.3 Discretized multiphase flow equations 43
3.3.4 Flux continuity . 44

4 Verification 45
4.1 One-layer case study . 45
4.2 Two-layer case study . 45
4.3 Summary . 46

5 Fractured Reservoir Simulation 61
5.1 Reservoir Rock Fractures . 61
5.2 Fracture Information from the Field 62
5.3 Single-Porosity Model . 64
5.4 Discrete-Fracture Model . 64
5.5 Case Studies . 65

6 Examples 79
6.1 Example 1 . 79
6.2 Example 2 . 79
6.3 Example 3 . 81

7 Example of Three-Dimensional Simulation 86

8 OPTIMIZATION TECHNIQUE AND APPLICATIONS 93
8.1 Description of the Optimization Problem 93
8.2 Overview of Nonlinear Optimization Techniques and Applications 94

8.2.1 Optimal Control Theory 94
8.2.2 Dynamic Programming and its Variations 95
8.2.3 Gradient Based Methods 96
8.2.4 Newton’s Method and its Improvements 97

8.3 Optimization Methodology . 99
8.3.1 The quasi-Newton method 99
8.3.2 Toolkit for Advanced Optimization 100
8.3.3 Formulation of the Cost Function 102
8.3.4 Gradient Computation . 102
8.3.5 Optimization Algorithm 103

8.4 Case Studies . 104
8.4.1 Case I . 104
8.4.2 Case II . 108
8.4.3 Case III . 110

9 Parallel Computation 123

vi

10 The Reservoir Simulator Interface 125
10.1 Introduction . 125

10.1.1 Overview . 125
10.1.2 Objects . 126
10.1.3 Design . 126

10.2 Interface Development . 128
10.2.1 Work Flows . 128
10.2.2 Features . 129

10.3 Installation . 129
10.3.1 Server . 129
10.3.2 Client . 130
10.3.3 Environments Requirement 130

10.4 Client Side Reservoir Domain Data Input 131
10.4.1 Start from a new domain 131
10.4.2 Start from an existing domain 131
10.4.3 Reservoir domain coordinates modifications 132

10.5 XML Input File . 135
10.5.1 “* ori.xml” file (rough domain file) 136
10.5.2 CVFE Simulation XML input file (“* fin.xml” file) 140

10.6 Operations . 141
10.6.1 Write property informations into the XML file 141
10.6.2 Mesh the rough domain with reservoir features 145
10.6.3 Simulate the fine domain 145

10.7 Ancillary Programs . 145
10.7.1 Triangle Mesh Viewer . 146
10.7.2 Results Images Viewer . 146
10.7.3 XML Source File Viewer 146
10.7.4 Interface Input/Output Console 146
10.7.5 Some Defintions . 151

vii

List of Figures

1.1 An example control volume mesh. The triangulation T is in solid
lines and the control volumes B are in dashed lines. 5

1.2 A control volume with its boundaries across several triangular ele-
ments. 7

1.3 Decomposition of a control volume into several subvolumes. 7
1.4 Unit outward normals of subvolume bi,m in triangle tm. 8
1.5 A schematic representation of the applicable upstream nodes and

flux directions. 10
1.6 An illustration of the concept of flux continuity. 11
1.7 Acute, right-angled, and obtuse triangles used in the discussion

of the consequences of applying either the potential- or flux-based
upstream condition. 16

1.8 Five-spot injection prodcution pattern used as an example calcula-
tion problem. 17

1.9 Legend for water contour plots. 20
1.10 Comparison of the water saturation contours of the diagonal grid

problem solved by the CVM (left) and the CVFE (right). From top
to bottom are the contours at 0.1, 0.2 and 0.4 domain pore volume
of water injected. 20

1.11 Comparison of the water saturation contours of the parallel grid
problem solved by the CVM (left) and the CVFE (right). From
top to bottom are the contours at 0.1, 0.2 and 0.4 domain pore
volume of water injected. 21

1.12 Comparison of the oil production rates for the CVM and the CVFE
on the diagonal and the parallel grids. 21

2.1 Definition of the natural coordinate of a tetrahedral element . . . 24
2.2 A tetrahedron element with associated control volumes 28

3.1 Unit outward normals on triangle’s three edges. 39

viii

4.1 The domain measures 1000 ft in the x-direction, 500 ft in the y-
direction and 50 ft in the z-direction. The horizontal production
well is represented by the the orange line and the horizontal injec-
tion well is represented by the blue line. Wells are placed at the
center of the domain along the x-direction, and each well measures
800 ft in length. 47

4.2 The mesh used for the one-layer case study for the UFES. 47
4.3 Cumulative oil production for the one-layer case study. 48
4.4 A more detailed cumulative oil production plot for the one-layer

case study (between zero and 1000 days). 48
4.5 Oil production rate for the one-layer case study. 49
4.6 A more detailed oil production plot for the one-layer case study

(between 91 and 200 days). Notice that the y-axis has a higher
resolution. 49

4.7 Water cut for the one-layer case study. 50
4.8 Water cut data between 91 and 200 days for the one-layer case

study. Notice that the y-axis has a higher resolution 50
4.9 Gas oil ratio for the one-layer case study. 51
4.10 Gas oil ratio between 91 and 130 days for the one-layer case study. 51
4.11 The mesh used for the two-layer case study for the UFES. 52
4.12 Cumulative oil production for the two-layer case study. 53
4.13 Cumulative oil production curve between 0 and 1000 days for the

two-layer case study. 53
4.14 Oil production rate for the two-layer case study. 54
4.15 Oil production rate between 91 and 200 days for the two-layer case

study. 54
4.16 Water cut for the two-layer case study. 55
4.17 Water cut between 91 and 200 days for the two-layer case study. . 55
4.18 Gas oil ratio for the two-layer case study. 56
4.19 Gas oil ratio between 91 and 130 days for the two-layer case study. 56
4.20 Cumulative oil production for the two-layer case study. 57
4.21 Cumulative oil production curve between 0 and 1000 days for the

two-layer case study. 57
4.22 Oil production rate for the two-layer case study. 58
4.23 Oil production rate between 91 and 200 days for the two-layer case

study. 58
4.24 Water cut for the two-layer case study. 59
4.25 Water cut between 91 and 200 days for the two-layer case study. . 59
4.26 Gas oil ratio for the two-layer case study. 60
4.27 Gas oil ratio between 91 and 130 days for the two-layer case study. 60

5.1 Cross-section view of a fault. 62
5.2 Areal view of some joints. 63

ix

5.3 Cross-section view of the formation of a joint caused by overburden
pressure. 63

5.4 The formation of a pair of conjugated fractures due to tectonic force. 63
5.5 A fractured domain Ω. 66
5.6 The original fractured domain. 66
5.7 The fractured domain after the fracture is replaced by a rectangle;

the width of the fracture has been enlarged for visibility. 67
5.8 Triangular mesh of the domain using the single-porosity model;

there are 415 nodes and 780 triangles in this particular mesh. . . . 67
5.9 Triangular mesh of the domain using the discrete-fracture model;

there are 97 nodes and 160 triangles in this particular mesh. . . . 68
5.10 The fractured domain. Different matrix and fracture properties are

shown in the legend. 68
5.11 The incorporation of the outer domain to simulate the three flowing

boundaies. 69
5.12 The placement of injection and production wells for Case I; the

blue and red lines are the horizontal injection and production wells,
respectively. 69

5.13 The placement of injection and production wells for Case II; the
blue and red lines are the horizontal injection and production wells,
respectively. 70

5.14 The placement of injection and production wells for Case III; the
blue and red lines are the horizontal injection and production wells,
respectively. 71

5.15 The placement of injection and production wells for Case IV; the
blue and red lines are the horizontal injection and production wells,
respectively. 71

5.16 Water saturation distribution of Case I at 1000 days. 72
5.17 Water saturation distribution of Case II at 1000 days. 72
5.18 Water saturation distribution of Case III at 1000 days. 73
5.19 Water saturation distribution of Case IV at 1000 days. 73
5.20 Water saturation distribution of Case I at 5000 days. 74
5.21 Water saturation distribution of Case II at 5000 days. 74
5.22 Water saturation distribution of Case III at 5000 days. 75
5.23 Water saturation distribution of Case IV at 5000 days. 75
5.24 Water saturation distribution of Case I at 9000 days. 76
5.25 Water saturation distribution of Case II at 9000 days. 76
5.26 Water saturation distribution of Case III at 9000 days. 77
5.27 Water saturation distribution of Case IV at 9000 days. 77
5.28 Cumulative oil production versus time for the four case studies. . 78

6.1 Plan view of a domain with intersecting fractures is shown. Water
injectors are in blue and producers are shown in red. 80

x

6.2 Water saturations as a result of a waterflood in a system with nega-
tive rock matrix capillary pressure and zero fracture capillary pressure 80

6.3 Water saturations as a result of a waterflood in a system with posi-
tive rock matrix capillary pressure and zero fracture capillary pressure 81

6.4 Complex domain with two sets of intersecting fractures (white lines),
deviating horizontal injectors (blue lines) and horizontal producers
(red lines) is shown. 82

6.5 Waterflood at an early time in the domain shown in Figure 6.4 is
presented. 82

6.6 Waterflood at a late time in the domain shown in Figure 6.4 is
presented. 83

6.7 A common waterflood unit in the Greater Monument Butte field.
The well spacing is 40 acres. All the wells are hydraulically frac-
tured. Slightly different fracture orientations and fracture half
lengths of 200 feet area are assumed 84

6.8 Waterflood at an early time in the domain shown in Figure 6.7 is
presented. 84

6.9 Waterflood at a a late time in the domain shown in Figure 6.7 is
presented. 85

7.1 The three-dimensional domain showing the fractures and the tetra-
hedral mesh . 87

7.2 Another view of the three-dimensional domain with fractures and
the mesh created . 87

7.3 Water saturations in the three-dimensional domain with fractures
after 181 days of injection . 88

7.4 Water saturations at 181 days. Y-Z cross-sections at x values of
174, 380, 488 and 593 feet are shown. 88

7.5 A plan view (X-Y section) at z=10 feet. Water saturations are after
181 days of injection are shown. 89

7.6 A plan view (X-Y section) at z=40 feet. Water saturations after
181 days of injection are shown. 89

7.7 Water saturations at 1003 days. Y-Z cross-sections at x values of
174, 380, 488 and 593 feet are shown. 90

7.8 A plan view (X-Y section) at z=25 feet. Water saturations are after
1003 days of injection are shown. 90

7.9 Water saturations in the three-dimensional domain with fractures
after 181 days of injection; capillary pressures in the rock matrix
are positive . 91

7.10 Water saturations for positive capillary pressure in the rock matrix
at 181 days. Y-Z cross-sections at x values of 174, 380, 488 and 593
feet are shown. 92

xi

7.11 A plan view (X-Y section) at z=25 feet. Water saturations are
after 1003 days of injection and the rock matrix capillary pressure
is positive . 92

8.1 Finite-element mesh of the domain used in Case I. 105
8.2 Study Ib: Cost function for a two-stage optimization problem. . . 106
8.3 Finite-element mesh of the fractured domain used in Case II. . . . 109
8.4 Relative Permeabilities of the fluids for domain in Case II. 110
8.5 Capillary Pressures in the matrix and fractures for domain in Case

II. 111
8.6 Diagrammatic description of the optimization method developed

by Yeten et al. 112
8.7 Finite-element mesh of the domain used in Case III. 113
8.8 Study Ia: Cumulative oil production comparison. 115
8.9 Study Ia: Water cut comparison. 116
8.10 Study Ib: Cumulative oil production comparison for the two-stage

problem. 116
8.11 Study Ib: Water cut comparison for the two-stage problem. 117
8.12 Study Ib: Cumulative oil production comparison for the five-stage

problem. 117
8.13 Study Ib: Water cut comparison for the five-stage problem. 118
8.14 Study Ic: Cumulative oil production comparison. 118
8.15 Study Ic: Water cut comparison. 119
8.16 Study Id: Cumulative oil production comparison. 119
8.17 Study Id: Water cut comparison. 120
8.18 Study IIa: Cumulative oil production comparison. 120
8.19 Study IIa: Water cut comparison. 121
8.20 Study IIb: Cumulative oil production for 5000 days. 121
8.21 Study IIb: Water cut for 5000 days. 122

9.1 Scaleup performance on a parallel linux cluster. A two-dimensional,
250,000 node problem was tested. 124

10.1 Open the Client Side Interface. 147
10.2 Draw a simple domain first. 148
10.3 Draw fractures, injection wells and production wells. 149
10.4 Draw additional fractures, injection wells and production wells. . . 150
10.5 Save the reservoir domain information. 151
10.6 Open a save the reservoir domain. 152
10.7 The opened reservoir domain. 153
10.8 The modified reservoir domain. 154
10.9 The * ori.xml file. 155
10.10The modified * ori.xml file. 156
10.11The snapshot of “simpleExample1 ori.xml”. 157

xii

10.12The snapshot of meshed “simpleExample1 ori.xml”. 158
10.13The snapshot of “simpleExample1 ori.xml”. 159
10.14The snapshot of “simpleExample1 ori.xml” with its editor. 160
10.15The snapshot of meshed “simpleExample1 ori.xml” with its editor. 161
10.16The middle snapshot of meshed “simpleExample1 ori.xml” simula-

tion (110days). 162
10.17The final snapshot of meshed “simpleExample1 ori.xml” simulation

(580days). 163
10.18Triangle Mesh Shower V1.0. 164
10.19Result Images Viewer V1.0. 165
10.20XML Source File Viewer V1.0. 166
10.21Interface Input/Output Console V1.0. 167

xiii

Chapter 1

Formulation of the Control
Volume Method

A flux continuous, locally mass conservative control volume method for the solu-
tion of multiphase flow problems in porous media is proposed. This method which
involves adaptation of a specific upstream weighting technique is an improvement
over previous control volume finite element methods, which were not flux contin-
uous. The previous implementation of upstream weighting in the control volume
finite element method required a positive transmissibility condition. Current im-
plementation does not require this condition. Mass conservation at the local level
(control volume) has always been an issue in solutions of multiphase flow prob-
lems using finite element family of methods. It is shown that when a proper set of
control volumes is considered, these numerical methods yields locally mass con-
servative solutions. Numerical examples that demonstrate the significance of flux
continuity are presented.

1.1 Introduction

The governing equations for multiphase fluid flow in porous media are mass con-
servation of phases [1, 2]. Consider a two-phase, immiscible flow problem,

−∇ · ρlvl =
∂ (φρlSl)

∂t
+ q̃l, (1.1)

where l = {n,w} represents non-wetting and wetting phases, respectively, ρl is
the phase density, φ is the porosity, Sl is the phase saturation, and q̃l is the source
term. Darcy’s law is used for the flux calculation,

vl = −kλl∇ϕl, (1.2)

where k is the rock permeability tensor. Here the phase mobility, λl = krl(SL)/µl,
is the ratio of phase relative permeability to the phase viscosity, and ϕl is the
phase potential.

1

After (1.2) is substituted into (1.1) and discretized by the numerical method of
choice, averaged k, ρl, µl, and krl between discretized members need to be deter-
mined. To ensure flux continuity between these members the harmonic average of
k is used [1]. In general, ρl and µl are weak functions of phase pressure; therefore,
the arithmetic average is used. The choice of krl is very important in ensuring that
the numerical solution converges to the real solution. It has been argued that use
of any type of average for krl is inappropriate and that upstream implementation
is essential [3]. Use of asymmetric weighting functions for krl are possible [4], but
that does not guarantee physically meaningful phase saturation values [5].

Typically, finite difference is the method of choice for discretization in reser-
voir simulation applications. However, the finite element family of methods are
more suitable for problems with complex geometrical domains. The finite ele-
ment method (FEM) gained popularity in the field of oil reservoir simulation in
the late 1960’s [6, 7]. Langsrud [8] and Dalen [9] developed the most essential
features required for the success of this family of methods in multiphase flow
applications—mass-lumping and upstream weighting of krl. These features are
still part of current practice [10, 11, 12, 13]. The mass-lumping scheme is nec-
essary to prevent oscillating phase saturation values. The upstream weighted krl

is determined by a potential-based upstream weighting method. In this method,
the flux portion of (1.1) is first rearranged to resemble the finite difference for-
mulation, and then by comparing pairs of potential values, the upstream krl is
determined.

The control volume finite element method (CVFE) for oil reservoir simulation
was introduced by Forsyth[5]. The upstream implementation strategy for krl in
the CVFE is the potential-based method as in FEM. This has been adopted by
other researches [14, 15, 16, 17, 18]. In this method, shapes of the triangular
elements should be such that positive transmissibilities are guaranteed.

To distinguish from the CVFE, the method proposed here is called the control
volume method (CVM). The only difference between the CVM and the CVFE is
the upstream weighting scheme. Unlike the CVFE, the upstream direction in the
CVM is determined by the flux direction across each control volume boundary
in each triangle. This type of upstream weighting implementation is considered
flux-based. This idea was first developed by Prakash[19] in single-phase solute
transport applications. Forsyth[5] recognized this concept for multiphase flow
but applied the potential-based method. A box method using a similar flux-based
upstream weighting was proposed by Huber and Helmig[20, equation (18)]. In the
box method, the flux direction is determined by the summation of all the fluxes
exchanged between two control volumes across multiple triangular or quadrilateral
elements.

One of the main objectives of this paper is to highlight the differences between
flux- and potential-based upstream weighting methods. It is clearly shown that
the flux-based implementation leads to flux continuous solutions, and eliminates
limitations imposed on the shapes of the elements.

One of the main reasons for the lack of widespread use of the finite element

2

family of methods in reservoir simulation is due to the belief that they do not yield
locally conservative solutions. In this paper, proofs are provided regarding the
local mass conservative aspects of the CVFE, the CVM, and the FEM methods.

In §1.2 the governing equations of multiphase oil reservoir simulation are fur-
ther discussed. In §1.3, the upstream weighting of properties is explained in the
context of the finite difference method. The discretized finite element and control
volume finite element formulations are discussed in §1.5. The proposed control
volume method is derived in §1.6. Flux continuity and mass conservation prop-
erties of the above three methods are discussed in §1.7 and §1.8, respectively. In
§1.9, numerical experiments are conducted using the CVFE and CVM to show
the significance of flux continuity.

1.2 Governing equations

We consider a bounded polygonal domain Ω in R
2 with boundary Γ. The governing

equations are obtained by substituting (1.2) into (1.1).

0 = −∇ · kρlλl∇ϕl +
∂(φρlSl)

∂t
+ q̃l. (1.3)

The permeability tensor k is symmetric positive definite [2]. The initial conditions
are prescribed phase potential and saturation distributions in the domain Ω

ϕl(Ω, t = 0) = ϕl0(Ω), Sl(Ω, t = 0) = Sl0(Ω). (1.4)

The boundary condition is

vl · n̂
∣∣∣
Γ

= 0, (1.5)

where n̂ is the unit outward normal on Γ. Phase potential ϕl is defined as

ϕl = Pl + ρl

g

gc

z.

where Pl is the phase pressure, g is the gravitational acceleration constant, gc is a
conversion constant and z is the elevation. To emphasize the basic ideas, we will
consider only cases where z = 0, that is ϕl = Pl. Phase pressures are related by
capillary pressure

Pc(Sw) = Pn − Pw. (1.6)

and phase saturations are coupled by

Sn + Sw = 1. (1.7)

Equations (1.3) to (1.7) form the complete two-phase flow problem.

3

1.3 Upstream weighting in the finite difference

formulation

The basic idea of upstream weighting is to choose the property corresponding to
the upstream direction of the flux [1]. Using the finite difference formulation as
an example, the x-direction flux between any pair of adjacent blocks, i and j, can
be written as

fij = −Lkijρijλij

∂ϕ

∂x
, (1.8)

where L is the length of the common boudary between the pair of blocks and the
derivative of phase potential is approximated by (ϕj − ϕi)/∆x. The subscripts
“ij” on the right hand side of (1.8) denote that the type of averaging methods
used as discussed in §1.1 to calculate the values of k, ρ, and λ. Rewriting (1.8)
with the proper averaging method indicated by subscrips, we have

fij = −Lkharρari
kr,up

µari

ϕj − ϕi

∆x
. (1.9)

where “har” stands for harmonic average, “ari” stands for arithmetic average, and
“up” for upstream weighting. Notice that some authors apply upstream weighting
to the whole mobility λ, and some others apply upstream weighting to ρ also. In
this paper we apply upstream weighting to both ρ and λ; therefore, (1.9) becomes

fij = −Lkharρupλup
ϕj − ϕi

∆x
. (1.10)

The upstream properties are then determined as follows. Consider the common
boundary between blocks i and j

1. when ϕi > ϕj, the flux is from block i to block j; therefore, up = i;

2. when ϕi < ϕj, the flux is from block j to block i; therefore, up = j.

For the finite difference method, the transmissibility, L/∆x, is always positive.
As a result, the potential- and flux-based upstream weighting schemes coincide.

1.4 Preliminaries

Referring to Figure 1.1, let T = {t} denote a regular partition of the domain Ω into
triangular elements. The dual mesh (control volumes) B = {b} of T is constructed
by connecting the barycenter and the midpoint of sides of every triangle t ∈ T
with straight lines.

Let P1(T) denote the space of continuous piecewise linear polynomials associ-
ated with T . The usual nodal basis for P1(T) is denoted by {Li}, which satisfies

Li(vj) = δij

4

Figure 1.1: An example control volume mesh. The triangulation T is in solid lines
and the control volumes B are in dashed lines.

where vj is a vertex in the triangulation. Let P0(B) denote the space of discon-
tinuous piecewise constants with respect to B. Define

P0
+(T) = {c ∈ P0(T) : c > 0}

to be the space of discontinuous piecewise positive constants with respect to T .

1.5 FEM and CVFE

The similarity of linear finite elements and the box method for Laplacian problems
has been discussed [21]. It has been shown that the formulation derived from linear
finite elements and the CVFE are the same for incompressible single phase flow
problems [18].

The multiphase finite element formulation used in the field of oil reservoir
simulation finds the approximations of phase potential and phase saturation in
P1(T). The mass-lumping scheme is applied to stabilize the phase saturation
values. As a result of mass-lumping, we can consider that the phase saturation
solution is sought in P0(B). Therefore, a set of control volumes is implied in the
FEM. The CVFE method also finds its discretized phase potential in P1(T) and
phase saturation in P0(B). If the potential-based upstream weighting scheme is
applied to the FEM and the CVFE, and both ρ and λ are taken to be the upstream
weighted values then the formulations derived from both methods are exactly the
same. As a result, the control volumes implied in the FEM are the same as the
control volumes B defined in the CVFE.

For both methods, we consider both k and φ are in P0
+(T). The three residual

functions for any triangle t ∈ T derived by both methods are

Fi =− A
[(

ρλ
)
up(ij)

Tij(ϕj − ϕi) +
(
ρλ

)
up(ik)

Tik(ϕk − ϕi)
]

+
A

3

∂(φρiSi)

∂t
(i, j, k = 1, 2, 3 and i 6= j 6= k),

(1.11)

where A is the area of the triangle. Note that the subscript l and the source term

5

in (1.3) are omitted for simplicity. The transmissibility is defined as

Tij = −
(
kxx

∂Li

∂x

∂Lj

∂x
+ kxy

∂Li

∂x

∂Lj

∂y
+ kyx

∂Li

∂y

∂Lj

∂x
+ kyy

∂Li

∂y

∂Lj

∂y

)
. (1.12)

The potential-based upstream operator is defined by

up(ij) =

{
i if ϕi > ϕj,

j if ϕi < ϕj.
(1.13)

Notice that when the two flux terms of (1.11) are considered separately there is
no significant physical meaning associated with either one of them. It is arranged
so only to resemble (1.10).

A positive transmissibility condition is necessary to guarantee Tij > 0 [16].
Negative transmissibilities are physically unrealistic and also produce unaccept-
able saturation values.

1.6 The Control Volume Method

In this section, we derive the CVM from a finite element point of view with a
focus on the explict expression for local fluid flux.

The basic concept of the CVM is to use the fluid potential values on T for
flux calculation; the flux so obtained is then used for mass balance on B. Take
any triangle t ∈ T as an example; after establishing the flux direction in the
triangle, the fluid exchanged between the three control volumes in the triangle
can be calculated.

1.6.1 Control volume formulation

The residual function for a control volume bi ∈ B with boundary Γi is obtained
by taking the integrated form of (1.1):

F i = 0 =

∫

bi

∇ · ρv +
∂(φρS)

∂t
dx

=

∫

Γi

ρv · n̂ ds +

∫

bi

∂(φρS)

∂t
dx

(1.14)

Here n̂ is the unit outward normal on Γi. Note that the subscript l and the source
term in (1.3) are omitted for simplicity.

1.6.2 Control volume discretization

During the process of computation, it is difficult to evaluate (1.14) because a
control volume is usually distributed accross several triangular elements as shown

6

t1

t2

t3

t4

t5

Γibi

Figure 1.2: A control volume with its boundaries across several triangular ele-
ments.

= + +...

Figure 1.3: Decomposition of a control volume into several subvolumes.

in Figure 1.2. A more convenient approach is then to use an element-by-element
method to add up the contributions from subvolumes bi,m = bi ∩ tm. Figure 1.3
shows this concept. The residual function for the control volume bi in Figure 1.2
can then be obtained by

F i =
5∑

m=1

F i
m. (1.15)

The partial residual function F i
m represents the part of F i which is contributed

by bi,m and is defined as

F i
m =

∫

Γi
m

ρv · n̂ ds +

∫

bi,m

∂(φρS)

∂t
dx, (1.16)

where Γi
m = Γi ∩ tm.

1.6.3 Formulation of partial residual functions

As shown in Figure 1.4, the partial residual function F i
m of bi,m is derived in this

section. The same procedure can be applied to obtain F j
m and F k

m.

7

i

j

k

ki

ij

c

jk

bi,m

bj,m

bk,m

n̂

n̂

Figure 1.4: Unit outward normals of subvolume bi,m in triangle tm.

Equation (1.16) is rewritten for bi,m as

F i
m =

∫

cij+cki

ρv · n̂ ds +

∫

bi,m

∂(φρS)

∂t
dx

=

∫

cij

ρv · n̂ ds +

∫

cki

ρv · n̂ ds +

∫

bi,m

∂(φρS)

∂t
dx

(1.17)

where n̂ is the unit outward normal of the corresponding boundary as shown in
Figure 1.4. Define the fluxes flowing out of bi,m through cij and cki as

fi,cij =

∫

cij

ρv · n̂ ds and fi,cki =

∫

cki

ρv · n̂ ds,

respectively. Also, define the total flux flowing out of bi,m as

fi = fi,cij + fi,cki,

then equation (1.17) becomes

F i
m = fi +

∫

bi,m

∂(φρS)

∂t
dx. (1.18)

Notice that fi in equation (1.18) represents the flux portion of the partial residual
function.

The flux across cij is evaluated as

fi,cij =

∫

cij

ρv · n̂ ds =

∫

cij

ρ
(
vx î + vy ĵ

)
·
(
nx î + ny ĵ

)
ds

=

∫

cij

ρ(vxnx + vyny) ds,

(1.19)

where

vx = −λup

(
kxx

∂ϕ

∂x
+ kxy

∂ϕ

∂y

)
, vy = −λup

(
kyx

∂ϕ

∂x
+ kyy

∂ϕ

∂y

)
.

8

To obtain the unit outward normal n̂ along a line αβ, a transformation matrix
is introduced

Tθ =

[
cos θ − sin θ
sin θ cos θ

]
. (1.20)

By multipling Tθ to any vector v, a new vector vθ rotated θ degree with respect

to v is obtained. Let
−→
αβ = (xβ − xα, yβ − yα) represent the vector from node α to

node β; then

n̂θ = Tθ

−→
αβ

∥∥−→αβ
∥∥ (1.21)

is the unit vector formed by rotating
−→
αβ by θ degrees. To find the unit outward

normal n̂ of the control volume bi,m along cij, we let θ = −π/2 then,

n̂ = T−π
2

←−
cij

∥∥←−cij
∥∥ =

(yc − yij)∥∥←−cij
∥∥ î +

(xij − xc)∥∥←−cij
∥∥ ĵ

where
←−
cij = (xc − xij, yc − yij). Therefore,

fi,cij =

∫

cij

ρupλup

[
−

(
kxx

∂ϕ

∂x
+ kxy

∂ϕ

∂y

)(yc − yij)∥∥←−cij
∥∥

−
(
kyx

∂ϕ

∂x
+ kyy

∂ϕ

∂y

)(xij − xc)∥∥←−cij
∥∥

]
ds.

(1.22)

The phase potential in (1.22) is approximated by ϕh ∈ P1(T) and

ϕh(x) = Li(x)ϕi + Lj(x)ϕj + Lk(x)ϕk

where ϕi, ϕj, and ϕk are the phase potential values at triangular vertices. Con-
sequentlly, the derivatives of ϕh are constants in t ∈ T ; therefore, (1.22) can be
written as

fi,cij = ρupλup

[
−

(
kxx

∂ϕ

∂x
+ kxy

∂ϕ

∂y

)
(yc − yij)

−
(
kyx

∂ϕ

∂x
+ kyy

∂ϕ

∂y

)
(xij − xc)

]
.

(1.23)

The flux fi,cki can be derived in the same way as fi,cij and as a result fi is fully
defined. Let S be approximated by Sh ∈ P0(B) then Sh(bi) = Si where Si is the
saturation value of control volume bi. The partial residual function of bi,m can
then be written as

F i
m = fi + bi,m

∂(φρiSi)

∂t
, (1.24)

9

i

j

k

ki

ij

c
jk

f
cki

fcij

f
cjk

Figure 1.5: A schematic representation of the applicable upstream nodes and flux
directions.

where bi,m =
∫

bi,m
dx. Other fluxes can be calculated in the same way and are

summarized here.

fi,cij = −fj,cij = ρupλup

[
−

(
kxx

∂ϕ

∂x
+ kxy

∂ϕ

∂y

)
(yc − yij)

−
(
kyx

∂ϕ

∂x
+ kyy

∂ϕ

∂y

)
(xij − xc)

]
,

(1.25a)

fj,cjk = −fk,cjk = ρupλup

[
−

(
kxx

∂ϕ

∂x
+ kxy

∂ϕ

∂y

)
(yc − yjk)

−
(
kyx

∂ϕ

∂x
+ kyy

∂ϕ

∂y

)
(xjk − xc)

]
,

(1.25b)

fk,cki = −f1,cki = ρupλup

[
−

(
kxx

∂ϕ

∂x
+ kxy

∂ϕ

∂y

)
(yc − yki)

−
(
kyx

∂ϕ

∂x
+ kyy

∂ϕ

∂y

)
(xki − xc)

]
.

(1.25c)

Note that the first equality in (1.25) states the fact that any flux flowing out of
one control volume equals the flux flowing into another control volume through
their common boundary within a triangular element. Thus, the CVM is a flux
continuous numerical method.

1.6.4 Upstream weighting

The upstream weighted properties in the CVM are determined by the flux-based
upstream weighting scheme (unlike the CVFE where the discretized equations are
reformulated to resemble the finite difference formulation and a potential-based
approach is used).

The concept of flux-based upstream weighting in the CVM is better explained
by examples. Figure 1.5 shows an example triangle with constant flux across the

10

A BΓAB

fA fB

Figure 1.6: An illustration of the concept of flux continuity.

three control volume boundaries. The upstream properties can then be determined
for each flux as follows.

1. For fcij , up = j;

2. for fcjk, up = k;

3. for fcki, up = k.

During the programming implementation, the upstream direction is deter-
mined by the sign of the flux. Recall the definition of fi; when fi > 0 the flux is
flowing out of the control volume i. Therefore, the flux-based upstream operator
up(ij) for the CVM is defined as

up(ij) =

{
i if fi,cij > 0,

j if fj,cij > 0.
(1.26)

Remark 1.1 For simplicity, the same symbol up(ij) is used for the upstream

operator in (1.13) and (1.26). There should be no confusion about which equation

to use when up(ij) is encountered.

1.7 Flux continuity

The term flux continuity for a control volume based method is defined as follows.

Definition 1.1 A control volume based numerical method is flux continuous if

and only if flux is defined on the control volume boundaries, and the flux flowing

out of a control volume is exactly the same as the flux flowing into another control

volume through their common boundary.

This concept is shown in Figure 1.6 where fA is the flux flowing out of control
volume A and fB is the flux flowing into control volume B through their common
boundary ΓAB. For the numerical method to be flux continuous we require

fA + fB = 0. (1.27)

In the remainder of this section we show that the CVM is flux continuous and
prove that the CVFE is not flux continuous.

11

1.7.1 CVM

Equation (1.25) provides expressions for pairs of fluxes entering and leaving con-
trol volumes through identified boundaries. Examinzation of this equation shows
that the fluxes entering and leaving a boundary add to zero, thus satisfying the
definition of flux continuity.

1.7.2 FEM and CVFE

The FEM and CVFE are considered together because they yield the same dis-
cretized equations. To prove that these two methods are not flux continuous, a
general case is studied to show that the CVFE formulation satisfies Definition 1.1
if and only if the phase potentials at every node are equal. Consequentlly, when
there is finite flux, the CVFE is not flux continuous.

Theorem 1.1 Consider a triangular element tm ∈ T with arbitrary shape and

orientation. The CVFE fluxes between the control volumes {bi, bj, bk} ∈ B in tm
are continuous if and only if the phase potential at three triangle vertices are equal,

that is ϕi = ϕj = ϕk.

Proof 1 For simplicity, this proof is show for the case where

k =

[
kx 0
0 ky

]
∈ P0

+(T).

As discussed in §1.5, the CVFE formulation was rearranged for upstream imple-

mentation. To study the flux continuity property of this method, (1.11) must be

returned to its original flux-significant formulation. Starting with the flux portion

of (1.11), the flux into and out of bi is separated into x- and y-components.

fi = A
[
kx

∂Li

∂x

((
ρλ

)
up(ij)

∂Lj

∂x
(ϕj − ϕi) +

(
ρλ

)
up(ik)

∂Lk

∂x
(ϕk − ϕi)

)

+ ky

∂Li

∂y

((
ρλ

)
up(ij)

∂Lj

∂y
(ϕj − ϕi) +

(
ρλ

)
up(ik

∂Lk

∂y
(ϕk − ϕi)

)]
,

For each component, the fluxes through different straight line boundaries are fur-

ther separated. Referring to Figure 1.4, since

∂Li

∂x
=

yj − yk

2A
=

yij − yki

A
=

yij − yc

A
+

yc − yki

A
, (1.28a)

∂Li

∂y
=

xk − xj

2A
=

xki − xij

A
=

xki − xc

A
+

xc − xij

A
, (1.28b)

the total flux can be written as

fi = fix,cij + fix,cki + fiy,cij + fiy,cki, (1.29)

12

which is the summation of the x-direction flux across cij, cki and y-direction flux

across cij, cki, respectively. The flux terms are defined by

fix,cij = kx(yij − yc)
[(

ρλ
)
up(ij)

∂Lj

∂x
(ϕj − ϕi) +

(
ρλ

)
up(ik)

∂Lk

∂x
(ϕk − ϕi)

]

fix,cki = kx(yc − yki)
[(

ρλ
)
up(ij)

∂Lj

∂x
(ϕj − ϕi) +

(
ρλ

)
up(ik)

∂Lk

∂x
(ϕk − ϕi)

]

fiy,cij = ky(xc − xij)
[(

ρλ
)
up(ij)

∂Lj

∂y
(ϕj − ϕi) +

(
ρλ

)
up(ik)

∂Lk

∂y
(ϕk − ϕi)

]

fiy,cki = ky(xki − xc)
[(

ρλ
)
up(ij)

∂Lj

∂y
(ϕj − ϕi) +

(
ρλ

)
up(ik)

∂Lk

∂y
(ϕk − ϕi)

]
.

Similar x- and y-direction fluxes can be derived for bj and bk and are listed here.

For bj,

fj = fjx,cjk + fjx,cij + fjy,cjk + fjy,cij , (1.30)

where

fjx,cjk = kx(yjk − yc)
[(

ρλ
)
up(ij)

∂Li

∂x
(ϕi − ϕj) +

(
ρλ

)
up(jk)

∂Lk

∂x
(ϕk − ϕj)

]

fjx,cij = kx(yc − yij)
[(

ρλ
)
up(ij)

∂Li

∂x
(ϕi − ϕj) +

(
ρλ

)
up(jk)

∂Lk

∂x
(ϕk − ϕj)

]

fjy,cjk = ky(xc − xjk)
[(

ρλ
)
up(ij)

∂Li

∂y
(ϕi − ϕj) +

(
ρλ

)
up(jk)

∂Lk

∂y
(ϕk − ϕj)

]

fjy,cij = ky(xij − xc)
[(

ρλ
)
up(ij)

∂Li

∂y
(ϕi − ϕj) +

(
ρλ

)
up(jk)

∂Lk

∂y
(ϕk − ϕj)

]
.

For bk,

fk = fkx,cki + fkx,cjk + fky,cki + fky,cjk, (1.31)

where

fkx,cki = kx(yki − yc)
[(

ρλ
)
up(ki)

∂Li

∂x
(ϕi − ϕk) +

(
ρλ

)
up(kj)

∂Lk

∂x
(ϕj − ϕk)

]

fkx,cjk = kx(yc − yjk)
[(

ρλ
)
up(ki)

∂Li

∂x
(ϕi − ϕk) +

(
ρλ

)
up(kj)

∂Lk

∂x
(ϕj − ϕk)

]

fky,cki = ky(xc − xki)
[(

ρλ
)
up(ki)

∂Li

∂y
(ϕi − ϕk) +

(
ρλ

)
up(kj)

∂Lk

∂y
(ϕj − ϕk)

]

fky,cjk = ky(xjk − xc)
[(

ρλ
)
up(ki)

∂Li

∂y
(ϕi − ϕk) +

(
ρλ

)
up(kj)

∂Lk

∂y
(ϕj − ϕk)

]
.

For the CVFE formulation to be flux continuous, we require the x- and y-direction
fluxes through each interface to satisfy Definition 1.1. Therefore, the CVFE is flux

continuous if and only if the following equations are all true.

fiu,cij + fju,cij = 0, (1.32a)

fju,cjk + fku,cjk = 0, (1.32b)

fku,cki + fiu,cki = 0 where u = {x, y}. (1.32c)

13

Consider (1.32a).

0 = kx(yij − yc)
[(

ρλ
)
up(ij)

(∂Li

∂x
+

∂Lj

∂x

)
(ϕj − ϕi)

+
(
ρλ

)
up(ik)

∂Lk

∂x
(ϕk − ϕi) +

(
ρλ

)
up(jk)

∂Lk

∂x
(ϕj − ϕk)

] (1.33a)

0 = ky(xc − xij)
[(

ρλ
)
up(ij)

(∂Li

∂y
+

∂Lj

∂y

)
(ϕj − ϕi)

+
(
ρλ

)
up(ik)

∂Lk

∂y
(ϕk − ϕi) +

(
ρλ

)
up(jk)

∂Lk

∂y
(ϕj − ϕk)

] (1.33b)

The only possibility for (1.33) to be true for any regular shape and any orientation

of triangular element is when

ϕk ≥ ϕi = ϕj. (1.34)

The same argument can be applied to (1.32b) and (1.32c), and we have

ϕi ≥ ϕj = ϕk, (1.35)

ϕj ≥ ϕi = ϕk, (1.36)

respectively. From (1.34), (1.35), and (1.36), we conclude that the CVFE is flux

continuous only if ϕi = ϕj = ϕk. On the other hand, if ϕi = ϕj = ϕk then

(1.32) is true and the CVFE is flux continuous. Therefore, we have proved that

the CVFE is flux continuous if and only if the phase potentials at three vertices

are equal.

Remark 1.2 The only difference between the CVFE and the CVM is the choice

of upstream properties. If (1.32a) is derived using the CVM, all the upstream

properties would have been assigned to the values of the same control volume, and

for u = x

fix,cij + fjx,cij

= kx(yij − yc)
(
ρλ

)
up

[(∂Li

∂x
+

∂Lj

∂x

)
(ϕj − ϕi) +

∂Lk

∂x
(ϕk − ϕi) +

∂Lk

∂x
(ϕj − ϕk)

]

= 0,

since ∂Li/∂x + ∂Lj/∂x + ∂Lk/∂x = 0.

1.8 Mass conservation

The governing equations for oil reservoir simulations are basically mass conser-
vation equations. It is, therefore, very important to verify that the numerical
methods employed in solving the equations are both globally and locally mass
conservative.

14

It is well known that both the FEM and CVFE are globally mass conservative.
The CVM derived in this paper is also globally mass conservative because the
solution is obtained by forcing the set of residual functions to be as close to zero
as possible.

It is widely believed that the FEM is not a locally mass conservative method.
On the other hand, the CVFE is considered to be locally mass conservative.
However, both the methods yield exactly the same discretized equations. In view
of this, we first recall the definition of local mass conservation [22] and examine
the CVFE, CVM and FEM methods.

Definition 1.2 A control volume based numerical method is locally mass con-

servative if and only if flux is defined on the control volume interfaces, and the

total fluxes flowing into and out of a control volume is exactly balanced by the

accumulation term and the source terms.

Consider the CVFE and CVM. Both methods solve the approximated solution
by forcing every residual function to be zero. Taking a close look at their residual
functions, (1.14), it is seen that Definition 1.2 is satisfied for every control volume.
Consequentlly, both methods are locally mass conservative.

When the local mass conservation property of the FEM is considered on T ,
the FEM is not conservative. This is because the flux is not defined on the edge
of triangles. On the other hand, if the same control volumes, B, as defined in the
CVFE are considered for the FEM then the FEM is also locally mass conservative.
This is a logical approach because the FEM implies the existance of B as discussed
in §1.5.

1.9 Numerical experiments

First, a simple single element example is considered. The effect of different up-
stream weighting implementation is discussed. The implication of positive trans-
missibility condition [16] is also considered.

The second example considered is a five-spot injection problem. The results
from the CVM and the CVFE are compared; the grid orientation effect is studied.

1.9.1 Single triangle example

The term irreducible phase content used in reservoir engineering is discussed first.
Due to the nature of porous media, a fluid phase is only mobile when its satura-
tion value is above its irreducible phase content Sir in the porous medium. This
property of the porous medium is reflected in the relative permeability function
kr(S). The function kr(S) has the following properties

kr(S)

{
= 0 if S ≤ Sir,

> 0 if S > Sir.

15

bi bj

bk

i j

k

ij

jkki

c

x

y

−k∇ϕ

bi bj

bk

i j

k

ij

jk
ki

c
bi bj

bk

i j

k

ij

jk
ki

c

ϕk > ϕi = ϕj

Sk > Si = Sj = Sir

Figure 1.7: Acute, right-angled, and obtuse triangles used in the discussion of the
consequences of applying either the potential- or flux-based upstream condition.

Therefore, a fluid phase is immobile if S ≤ Sir even when there exists a potential
gradient.

The positive transmissibility condition for a single triangle is that all angles are
equal to or less than π/2 [16]. Consider the acute triangle in Figure 1.7. Relative
values of phase potentials and saturations are indicated in the figure. Assume
that the permeability tensor is identity; then, the flux direction is pointed in the
negative y-direction. The flux flowing out of bj through cij in the y-direction
should be zero because Sj = Sir. However, the actual flux calculated by the
CVFE is

CVFE: fjy,cij = ky(xij − xc)
(
ρλ

)
k

xj − xi

2A
(ϕk − ϕj) 6= 0.

It is clear that even if the positive transmissibility condition is satisfied, the CVFE
still has unrealistic fluxes. In contrast, the same flux in the CVM is

CVM: fjy,cij =
(
ρλ

)
j
ky

∂ϕ

∂y
(xij − xc) = 0

because, λj = 0.
Consider the right-angled triangle in Figure 1.7. The potential and saturation

conditions in Figure 1.7 require the flux through the boundary cjk should be
nonzero. This means that the value of Sj should increase. The flux flowing into
bj through cjk in y-direction calculated by the CVFE is

CVFE: fjy,cjk = ky(xc − xjk)
(
ρλ

)
k

xj − xi

2A
(ϕk − ϕj).

It is clear that fjy,cij +fjy,cjk = 0 because (xij−xc) = −(xc−xjk). As a result, Sj

remains unchanged. Thus, once again, it is possible to develop physically incorrect
solutions using CVFE. It is for this reason that CVFE is considered a five-point

16

injection well

production well

diagonal grid

parallel grid

Figure 1.8: Five-spot injection prodcution pattern used as an example calculation
problem.

stencil method [18] for the right-angled triangles, leading to grid orientation ef-
fects. As for the CVM, we have fjy,cij + fjy,cjk < 0 and Sj increases; therefore, a
net flux exists in the diagonal direction.

Consider the obtuse triangle in Figure 1.7. For the CVFE formulation, as a
result of violating the positive transmissibility condition, we have fjy,cij +fjy,cjk >
0, because xij −xjk > 0. The phase saturation Sj is, therefore, reduced to a value
less than Sir, which is physically impossible. In the CVM, we have fjy,cij = 0 and
fjy,cjk < 0; therefore, the value of Sj increases.

1.9.2 Five-spot injection problem

The test problem for the proposed CVM and the CVFE is a five-spot water
injection problem. The arrangement of production and injection wells is shown in
Figure 1.9.2. The distance between any two adjacent production wells is 2000 ft.
One injection well is placed at the center of a square formed by four surrounding
production wells. The wetting and non-wetting phases considered in this problem
are water and oil, respectively. Oil and water are produced from production
wells, and water is injected through injection wells. Two types of grids are used
for testing the grid orientation effects. In the diagonal grid, the production and
injection wells are connected through the diagonal of the grid. In the parallel grid,
wells are connected through grid lines. These two subdomains within the larger
five-spot pattern are shown in Figure 1.9.2. Each subdomain is discretized into
20 by 20 square blocks. Each square block is further divided into two triangles. It
should be noted that the parallel grid domain is twice the size of the diagonal grid
domain. The water migration patterns are expected to be identical between the
injection and production wells in both cases. The oil production rates at different
water injection stages are also expected to be the same for the two grid systems.

Reservoir rock and fluid properties are listed in Table 1.1. Initially, oil pressure
is at 3000 psia and water saturation is 0.20. Because of the symmetric layout
of the wells, no flow boundary conditions are used for the two subdomains in
consideration. The total fluid rate for both injection and production wells is 40

17

Table 1.1: Rock and fluid properties
used in the example problem.
Rock Properties

kx 200 md
ky 200 md
φ 0.10=10%
Pc 0

So,ir 0.2
Sw,ir 0.2
kro (So − So,ir)

3

krw (Sw − Sw,ir)
3

Fluid Properties
µo 10 cp
µw 1 cp
ρo (P−14.7

89867.7
+ 1)ρo,STC

1,2

ρw ρw,STC

1STC = stock tank condition
2P in psia

stock tank barrels per day (STB/day). Since the simulation domain is only a
quarter of the five-spot pattern, the fluid rate is further divided by four and a rate
of 10 STB/day is used for each well.

Consider the solutions of CVM and CVFE on the diagonal grid. Figure 1.9
shows the legend and Figure 1.10 shows the water saturation contours at different
injection stages (different times) for these two methods on the diagonal grid. Close
to the injection well, water tends to move evenly along the diagonal and grid lines
for the CVM. On the contrary, water tends to move along the grid lines for the
CVFE.

Figure 1.11 shows the water saturation contours at various pore volumes in-
jected for the two solution methods on the parallel grid. For this grid, water
migration patterns using the CVM and CVFE are different both around the in-
jection and production wells.

Figure 1.12 shows the oil production rate at production wells for the two
numerical methods on the two grids. It is evident that the water breakthrough
times (the moment at which the fluid at the production well ceases to be pure
oil) are different for the two methods. It is also clear that the CVFE solution for
breakthrough times and oil rates for the two grid systems are quite different. The
CVFE parallel grid solution provides the quickest breakthrough because of water
movement predominantly along grid lines. In this case, the CVM solutions for the
two grid systems are almost the same, thus, showing very little grid orientation
effect.

18

1.10 Conclusions

The potential-based upstream weighting method, commonly used in control vol-
ume finite element (CVFE) numerical schemes for the solution of multiphase
porous media problems results in solutions which are not flux continuous. A
flux-based upstream weighting procedure which provides flux continuous solu-
tions for control volume methods (CVM) is presented in this paper. The CVM
is globally and locally mass conservative. The mass-lumping schemes employed
in finite element (FEM) numerical methods for the solution of porous media flow
problem imply the same set of control volumes as in CVFE. Both the CVFE and
the FEM methods are locally and globally mass conservative. The CVM is not
restricted by the positive transmissibility condition that limits the shape of the
triangular elements used in CVFE. The upstream weighting scheme in CVFE can
result in physically unrealistic fluxes even if the positive transmissibility condition
is satisfied. The CVFE and the CVM yield different sets of solutions in a simple
five-spot injection-production example. In the diagonal and the parallel grid ori-
entations evaluated for this example, the breakthrough times and oil production
rates are expected to be the same; these values calculated by the CVM are close
while those from the CVFE are different.

19

Sw
0.7

0.65
0.6

0.55
0.5
0.3

Figure 1.9: Legend for water contour plots.
CVM CVFE

Figure 1.10: Comparison of the water saturation contours of the diagonal grid
problem solved by the CVM (left) and the CVFE (right). From top to bottom
are the contours at 0.1, 0.2 and 0.4 domain pore volume of water injected.

20

CVM CVFE

Figure 1.11: Comparison of the water saturation contours of the parallel grid
problem solved by the CVM (left) and the CVFE (right). From top to bottom
are the contours at 0.1, 0.2 and 0.4 domain pore volume of water injected.

0

2

4

6

8

10

300 350 400 450 500 550 600 650 700

O
i
l

P
r
o
d
u
c
t
i
o
n

R
a
t
e

[
S
T
B
/
d
a
y
]

Time [days]

CVM Diagonal

CVM Parallel
CVFE Diagonal

CVFE Parallel

Figure 1.12: Comparison of the oil production rates for the CVM and the CVFE
on the diagonal and the parallel grids.

21

Chapter 2

The Control Volume Finite
Element Method

2.1 Synopsis

Reservoir simulation often requires representing complex, irregular domains and
complicated fracture networks. The finite difference method is not capable of
handling these complex features; finite element method is a good alternative for
representing and modeling these systems.

The control volume finite element method (CVFE) is closely related to the fi-
nite element method (FEM). They both use the same types of interpolation func-
tions for dependent variables. They differ in the way in which fluid flux between
control volumes is calculated. In the FEM method, fluid potentials are approx-
imated without the knowledge of fluxes between nodes; however, in the CVFE,
fluid flux between nodes is calculated explicitly, and mass balance is formulated
according to the flux.

The two-dimensional, two-phase CVFE was developed by Yi-kun Yang [23].
Mathematical formulation of CVFE for three-dimension is discussed in this chap-
ter. Following is the outline of the development of CVFE. In section 2.2, the
interpolation functions are derived. Based on the concept of control volume, the
discretized residual equations for three-dimensional, two-phase system are formu-
lated in section 2.3. The three-dimensional, three-phase formulations are discussed
in section 2.4.

2.2 Area Coordinate System and Interpolation

Functions

In this section, the lowest order of interpolation function from the Lagrange
family–linear interpolation functions–for tetrahedral elements is discussed.

The position of any given point x in a tetrahedral element can be uniquely
defined by the volumes enclosed with the vertices of the tetrahedron. As shown

22

in Figure 2.1, x is defined by

x = (L0, L1, L2) = (
V0

V
,
V1

V
,
V2

V
). (2.1)

Notice that
L0 + L1 + L2 + L3 = 1; (2.2)

therefore L3 can not be changed independently without disturbing the values of
L0, L1 and L2.

The linear interpolation functions for a given point x in a tetrahedral element
are actually its coordinates. The value of h at x ∈ Ωe can be approximated using
the values of h at the vertices and the interpolation functions

h(x) =
3∑

i=0

hiLi(x). (2.3)

Notice that hi denotes the value of h at vertex i of the tetrahedron.
It can be seen that the value of ∇h needs to be calculated. In the case that

Ω ⊂ <3, the values of ∂h
∂x

, ∂h
∂y

and ∂h
∂z

are sought. When h is written in the form of

equation 2.3, it is clear that ∂h
∂L0

, ∂h
∂L1

and ∂h
∂L2

can be evaluated much easier than
∂h
∂x

, ∂h
∂y

and ∂h
∂z

. So ∂h
∂L0

, ∂h
∂L1

and ∂h
∂L2

are calculated first, and then ∂h
∂x

, ∂h
∂y

and ∂h
∂z

are derived by matrix inversion.
Apply chain rule to ∂h

∂x
, ∂h

∂y
and ∂h

∂z
:

∂h

∂x
=

∂h

∂L0

∂L0

∂x
+

∂h

∂L1

∂L1

∂x
+

∂h

∂L2

∂L2

∂x
, (2.4a)

∂h

∂y
=

∂h

∂L0

∂L0

∂y
+

∂h

∂L1

∂L1

∂y
+

∂h

∂L2

∂L2

∂y
, (2.4b)

∂h

∂z
=

∂h

∂L0

∂L0

∂z
+

∂h

∂L1

∂L1

∂z
+

∂h

∂L2

∂L2

∂z
, (2.4c)

Rewrite equation 2.4 in its matrix form:

∂h

∂x
∂h

∂y
∂h

∂z

=

∂L0

∂x

∂L1

∂x

∂L2

∂x
∂L0

∂y

∂L1

∂y

∂L2

∂y
∂L0

∂z

∂L1

∂z

∂L2

∂z

∂h

∂L0

∂h

∂L1

∂h

∂L2

= J∗

∂h

∂L0

∂h

∂L1

∂h

∂L2

, (2.5)

where

J∗ =

∂L0

∂x

∂L1

∂x

∂L2

∂x
∂L0

∂y

∂L1

∂y

∂L2

∂y
∂L0

∂z

∂L1

∂z

∂L2

∂z

. (2.6)

23

V0

0

1 2

3x

V1

0

1 2

3x

V2

0

1 2

3x

Figure 2.1: Definition of the natural coordinate of a tetrahedral element

24

Expand ∂h
∂L0

, ∂h
∂L1

and ∂h
∂L2

in the same way as above:

∂h

∂L0

=
∂h

∂x

∂x

∂L0

+
∂h

∂y

∂y

∂L0

+
∂h

∂z

∂z

∂L0

, (2.7a)

∂h

∂L1

=
∂h

∂x

∂x

∂L1

+
∂h

∂y

∂y

∂L1

+
∂h

∂z

∂z

∂L1

, (2.7b)

∂h

∂L2

=
∂h

∂x

∂x

∂L2

+
∂h

∂y

∂y

∂L2

+
∂h

∂z

∂z

∂L2

, (2.7c)

Again, rewrite equation 2.7 in its matrix form:

∂h

∂L0

∂h

∂L1

∂h

∂L1

=

∂x

∂L0

∂y

∂L0

∂z

∂L0

∂x

∂L1

∂y

∂L1

∂z

∂L1

∂x

∂L2

∂y

∂L2

∂z

∂L2

∂h

∂x
∂h

∂y
∂h

∂z

= J

∂h

∂x
∂h

∂y
∂h

∂z

, (2.8)

where

J =

∂x

∂L0

∂y

∂L0

∂z

∂L0

∂x

∂L1

∂y

∂L1

∂z

∂L1

∂x

∂L2

∂y

∂L2

∂z

∂L2

. (2.9)

J∗ is actually the inverse of J, that is

J∗ = J−1. (2.10)

According to equation 2.10, J∗ can be easily calculated once J is known. The
calculation of J follows.

The coordinate of any point x (x,y,z) within a tetrahedral element can always
be written in terms of its coordinates using equation 2.3:

x =
3∑

i=0

xiLi(x) = L0(x)(x0− x3) + L1(x)(x1− x3) + L2(x)(x2− x3) + x3 (2.11a)

y =
3∑

i=0

yiLi(y) = L0(y)(y0 − y3) + L1(y)(y1 − y3) + L2(y)(y2 − y3) + y3 (2.11b)

z =
3∑

i=0

ziLi(z) = L0(z)(z0 − z3) + L1(z)(z1 − y3) + L2(z)(z2 − z3) + z3 (2.11c)

25

Differentiate x, y and z with respect to L0, L1 and L2

∂x

∂L0

= x0 − x3, (2.12a)

∂x

∂L1

= x1 − x3, (2.12b)

∂x

∂L2

= x2 − x3, (2.12c)

∂y

∂L0

= y0 − y3, (2.12d)

∂y

∂L1

= y1 − y3, (2.12e)

∂y

∂L2

= y2 − y3, (2.12f)

∂z

∂L0

= z0 − z3, (2.12g)

∂z

∂L1

= z1 − z3, (2.12h)

∂z

∂L2

= z2 − z3, (2.12i)

Substitute equations 2.12 into equation 2.9 to obtain

J =

∂x

∂L0

∂y

∂L0

∂z

∂L0

∂x

∂L1

∂y

∂L1

∂z

∂L1

∂x

∂L2

∂y

∂L2

∂z

∂L2

=

x0 − x3 y0 − y3 z0 − z3

x1 − x3 y1 − y3 z1 − z3

x2 − x3 y2 − y3 z2 − z3

 . (2.13)

J∗ can be written as

J∗ = J−1 =

∂L0

∂x

∂L1

∂x

∂L2

∂x
∂L0

∂y

∂L1

∂y

∂L2

∂y
∂L0

∂z

∂L1

∂z

∂L2

∂z

(2.14)

26

where

∂L0

∂x
=

1

|J | [(y1 − y3)(z2 − z3)− (y2 − y3)(z1 − z3)], (2.15a)

∂L1

∂x
=

1

|J | [(y2 − y3)(z0 − z3)− (y0 − y3)(z2 − z3)], (2.15b)

∂L2

∂x
=

1

|J | [(y0 − y3)(z1 − z3)− (y1 − y3)(z0 − z3)], (2.15c)

∂L0

∂y
=

1

|J | [(x2 − x3)(z1 − z3)− (x1 − x3)(z2 − z3)], (2.15d)

∂L1

∂y
=

1

|J | [(x0 − x3)(z2 − z3)− (x2 − x3)(z0 − z3)], (2.15e)

∂L2

∂y
=

1

|J | [(x1 − x3)(z0 − z3)− (x0 − x3)(z1 − z3)], (2.15f)

∂L0

∂z
=

1

|J | [(x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)], (2.15g)

∂L1

∂z
=

1

|J | [(x2 − x3)(y0 − y3)− (x0 − x3)(y2 − y3)], (2.15h)

∂L2

∂z
=

1

|J | [(x0 − x3)(y1 − y3)− (x1 − x3)(y0 − y3)]. (2.15i)

∂L3

∂x
, ∂L3

∂y
and ∂L3

∂z
can also be obtained using equations 2.2 and 2.15.

∂L3

∂x
= −∂L0

∂x
− ∂L1

∂x
− ∂L2

∂x
, (2.16a)

∂L3

∂y
= −∂L0

∂y
− ∂L1

∂y
− ∂L2

∂y
, (2.16b)

∂L3

∂z
= −∂L0

∂z
− ∂L1

∂z
− ∂L2

∂z
, (2.16c)

With all the necessary components derived so far, ∂h
∂x

, ∂h
∂y

and ∂h
∂z

can be calculated

as follows. Substitute equation 2.3 into equations for ∂h
∂x

, ∂h
∂y

and ∂h
∂z

∂h

∂x
=

∂L0

∂x
h0 +

∂L1

∂x
h1 +

∂L2

∂x
h2 +

∂L3

∂x
h3, (2.17a)

∂h

∂y
=

∂L0

∂y
h0 +

∂L1

∂y
h1 +

∂L2

∂y
h2 +

∂L3

∂y
h3, (2.17b)

∂h

∂z
=

∂L0

∂z
h0 +

∂L1

∂z
h1 +

∂L2

∂z
h2 +

∂L3

∂z
h3. (2.17c)

27

0

1 2

a b

c

d

e f

g

hi

j

k
n̂

Figure 2.2: A tetrahedron element with associated control volumes

2.3 Three-Dimensional, Two-Phase Control

Volume Formulation

The governing equation for two-phase flow may be generalized as follows:

−∇ · ul =
∂

∂t

(
1

Bl

φlSl

)
+ ql (2.18)

where l = o,w (oil and water phases, respectively). In subsequent development,
the subscript will be omitted for abbreviation.

For the control volume formulation, both the fluid potential and saturation
values are defined on tetrahedron vertices. The fluid potential value in a tetrahe-
dron is interpolated as described in section 1. As for fluid saturation, it is defined
as constant within each control volume.

Referring to Figure 2.2, only the residual function F0 for the control volume
surrounding node 0 is derived and similar procedures can be applied to obtain F1,
F2 and F3.

28

Start with equation 2.18 and integrate over V0 in Figure 2.2:

F0 =

∫

V 0

∇ ·V +
∂C0

∂t
dx = 0. (2.19)

Note that q is dropped in equation 2.19 since it is more convenient to deal with
point source at global assembly stage. Applying divergence theorem to the flux
term in equation 2.19 gives

F0 =

∫

aikj+bjkh+chki

V · n̂ds +

∫

V0

∂C0

∂t
dx

=

∫

aikj

V · n̂ds +

∫

bjkh

V · n̂ds +

∫

chki

V · n̂ds +

∫

V0

∂C0

∂t
dx

(2.20)

where n̂ is the outward normal of the corresponding boundary as shown in Figure
2.2. Let

f0 = f0,aikj + f0,bjkh + f0,chki, (2.21)

where

f0,aikj =

∫

aikj

V · n̂ds, (2.22a)

f0,bjkh =

∫

bjkh

V · n̂ds, (2.22b)

f0,chki =

∫

chki

V · n̂ds, (2.22c)

then equation 2.20 becomes

F0 = f0 +

∫

V0

∂C0

∂t
dx. (2.23a)

For F1, F2, and F3,

F1 = f1 +

∫

V1

∂C1

∂t
dx, (2.23b)

F2 = f2 +

∫

V2

∂C2

∂t
dx, (2.23c)

F3 = f3 +

∫

V3

∂C3

∂t
dx. (2.23d)

where

f1 = f1,ajki + f1,dgkj + f1,eikj , (2.24)

f2 = f2,bhkj + f2,djkg + f2,fgkh, (2.25)

f3 = f3,chki + f3,ejki + f3,fhkg. (2.26)

29

Notice f0 in equation 2.23 represents the flux portion of the local residual function.
The flux term is considered below and the accumulation term will be discussed

later.
From Darcy’s law,

V = −krρ

Bµ
gk∇h. (2.27)

where

h =
P

ρg
+ z. (2.28)

In three-dimensional space,

f0,aikj =

∫

aikj

V · n̂ds

=

∫

aikj

(Vxî + Vy ĵ + Vzk̂) · (nxî + ny ĵ + nzk̂)ds

=

∫

aikj

(Vxnx + Vyny + Vznz)ds,

(2.29)

where

Vx = −
(

Txx

∂h

∂x
+ Txy

∂h

∂y
+ Txz

∂h

∂z

)
, (2.30a)

Vy = −
(

Tyx

∂h

∂x
+ Tyy

∂h

∂y
+ Tyz

∂h

∂z

)
, (2.30b)

Vz = −
(

Tzx

∂h

∂x
+ Tzy

∂h

∂y
+ Tzz

∂h

∂z

)
. (2.30c)

To obtain the outward normal n̂ of plane aikj, right-handedness is applied

n̂ =
~ai× ~aj

|~ai× ~aj|
=

~a3× ~a2

| ~a3× ~a2|
(2.31)

where the coordinate of a = (
x0 + x1

2
,
y0 + y1

2
,
z0 + z1

2
).

Let ~a3 = (x3 − xa, y3 − ya, z3 − za) and ~a2 = (x2 − xa, y2 − ya, z2 − za), for n̂
of plane aikj

n̂ =
(y3 − ya)(z2 − za)− (y2 − ya)(z3 − za)

| ~a3× ~a2|
~i

+
(x2 − xa)(z3 − za)− (x3 − xa)(z2 − za)

| ~a3× ~a2|
~j

+
(x3 − xa)(y2 − ya)− (x2 − xa)(y3 − ya)

| ~a3× ~a2|
~k.

(2.32)

30

The flux across aikj in Figure 2.2 can be expanded by substituting equations
2.30 and 2.32 into 2.29

f0,aikj

=

∫

aikj

−
(

Txx

∂h

∂x
+ Txy

∂h

∂y
+ Txz

∂h

∂z

)
(y3 − ya)(z2 − za)− (y2 − ya)(z3 − za)

| ~a3× ~a2|

−
(

Tyx

∂h

∂x
+ Tyy

∂h

∂y
+ Tyz

∂h

∂z

)
(x2 − xa)(z3 − za)− (x3 − xa)(z2 − za)

| ~a3× ~a2|

−
(

Tzx

∂h

∂x
+ Tzy

∂h

∂y
+ Tzz

∂h

∂z

)
(x3 − xa)(y2 − ya)− (x2 − xa)(y3 − ya)

| ~a3× ~a2|
ds.

(2.33)

Let the formation volume factor B and viscosity µ in T be the average value of
node 0 and 1

B = B01 =
B(P0) + B(P1)

2
(2.34)

µ = µ01 =
µ(P0) + µ(P1)

2
(2.35)

Here, Pi is the pressure at node i, and kr is replaced with kr01. This means kr is
determined by the direction of the flux between node 0 and 1. The area of the
contacting domain between control volume 0 and 1 is

∫

aikj

ds = Saikj =
1

6
S423a =

1

6

1

2
| ~a3× ~a2| = 1

12
| ~a3× ~a2|. (2.36)

After taking the integrand out and canceling | ~a3 × ~a2| with
∫

aikj
ds, the flux

becomes

f0,aikj

=
1

12

kr01ρ01

B01µ01

g

{ (
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y2 − ya)(z3 − za)− (y3 − ya)(z2 − za)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x3 − xa)(z2 − za)− (x2 − xa)(z3 − za)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x2 − xa)(y3 − ya)− (x3 − xa)(y2 − ya)]

}
.

(2.37)

The kr01 in equation 2.37 is determined by using upstream weighting. To apply
this concept, the sign of f0,aikj is used to determine the upstream node. Note that
the value of 1

12
kr01ρ01

B01µ01
g is positive, and only the values in the bracket in equation

2.37 can be negative. Therefore the sign of f0,aikj is only determined by the terms

31

in the bracket. Positive flux means flux flowing out of the control volume. Apply
the upstream condition to f0,aikj .
• for f0,aikj > 0, kr01 = kr0 = kr(S0)
• for f0,aikj < 0, kr01 = kr1 = kr(S1)
Repeating the same procedure, the fluxes across bjkh, chki, dgkj, eikj and fgkh

can be derived. The six fluxes across the six boundaries are summarized here

f0,aikj

= −f1,ajki

=
1

12

kr01ρ01

B01µ01

g

{ (
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y2 − ya)(z3 − za)− (y3 − ya)(z2 − za)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x3 − xa)(z2 − za)− (x2 − xa)(z3 − za)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x2 − xa)(y3 − ya)− (x3 − xa)(y2 − ya)]

}
.

(2.38a)

f0,bjkh

= −f2,bhkj

=
1

12

kr02ρ02

B02µ02

g

{(
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y3 − yb)(z1 − zb)− (y1 − yb)(z3 − zb)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x1 − xb)(z3 − zb)− (x3 − xb)(z1 − zb)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x3 − xb)(y1 − yb)− (x1 − xb)(y3 − yb)]

}
.

(2.38b)

f3,cikh

= −f0,chki

=
1

12

kr30ρ30

B30µ30

g

{(
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y2 − yc)(z1 − zc)− (y1 − yc)(z2 − zc)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x1 − xc)(z2 − zc)− (x2 − xc)(z1 − zc)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x2 − xc)(y1 − yc)− (x1 − xc)(y2 − yc)]

}
.

(2.38c)

32

f1,dgkj

= −f2,djkg

=
1

12

kr12ρ12

B12µ12

g

{ (
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y0 − yd)(z3 − zd)− (y3 − yd)(z0 − zd)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x3 − xd)(z0 − zd)− (x0 − xd)(z3 − zd)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x0 − xda)(y3 − yd)− (x3 − xd)(y0 − yd)]

}
.

(2.38d)

f1,egki

= −f3,eikg

=
1

12

kr13ρ13

B13µ13

g

{(
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y2 − ye)(z0 − ze)− (y0 − ye)(z2 − ze)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x0 − xe)(z2 − ze)− (x2 − xe)(z0 − ze)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x2 − xe)(y0 − ye)− (x0 − xe)(y2 − ye)]

}
.

(2.38e)

f2,fgkh

= −f3,fhkg

=
1

12

kr23ρ23

B23µ23

g

{(
kxx

∂h

∂x
+ kxy

∂h

∂y
+ kxz

∂h

∂z

)
[(y0 − yf)(z1 − zf)− (y1 − yf)(z0 − zf)]

+

(
kyx

∂h

∂x
+ kyy

∂h

∂y
+ kyz

∂h

∂z

)
[(x1 − xf)(z0 − zf)− (x0 − xf)(z1 − zf)]

+

(
kzx

∂h

∂x
+ kzy

∂h

∂y
+ kzz

∂h

∂z

)
[(x0 − xf)(y1 − yf)− (x1 − xf)(y0 − yf)]

}
.

(2.38f)

Note that the first equalities in equations 2.38 are indicative of the fact that any
flux flowing out of one control volume must equal the flux into another control
volume through their common control volume boundary. Thus the CVFE is a
locally mass(flux) conservative method.

The accumulation term is discussed now. The definition of C is defined as
Ci = φ Si

Bi
. The porosity φ and saturation S are constant within the control volume

33

and B is calculated using the nodal pressure Bi = B(Pi). As a result, Ci is constant
with respect to Vi. Therefore, the accumulation terms in equations 2.23 can be
written as

∫

Vi

∂Ci

∂t
dx =

∂Ci

∂t

∫

Vi

dx

=
∂Ci

∂t
Vi =

∂Ci

∂t

V

4
.

(2.39)

where Vi is the volume for control volume i and V is the total volume of the
tetrahedron.

To derive the final residual functions for all four control volumes, equations
2.38 and 2.39 are substituted into equations 2.6. After applying implicit Euler
time discretization, equation 2.23 becomes

F n+1
0 = fn+1

0,aikj + fn+1
0,bjkh + fn+1

0,chki +
V

34t
(Cn+1

0 − Cn
0), (2.40a)

F n+1
1 = fn+1

1,ajki + fn+1
1,dgkj + fn+1

1,eikj +
V

34t
(Cn+1

1 − Cn
1), (2.40b)

F n+1
2 = fn+1

2,bhkj + fn+1
2,djkg + fn+1

2,fgkh +
V

34t
(Cn+1

2 − Cn
2), (2.40c)

F n+1
3 = fn+1

3,chki + fn+1
3,ejki + fn+1

3,fhkg +
V

34t
(Cn+1

3 − Cn
3). (2.40d)

where the superscripts n+1 and n represent the time levels.

2.4 Three-Dimensional, Three-Phase

Simulations

In three-phase simulation, oil, water and gas are present. The solubility of gas
in oil as a function of pressure is denoted by the gas-oil ratio (GOR), Rs. Gas
emerges from solution when the reservoir pressure falls below the oil/gas bubble
point pressure at the given temperature. At this time, gas remains distributed
between the oil phase and a free gas phase. Let the subscripts o, w and g represent
oil, water and gas components respectively; then the conservation equations for
three phases are

−∇ · uo =
∂

∂t

(
1

Bo

φSo

)
+ qo, (2.41)

−∇ · uw =
∂

∂t

(
1

Bw

φSw

)
+ qw, (2.42)

−∇ · (Rsuo + ug) =
∂

∂t

(
φ

Rs

Bo

So + φ
Sg

Bg

)
+ Rsqo + qfg. (2.43)

34

The flow equations 2.42 and 2.43 for oil and water are the same as the equations
for two phases, which are well discussed in the previous sections. In this section
only the gas flux term is considered.

F =

∫
(Rsuo + ug) · n̂ds =

∫
V · n̂ds. (2.44)

where
V = Rsuo + ug. (2.45)

Referring to Figure 2.2, the gas flux across aikj is

f0,aikj =

∫

aikj

V · n̂ds

=

∫

aikj

(Vxî + Vy ĵ + Vzk̂) · (nxî + ny ĵ + nzk̂)ds

=

∫

aikj

(Vxnx + Vyny + Vznz)ds.

(2.46)

The volumetric flux is computed by Darcy’s law:

ul = −krlρl

Blµl

gk∇hl. (2.47)

where k is a tensor. The head h is defined as

h =
P

ρg
+ z. (2.48)

Substituting equation 2.47 into equation 2.45, then the flux V is

V = −(RsTo∇ho + Tg∇hg). (2.49)

where

Tl =
krlρl

Blµl

gk. (2.50)

In three dimensional space,

Vx =−Rs

(
Toxx

∂ho

∂x
+ Toxy

∂ho

∂y
+ Toxz

∂ho

∂z

)

−
(

Tgxx

∂hg

∂x
+ Tgxy

∂hg

∂y
+ Tgxz

∂hg

∂z

)
,

(2.51a)

Vy =−Rs

(
Toyx

∂ho

∂x
+ Toyy

∂ho

∂y
+ Toyz

∂ho

∂z

)

−
(

Tgyx

∂hg

∂x
+ Tgyy

∂hg

∂y
+ Tgyz

∂hg

∂z

)
,

(2.51b)

35

Vz =−Rs

(
Tozx

∂ho

∂x
+ Tozy

∂ho

∂y
+ Tozz

∂ho

∂z

)

−
(

Tgzx

∂hg

∂x
+ Tgzy

∂hg

∂y
+ Tgzz

∂hg

∂z

)
.

(2.51c)

The gas flux across aikj in Figure 2.2 is expanded by substituting equations
2.32 and 2.51 into 2.46

f0,aikj

=

∫

aikj

−
[
Rs

(
Toxx

∂ho

∂x
+ Toxy

∂ho

∂y
+ Toxz

∂ho

∂z

)
−

(
Tgxx

∂hg

∂x
+ Tgxy

∂hg

∂y
+ Tgxz

∂hg

∂z

)]

(y3 − ya)(z2 − za)− (y2 − ya)(z3 − za)

| ~a3× ~a2|

−
[
Rs

(
Toyx

∂ho

∂x
+ Toyy

∂ho

∂y
+ Toyz

∂ho

∂z

)
−

(
Tgyx

∂hg

∂x
+ Tgyy

∂hg

∂y
+ Tgyz

∂hg

∂z

)]

(x2 − xa)(z3 − za)− (x3 − xa)(z2 − za)

| ~a3× ~a2|

−
[
Rs

(
Tozx

∂ho

∂x
+ Tozy

∂ho

∂y
+ Tozz

∂ho

∂z

)
−

(
Tgzx

∂hg

∂x
+ Tgzy

∂hg

∂y
+ Tgzz

∂hg

∂z

)]

(x3 − xa)(y2 − ya)− (x2 − xa)(y3 − ya)

| ~a3× ~a2|
ds.

(2.52)

After taking the integrand out and canceling | ~a3 × ~a2| with
∫

aikj
ds, the flux

36

becomes

f0,aikj

=
1

12
Rs

kro01ρo01

Bo01µo01

g

{ (
koxx

∂ho

∂x
+ koxy

∂ho

∂y
+ koxz

∂ho

∂z

)
[(y3 − ya)(z2 − za)− (y2 − ya)(z3 − za)]

+

(
koyx

∂ho

∂x
+ koyy

∂ho

∂y
+ koyz

∂ho

∂z

)
[(x2 − xa)(z3 − za)− (x3 − xa)(z2 − za)]

+

(
kozx

∂ho

∂x
+ kozy

∂ho

∂y
+ kozz

∂ho

∂z

)
[(x3 − xa)(y2 − ya)− (x2 − xa)(y3 − ya)]

}

+
1

12

krg01ρg01

Bg01µg01

g

{ (
kgxx

∂hg

∂x
+ kgxy

∂hg

∂y
+ kgxz

∂hg

∂z

)
[(y3 − ya)(z2 − za)− (y2 − ya)(z3 − za)]

+

(
kgyx

∂hg

∂x
+ kgyy

∂hg

∂y
+ kgyz

∂hg

∂z

)
[(x2 − xa)(z3 − za)− (x3 − xa)(z2 − za)]

+

(
kgzx

∂hg

∂x
+ kgzy

∂hg

∂y
+ kgzz

∂ho

∂z

)
[(x3 − xa)(y2 − ya)− (x2 − xa)(y3 − ya)]

}
.

(2.53)

Repeating the same procedure, the gas fluxes across bjkh, chki, dgkj, eikj and
fgkh can be derived.

37

Chapter 3

The Mixed Finite Element
Method

3.1 Introduction

The mixed finite element (MFE) method was developed by Raviart and Thomas
[24]. To understand this method, consider a second order elliptic model problem
on a bounded domain Ω with a Lipshitz continuous boundary Γ:

−∇ · u = f in Ω (3.1)

u = ∇p in Ω (3.2)

p = 0 on Γ (3.3)

The variational form of equations (3.1) and (3.2) can be written as

∫

Ω

w (∇ · u + f) dx = 0 ∀w ∈ L2(Ω), (3.4)
∫

Ω

v · u dx +

∫

Ω

p∇ · v dx = 0 ∀ v ∈ H(div; Ω), (3.5)

respectively.
Raviart and Thomas [24] proved that equations (3.4) and (3.5) have a unique

solution
(u, p) ∈ H(div; Ω)× L2(Ω). (3.6)

3.1.1 The lowest order Raviart–Thomas space

The zero order Raviart–Thomas space (RT0) and triangular elements are used in
this research work. The reason for not using higher order Raviart–Thomas space
is because of the requirement of upstream weighting, and the reason for using
triangular elements is because of the complexity of the geometrical domain.

38

x
0

x
1

x
2

n
0

n
1

n
2

(0, 0) (1, 0)

(0, 1)

Figure 3.1: Unit outward normals on triangle’s three edges.

RT0 is a special solution space and is normally not well known to people with an
engineering mathematical background. The definition of this space is explained,
and the properties of this space is discussed.

RT0 defines a vector space in multidimensional domains. In triangular ele-
ments, RT0 is defined as

v = (a + c x, b + c y) (3.7)

where the underline denotes that v is a vector, and a, b and c are real numbers. It
is more convenient to write v as a combination of three orthogonal (independent)
bases in practice.

v = v0 v0 + v1 v1 + v2 v2 (3.8)

where v0, v1, and v2 are the orthogonal bases, and are defined by equation (3.7).

vi = (ai + cix, bi + ciy). (3.9)

These bases can be found by solving the following equations

(vi · nj)
∣∣
xj

=

{
1 if i = j,

0 if i 6= j,
for i, j = 0, 1, 2 (3.10)

where xj is the midpoint of triangle’s side j, and nj is the unit outward normal
at xj as shown in Figure 3.1.

The three bases for the triangle shown in Figure 3.1 are

v0 = (x, y − 1) (3.11)

v1 = (
√

2 x,
√

2 y) (3.12)

v2 = (x− 1, y). (3.13)

39

It can be shown that

∫

t

vi · vj dx =

{
2 |t|/3 if i = j,

0 if i 6= j
(3.14)

where t is the triangle in Figure 3.1, and |t| is the area of t.

3.2 Application of the MFEM in reservoir sim-

ulation

The mixed finite element method has been applied to miscible flow problem [25]
and incompressible two-phase flow problem [26]. A triangle-based mixed finite
element - finite volume formulation was developed for compositional reservoir sim-
ulation [27]. This formulation uses total flux approximation and IMPES scheme.
An expanded mixed finite element method has been developed for accurate and
efficient treatment of irregular domains [28]. The expanded method involves a
coordinate mapping into one regular computational grid. When the matrix per-
meability is full-tensor, this formulation has 9-points stencil in two-dimensional
space and 19-points stencil in three-dimensional space.

3.3 Multiphase MFE formulation

The extension of the MFE method from the model elliptic problem, equations (3.1)
to (3.3), to a time-dependent, multiphase flow problem is not a simple matter.
The extension is discussed here.

3.3.1 Multiphase flow equations

The governing equation for multiphase subsurface flow problems is the phase
volumetric balance equation:

−∇ · u =
∂

∂t

(
φS

B

)
+ q. (3.15)

The phase subscripts for each variable are omitted for brevity. The volumetric
flux is computed by the multiphase Darcy’s law:

u = −krρ

Bµ
g k∇h (3.16)

where the double underlines indicate that k is a tensor. The head is defined as

h =
P

ρg
+ z. (3.17)

40

The relative permeability kr in equation (3.16) could degenerate to zero causing
u = 0 even though the head gradient is not zero, therefore u cannot be used as
the flux in the MFEM context. Instead, the modified head gradient is used

f = −k∇h, (3.18)

and the multiphase Darcy’s law becomes

u =
krρ

Bµ
g f (3.19)

The variational form of (3.15) and (3.18) are

∫

Ω

w∇ · u dx +

∫

Ω

w
∂

∂t

(
φS

B

)
dx +

∫

Ω

wq dx = 0, (3.20)

∫

Ω

v · f dx = −
∫

Ω

v · k · ∇h dx, (3.21)

respectively.

3.3.2 Discretization

Consider solving the multiphase equations on a polygonal domain Ω, and the
domain is partitioned (meshed) into a set of regular triangles T . The choice of w
in equation (3.20) for a triangle T in T is

w(x) =

{
1 if x ∈ T ,

0 if x /∈ T .
(3.22)

Substituting w(x) into equation (3.20), the variational balance equation becomes
an integral equation

∫

T

∇ · u dx +

∫

T

∂

∂t

(
φS

B

)
dx +

∫

T

q dx = 0. (3.23)

The choice of v in equation (3.21) for t is

vi(x) =

{
vi(x) if x ∈ T ,

0 if x /∈ T
for i = 0, 1, 2. (3.24)

After substituting equation (3.24) into equation (3.21), the variational flux equa-
tion becomes

∫

T

vi · f dx = −
∫

T

vi · k · ∇h dx, for j = 0, 1, 2. (3.25)

41

There will be a volumetric balance equation and three volumetric flux equations
for each triangle in T .

The solution space for h and S is piecewise constant, and the space for f is
RT0. Consequently, the integral equation (3.23) can be simplified to

2∑

i=0

(u · n)
∣∣
xi

li +
|T |
∆t

[(
φS

B

)
−

(
φS

B

)]
+ |T | q = 0 (3.26)

where li is the length of side i, |T | is the area of T . Replacing f on the left of
equation (3.25) with equation (3.8), the equation is simplified to

∫

T

vi · f dx =
2 |T |

3
fi. (3.27)

Applying integration by parts to the right of equation (3.25),

−
∫

T

vi · k∇h · dx =

∫

T

h∇·q
i
dx−

∫

T

∇·(q
i
h) dx

=

∫

T

h∇·q
i
dx−

∫

∂T

h q
i
· n ds

= h |T | ∇·q
i
−

2∑

j=0

hj (q
j
· nj)

∣∣
xj

lj

(3.28)

where
q

i
= vi · k (3.29)

and hj is the phase head on T ’s side j. Equate equations (3.27) and (3.28).

2 |T |
3

fi = h |T | ∇·q
i
−

2∑

j=0

hj (q
j
· nj)

∣∣
xj

lj. (3.30)

Therefore,

fi =
3

2
h∇·q

i
− 3

2 |T |

2∑

j=0

hj (q
j
· nj)

∣∣
xj

lj. (3.31)

The first term of equation (3.26) can be simplified to

2∑

i=0

u
∣∣
xi

· ni li =
2∑

i=0

krρ

Bµ
g f

∣∣
xi

· ni li

=
2∑

i=0

krρ

Bµ
g fi li

(3.32)

The final volume balance equation for T is

2∑

i=0

krρ

Bµ
g fi li +

|T |
∆t

[(
φS

B

)n+1

−
(

φS

B

)n
]

+ |T | q = 0 (3.33)

where fi is defined by equation (3.31).

42

3.3.3 Discretized multiphase flow equations

The discretized multiphase flow equations are derived in this section. The volu-
metric balance equation (3.15) is rewritten here for convenience.

−∇ · u =
∂

∂t

(
φS

B

)
+ q. (3.34)

Let the subscripts o, w and g represent oil, water and gas phases, respectively,
then the three-phase volumetric balance equations are

−∇·uo =
∂

∂t

(
φSo

Bo

)
+ qo, (3.35)

−∇·uw =
∂

∂t

(
φSw

Bw

)
+ qw, (3.36)

−∇·ug −Rs∇·uo =
∂

∂t

(
φSg

Bg

+ Rs

φSo

Bo

)
+ qg + Rsqo. (3.37)

Referring to equation (3.33), the discretized three-phase equations for triangle T
can be written as

0 =
2∑

i=0

kroρo

Boµo

g fio li +
|T |
∆t

[(
φSo

Bo

)n+1

−
(

φSo

Bo

)n
]

+ |T | qo, (3.38)

0 =
2∑

i=0

krwρw

Bwµw

g fiw li +
|T |
∆t

[(
φSw

Bw

)n+1

−
(

φSw

Bw

)n
]

+ |T | qw, (3.39)

0 =
2∑

i=0

krgρg

Bgµg

g fig li +
|T |
∆t

[(
φSg

Bg

)n+1

−
(

φSg

Bg

)n
]

+ |T | qg

+
2∑

i=0

Rs

kroρo

Boµo

g fio li +
|T |
∆t

[(
Rs

φSo

Bo

)n+1

−
(

Rs

φSo

Bo

)n
]

+ |T | Rsqo.

(3.40)

The modified head gradients for each phase on each side of T are

fio =
3

2
ho∇·qi

− 3

2 |T |

2∑

j=0

hjo (q
j
· nj)

∣∣
xj

lj, (3.41)

fiw =
3

2
hw∇·qi

− 3

2 |T |

2∑

j=0

hjw (q
j
· nj)

∣∣
xj

lj, (3.42)

fig =
3

2
hg∇·qi

− 3

2 |T |

2∑

j=0

hjg (q
j
· nj)

∣∣
xj

lj. (3.43)

43

3.3.4 Flux continuity

Equations (3.41) to (3.43) are defined as the fluxes flowing out of a triangle through
side i. Flux continuity between neighbor triangles was not imposed in those
equations. Three additional balance equations for each edge are necessary to
enforce flux continuity. Consider two triangles T1 and T2 sharing a common edge
γ. The flux continuity is ensured by solving the following equations

0 = fT1

γo + fT2

γo (3.44)

0 = fT1

γw + fT2

γw (3.45)

0 = fT1

γg + fT2

γg . (3.46)

The superscript indicates which triangle the flux is originated from. The first
subscript indicates the edge these two fluxes are flowing through. The second
subscript indicates phase.

44

Chapter 4

Verification

A synthesized oil reservoir was used to compare the UFES (Utah Finite Element
Simulator) and Eclipse (a commercial oil reservoir simulator). The reservoir mea-
sures 1000 feet in the ease-west direction, 500 feet in the north-south direction,
and is 50 feet thick (Figure 4.1). Two horizontal wells were modeled. The hor-
izontal production well was placed in the top layer on the north side and the
horizontal injection well was placed in the bottom layer on the south side.

Primary oil production was begun at a production liquid rate of 1000 stb/day
and was continued for 90 days. At 90 days, the production liquid rate is reduced to
600 stb/day and water injection was started. At 3600 days, the injection and pro-
duction were stopped. This scenario was constructed to capture the essentials of
the three-phase flow processes; oil and gas flow, gas evolution, gas pressurization,
and oil and water flow.

Two meshes were used to study the production process. The first mesh has
only one layer, and therefore gravitational effect is inconsequential. The second
mesh has two layers and gas segregation and water under-ride due to gravity are
expected. These two case studies are described in the following sections.

4.1 One-layer case study

The simulation domain is discretized into 40×20×1 blocks for Eclipse. As for
UFES, the domain is discretized into 1330 tetrahedrals all expanded over entire
thickness. Plots of cumulative oil production versus time are presented in Figures
4.3 and 4.4. Figures 4.5 and 4.6 are the oil production rate curves. Water cut
data are shown in Figures 4.7 and 4.8. Gas to oil ratios are shown in Figures 4.9
and 4.10.

4.2 Two-layer case study

The domain of interest was divided into two layers. The grid used for Eclipse is
20×10×2 blocks. The grid for the UFES has two layers and each layer is further

45

discretized into 300 tetrahedrals. Figures 4.12 and 4.13 present the cumulative oil
production curve for this case study. The oil production rate plots are shown in
Figures 4.14 and 4.15. Water cut plots are shown in Figures 4.16 and 4.17. Gas
to oil ratios are presented in Figures 4.18 and 4.19.

4.3 Summary

It should be emphasized that these are fundamentally very different simulators.
The finite-element simulator has been developed primarily for representing com-
plex domains including faulted and fractured systems. It is also appropriate for
modeling complex well systems (multilaterals, fish-bones, etc.) The well models
for UFES were developed at the University of Utah. Considering the funda-
mentally different discretization, and different well models, the match between
the three-phase UFES and Eclipse is excellent. A new three-dimensional, three-
phase, finite-element simulator is available for use. We would like to study the
application of the model to complex geologic systems.

46

Figure 4.1: The domain measures 1000 ft in the x-direction, 500 ft in the y-
direction and 50 ft in the z-direction. The horizontal production well is represented
by the the orange line and the horizontal injection well is represented by the blue
line. Wells are placed at the center of the domain along the x-direction, and each
well measures 800 ft in length.

Figure 4.2: The mesh used for the one-layer case study for the UFES.

47

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500

C
u
m

u
la

ti
v
e

O
il

(f
ra

ct
io

n
O

O
IP

)

Time (days)

UFES
Eclipse

Figure 4.3: Cumulative oil production for the one-layer case study.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000

C
u
m

u
la

ti
v
e

O
il

(f
ra

ct
io

n
O

O
IP

)

Time (days)

UFES
Eclipse

Figure 4.4: A more detailed cumulative oil production plot for the one-layer case
study (between zero and 1000 days).

48

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

O
il

ra
te

(s
tb

/d
ay

)

Time (days)

UFES
Eclipse

Figure 4.5: Oil production rate for the one-layer case study.

565

570

575

580

585

590

595

600

100 120 140 160 180 200

O
il

ra
te

(s
tb

/d
ay

)

Time (days)

UFES
Eclipse

Figure 4.6: A more detailed oil production plot for the one-layer case study (be-
tween 91 and 200 days). Notice that the y-axis has a higher resolution.

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

W
at

er
cu

t

Time (days)

UFES
Eclipse

Figure 4.7: Water cut for the one-layer case study.

0

0.01

0.02

0.03

0.04

0.05

0.06

100 120 140 160 180 200

W
at

er
cu

t

Time (days)

UFES
Eclipse

Figure 4.8: Water cut data between 91 and 200 days for the one-layer case study.
Notice that the y-axis has a higher resolution

50

0

2

4

6

8

10

12

14

16

0 50 100 150 200

G
O

R
(M

sc
f/

st
b
)

Time (days)

UFES
Eclipse

Figure 4.9: Gas oil ratio for the one-layer case study.

0

2

4

6

8

10

12

14

16

95 100 105 110 115 120 125 130

G
O

R
(M

sc
f/

st
b
)

Time (days)

UFES
Eclipse

Figure 4.10: Gas oil ratio between 91 and 130 days for the one-layer case study.

51

Figure 4.11: The mesh used for the two-layer case study for the UFES.

52

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500

C
u
m

u
la

ti
v
e

O
il

(f
ra

ct
io

n
O

O
IP

)

Time (days)

UFES
Eclipse

Figure 4.12: Cumulative oil production for the two-layer case study.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

C
u
m

u
la

ti
v
e

O
il

(f
ra

ct
io

n
O

O
IP

)

Time (days)

UFES
Eclipse

Figure 4.13: Cumulative oil production curve between 0 and 1000 days for the
two-layer case study.

53

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

O
il

ra
te

(s
tb

/d
ay

)

Time (days)

UFES
Eclipse

Figure 4.14: Oil production rate for the two-layer case study.

540

550

560

570

580

590

600

100 120 140 160 180 200

O
il

ra
te

(s
tb

/d
ay

)

Time (days)

UFES
Eclipse

Figure 4.15: Oil production rate between 91 and 200 days for the two-layer case
study.

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

W
at

er
cu

t

Time (days)

UFES
Eclipse

Figure 4.16: Water cut for the two-layer case study.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

100 120 140 160 180 200

W
at

er
cu

t

Time (days)

UFES
Eclipse

Figure 4.17: Water cut between 91 and 200 days for the two-layer case study.

55

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

G
O

R
(M

sc
f/

st
b
)

Time (days)

UFES
Eclipse

Figure 4.18: Gas oil ratio for the two-layer case study.

0

2

4

6

8

10

12

14

16

18

95 100 105 110 115 120 125 130

G
O

R
(M

sc
f/

st
b
)

Time (days)

UFES
Eclipse

Figure 4.19: Gas oil ratio between 91 and 130 days for the two-layer case study.

56

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500

C
u
m

u
la

ti
v
e

O
il

(f
ra

ct
io

n
O

O
IP

)

Time (days)

UFES
Eclipse

Figure 4.20: Cumulative oil production for the two-layer case study.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

C
u
m

u
la

ti
v
e

O
il

(f
ra

ct
io

n
O

O
IP

)

Time (days)

UFES
Eclipse

Figure 4.21: Cumulative oil production curve between 0 and 1000 days for the
two-layer case study.

57

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

O
il

ra
te

(s
tb

/d
ay

)

Time (days)

UFES
Eclipse

Figure 4.22: Oil production rate for the two-layer case study.

595.5

596

596.5

597

597.5

598

598.5

599

599.5

600

100 120 140 160 180 200

O
il

ra
te

(s
tb

/d
ay

)

Time (days)

UFES
Eclipse

Figure 4.23: Oil production rate between 91 and 200 days for the two-layer case
study.

58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

W
at

er
cu

t

Time (days)

UFES
Eclipse

Figure 4.24: Water cut for the two-layer case study.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

100 120 140 160 180 200

W
at

er
cu

t

Time (days)

UFES
Eclipse

Figure 4.25: Water cut between 91 and 200 days for the two-layer case study.

59

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

G
O

R
(M

sc
f/

st
b
)

Time (days)

UFES
Eclipse

Figure 4.26: Gas oil ratio for the two-layer case study.

0

2

4

6

8

10

12

14

16

18

95 100 105 110 115 120 125 130

G
O

R
(M

sc
f/

st
b
)

Time (days)

UFES
Eclipse

Figure 4.27: Gas oil ratio between 91 and 130 days for the two-layer case study.

60

Chapter 5

Fractured Reservoir Simulation

Naturally fractured oil reservoirs have quite different recovery characteristics com-
pared to non-fractured reservoirs and therein consider the influence of fractures
on fluid flow when production strategy is being planed is important.

There are currently four different fracture models being used in reservoir sim-
ulations: single continuum, dual porosity, dual permeability and discrete-fracture
model. A discussion and comparison of these four models can be found in Kim [11].
In current research work, the focus is on the continuation of the discrete-fracture
model development.

One version of a discrete-fracture model has been implemented by Kim [11]
using the finite element method. The same set of governing equations are used
for the fluid flow in matrix and in fracture. The final global stiffness matrix is
obtained by superimposing the contribution from matrix and fracture. Validation
of this model with single continuum model on a fine grid was attempted. Influence
of different capillary pressures between fractures and matrix was studied. How-
ever, the superimposition was not explained in terms of the underlying physical
implication.

A new version of a discrete-fracture model is developed in this research work.
With the concept of control volumes and explicit calculation of fluxes, the discrete-
fracture model can now be explained in a physically meaningful way.

A brief introduction to reservoir fractures is first presented in section 5.1. This
is followed by the implementation of discrete-fracture model using the control
volume method developed in Chapter 1. Simulations of a fractured offshore oil
field are discussed.

5.1 Reservoir Rock Fractures

The formation, classification and evaluation of fractures are ongoing research top-
ics themselves. Therefore, only a short introduction to these subjects are provided
here for the completeness of fracture simulation.

A reservoir fracture is a macroscopic planar discontinuity in which a loss of
cohesion of reservoir rock has taken place [29, 30]. A fracture can, therfore, be

61

considered as a rupture in reservoir rocks. Two of the most common types of
fractures are faults and joints. A fault is a fracture along which one side has
moved relative to the other [31]. A fracture is regarded as a joint when there is no
noticeable displacement along the fracture [29]. Two dimensional representations
of a fault and joints are shown in Figure 5.1 and Figure 5.2, respectively.

Two common causes of fractures are overburden pressure and tectonic forces.
Figure 5.3 shows a fracture created by overbuden prssure and Figure 5.4 shows a
pair of conjugated fractures created by tectonic forces.

Direct evaluation of fractures includes outcrop observation in the field and
core examination in the laboratory [29]. Fracture opening (fracture width), frac-
true filling and fracture orientation can be measured during the direct evaluation
process. Indirect methods include well logs and seismic data. There are many
well logging methods for the evaluation of fractures, for example, induction logs,
the combination of sonic, neutron and density logs, gamma ray and borehole tele-
viewer [30].

5.2 Fracture Information from the Field

Before the discussion of fractured reservoir simulation, it is necessary to under-
stand what types of fracture information are available and are given to simulator
developers. For simplicity, consider two-dimensional applications. The fracture
information of an oil field given by geologists or reservoir engineers are in terms
of straignt line segments. The permeability of each fracture is given or estimated
from its width. It is not uncommon that the width of fractures are never known.

An example data set of a fractured domain Ω is given as follows. The domain
with fractures is shown in Figure 5.5. The matrix permeability tensor is given as
a function of the location, that is

km = km(x) (5.1)

where m stands for rock matrix or simply matrix and x ∈ Ω. Fracture properties
are given in Table 5.1. The location and orientation of each fracture is defined

fault

Figure 5.1: Cross-section view of a fault.

62

Figure 5.2: Areal view of some joints.

pressure

joint

Figure 5.3: Cross-section view of the formation of a joint caused by overburden
pressure.

60◦

tectonic forcetectonic force

Figure 5.4: The formation of a pair of conjugated fractures due to tectonic force.

63

Table 5.1: Fracture properties available from oil field.
Fracture No. Start End Permeability width 1

f1 (xs
1, y

s
1) (xe

1, y
e
1) k1 w1

f2 (xs
2, y

s
2) (xe

2, y
e
2) k2 w2

...
...

...
...

...

1The width of fractures is not always available.

by its starting and ending points. Fracture permeability kf is given as a scalar
which represents the permeability along the fracture line. The width of fractures
is sometimes but not always available as shown in the last column of Table 5.1.

5.3 Single-Porosity Model

When the width information of fractures is available, the most straightforward
and accurate approach to fracture simulation is the single porosity model. In
this model, fractures are represented by very tiny or very thin two-dimensional
elements.

Consider a square domain with one fracture as shown in Figure 5.6. To put
the width of fractures into consideration, the line is replaced by a rectangle and
is shown is Figure 5.7. It important to note that the width and the length of the
fracture in Figure 5.7 are not in proportion; the width has been enlarged in order
to be visible. In general the ratio of length to width of fractues is in the range of
four to six orders. The triangular mesh of this single fracture domain is shown in
Figure 5.8. It is clear that a trimendous amount of triangles is required by the
single-porosity model even for a single, disproportional fracture. Consequentlly,
the single-porosity model will need a lot more elements for a real fracture (a
fracture that is in correct proportion) than the disproportional fracture.

5.4 Discrete-Fracture Model

In view of the limited fracture information that is available and the difficulty
(requires too many elements) involved in the single porosity model, it is natural
to consider the use of line elements to approximate fractures in two-dimensional
space.

Consider the same square domain with one fracture as discussed in section 5.3.
Without the introduction of fracture width, the domain is directly triangulated
and the result is shown in Figure 5.9. Comparing Figure 5.8 with Figure 5.9,
the number of triangular elements required by the single-porosity for a single
disproportional fracture is about five times of that required by the discrete-fracture
model. When the number of fracture increases and real fracture geometry is used

64

in the single-porosity model, the single-porosity approach becomes impractical
because of the amount of nodes and elements involved.

5.5 Case Studies

65

fracture

rock matrix

Ω

Figure 5.5: A fractured domain Ω.

Figure 5.6: The original fractured domain.

66

Figure 5.7: The fractured domain after the fracture is replaced by a rectangle; the
width of the fracture has been enlarged for visibility.

Figure 5.8: Triangular mesh of the domain using the single-porosity model; there
are 415 nodes and 780 triangles in this particular mesh.

67

Figure 5.9: Triangular mesh of the domain using the discrete-fracture model; there
are 97 nodes and 160 triangles in this particular mesh.

Matrix

k = 5md, φ = 39%

k = 8md, φ = 45%

Fracture

k = 500, 000md

k = 50, 000md

k = 10, 000md

Figure 5.10: The fractured domain. Different matrix and fracture properties are
shown in the legend.

68

Outer Domain

Flowing Boundary

No-Flow Boundary

Figure 5.11: The incorporation of the outer domain to simulate the three flowing
boundaies.

Figure 5.12: The placement of injection and production wells for Case I; the blue
and red lines are the horizontal injection and production wells, respectively.

69

Figure 5.13: The placement of injection and production wells for Case II; the blue
and red lines are the horizontal injection and production wells, respectively.

70

Figure 5.14: The placement of injection and production wells for Case III; the
blue and red lines are the horizontal injection and production wells, respectively.

Figure 5.15: The placement of injection and production wells for Case IV; the
blue and red lines are the horizontal injection and production wells, respectively.

71

Figure 5.16: Water saturation distribution of Case I at 1000 days.

Figure 5.17: Water saturation distribution of Case II at 1000 days.

72

Figure 5.18: Water saturation distribution of Case III at 1000 days.

Figure 5.19: Water saturation distribution of Case IV at 1000 days.

73

Figure 5.20: Water saturation distribution of Case I at 5000 days.

Figure 5.21: Water saturation distribution of Case II at 5000 days.

74

Figure 5.22: Water saturation distribution of Case III at 5000 days.

Figure 5.23: Water saturation distribution of Case IV at 5000 days.

75

Figure 5.24: Water saturation distribution of Case I at 9000 days.

Figure 5.25: Water saturation distribution of Case II at 9000 days.

76

Figure 5.26: Water saturation distribution of Case III at 9000 days.

Figure 5.27: Water saturation distribution of Case IV at 9000 days.

77

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000

C
u
m
u
l
a
t
i
v
e

O
i
l

P
r
o
d
u
c
t
i
o
n

(
f
r
a
c
t
i
o
n

O
O
I
P
)

Time [days]

Case I
Case II
Case III
Case IV

Figure 5.28: Cumulative oil production versus time for the four case studies.

78

Chapter 6

Examples

6.1 Example 1

In this first example, a complicated two-dimensional domain with several inter-
secting fractures is simulated. The domain is shown in Figure 6.1. It is difficult
to simulate this domain with finite difference representation. In fractured/faulted
systems like these, matrix and fracture capillary pressure relationships are critical
in establishing recovery patterns. Two different waterflood studies were carried
out in this system.

• In the first study, the rock matrix capillary pressure was negative (indicative
of an oil-wet rock) while the capillary pressure in the fractures was zero.

• In the second, the rock matrix capillary pressure was positive (indicative of
a water-wet system) while the capillary pressure in the fractures was zero.

The water saturations in the domain with negative capillary pressure are shown
in Figure 6.2. It is clear that the negative capillary pressure inhibits imbibition,
water does not effectively enter the rock matrix from the fractures and oil recovery
is poor. The water saturations in the domain with positive capillary pressure in
the rock matrix is shown in Figure 6.3. Water floods the matrix efficiently, showing
large, invaded blue zones, and recovery is excellent. The simulator makes these
types of fundamental studies possible.

6.2 Example 2

In this example, another complex domain, shown in Figure 6.4 is simulated. In a
number fields, there are two dominant fracture directions. In this example, both
these sets of fractures are shown by white lines. Use of deviating horizontal wells,
sometime drilled from the same platform is fairly common, and this field develop-
ment strategy is simulated. Combinations of these horizontal wells, intersecting
fractures and complex boundaries are very difficult, if not impossible to represent

79

Figure 6.1: Plan view of a domain with intersecting fractures is shown. Water
injectors are in blue and producers are shown in red.

Figure 6.2: Water saturations as a result of a waterflood in a system with negative
rock matrix capillary pressure and zero fracture capillary pressure

80

Figure 6.3: Water saturations as a result of a waterflood in a system with positive
rock matrix capillary pressure and zero fracture capillary pressure

using existing simulators. Waterflood at early time is shown in Figure 6.5 and
at a later time in Figure 6.6. The finite element simulators make it possible to
study practical reservoir development in complex fields with fractures/faults and
horizontal wells.

6.3 Example 3

Since the success of the waterflood in the Monument Butte Unit, through a U.S.
DOE sponsored project with Lomax, Inc. and the University of Utah, over 2000
wells have been drilled in the Greater Monument Butte belt. The target reservoirs
are in Greenriver formation. A typical unit consists of wells drilled on a 40-acre
spacing. All the wells are hydraulically fracture and are produced for a period
ranging from six months to two years. Subsequently, the unit is operated as a five
spot waterflood. There can be significant variation in the orientations and lengths
of hydraulic fractures; however, in most units the fractures display a dominant
direction. The fracture half lengths are of the order of 200 feet. One section, con-
sisting of 16 hydraulically fractured wells is shown in Figure 6.7. The fracture ori-
entation is varied slightly (10-20 degrees) over the dominant northwest-southeast
direction and fracture half lengths are varied around 200 feet. This particular sim-
ulation had 10,000 elements. The waterflood performance at early and late times
is shown in figures 6.8 and 6.9. Simulating these hydraulic fractures with different
orientations is very difficult using a structured mesh. The finite element simula-

81

Figure 6.4: Complex domain with two sets of intersecting fractures (white lines),
deviating horizontal injectors (blue lines) and horizontal producers (red lines) is
shown.

Figure 6.5: Waterflood at an early time in the domain shown in Figure 6.4 is
presented.

82

Figure 6.6: Waterflood at a late time in the domain shown in Figure 6.4 is pre-
sented.

tors can thus be used to evaluate the effectiveness of hydraulic fracturing, examine
early breakthrough phenomena and plan other field management activities.

83

Figure 6.7: A common waterflood unit in the Greater Monument Butte field. The
well spacing is 40 acres. All the wells are hydraulically fractured. Slightly different
fracture orientations and fracture half lengths of 200 feet area are assumed

Figure 6.8: Waterflood at an early time in the domain shown in Figure 6.7 is
presented.

84

Figure 6.9: Waterflood at a a late time in the domain shown in Figure 6.7 is
presented.

85

Chapter 7

Example of Three-Dimensional
Simulation

The three-dimensional simulation was performed by constructing the three-dimensional
extension of the two-dimensional domain examined in Example 1 of Chapter 5.
The domain was irregular with the total dimensions in the x and in the y di-
rections being about 600 feet. The thickness of the domain was 50 feet. Four
intersecting fractures were placed in the domain. These were not all orthogonal -
the dip angles varied between 70 and 90 degrees. Tetrahedral mesh was created
with this system. The domain and the mesh are shown in figures 7.1 and 7.2.

A study similar to the one reported for the two-dimensional domain with pos-
itive and negative capillary pressures was conducted. The first set of pictures are
with negative capillary pressures in the rock matrix. The injection and production
rates were 80 barrels per day. The three-dimensional plot of water saturations in
the system after 181 days of continuous injection is shown in Figure 7.3.

More useful information is obtained when cross-sections within the three-
dimensional domain are observed. Four Y-Z sections at different x values are
shown in Figure7.4. The impact of fractures and the gravity-driven water flow are
clearly captured in this figure.

The effect of gravity on the water flood can be observed by studying the X-Y
sections at different z values. Two such cross sections are shown in figures 7.5
and 7.6. The first cross section in Figure 7.5 is at a z value of 10 feet and the
second cross section in Figure 7.6 is at a z value of 40 feet. As expected, the water
saturations are uniformly high in the cross section at z equal to 40 feet. These
figures also illustrate the fact that imbibition is poor, leading to poor rock matrix
sweep.

At later times, basically the same trends are observed. Figure 7.7 shows Y-Z
cross sections of water saturations after 1003 days of injection and figure 7.8 shows
the plan view (X-Y cross section) at the same time.

The picture is different when positive capillary pressure values are used for the
rock matrix. The three-dimensional view of water saturations after 181 days of
injection is shown in figure 7.9. The Y-Z cross sections at the same x values as

86

Figure 7.1: The three-dimensional domain showing the fractures and the tetrahe-
dral mesh

Figure 7.2: Another view of the three-dimensional domain with fractures and the
mesh created

87

Figure 7.3: Water saturations in the three-dimensional domain with fractures
after 181 days of injection

Figure 7.4: Water saturations at 181 days. Y-Z cross-sections at x values of 174,
380, 488 and 593 feet are shown.

88

Figure 7.5: A plan view (X-Y section) at z=10 feet. Water saturations are after
181 days of injection are shown.

Figure 7.6: A plan view (X-Y section) at z=40 feet. Water saturations after 181
days of injection are shown.

89

Figure 7.7: Water saturations at 1003 days. Y-Z cross-sections at x values of 174,
380, 488 and 593 feet are shown.

Figure 7.8: A plan view (X-Y section) at z=25 feet. Water saturations are after
1003 days of injection are shown.

90

Figure 7.9: Water saturations in the three-dimensional domain with fractures
after 181 days of injection; capillary pressures in the rock matrix are positive

before are shown in figure 7.10. The effectiveness of the sweep due to imbibition
is best illustrated with the plan view of water saturation at z equal of 25 feet after
1003 days of injection (shown in figure 7.11.

91

Figure 7.10: Water saturations for positive capillary pressure in the rock matrix at
181 days. Y-Z cross-sections at x values of 174, 380, 488 and 593 feet are shown.

Figure 7.11: A plan view (X-Y section) at z=25 feet. Water saturations are after
1003 days of injection and the rock matrix capillary pressure is positive

92

Chapter 8

OPTIMIZATION TECHNIQUE
AND APPLICATIONS

The first part of this chapter outlines the basics of optimization and a general
overview of some of the techniques best suited to solve nonlinear optimization
problems. In the second part this chapter, the algorithm used for optimization is
outlined. The third part demonstrates the application of the algorithm to reservoir
examples.

8.1 Description of the Optimization Problem

Optimization is the act of obtaining the best result under given circumstances us-
ing efficient quantitative methods. It is important to use established mathematical
techniques rather than implement ad hoc procedures to perform optimization. A
typical optimization problem is described by a system or process and a measure
or criterion that is used to judge the performance of the system, subject to the
imposed constraints. The system or the model as it is sometimes called is de-
scribed by a set of variables known as the states. The entire process is driven by
a set of inputs commonly known as control variables.

Mathematically, an optimization problem can be written as,

Minimize (or Maximize): J(u) (8.1)

Subject to: g(x) = 0 (8.2)

xl ≤ xi ≤ xu i = 1, 2, . . . , n (8.3)

ul ≤ uj ≤ uu j = 1, 2, . . . ,m (8.4)

The optimization problem is described by the nature of the cost function (per-
formance criterion), J(u) in Equation (8.1) and the process defined by Equation
(8.2). The state variables of the system are denoted by x and u represents the
set of control variables. If the cost function and the process are both linear, the
problem is termed as a linear problem. If any one of the function or the system

93

or both are nonlinear, the optimization problem is a nonlinear one. Optimization
in reservoir simulation is an example of nonlinear optimization where the state
variables are computed by solving nonlinear equations. The reservoir model is
dynamic in nature which makes this a dynamic optimization problem. The cost
function, even a simple profit function in reservoir engineering, as described later
in this chapter, is nonlinear in nature.

8.2 Overview of Nonlinear Optimization Tech-

niques and Applications

Several researchers have successfully implemented formal optimization methods
to solve various reservoir engineering problems. This section describes some of
the work done in this area of dynamic optimization with reasonable mathematical
explanations wherever possible. Many of these methods were considered before
deciding on the method used in this work.

8.2.1 Optimal Control Theory

The goal of an optimal control problem is to determine a control policy or a
strategy that will maximize or minimize a performance criterion or an objective
functional subject to constraints that describe the dynamics of the system. The
fundamental theories of this problem are the calculus of variations and Pontrya-
gin’s Maximum Principle. The calculus of variations approach is based on the fun-
damental theorem of variational calculus [32]. The theorem is applied to problems
with no constraints on states and controls. The theorem is coupled with Pontrya-
gin’s Maximum Principle [33] to allow constraints on state and control variables.
Ramirez et al. [34] have presented the theory of optimal control of distributed-
parameter systems where they applied the theory of calculus of variations coupled
with Pontryagin’s minimum principle to determine the best surfactant injection
policy for tertiary recovery of oil. Fathi and Ramirez [35] applied this theory to
maximize the cost of oil recovery while minimizing the cost of surfactant injected.
The amount of chemical injected was used as the control variable. The control
was updated using a steepest-descent gradient method. This work was extended
to determine optimal operating strategies for steamflooding [36] and carbon diox-
ide miscible-flooding [37] enhanced oil recovery processes processes. Sudaryanto
and Yorstos [38] addressed the issue of control of displacement fronts of fluids
flowing in porous media. They used optimal control theory to control the injec-
tion rates at different point sources. Brouwer and Jansen [39] applied the optimal
control theory to optimize the valve settings in smart wells for waterflooding of
heterogeneous reservoirs. A gradient based control technique was used to solve
the problem. Maximization of the Net Present Value (NPV) was identified as the
objective of the problem.

94

8.2.2 Dynamic Programming and its Variations

The dynamic programming (DP) method is a stage-wise procedure which enables
one to construct the optimal solution to a multistage decision problem. This
technique was developed by Bellman [40] in mid-twentieth century. The technique
decomposes a multistage decision problem as a sequence of single-stage decision
problems. Thus an n−variable problem is broken down into and solved as a
sequence of n single-variable problems. The decomposition is carried out in such
a manner that the optimal solution of the original problem is obtained from the
optimal solutions of the n single-variable problems, though it should be noted that
the technique used for optimization of the decomposed problem could be anything
ranging from simple differential calculus to a complex nonlinear programming
technique and is irrelevant in the context of the optimal solution. The process
of sub-optimization can be described using Bellman’s principle of optimality [41].
The principle of optimality states that,

An optimal policy has the property that whatever the initial state and decision

are, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision.
The main limitation of dynamic programming is the “curse of dimensionality”.

At each stage, the state variable is defined over a large domain. This means that
the values of the optimal value function and control need to be stored for all values
of the state variables. This storage cost is very expensive. Differential Dynamic
Programming (DDP) was developed to overcome this difficulty. This method
starts with a nominal control policy, ūj, and compares the resulting nominal state
trajectory, x̄i, with the neighboring trajectories and selects the neighboring tra-
jectory that yields an optimal cost reduction. There are several good references
[42, 43, 44, 45] that compare the DDP to the DP and also list the advantages
of DDP over DP. Though Jacobson and Mayne [46] were the pioneers of DDP,
several mathematicians came up with improvements to the algorithm. The DDP
algorithm developed by Yakowitz and Rutherford [47] was modified by Chang et

al. [48] to obtain optimal rates of pumping of groundwater to reduce the contam-
inants in the sub-surface. The only modification made by them was the omission
of the second order derivatives of the constraint functions from the algorithm for
computational ease. This is equivalent to a Linear Quadratic Regulator (LQR)
problem, an established control theory. Second order derivatives of the objective
function with respect to the control variables and the states are required to be
computed in DDP in addition to the derivatives of the constraint function with
respect to the states and controls. Although Chang [49] has used analytical ex-
pressions for these derivatives it is necessary to compute numerical derivatives for
many applications and this becomes a computational burden.

95

8.2.3 Gradient Based Methods

The gradient of a function, f(x) is the vector at the point x that gives the direction
of the greatest rate of increase in f(x). The search direction is the gradient for
a maximization problem and is the negative of the gradient for a minimization
problem. The minimization problem of this type is known as the steepest descent
problem. The search direction, sk, for the kth iteration of the steepest descent
method can be written as,

sk = −∇f(xk) (8.5)

The kth iteration for a steepest descent algorithm is given by,

xk+1 = xk + ∆xk (8.6)

= xk + αksk (8.7)

= xk − αk∇f(xk) (8.8)

where, αk is the scalar that determines the step length in the direction sk and is
determined by line search techniques [50]. The iterations are stopped when the
value of f(xk) converges based on a specified tolerance. The main difficulty with
the steepest descent approach is its large sensitivity to the scaling of f(xk). This,
in turn, leads to a slow convergence and often oscillation in the x space.

The conjugate gradient technique is a major improvement over the steepest
descent method. It combines current information about the gradient with that of
the gradients from the previous iterations to obtain the new search direction. For
the kth iteration,

sk+1 = −∇f(xk+1) + sk

∇T f(xk+1)∇f(xk+1)

∇T f(xk)∇f(xk)
(8.9)

The starting search direction, s0, is computed as,

s0 = −∇f(x0) (8.10)

and the new update for x is obtained according to Equation (8.7).
The main advantage of this method is that requires only a small amount of

information to be stored at each iteration. It can be noticed from Equation (8.9)
that the new search information is expressed as a linear combination of the cur-
rent gradient and the previous search direction. Different linear combinations
have been developed by researchers and two of most commonly used ones are
due to Fletcher and Reeves and Polak and Ribiere. There are many good refer-
ences [50, 51, 52, 53] for the conjugate gradient methods and their formulations
and applications. Yeten et al. [54] used the conjugate gradient method for the
optimization of smart well control. The optimization method was linked with a
commercial reservoir simulator. They divided the simulation period into several
stages and optimized the valve settings for each period. The work presented here
follows a similar approach to that followed by Yeten et al. but uses a different

96

optimization technique which takes into account the second order information of
the cost function. The important difference between the algorithm developed here
and the one suggested by Yeten et al. is that the water injection rates are opti-
mized for the different stages of the simulation period simultaneously rather than
optimizing them for each period separately. This approach identifies the presence
of multiple maxima which is something that the approach of Yeten et al. fails to
capture.

8.2.4 Newton’s Method and its Improvements

Newton’s method employs the use of the second-order approximation of f(x)
at xk. It is therefore possible to account for the curvature of f(x) at xk and
identify better search directions than can be obtained using the gradient methods.
In the Newton’s method, the extremum of a function, f(x), is found from the
Taylor series expansion of the function to its quadratic term [50, 55]. Quadratic
approximation of f(x) is given by,

f(x) ≈ f(xk) +∇T f(xk)4xk +
1

2
(4xk)

T H(xk)4xk (8.11)

Minimum of f(x) in the quadratic approximation is obtained by differentiating
the approximation with respect to the components of 4x, yielding,

∇f(x) = ∇f(xk) + H(xk)4xk = 0 (8.12)

or,
xk+1 − xk = 4xk = −[H(xk)]

−1∇f(xk) (8.13)

where, [H(xk)] is the Hessian matrix of f(x). Usually, a line search parameter, αk

is used for progressing quickly toward the minimum. As a result, Equation (8.13)
can be written as,

4xk = −αk[H(xk)]
−1∇f(xk) (8.14)

The search direction for minimization is,

sk = −[H(xk)]
−1∇f(xk) (8.15)

As evident from the mathematical explanation above, the Newton’s method
searches in the direction of the gradient. Convergence is an issue far away from
the local solution. To improve the convergence behavior of the method, a step
size is chosen in the direction of the descent. This is the idea of a line-search
algorithm. Dennis and Schnabel [55] have explained in detail about computing an
acceptable step size for the line-search technique. In a line-search algorithm, the
step direction is retained while the step length is reduced. Another method that
ensures the convergence of the Newton’s method is the trust region method [55].
In this method the shorter step length is first determined and then the quadratic

97

model of the function is used to determine the step direction. A key limitation of
the Newton’s method is that the positive-definiteness of the Hessian is not always
assured. Also, it requires the computation of second order derivatives, which may
not be practical to obtain using numerical techniques. Several methods have been
suggested to ensure the positive-definiteness of the Hessian. The most common
method in this category is the quasi-Newton method that replaces H(xk) by a
positive-definite approximation, H̃k. H̃k is usually initialized as any positive-
definite symmetric matrix (usually the identity matrix or any diagonal matrix)
and is updated after every line search using 4x and the change in ∇f(x) over the
two most recent points. One of the most often encountered updating formula is
the BFGS (after Broyden, Fletcher, Goldfarb and Shanno) update [50, 55]. The
details of this method will be discussed in Section 8.3.1.

Nishikiori et al. [56] applied a quasi-Newton method to find optimum gas
injection rates for a group of continuous gas lift wells to maximize the total oil
production rate constrained by a total gas volume available for injection. The first
order derivatives were computed using a central difference approximation. The
Hessian was approximated using the DFP (Davidon, Fletcher and Powell) up-
dating formula [57]. Dutta-Roy and Kattapuram [58] presented a new approach
to the simulation and optimization of the gas-lift allocation problem with a Se-
quential Quadratic Programming (SQP) approach for the nonlinear constrained
optimization. The total oil production at the separation and processing facilities
was maximized. The primary constraint considered was the availability of injec-
tion gas. Sequential Quadratic Programming (SQP) is a very popular method to
solve nonlinear programming problems [57]. It solves a nonlinear programming
problem using a sequence of quadratic programming (QP) approximations. A QP
problem is a nonlinear problem with a quadratic cost function and linear con-
straints. The SQP method may fail to converge if the initial point is far from the
local solution. To increase the convergence, a penalty function is used which is
linear combination of the objective function and some measure of the constraint
violation. This linear operator is referred to as the Lagrange multiplier. This
augmented Lagrangian function is then used as the cost function for the SQP
algorithm. A brief mathematical description is shown below.

The general nonlinear problem is given by,

Minimize: f(x) (8.16)

Subject to: g(x) = b (8.17)

The augmented Lagrangian function is,

L(x, λ) = f(x) + λT (g(x)− b) (8.18)

The set of control variables is denoted by x. f(x) is the cost function, g(x) the
set of constraints and λ the set of Lagrange Multipliers. Several good references
[50, 53, 57] explain the SQP optimization problem.

98

A quasi-Newton method was chosen to be used for the optimization of water
injection rates in the reservoir model to maximize the profit associated with oil
recovery. The reasons for this choice are:

1. Other relevant techniques discussed in Section 8.1 involve the extensive cal-
culation of derivatives of not only the cost function but also of the states with
respect to the control variables which translates into a lot of computational
time.

2. The problem under consideration is an example of a ”black box” type where
the controls can usually be determined by forward simulations and does not
require the computation of the derivatives of the cost function with respect
to the state variables of the system or the derivatives of the state variables
with respect to the other states and controls. It requires only the derivatives
of the cost function with respect to the controls. This suggests a gradient
based method as an ideal candidate for this type of an optimization problem.

3. The best known gradient techniques belong to the Newton’s family. As dis-
cussed in Section 8.2.3, the quasi-Newton method eliminates the burden of
computing the Hessian (second-order derivative matrix) of the cost function
which would be encountered with the usage of the Newton’s method.

8.3 Optimization Methodology

One of the most important contributions in this thesis, is the interfacing of an
optimization toolkit to the control volume reservoir simulator MARS, developed
by Yang [59]. The simulator was written in C++ and so were all the interface
functions. The construction of the simulator has been described in [59]. Separate
routines were written to compute the cost function and the gradient of the cost
function with respect to the control variables. Several routines were added to the
simulator to interface it with the optimization module which was developed using
an optimization toolkit described in Section 8.3.2.

8.3.1 The quasi-Newton method

The motivation behind the quasi-Newton method was described in Section 8.2.4
and the reasons for the choice of this method to be applied in this work are
given above. This section describes one of the most commonly used quasi-Newton
algorithms and the one that is used in this study. To refresh the reader, the basic
Newton’s method is described by Equation (8.13). The quasi-Newton method

replaces the Hessian matrix H(xk) by a positive-definite approximation H̃k. The
search direction sk is given by

sk = −[H̃k]
−1∇f(xk) (8.19)

99

The Hessian H̃k is often initialized as the identity matrix and is updated after
each iteration using the changes in x and ∇f(x) over the last two points. These
changes are denoted by d and y where

dk = xk+1 − xk, (8.20)

yk = ∇f(xk+1)−∇f(xk). (8.21)

A widely used formula for updating the Hessian is the BFGS update named
after Broyden, Fletcher, Goldfarb and Shanno [50] who developed it independent
of each other in the same year. The update is given by

H̃k+1 = H̃k +
yky

T
k

dT
k yk

− (H̃kdk)(H̃kdk)
T

(dk)T (H̃kdk)
. (8.22)

Dennis and Schnabel [55] proved that if H̃k is positive-definite and if dT
k yk > 0,

H̃k+1 is positive-definite as well. A line search parameter αk is usually incorpo-
rated in the quasi-Newton method for quicker convergence. The convergence of a
quasi-Newton method is always superlinear since it incorporates second order in-
formation. A BFGS algorithm requires more iterations than a comparable Newton
implementation but each iteration of the quasi-Newton technique is faster than
that in the Newton’s method because second order derivatives are not required.

A disadvantage of the BFGS implementation is that for systems with thou-
sands of variables, storing the H̃k matrices requires a lot of time and computer
memory. In the past, the conjugate gradient techniques were considered more at-
tractive due to this reason since they do not involve any matrix handling. Later,
researchers improved the BFGS method to make it less memory intensive. Nocedal
[60] developed a variation of the BFGS technique that used a variable amount of
storage but still ensured the positive-definiteness of the matrices. Benson and
Moré [61] further extended the procedure to obtain the minimum for a bound
constrained problem where the variables are bound by an interval, that is

Min f(x) : l ≤ x ≤ u (8.23)

where l and u are the lower and upper bounds for the variables x. In this method,
the Hessian is updated using projected gradients. This algorithm is referred to
as the bound limited variable variable metric method (BLMVM) and has been
implemented in the toolkit described in Section 8.3.2.

8.3.2 Toolkit for Advanced Optimization

The Toolkit for Advanced Optimization (TAO) [62], developed at the MCS divi-
sion of the Argonne National Laboratory (ANL), is aimed at the design and imple-
mentation of component-based optimization software for the solution of large-scale
optimization applications. The TAO design philosophy uses object-oriented tech-
niques to create a flexible optimization toolkit. It reuses external tools where

100

appropriate. For instance, the design of TAO enables connection to linear algebra
support provided in toolkits such as PETSc. The four fundamental objects used
by TAO solvers to define and solve optimization problems are: vectors, matrices,
index sets and linear solvers. The concepts of vectors and matrices are standard
and are borrowed from PETSc, while the term index set refers to a set of integers
that is used to identify specific elements of a vector or a matrix. An optimization
algorithm is a sequence of well defined operations on these objects. The C++
include file for TAO is tao.h and should be used via the statement

#include “tao.h”

Some of the commands often required when using TAO are listed below.

• TaoInitialize() initializes TAO and also PETSc, if it not already initialized,
and all programs begin with this command.

• TaoFinalize() is usually the final statement written by the user and handles
the options to be called at the conclusion of the program. It also closes
PETSc if it was initialized using TaoInitialize().

• TaoCreate() is used to specify the optimization method to be used by the
solver. Both unconstrained and constrained minimization can be performed
using TAO solvers. Unconstrained minimization methods offered by TAO
include conjugate-gradient methods, Newton’s method with line search and
trust region and the Limited Memory Variable Metric (LMVM) method
which is a quasi-Newton method and does not require the computation of
the Hessian. The constrained minimization methods include the Newton
trust region method, the gradient-projection conjugate-gradient method, the
interior-point Newton algorithm and the bound LMVM method. The bound
LMVM method was used for the studies performed here.

• TaoAppSetObjectiveRoutine() and TaoAppSetGradientRoutine()
are used to call the routines that compute the objective function and the
function gradient respectively. Sometimes for more robust computation, the
function and the gradient are called using the same command TaoSetFunc-
tionGradient().

• TaoSolve() is invoked to solve the problem after all the necessary problem
parameters have been initialized and after all the required TAO and PETSc
commands have been specified.

In addition, TAO uses many of the commands developed in PETSc for handling
vectors and matrices.

101

8.3.3 Formulation of the Cost Function

In optimization, defining the objective of any process is of utmost importance.
The definition of the objective plays a very important role in setting up the opti-
mization problem. It is up to the operator to decide the objective of the problem.
Several different cost functions have been suggested and used in the literature
[63, 54, 64]. One of the most common cost functions is in the form net income
deliverable over a certain period of time where the profit associated with oil pro-
duction is maximized. The costs that negate the cost of oil recovery are the costs
of water injection and production. A typical profit function is written as,

J = COP − CWI − CWP (8.24)

It is alternately written as,

J =
N∑

i=1

(qi
wicwi + qi

wpcwp − qi
opcop)∆ti (8.25)

Another cost function that was used for this study was the Net Present Value
(NPV). NPV can be expressed as the sum of the discounted cash flows during the
project period. A typical NPV function is as described below,

NPV =
N∑

i=1

((qi
wicwi + qi

wpcwp − qi
opcop)∆ti − FC i)(1− ri)

(1 + d)
i∆ti
365

(8.26)

Both cost functions were studied in this work and results for comparative studies
have been presented in the latter half of this chapter. In both cases, a complete
forward simulation was required to compute the cost function. The differences in
the nature of both the functions is discussed in the results as well.

8.3.4 Gradient Computation

The logical step after computing the cost function is to compute the derivative of
the function. It is not straightforward to compute analytical derivatives for the
types of objectives described in the previous section. Therefore a good numeri-
cal derivative scheme needs to be employed to compute the gradient of the cost
function. The definition of the derivative f ′(x) of a function f(x) using a forward
difference approximation is

f ′(x) ≈ lim
h→0

f(x + h)− f(x)

h
(8.27)

Though the derivative computation seems to be easy at first sight, it is hardly
so. Choosing the right value of h is very crucial in computing the derivative
accurately. The two main sources of error in Equation (8.27) are the truncation

102

and roundoff errors. The truncation error arises because of omitting the second
and higher order terms in the Taylor series expansion shown below.

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) + · · · (8.28)

The truncation error, as a result, is of the order of hf ′′.
The roundoff error arises primarily due to choosing h with a high effective value

which refers to the difference between x + h and x as represented in the machine.
This value is of the order of εmx where εm is the machine’s floating-point precision.
The fractional error in the order of h can be expressed as an order of εmx

h
. A large

fractional error translates into a large error in the derivative.
A significantly more accurate way to evaluate the derivative is using a central

difference approximation to estimate it as follows,

f ′(x) ≈ f(x + h)− f(x− h)

2h
(8.29)

In this case, the roundoff error is about the same as before but the truncation
error is now of the order of h2f ′′′. However, this too depends on how wisely the
value of h is chosen.

An improved method to compute the derivative was suggested by Ridders [65].
In this method, the derivatives computed using finite-difference calculations are
extrapolated, using Neville’s algorithm for fitting a polynomial, with progressively
smaller values of h so that eventually h→ 0. A subroutine, dfridr, in C has been
reported in [66] and will be used for gradient computation in the optimization
algorithm. As a side note, a forward difference scheme is used to compute the
gradient at the lower control bound and a backward difference scheme is used at
the upper control bound.

It is quite obvious that the gradient computation requires the function to
be evaluated several times. During the entire optimization algorithm, the cost
function is evaluated hundreds of times.

8.3.5 Optimization Algorithm

Water injection rate was chosen as the control variable for the optimization prob-
lem. The simulations were performed with a total fluid rate constraint. The
total volume of water injected equalled the total volume of fluids produced. The
simulation period was divided into multiple stages and the algorithm was used
to optimize the water injection rates in all those periods. The number of stages
determined the number of control variables. The gradient of the cost function
with respect to the control variable was computed using the numerical scheme
described in Section 8.3.4. The set of control variables obtained after each op-
timization iteration is referred to as the control policy. The initial set of values
assigned to the water injection rates is known as the nominal control policy and

103

the final set of water rates is known as the optimal control policy. The TAO solver
taoblmvm was used as the optimization method. A step-by-step description of
the optimization algorithm is given below.

1. A starting control policy was assigned to start the optimization algorithm.

2. The simulation was run forward in time more than once to compute the cost
function and the gradients.

3. The tao blmvm routine employing a quasi-Newton method was used to per-
form optimization and compute the control policy for the next iteration.

4. Steps 2 and 3 are repeated till convergence is achieved in the solution to the
control policy. An absolute tolerance of 10−4 was used as the convergence
check for the cost function.

8.4 Case Studies

The results of applying the optimization algorithm to simple reservoir models are
presented and discussed in this section. Two reservoir models were considered
for the studies: one without fractures and one with. A third case of a heteroge-
neous reservoir model is studied to illustrate the differences between the method
proposed by Yeten et al. [54] and the method developed here.

8.4.1 Case I

The domain used in this case study, shown in Figure 8.1, has dimensions of 40 ft
× 40 ft × 1 ft and is gridded using blocks of size 10ft × 10 ft × 1 ft. The domain
has a quarter-of-a-five-spot pattern with a single injector and a producer at the
opposite corners. The porosity of the reservoir is 0.1 and the residual Sw is 0.2.
The initial reservoir pressure is 3000 psi and the matrix has a positive capillary
pressure (Pc) curve. The two cost functions described in Section 8.3.3 were used
in the studies. In all the examples, the costs of injecting/producing fluids were
assumed to be the same. The following values were used:

Cost of oil produced (cop) = $50/bbl

Cost of water produced (cwp) = $1/bbl

Cost of water injected (cwi) = $1/bbl

In the NPV formulation, the capital cost was assumed to be zero. The annual
tax rate r was assumed to be 4.6 % and the annual discount rate was assigned a
value of 16.7 %. These values were taken from [64] purely for the purpose of these
examples. In reality, these values are bound to vary. Study Ia: In this case, the
optimal water injection rate for the domain is computed using the net income or

104

Figure 8.1: Finite-element mesh of the domain used in Case I.

profit as the cost function over a period of 2000 days. The single-stage optimum
was determined to be 0.0501 bbl/day and the corresponding profit was determined
to be $515.76. This was found to be a unique optimum by providing different
initial guesses to the optimization algorithm. Figure 8.8 shows the cumulative oil
produced as a result of the optimal injection rate and compares it against the oil
produced due to two base or uncontrolled cases. The base case 1 represents a
case where the water injection rate is higher than the optimal injection rate and
the base case 2 corresponds to a scenario where the injection rate is less than the
optimal rate. Figure 8.9 shows the water cut obtained as a result of the optimal
and the base cases. The water cut is the ratio of the volume of water produced to
the volume of water injected. In base case 1, though more oil is produced than the
optimal case, the corresponding water cut is much higher and hence is not very
profitable. In base case 2, the oil produced is too little compared to the optimal
case and hence is not profitable in the given period of time.
Study Ib: The entire period of simulation (2000 days) was divided into two periods
or stages with each stage having a duration of 1000 days. The optimization
algorithm was implemented to determine the optimal injection rates for the two
stages. Different initial guesses were provided to the algorithm and a unique

105

optimum was not obtained. Three different optima are presented in Table 8.1. It
can be noticed that there is no unique optimum although the profits are reasonably
close to each other. The main reason for this is due to the fact that the total
amount of water injected over the entire period is roughly the same in all the
three cases. This is further corroborated by Figures 8.10 and 8.11, where it can
be seen that the cumulative oil produced and the final water cuts are very similar.
The presence of multiple optima for a two-stage optimization problem can be seen
in Figure 8.2. A five-stage optimization was performed to observe the effect of

Cost function for 2 stages
J

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
First stage control (bbl/day) 0.01

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09

 0.1
 0.11

Second stage control (bbl/day)

-540
-520
-500
-480
-460
-440
-420
-400
-380
-360
-340
-320

Cost Function, J

Figure 8.2: Study Ib: Cost function for a two-stage optimization problem.

Table 8.1: Study Ib: Optimal injection policies for a two-stage optimization for a
profit-based objective.

Starting Policy (bbl/day) Optimal Policy (bbl/day) Profit ($){
0.01
0.01

} {
0.0552
0.0482

}
516.25

{
0.1
0.01

} {
0.0982

0.0

}
520.95

{
0.02
0.05

} {
0.0343
0.0645

}
515.195

optima on the number of stages. The cumulative oil production for three different

106

optimal policies obtained using different nominal policies are shown in Figure 8.12
and the corresponding water cuts can be read from Figure 8.13. Table 8.2 presents
the different optima obtained using different initial conditions. It can be easily
shown that some of the optimal results obtained are purely mathematical and can
be easily avoided by the operator by taking a look at them. For instance, the
Optimal Policy 1 from Figure 8.12 is not a practical way to recover oil from the
field since very little water is injected in the first half of the operational period. In
this case, almost no oil is recovered for a long time and this is not desirable from
an economical viewpoint. Similarly, in the Optimal Policy 3, the water injection
rates in all the five stages are almost identical to each other and are very similar to
the single stage optimum obtained in Study Ia which makes the five-stage process
a pointless exercise. The operator may safely choose the Optimal Policy 2, where
bulk of the oil is produced in the first few hundred days and there is no such thing
as a penalty for injecting a lot of water at the later stages. This sits well with
the physics of the process and is very profitable. As can be seen from Table 8.2,
the profit obtained in this case is also significantly higher than the corresponding
value in the single-stage case. However, this is not a conclusive evidence to assert
that varying the injection rates over the period of operation yields a better profit
than the single-stage scenario.

Table 8.2: Five-stage optimal Policies for domain without fracture

Starting Policy (bbl/day) Optimal Policy (bbl/day) Profit ($)

1.0
1.0
1.0
1.0
1.0

0.0
0.0257
0.1680
0.0313
0.0054

523.27

0.01
0.01
0.01
0.01
0.01

0.2364
0.0067

0.0
0.0
0.0

524.33

0.001
0.001
0.001
0.001
0.001

0.0501
0.0484
0.0462
0.0447
0.0385

515.80

The optimization algorithm can be used to determine optimal policies for
multi-stage problems in a similar manner. In some cases, there tends to be a small
increase in the profits obtained with an increase in the number of stages. This
could, possibly, be attributed to the type of solutions obtained in a multi-stage

107

problem. For instance, a solution which indicates a sharp rise in oil production
due to a high volume of water injection during an early stage followed by a sharp
decrease in water injection, possibly even a well shut-in, which leads to little or
no oil production because most of the oil has been swept out of the reservoir, will
yield a high profit due to low water injection rates at later stages and due to the
fact that most of the oil has been drained out of the reservoir.
Study Ic: A comparative study of the profit function and the NPV formulation is
presented in this section. The optimal injection rate obtained by using profit as
the objective is compared with that obtained by using NPV as the performance
criterion. The profit-based optimum is described in Study Ia. The optimal water
injection rate in the NPV-based case was determined to be 1.02 bbl/day and
the corresponding profit was observed to be $400.10. This objective value is
significantly lower than its counterpart in Study Ia and the optimal rate is much
higher than the corresponding rate in Study Ia. This is due to the natures of the
two different cost functions under question. The profit function sums the profit of
oil over the entire period of time whereas NPV sums the profit but discounts the
value of this profit at later times. In other words, the NPV dictates that the oil
be produced as quickly as possible under the imposed operating constraints. This
can be witnessed in Figure 8.14 where the oil is produced very rapidly and there
is very little oil left to produce at later times. As a result, the water produced at
later times is quite high to account for mass balance of the fluids. A high water
cut at later times can be seen in Figure 8.15. The difference in oil production
and water cut patterns between the two objectives can be clearly seen in these
two figures. The operator has to choose between these clearly different objectives
based on the facility constraints that he faces.
Study Id: A two-stage NPV problem was studied here and compared with a single
stage problem with the same objective. The results of the cumulative production
and water cut comparisons are given in Figures 8.16 and 8.17 respectively. It can
be seen that the curves are almost identical for the two-stage and the single stage
cases. This is due to the nature of the NPV cost function. There is no unique
optimum for the later stages in a NPV-based multi-stage solution. The function,
as discussed earlier, directs the algorithm to yield a high enough water injection
rate in the first stage to sweep out most of the oil early on. The amount of water
injected in the second or later stages is not very significant in determining the
value of NPV. The two different optimal policies for a two-stage problem based
on NPV as the objective can be viewed in Table 8.3.

8.4.2 Case II

The domain used in this study, shown in Figure 8.3, is a 60 ft × 60 ft × 1 ft
2−dimensional domain with fractures. The domain has a single injector and a
single producer as can be seen from the figure. The porosity of the reservoir is
0.2 and the residual Sw is 0.05. The initial reservoir pressure is 1000 psi and

108

Table 8.3: Study Id: Optimal injection policies for a two-stage optimization for a
NPV-based objective.

Starting Policy (bbl/day) Optimal Policy (bbl/day) Profit ($){
0.1
0.1

} {
1.0368

0.1

}
399.12

{
10.0
10.0

} {
0.9962
9.43

}
399.13

the matrix and the fracture have the same positive capillary pressure curve. The
relative permeabilities of the oil and water phases are shown in Figure 8.4 and the
capillary pressures in the matrix and the fractures obey the curve shown in Figure
8.5. The formation volume factors and viscosities of the fluids can be found in
Tables 8.4 and 8.5 respectively. The profit function was used in the studies. The
fluid costs used in this case are the same as in Case I.

Figure 8.3: Finite-element mesh of the fractured domain used in Case II.

Study IIa: The purpose of the studies in this section is to apply the optimiza-
tion algorithm for domains with complicated geologic features such as faults and

109

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
P

er
m

ea
bi

lit
ie

s
of

 fl
ui

d
ph

as
es

Sw

krw
kro

Figure 8.4: Relative Permeabilities of the fluids for domain in Case II.

fractures. The optimal injection rate was computed for a single stage problem as
in Study Ia. The optimal case was compared to a base or uncontrolled case and
the results for cumulative oil production and water cut comparisons are shown
in Figures 8.18 and 8.19. The simulation was performed for 1000 days and the
optimal injection rate and profit were determined to be 0.5 bbl/day and $1703.87
respectively.
Study IIb: It is important to know the period of operation of the reservoir before
determining the optimum. This study uses the fractured domain to distinguish
between the optimal policies for two different periods of time. The optimal rate
for a period of 1000 days is described in Study IIa. In this study, that optimum
is compared to the optimal rate for a period of 5000 days. This comparison is
provided in the form of Table 8.6. The plots of cumulative oil production and
water cut due to the optimal injection rate obtained for a period of 5000 days are
shown in Figures 8.20 and 8.21 respectively. The most striking result is that the
optimal injection rate for the shorter period is greater than that for the longer du-
ration of operation. This is due to the nature of the profit function. A NPV-based
objective will suggest different optimal policies without any significant difference
between them.

8.4.3 Case III

Results comparing the optimization method developed by Yeten at al. [54] to ar-
rive at stage-wise or multistage solution to a reservoir optimization problem and
the approach followed in this study have been presented in this section. In the
approach of Yeten et al., the simulation period was divided into several stages to
change the control at those times. For each period, the optimum was computed

110

 20

 25

 30

 35

 40

 45

 50

 0 0.2 0.4 0.6 0.8 1

C
ap

ill
ar

y
P

re
ss

ur
e,

 P
c

(p
si

)

Sw

Pc

Figure 8.5: Capillary Pressures in the matrix and fractures for domain in Case II.

by maximizing the oil recovery for the remaining simulation period with the sim-
ulation being started from the end of the previous period for each optimization
run. For example, if the controls were to be altered twice during the simulation
run, the simulation run period was divided into 2 stages. First, the simulation was
performed from the initial time to the end to compute a single stage optimum.
This was assigned as the optimum for the first stage. The simulation was then
restarted from the time at the end of the first stage and performed to the end
of the simulation period, that is the second stage in this example. The optimum
obtained in this case was fixed to be the optimal policy for the second stage. The
optimization method developed by Yeten et al. is demonstrated in Figure 8.6.

The study in this section compares this approach to the optimization method
adopted in this study. The 2−dimensional heterogeneous domain shown in Figure
8.7, with the two layers having different porosities of 0.1 and 0.2 and permeabilities
of 50 and 200 millidarcies, was used for this comparative study. Each layer is 40
ft × 19.5 ft and the layers are separated by an impermeable shale barrier which is
1 ft thick. Gravitational effects are taken into account. The fluid properties are
the same as the ones for the domain used in Example I. The simulation period
was 2000 days in both cases and the two stages were assigned to be 0− 1000 and
1000−2000 days. Table 8.7 shows the optimal policies for a problem with 2 stages
solved using the procedure of Yeten et al. Comparison of these values with those
in Table 8.8 makes it evident that the results of the two stage problem using their
approach are the same as the single stage results obtained using the approach
developed in this work. In other words, the total amount of water injected in
the wells for the optimal cases is the same in both approaches. This was verified
for different initial conditions. It is therefore, safe to state that the multistage
solution obtained using the procedure of Yeten et al. is equivalent to the single

111

 Opt rate 1

 Stage 1
 Opt rate 2

 Stage 2
 Opt rate 3

 Stage 3 Opt rate 4

 Stage 4

Simulation Period

Figure 8.6: Diagrammatic description of the optimization method developed by
Yeten et al.

stage approach of this study. Further studies showed the absence of a unique
optimum for the multistage case. The results for a two-stage problem using the
same domain are presented in Table 8.9. I1-opt and I2-opt refer to the optimal
injection rates of injectors I1 and I2. It can be noticed that the amount of water
injected in this case is approximately the same as the single stage case which
shows that, in the multi-stage case, the quantity of water injected is distributed
between the stages. The lack of a unique optimal solution merely shows that there
is no unique way to distribute the amount of water injected.

112

Figure 8.7: Finite-element mesh of the domain used in Case III.

Table 8.4: Formation Volume Factors of the fluids for the domain in Case II.

Po (psi) Bw Bo

14.7 1 1
10000 1 0.7962

Table 8.5: Fluid viscosities for the domain in Case II.

Po (psi) µw (cp) µo (cp)

14.7 0.5 10
10000 0.5 10

113

Table 8.6: Study IIb: Comparison of optimal policies for a single-stage optimiza-
tion for different periods of operation.

Period of Operation Optimal Policy Profit
(days) (bbl/day) ($)
1000 0.5 1703.87
5000 0.08 1668.55

Table 8.7: Case III: Optimal Policies for the two-stage optimization using the
approach of Yeten et al.

I1-opt (bbl/day) I2-opt (bbl/day){
0.0258
0.0259

} {
0.0504
0.05

}

Table 8.8: Case III: Optimal Policies for the single stage optimization using the
method developed in this work

I1-opt (bbl/day) I2-opt (bbl/day)
0.0254 0.0504

114

Table 8.9: Case III: Optimal Policies for the two-stage optimization due to differ-
ent initial conditions using the method developed in this work

I1-opt (bbl/day) I2-opt (bbl/day){
0.0194
0.0324

} {
0.0515
0.0492

}

{
0.0486
0.0006

} {
0.0210
0.0795

}

{
0.0551

0.0

} {
0.1
0.0

}

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case
Base Case 1
Base Case 2

Figure 8.8: Study Ia: Cumulative oil production comparison.

115

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case
Base Case 1
Base Case 2

Figure 8.9: Study Ia: Water cut comparison.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case 1
Optimal Case 2
Optimal Case 3

Figure 8.10: Study Ib: Cumulative oil production comparison for the two-stage
problem.

116

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case 1
Optimal Case 2
Optimal Case 3

Figure 8.11: Study Ib: Water cut comparison for the two-stage problem.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case 1
Optimal Case 2
Optimal Case 3

Figure 8.12: Study Ib: Cumulative oil production comparison for the five-stage
problem.

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case 1
Optimal Case 2
Optimal Case 3

Figure 8.13: Study Ib: Water cut comparison for the five-stage problem.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case for Profit objective
Optimal Case for NPV objective

Figure 8.14: Study Ic: Cumulative oil production comparison.

118

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case for Profit objective
Optimal Case for NPV objective

Figure 8.15: Study Ic: Water cut comparison.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case 1
Optimal Case 2

Figure 8.16: Study Id: Cumulative oil production comparison.

119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case 1
Optimal Case 2

Figure 8.17: Study Id: Water cut comparison.

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case

Base Case

Figure 8.18: Study IIa: Cumulative oil production comparison.

120

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case

Base Case

Figure 8.19: Study IIa: Water cut comparison.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

O
il

P
ro

du
ce

d
(b

bl
)

time (days)

Cumulative Oil
Optimal Case

Figure 8.20: Study IIb: Cumulative oil production for 5000 days.

121

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
at

er
 C

ut

time (days)

Water Cut
Optimal Case

Figure 8.21: Study IIb: Water cut for 5000 days.

122

Chapter 9

Parallel Computation

Parallel computing studies were carried out using an 18 processor Linux cluster.
The cluster has eight dual-processor nodes and one master node. Each of the pro-
cessors is equipped with a a 64-bit AMD Opteron chip. A two-dimensional system
consisting of 250,000 nodes was tested. A waterflood study was performed. The
computational time on mutiple processors was compared with the base case of
computational time on a single processor. Message Passing Interface (MPI) was
used to distribute the domains among different processors. The scaleup perfor-
mance is shown in figure 9.1. A speedup of between 11 and 12 was obtained for
16 processors. The optimization of parallel performance for a variety of domains
is being examined.

123

Figure 9.1: Scaleup performance on a parallel linux cluster. A two-dimensional,
250,000 node problem was tested.

124

Chapter 10

The Reservoir Simulator Interface

10.1 Introduction

10.1.1 Overview

The UFES Reservoir Simulator Interface

The UFES Reservoir Simulator Interface consists of two separate service packages:
the UFES Reservoir Simulator Interface Server package, and the UFES Reservoir
Simulator Interface Client package.

The interface server package is located on the computer which is supposed to
handle all of the detailed computations within reservoir simulation. The mesh
generator and the finite element simulator should also be on the same computer
as the server package. The interface client package should be installed on the
end-user’s computers.

Both programs are written in JAVA and operate on any computer with JAVA
Runtime Environments (JRE) available. Since the current simulator is compiled
in LINUX/UNIX environments, the Interface server package should be executed
under LINUX/UNIX operating systems. The interface client package can be in-
stalled on any computer on which JRE is installed. IBM RS/6000, Silicon Graph-
ics, SUN, Pentium-based PCs, AMD-based PCs etc with more than 256 Mb of
RAM would all be appropriate to run these applications.

About this chapter

This section contains technical descriptions of the principal features in both pack-
ages. Seven sections are included in this chapter. The first section is the introduc-
tion which includes the overview, objects and design. In this section, the project
objectives have been reviewed and the basic concept has been introduced. Section
2 deal with developments of the current interface. The work flow, features and
keywords are introduced in this section. Section 3 describes the installation part
to show how the user can install this interface. Server side installation, client side

125

interface installation and some environment parameters are discussed. Section
4 is the focus of the client side reservoir domain data input. For example, the
creation of a two-dimensional reservoir domain, fractures, and wells by drawing
on a canvas is described. Furthermore, user can modify the domain, fracture and
well coordinates in the automatically generated XML file. Section 5 goes through
the data input XML file in detail. This is a very important section which contains
all of the information about the reservoir simulation input file. Section 6 helps
the end user operating this interface to complete a petroleum reservoir simulation
by providing step-by-step instructions. Section 7 introduces a few ancillary pro-
grams bundled with the client side interface. It includes the triangle mesh viewer,
interface input/output console, Results images viewer and the XML source file
viewer.

10.1.2 Objects

Reservoir simulation is an important tool in modern-day reservoir management.
Calculation of accurate pressure and saturation distributions requires solution of
coupled partial differential equations. When the system of interest is a highly het-
erogeneous, anisotropic porous medium, accurate representation and simulation
requires the use of high performance computing. High performance computing
know-how and infrastructure are not easily available to independent producers,
who might benefit from the technology. One of the objectives of this project was
to make this technology accessible to independent operators through remore ac-
cess via the internet. The idea was to have the simulator reside in a remote site
(server) and provide the user with a client interface to interact with the server
and perform the calculations. Since the client-side computer requirements are
minimal, this approach would provide wider access to sophisticated computing.

Some of the considerations that went into planning this interface were:

• Robustness of the server-side simulator

• Ease of use on the client side

• Platform independence on the client side

• Speed of computing

• Quick and easy transfer of results to the client

10.1.3 Design

With the needs identified above, Java was chosen as the language of implementa-
tion. Platform independence and compatibility of client and server protocols were
the overriding factors in this decision. Use of Java meant that, as long as a Java
Running Environment (JRE) was installed on the client side, simulations could

126

be performed remotely. The interface was designed to be modular - there were
two layers in the implementation process; the server side interface and the client
side interface. The Java Socket was chosen as the data transfer channel. A full
set of communication protocol was defined for these two layers.

The server side interface directory should includes the following items:

• The server side interface Java classes for client side commands waiting, com-
mands accepting, commands sorting, detail job order submitting on local
server, job results detecting on local server and transferring back to the
client etc.

• The finite element meshing software packages for the meshing of reservoir
domain with its fractures, wells information, etc.

• The reservoir simulator.

The client side interface has the following functions:

1. There is one Java class to host the main frame which is written by Java
Swing. The title bar, file menu, tool bar and drawing canvas should be
listed in this frame.

2. One Java class is designed for reservoir drawing by Java 2D Graphics tech-
nique: closed domain boundary is in polygon mode; fractures is in 2D line
mode; injection wells is in circle mode; production well is in square mode.
End-user can use mouse functions like click and drag to draw rough reservoir
domain. For every action on the domain drawing, the relative coordinates
information will be recorded into the XML format data input file automat-
ically. Also, this class can handle a saved file instead of drawing from the
very beginning.

3. One Java class was planed for communicating with server to finish the reser-
voir mesh. This class was designed to pick up the current domain informa-
tion from the drawing canvas (basically the coordinates of all vertices such as
boundaries, fractures and wells) and send it to the server through Java Sock-
ets with its meshing order by specific protocol, then accepting the meshed
results from the server and transferring the meshed info into client frame. At
the same time, it will combine the mesh info with the reservoir description
file to form final simulation data input XML file automatically.

4. One Java class was used as the communicating with the server to complete
the final simulation. It was built to send the final simulation data input
XML file into the server with its simulating order, then wait and accept the
simulation results in real time. Furthermore, after accepting every image
file from the server, this class would call another class to display the image
result.

127

5. One Java class is required to display the results, either mesh results or final
simulation results.

6. One Java class was needed to generate another window as Java input/output
monitor. This is called the Java Input/Output Console.Using this class, end-
user can easily see what process the simulation status and error messages.
Also, this function was very helpful in debugging the code.

7. Multitrhreading implementation was necessary to run multiple jobs on the
server without having to wait for jobs to finish.

10.2 Interface Development

10.2.1 Work Flows

The basic simple work flow of the reservoir simulation interface developed is as
follows.

For a new reservoir domain:

1. Open the client side interface executive file (UFESSimulator.jar). The de-
fault domain information of the interface is to create a new reservoir domain.

2. Draw the closed domain boundaries first.

3. Draw the fractures, injection wells, production wells within the reservoir
domain boundaries.

4. Save all of the coordinates information mentioned above into “* ori.xml”
file. ’*’ is the file name. “ori” means original file which is not meshed yet.
XML is the file format.

5. Connect the client side interface with the server and send the domain infor-
mation mentioned above to the server for meshing

6. Receive the meshed information from the server and automatically generate
a final data input XML file as “* fin.xml” format. ”fin” represents “final”
which is distinguished from “ori”.

7. Use a file editor (OpenOffice or WordPad) find and open “* fin.xml” file
and make related modifications such as the wells informations, simulation
time etc. The details will be talked in later sections.

8. Connect the client interface with server, send the modified “* fin.xml” file
to the server and ask the server side simulator to run the simulation.

9. Interface server detects the simulation results in real time and send the
results back to clients.

128

10. Receive the simulation results from the server and display them on the client
side local machines (either by slide show or animation).

11. With a previously saved simulation domain, the only differences of simula-
tion work flow are items 2 and 3 from the new reservoir domain simulations.

12. On the second step: use “open” a saved “* ori.xml” file action instead of
“Draw the closed domain boundaries first”.

The user can make modifications to geometrical features. Well information,
etc. is modified by opening the xml input file and modifying it directly.

10.2.2 Features

All of the interface code is in Java. The codes is compiled and zipped into an
executable file by Java. The interface runs on JRE 5.0 and above under any op-
erating systems. This makes the interface accessible to users across all computing
platforms.

The data files in the interface and in the simulator are in XML format. XML
is a standardized markup language for documents containing structured informa-
tion. Structured information contains both content (words, pictures, etc.) and
some indication of what role that content plays. Almost all documents have some
structure. Reservoir simulation data files, include complicated data information
about boundaries, fractures, wells, simulation period, etc. and are highly struc-
tured documents. The XML specification defines a standard way to add markup
to documents. The client side interface centralized almost all of the reservoir sim-
ulation tools which include tools from drawing the domain to viewing simulation
results. By using the socket technique, a robust data communicating protocol has
been established between the server side interface and the client side interface.
Through specific port numbers, the server can identify the working orders from
the clients and run jobs in specified high performance computers. Also, the server
side interface has the capability of detecting and transferring the newest simula-
tion results. The source code is modularized, which makes it easy to maintain.
Other simulators can potentially be plugged into the interface.

10.3 Installation

10.3.1 Server

The server package includes at least four parts:

1. Java source codes and executable Java server side interface file: domServer.jar.

2. Domain mesh software package.

129

3. Finite Element reservoirs simulator and its image file generator.

4. Linux/Unix environment file.

System administrator needs to copy all of the components mentioned above
into one directory in the host machine which is under Linux/Unix environments.
Make sure the Sun JRE 5.0 and higher version have been installed on that machine
and the path has already been set.

Continue with the following steps:

1. Type “mpdboot -f mpdhost” in the command line to start mpd.

2. Type “java -jar domServer.jar &” in the Linux/Unix command line to start
server side interface layer. The server side interface layer should be kept
open to listen to the client request.

10.3.2 Client

The client side interface is mainly composed of two categories:

1. Java client side source code and executable Java client side interface file.

2. A template file for new domain generation.

End users need to copy the files mentioned above into one directory of the
local machine. Any operating system can be used. However, the Sun JRE 5.0
and higher versions are required at the local machine. The examples of how to
run client side reservoir simulation interface is described beow.

For Windows operating system, either find and double click the executable
jar file, UFESsimulator.jar or in the command window, locate directory and type
“java -jar UFESsimulator.jar &”. For Linux/Unix operating system, in the com-
mand window’s command line, type: “java -jar UFESsimulator.jar &”.

10.3.3 Environments Requirement

For Windows operating system end users, after the JRE installation, the following
steps can help the end user to set up the access path of JRE.

1. Click on the Start —– Control Panel —– System ——- Advanced ——
Environment Variables —— System variables:

2. Variable name: CLASSPATH

Variable value: “C:/Program Files/Java/jdk1.5.0 01/lib/tools.jar”

3. Variable name: JAVA HOME

Variable value: “C:/Program Files/Java/jdk1.5.0 01”

4. Variable name: path

Variable value: “C:/Program Files/Java/jdk1.5.0 01/bin”

130

10.4 Client Side Reservoir Domain Data Input

10.4.1 Start from a new domain

The examples shown in this chapter will be for the Windows XP operating sys-
tems. When end user opens the client side interface, the picture should be looks
like: 10.1

The upper left window is the main reservoir simulation client side interface
window. In this window, end user can start and finish the reservoir simulation.
The default simulation status is starting from a brand new domain.

The lower left window is the system input/output console window. In this
window, end user can monitor the input and output information for the entire
simulation process which includes the domain drawing information, data input
information, client/server connecting information, file and command data trans-
ferring information, and so on. This console panel is designed both for the end
users and the interface programmers. By monitoring the whole simulation pro-
cess, end users can monitor the status of the simulation while the programmers
can easily verify if information added is correct or not.

For the new reservoir domain simulation, drawing the reservoir domain which
includes the enclosed domain boundaries, main fracture coordinates, injection well
locations and production wells positions, comes first. Enclosed domain boundaries
should be drawn first. An example of how to draw a simple five-point enclosed
boundary is shown in Figure 10.2. The first point is marked as “0” and the fifth
point is “4”. The activity of drawing the domain is completed by double clicking.

Once the domain boundaries are drawn, the user can draw the main fractures,
injection wells and production wells. There is no specific order in which these
need to be drawn. Example is shown in Figure 10.3. In this reservoir simulation
interface, domain boundary is modeled by polygon, fracture is modeled by line,
injection well is represented by round circle and production well is shown by a
square. In the picture shown (10.3), two fractures and one injection and one
production well are drawn. In the lower/left input-output consoles, the absolute
coordinates of the points drawn appear. This is illustrated in Figure 10.4.

As an simple example, lets save the above reservoir domain information into
the “* ori.xml” format. From the “File” menu of the main reservoir simulator
interface, click “Save to * ori.xml” option, then input the full file name on the
“File Name” option of the popped up file chooser window. Here, the name “sim-
pleExample1 ori.xml” as the input reservoir domain file name was provided as the
“File Name” part of the popped up window. This is shown in Figure 10.5.

10.4.2 Start from an existing domain

If the user wants to start from an existing, saved file, this file can be opened by
starting with the “File” menu. An example of how to open the previously saved
“simpleExample” is shown in Figures 10.6 and 10.7. At this stage, new features

131

may be added, if desired. This modified file must be saved using tools described
previously and as shown in Figure 10.8. Based on the old file, a few fractures,
injection wells and production wells have been added to the reservoir domain and
saved as “simpleExample2 ori.xml”. This exercise basically shows the domain
modification capability of the program.

10.4.3 Reservoir domain coordinates modifications

The coorodiantes themselves can be modified by opening the file and modifying
them directly using the edior. This concept is shown in Figure 10.9. As shown
in the figure, for the domain file “simpleExample2 ori.xml”, there are 30 vertex
numbers and 12 line relations as follows:

#A face with 31 points in 2D
31 2 0 1
#Vertex
0 386.0 902.0 1
1 692.0 1052.0 1
2 1098.0 866.0 1
3 1150.0 424.0 1
4 428.0 294.0 1
5 598.0 864.0 2
6 874.0 606.0 2
7 818.0 760.0 2
8 574.0 710.0 2
9 466.0 838.0 3
10 852.0 700.0 4
11 514.0 380.0 4
12 468.0 488.0 2
13 624.0 398.0 2
14 580.0 492.0 3
15 960.8166666666666 477.18333333333334 3
16 1005.0333333333333 511.925 3
17 1011.3499999999999 467.70833333333337 3
18 840.8 924.0875 4
19 779.2125 903.5583333333333 4
20 821.85 879.8708333333333 4
21 750.7875 597.2 2
22 798.1625 431.38750000000005 2
23 806.0583333333333 538.7708333333334 2
24 741.3125 469.2875 2
25 788.6875 551.4041666666667 2
26 719.2041666666667 537.1916666666667 2
27 1001.875 693.5291666666667 2
28 1098.2041666666667 622.4666666666667 2

132

29 1095.0458333333333 723.5333333333333 2
30 986.0833333333333 584.5666666666667 2
of segments, each with a boundary marker
13 1
0 0 1 1
1 1 2 1
2 2 3 1
3 3 4 1
4 4 0 1
5 5 6 2
6 7 8 2
7 12 13 2
8 21 22 2
9 23 24 2
10 25 26 2
11 27 28 2
12 29 30 2
If the user wants to change the locations of the domain boundaries, fractures,

injection wells or production wells, the only part that needs to be changed is in
the #vertex section which contains the coordinates.

Example: The following modifications are proposed in the reservoir domain
file “simpleExample2 ori.xml”

1. Add a new node between node 3 and node 4, the new node located at (818.0,
254.0).

2. Move production well at node 19 from current location to the new location
at (1093.1, 679.9).

3. Move injection well at node 15 from current location to (621.0, 783.0)

4. Delete fracture 29 — 30

5. Save the modified file as the name of “simpleExample3 ori.xml”

Remembering that there are four different node (vertex) types (shown in the
4th column in the vertex section) being defined in the domain file:

1. Type 1 — domain boundaries

2. Type 2 — fractures

3. Type 3 — injection wells

4. Type 4 — production wells

Step-by-step description of how to achieve the proposed changes.

133

1. Initially, there are 31 (from 0 to 30) nodes in total. If one new node is
added, the total vertex number should be 32 instead of 31 and the new
vertex number should be 31, so, a line “31 818.0 254.0 1” should be added
to the “#vertex” section. Then, in the section of “# of segments, each with
a boundary marker”, three changes are required.

(a) Change “13 1” to “14 1”

(b) Change line “3 3 4 1” into “3 3 31 1”.

(c) Add a new line of “13 31 4 1” at the end

2. In the “#vertex” section, modify “19 779.2125 903.5583333333333 4” to “19
1093.1 679.9 4”.

3. In the “#vertex” section, modify “15 960.8166666666666 477.18333333333334
3” into “15 621.0 783.0 3”.

4. In the “#vertex” section, delete the line of “29 1095.0458333333333 723.5333333333333
2” and “30 986.0833333333333 584.5666666666667 2”.

Then the total nodes should be 30 and change the vertex number 31 into 29
in all other places

In the section of “# of segments, each with a boundary marker”, make three
changes:

(a) Change “14 1” to “13 1”

(b) Delete line “12 29 30 2”

(c) Change line “13 29 4 1” into “12 29 4 1”

5. Save the modified file as the name of “simpleExample3 ori.xml”, then the
file is saved.

All the required modifications have been accomplished - the new table should
like the one shown below.

#A face with 31 points in 2D
30 2 0 1
#Vertex
0 386.0 902.0 1
1 692.0 1052.0 1
2 1098.0 866.0 1
3 1150.0 424.0 1
4 428.0 294.0 1
5 598.0 864.0 2
6 874.0 606.0 2
7 818.0 760.0 2

134

8 574.0 710.0 2
9 466.0 838.0 3
10 852.0 700.0 4
11 514.0 380.0 4
12 468.0 488.0 2
13 624.0 398.0 2
14 580.0 492.0 3
15 621.0 783.0 3
16 1005.0333333333333 511.925 3
17 1011.3499999999999 467.70833333333337 3
18 840.8 924.0875 4
19 1093.1 679.9 4
20 821.85 879.8708333333333 4
21 750.7875 597.2 2
22 798.1625 431.38750000000005 2
23 806.0583333333333 538.7708333333334 2
24 741.3125 469.2875 2
25 788.6875 551.4041666666667 2
26 719.2041666666667 537.1916666666667 2
27 1001.875 693.5291666666667 2
28 1098.2041666666667 622.4666666666667 2
29 818.0 254.0 1
of segments, each with a boundary marker
13 1
0 0 1 1
1 1 2 1
2 2 3 1
3 3 29 1
4 4 0 1
5 5 6 2
6 7 8 2
7 12 13 2
8 21 22 2
9 23 24 2
10 25 26 2
11 27 28 2
12 29 4 1
With these modifications, the domain should look like the one shown in Figure

10.10.

10.5 XML Input File

As the data input file in the reservoir simulation interface, XML format file in-
cludes several tags to markup the different functions. As mentioned in front

135

sections, there are two XML format files in total: “* ori.xml” is used for domain
generation and as the input file to be meshed by server; “* fin.xml” will be auto-
matically generated after the “* ori.xml” is successfully meshed, and “* fin.xml”
is the final simulation data input file. The only different sections between these
two files is the last part of the file: “* ori.xml” is the rough domain information
and “* fin.xml” is the fine meshed file.

10.5.1 “* ori.xml” file (rough domain file)

Since XML file is a markup language, there are a number of tags in this file. The
basic structure is shown and explained as follows (the explanation is after the
“—” sign).

<?xml version="1.0"?> --- Required line, no modification necessary

<simulation name="test"> --- The simulation section start.

<domain name = "zero"> --- The domain section start.

<permeability> --- The permeability section start.

--- The content of permeability, i.e.: 0 50 0 100

</permeability> --- The permeability section end.

<porosity> --- The porosity section start.

--- The content of porosity, i.e.: 0 0.1

</porosity> --- The end of porosity section.

<Sw> --- The solubility of water section start.

--- The content of water solubility. i.e.: 0 0.22

</Sw> --- The solubility of water section end.

<Po> --- The oil pressure section start.

--- The content of oil pressure. i.e.: 0 1000

</Po> --- The oil pressure section end.

<fluid-type> --- The fluid-type section start.

--- The content of fluid-type. i.e.: 0 PVT-10

</fluid-type> --- The end of fluid-type section.

<rock-type> --- The start of rock-type section.

--- The content of rock-type.

</rock-type> --- The end of rock-type section.

136

<fluid-table name = "PVT-10"> --- The start of fluid-table section.

<oil-density unit="API"> --- Start of oil-density section.

--- Contents of oil-density. i.e.: 30

</oil-density> --- End of oil-density section.

<water-density unit="density"> --- Start of water-density section.

--- Contents of water-density. i.e.: 63

</water-density>

<oil type = "function"> --- start of oil section.

--- Contents of oil. i.e.: 14.7 1 1.e-5 1.0 0.0

</oil> --- end of oil section.

<water type = "function"> --- start of water section.

--- Contents of water. i.e.: 14.7 1 1.e-7 1.0 0.0

</water> --- end of water section

</fluid-table> --- end of fluid-table section.

<rock-table name = "kr-10"> --- start of rock-table section.

<oil-water> --- start of oil-water section.

--- Contents of oil-water. i.e.:

0.22 0.00 1.0000 7.0

0.30 0.07 0.4000 4.0

0.40 0.15 0.1250 3.0

0.50 0.24 0.0649 2.5

0.60 0.33 0.0048 2.0

0.80 0.65 0.0000 1.0

</oil-water> --- end of oil-water section

<rock> --- Start of rock section.

--- Contents of rock. i.e.: 14.7 0

</rock> --- End of rock section.

</rock-table> --- End of rock-table section.

<well name = "I1" fluid = "PVT-10"> --- Start of well section. ‘‘I1’’ means it is the first injection well. ‘‘I2’’ means it is the second injection well, and so on. ‘‘P1’’ means that it is the first production well and ‘‘P2’’ means the second production well, and so on.

<tube> --- Start of tube section.

--- Contents of well. i.e.: 0 49 49

<!-- the vertex number of current injector well -->

137

</tube> --- End of tube section.

<diameter unit="in">---Start of well diameter section.

--- Contents of well diameter. i.e.: 0 3

</diameter> --- End of well diameter section

</well> --- End of well section

<event time = "0"> --- Initialization of the simulation.

<well name="I1"> --- start of first injection well initialization.

--- contents of the first injection well status.

--- i.e.: open injection bhp 1100 0

</well> --- End of the first injection well.

<well name="P1"> --- start of first production well initialization.

--- contents of first production well status.

--- i.e.: open production bhp 800 0

</well>

<boundary> --- start of domain boundaries initialization section.

--- contents of the boundaries initialization.

--- i.e.: 0 NoFlow

</boundary> --- end of domain boundaries initialization section.

</event> --- End of the initialization of the simulation.

<event time = "10"> --- start of the specified time data output.

<vtk file="10.vtk"> --- require to output format.

SW

</vtk>

</event> --- end of the output section on specified date.

<poly> --- Start of rough domain shape information section.

--- contents of the domain rough information. There are four sub sections in this part, details will be explained later.

</poly> --- End of the rough domain shape information section.

</domain> --- End of the domain section from the very beginning.

</simulation> --- End of the simulation input file (*_ori.xml).

138

The rough domain shape section in the above paragraphs are made of four
sub-sections. Here, as an example, the ¡poly¿ section in the file of “simpleExam-
ple1 ori.xml” has been extracted and shown.

<poly>

simpleExample1_ori.xml --- Name of the rough domain.

#A face with 15 points in 2D --- There are 15 nodes in the whole domain.

15 2 0 1 --- <numbers of vertexes> <dimension, must be 2 here>

--- <number of attributes> <boundary marker (0 or 1),0 means no, 1 means yes>

#Vertex --- <vertex number> <x> <y> <vertex marker>

0 386.0 902.0 1 ---(386.0, 902.0)is a boundary vertex

1 692.0 1052.0 1

2 1098.0 866.0 1

3 1150.0 424.0 1

4 428.0 294.0 1

5 598.0 864.0 2 --- (598.0,864.0) is a fracture vertex

6 874.0 606.0 2

7 818.0 760.0 2

8 574.0 710.0 2

9 466.0 838.0 3 --- (466.0,838.0) is a injection well

10 852.0 700.0 4

11 514.0 380.0 4 --- (514.0,380.0) is a production well

12 468.0 488.0 2

13 624.0 398.0 2

14 580.0 492.0 3 --- vertex 14 is a injection well to

of segments, each with a boundary marker

8 1 --- <number of line relations> <boundary marker (0 or 1)>

--- <line relation number> <start point> <end point> <relation marker>

0 0 1 1 --- first domain boundary segment is from vertex ‘‘0’’ to ‘‘1’’

1 1 2 1

2 2 3 1

3 3 4 1

4 4 0 1

5 5 6 2 --- vertex is a fracture segment

6 7 8 2

7 12 13 2

hole section --- <number of holes>

0 --- no holes (if it is not 0, the following line should be

--- <hole number> <x> <y>

139

region section --- optional line

</poly>

The relative snapshot of the file “simpleExample1 ori.xml” is shown as Figure
10.11.

Generally, the ¡poly¿ section will be generated by the interface drawing canvas
automatically. Care must be exercised in modifying this section.

10.5.2 CVFE Simulation XML input file (“* fin.xml” file)

The only differences between the “* ori.xml” file (rough domain file) and “* fin.xml”
file (final simulation data input file) are the last section of the XML file. In the
“* ori.xml” file, the last section is the ¡poly¿ section, the details have already
been discussed in the first part of this section. The file “simpleExample1 fin.xml”
generated after sending the domain through the mesher is shown as an example
(Figure: 10.12)

Differences between “simpleExample1 ori.xml” and “simpleExample1 fin.xml”
are discussed below.

<vertex> --- start of vertex section

0 386.0 902.0 0

1 692.0 1052.0 0

...

707 720.9604192083833 599.305693897363 0

708 625.6670927916116 993.1597965224233 0

</vertex> --- end of vertex section

<element> --- start of triangle element section

0 596 597 203

1 543 545 19

...

1323 496 708 122 --- the 1323th triangle element is made by vertex numbers 496, 708 and 122.

1324 103 708 691

</element> --- end of triangle element section

<boundary> --- this is just for the fracture segments

140

0 474 97

1 48 390

...

27 546 201 --- the 27th fracture segment is from vertex 546 to 201

28 550 42

</boundary>

The user can modify property and well information, if desired.

10.6 Operations

10.6.1 Write property informations into the XML file

The reservoir property section is located in the front of the XML file. It includes
the following information.

1.permeability --- <permeability>

2.porosity --- <porosity

3.water solubility --- <Sw>

4.fluid-type --- <fluid-type>

5.rock-type --- <rock-type>

6.fluid-table --- <fluid-table>

(1) <oil-density>

(2) <water-density>

(3) <oil function>

(4) <water function>

7.rock-table --- <rock-table>

(1) <oil-water>

(2) <rock>

8.well information <<well name = "*" fluid = "*">

(1) <tube> (the vertex number of well)

(2) <diameter>

9.reservoir initialization <event time = "0">

(1) <well name="*"> (open/close, type(injection/production), control methods (bhp for example), pressure)

(2) <boundary> (domain boundary properties)

10.output scenarios <event time =)

A default property section is automatically attached and the user can modify
these properties. However, for well informations, reservoir initialization, and out-

141

put scenarios sections, additional modifications are required. An example of how
to do this is shown below (Figure 10.13:

The picture shows that vertex numbers 9 and 14 are injection wells, vertex
numbers 10 and 11 represent the production wells. Alternatiely, in the file of
“simpleExample1 ori.xml”, the well information can be accessed.

<well name = "I1" fluid = "PVT-10">

<tube>

0 9 9

<diameter unit="in">

0 3

</diameter>

</well>

<well name = "I2" fluid = "PVT-10">

<tube>

0 14 14

<diameter unit="in">

0 3

</diameter>

</well>

<well name = "P1" fluid = "PVT-10">

<tube>

0 10 10

<diameter unit="in">

0 3

</diameter>

</well>

<well name = "P2" fluid = "PVT-10">

<tube>

0 11 11

<diameter unit="in">

0 3

</diameter>

</well>

In the reservoir initialization section, the input should includes all of the wells
and domain boundary information.

142

<event time = "0">

<well name="I1">

open injection bhp 1100 0

</well>

<well name="I2">

open injection bhp 1100 0

</well>

<well name="P1">

open production bhp 800 0

</well>

<well name="P2">

open production bhp 800 0

</well>

<boundary>

0 NoFlow

</boundary>

</event>

The times for visualization of saturation data can also be controlled.

<event time = "10">

<vtk file="10.vtk">

SW

</vtk>

</event>

<event time = "20">

<vtk file="20.vtk">

SW

</vtk>

</event>

<event time = "30">

<vtk file="30.vtk">

SW

</vtk>

143

</event>

<event time = "40">

<vtk file="40.vtk">

SW

</vtk>

</event>

<event time = "50">

<vtk file="50.vtk">

SW

</vtk>

</event>

...

...

<event time = "580">

<vtk file="580.vtk">

SW

</vtk>

</event>

Instead of the interface drawing canvas, from the ¡poly¿ section of the “* ori.xml”
file, user can also get the vertex numbers of the injection wells and the production
wells. This is done by looking for index types 3 and 4.

<poly>

#simpleExample1_ori.xml

#A face with 15 points in 2D

15 2 0 1

#Vertex

0 386.0 902.0 1

1 692.0 1052.0 1

2 1098.0 866.0 1

3 1150.0 424.0 1

4 428.0 294.0 1

5 598.0 864.0 2

6 874.0 606.0 2

7 818.0 760.0 2

8 574.0 710.0 2

9 466.0 838.0 3

10 852.0 700.0 4

144

11 514.0 380.0 4

12 468.0 488.0 2

13 624.0 398.0 2

14 580.0 492.0 3

10.6.2 Mesh the rough domain with reservoir features

Once the reservoir properties are adjusted, the domain needs to be meshed again
and submitted to the server. Here, “simpleExample1 ori.xml” will be used as an
example (10.14).

From the menu bar find “Mesh” and click on its submenu button “Connect to
the Mesh Server and Mesh the current domain”.

After this action, the interface will send the reservoir domain coordinates to
the remote server to discretize the domain. The mesh result will be transferred
back to the client side interface simultaneously. The meshed domain is drawn
in a separate window, as shown in 10.15. The lower left window in 10.15 is the
data input/output console window. All of the actions for above process have been
monitored and recorded by this function.

10.6.3 Simulate the fine domain

Once the mesh is created, a new file “simpleExample1 fin.xml” was generated
automatically. As the final simulation input data file, all of the mesh elements
information and the reservoir properties are included in this file. The user may
modify this file based on the instructions previously provided.

The simulation is begun by using the Calculate button on the menu bar. Refer
to 10.16.The snapshot 10.16 is made in the middle of the simulation (110 days of
simulation). The simulation results are transferred to the end user’s local machine
right after they have been generated. The process is monitored in the lower left
window. Animation of the simualtion is shown in the upper right window.

After 580 days of simulation (it takes the server a couple of minutes), the final
results of the simulation are displayed on a desktop snapshot 10.17. The blue
color represents the water, while the redd color represents the oil phase. Water
channels through the fractures as it arrives at the production wells, as shown.

10.7 Ancillary Programs

In this reservoir simulation interface package, some ancillary programs are pro-
vided. All of them are written by using independent Java class. During the
processes such as domain generating, meshing, simulating, some of these func-
tions are called by the interface automatically, some aren’t. They can always
open these programs anytime.

145

10.7.1 Triangle Mesh Viewer

This program is designed for the purpose of triangle mesh elements viewing. The
name of “Triangle Mesh Shower V1.0” is given to this program. This window
will be opened right after the domain action. This is mostly used for the cases
where the domain is repeatedly modified and meshed. If end user closed the last
mesh map accidentally, he/she can retrieve it by clicking the sub menu ofthe Mesh
menu bar. The meshed results should be looks like the Figure 10.18: The image
can be saved as a JPEG file by clicking on the left panel.

10.7.2 Results Images Viewer

User can either view the simulation results dynamically by using the animation
window or by using this “Result Images Viewer”. This is a picture view program
in order to watch the result image separately. This function is located at the
sub menu button of the Simulation results under the Calculation menu bar. The
snapshot 10.19 shows three result pictures at days 10, 200 and 500 in the example
simulation. Since they are opened in separate windows, user can compare them
easily.

10.7.3 XML Source File Viewer

This program was written to view the XML input file. In the middle of the
simulation, if the end user wanted to view the input XML data file, the file editors
provided by the system or this program could be used. This is a read only file
editor, and cannot be used to modify or edit the input XML file. For this reason,
this is only for quick viewing of the input file and serves as a backup to other
system editors. The program can be easily located as shown in Figure 10.20:

10.7.4 Interface Input/Output Console

The purpose of this conole is to serve as a monitor for this client-server mode reser-
voir simulation interface. By using this program, the user and the programmer
can check the status of the simulation. All of the input/output actions between
the user and the interface, the client interface and the server, are displayed by
this control console. Since the whole interface package is based and executed on
the Java Running Machine, if there is something wrong in the compiler, the error
information is also displayed in this window. Furthermore, some pre-qualification
conditions were built into the original Java code, so that, if, the user’s input file
had mistakes or didn’t follow the right processes, system will provide the coded er-
ror information to the end user through this console. Example is shown in Figure
10.21.

There are two buttons located on the bottom of the input/output console;
“Clear” button can remove all of the informations from current monitor window,

146

Figure 10.1: Open the Client Side Interface.

while the “Close” button works the same as upper right corner cross sign, for the
console window to shut down.

147

Figure 10.2: Draw a simple domain first.

148

Figure 10.3: Draw fractures, injection wells and production wells.

149

Figure 10.4: Draw additional fractures, injection wells and production wells.

150

Figure 10.5: Save the reservoir domain information.

10.7.5 Some Defintions

Server: The high performance computing resource which is used for accepting work
orders from end user (client) to complete computing jobs. In this work, server
package is includes the executable Java server side interface class, triangle mesh
software package and the finite element simulators. The whole server package is
included in one directory located on the specified Linux/Unix machines.

Client: The end user. In this work, client package is composed by a series of
Java classes source code and its executable file which is located on end user’s local
machines.

Java: A web based objective oriented computer language developed by Sun
Inc. This computer language is running under Java Running Environments (JRE)
instead of directly under the operating systems. In this reservoir simulator inter-
face work, all of the computer code was written by Java language.

XML: A markup language for documents containing structured informations.
In this reservoir simulator work, all of the data is default saved as XML format.

Java Socket: A network Input/Output communicating technique in Java.
From the standpoint of clients: programs that open a socket to a server that’s lis-
tening for connections. However, client sockets themselves aren’t enough; clients

151

Figure 10.6: Open a save the reservoir domain.

152

Figure 10.7: The opened reservoir domain.

153

Figure 10.8: The modified reservoir domain.

154

Figure 10.9: The * ori.xml file.

155

Figure 10.10: The modified * ori.xml file.

156

Figure 10.11: The snapshot of “simpleExample1 ori.xml”.

157

Figure 10.12: The snapshot of meshed “simpleExample1 ori.xml”.

158

Figure 10.13: The snapshot of “simpleExample1 ori.xml”.

159

Figure 10.14: The snapshot of “simpleExample1 ori.xml” with its editor.

160

Figure 10.15: The snapshot of meshed “simpleExample1 ori.xml” with its editor.

161

Figure 10.16: The middle snapshot of meshed “simpleExample1 ori.xml” simula-
tion (110days).

162

Figure 10.17: The final snapshot of meshed “simpleExample1 ori.xml” simulation
(580days).

163

Figure 10.18: Triangle Mesh Shower V1.0.

164

Figure 10.19: Result Images Viewer V1.0.

165

Figure 10.20: XML Source File Viewer V1.0.

166

Figure 10.21: Interface Input/Output Console V1.0.

167

aren’t much use unless they can talk to a server. There should be a server side
socket opened to host the client socket by the same port number specified in both
sockets. Here in this interface package, the server side socket is kept opened all
the time listen for the client socket requesting. The client side socket will only be
opened while end user want to submit jobs on the server through specified socket
communicating protocol.

Java Swing: A graphic user interface (GUI) toolkit of Java. The main reservoir
simulator interface frame is written by Java Swing such as all the panels, buttons,
text fields, and so on.

Java 2-D Graphics: A two-dimensional graphic drawing toolkit of Java. In the
current reservoir simulator interface, the reservoir domain drawing canvas was
written by this technique. The closed reservoir domain is drawn by its polygons
shape, fractures by its line shape, injection wells by its round shape and the
production well by its square shape.

Java Threads: A very important topic for Java programming. For the current
reservoir simulator interface developing, threads concepts are hired for the end
user to run separate tasks at the same time within the same interface.

168

Bibliography

[1] Khalid Aziz and Antonin Settari, Petroleum Reservoir Simulation, Elsevier
Applied Science Publishers, New York, NY, 1979.

[2] Jacob Bear, Dynamics of Fluids in Porous Media, Dover Publications, Inc.,
Mineola, New York, 1972.

[3] Peter H. Sammon, “An analysis of upstream differencing,” SPE Reservoir

Eng., vol. 3, no. 3, pp. 1053–1056, 1988.

[4] Peter S. Huyakorn and George F. Pinder, Computational Methods in Sub-

surface Flow, Academic Press, Inc., London, England, 1983.

[5] Peter A. Forsyth, “Control-volume, finite-element method for local mesh
refinement in thermal reservoir simulation,” SPE Reservoir Eng., vol. 5, no.
4, pp. 561–566, 1990.

[6] Iraj Javandel and P. A. Witherspoon, “Application of the finite element
method to transient flow in porous media,” Soc. Petrol. Eng. J., vol. 8, pp.
241–251, 1968.

[7] C. L. McMichael and G. W. Thomas, “Reservoir Simulation by Galerkin’s
Method,” in 46th SPE-AIME Annual Fall Meeting, New Orleans, October
1971.

[8] Øyvind Langsrud, “Simulation of two-phase flow by finite element methods,”
in Proceedings of Fourth Symposium of Numerical Simulation of Reservoir

Performance of the Society of Petroleum Engineers of AIME, Los Angeles,
CA, 1976.

[9] Vilgeir Dalen, “Simplified finite-element models for reservoir flow problems,”
Soc. Petrol. Eng. J., vol. 19, no. 5, pp. 333–343, 1979.

[10] M. Karimi-Fard and Abbas Firoozabadi, “Numerical simulation of water
injection in 2d fractured media using discrete-fracture model,” in Proceedings

of the 2001 SPE Annual Technical Conference and Exhibition, New Orleans,
LA, 2001.

169

[11] Jong Gyun Kim, Advanced Techniques for Oil Reservoir Simulation: Discrete

Fracture Model and Parallel Implementation, Ph.D. thesis, University of
Utah, Salt Lake City, UT, 1999.

[12] Jong Gyun Kim and Milind D. Deo, “Comparison of the performance of a
discrete fracture multiphase model with those using conventional methods,”
in Proceedings of the 1999 SPE Reservoir Simulation Symposium, Houston,
TX, 1999.

[13] Jong Gyun Kim and Milind D. Deo, “Finite element, discrete-fracture model
for multiphase flow in porous media,” AIChE J., vol. 46, no. 6, pp. 1120–1130,
2000.

[14] Luiz C. N. Amado and Oswaldo A. Pedrosa Jr., “A finite volume approach
with triangular grids in reservoir simulation,” SPE Advanced Technology

Series, vol. 2, no. 1, pp. 179–185, 1994.

[15] Robert Eymard and Fernand Sonier, “Mathematical and numerical proper-
ties of control-volume, finite-element scheme for reservoir simulation,” SPE

Reservoir Eng., pp. 283–289, 1994.

[16] Peter A. Forsyth, “A control volume finite element approach to NAPL
groundwater contamination,” SIAM J. Sci. Stat. Comput., vol. 12, no. 5,
pp. 1029–1057, 1991.

[17] Larry S. K. Fung, Lloyd Buchanan, and Ravi Sharma, “Hybrid-cvfe method
for flexible-grid reservoir simulation,” SPE Reservoir Eng., pp. 188–194,
1994.

[18] Larry S. K. Fung, A. D. Hlebert, and Long X. Nghiem, “Reservoir simulation
with a control-volume finite-element method,” SPE Reservoir Eng., pp. 349–
357, 1992.

[19] C. Prakash, “Examination of the upwind (donor-cell) formulation in control
volume finite-element methods for fluid flow and heat transfer,” Numer. Heat

Transf., vol. 11, pp. 401–416, 1987.

[20] Rainer Helmig and Ralf Huber, “Node-centered finite volume discretizations
for the numerical simulation of multiphase flow in heterogeneous porous me-
dia,” Computat. Geosci., vol. 4, pp. 141–164, 2000.

[21] Randolph E. Bank and Donald J. Rose, “Some error estimates for the box
method,” SIAM J. Numer. Anal., vol. 24, pp. 777–787, 1987.

[22] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, “Discretization on
unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion
and numerical results,” SIAM J. Sci. Comput., vol. 19, no. 5, pp. 1717–1736,
1998.

170

[23] Yi-Kun Yang, Finite-Element Multiphase Flow Simulation, Ph.D. thesis,
University of Utah, Salt Lake City, UT, 2003.

[24] P. A. Raviart and J. M. Thomas, “A mixed finite element method for 2nd or-
der elliptic problems,” in Mathematical Aspects of the Finite Element Method,

Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin, 1977.

[25] B. L. Darlow, R. E. Ewing, and M. F. Wheeler, “Mixed Finite Element
Method for Miscible Displacement Problems in Porous Media,” Soc. Petrol.

Eng. J., pp. 391–398, August 1984.

[26] G. Chavent, G. Cohen, J. Jaffre, M. Dupuy, and I Ribera, “Simulation
of Two-Dimensional Waterflooding By Using Mixed Finite Elements,” Soc.

Petrol. Eng. J., pp. 382–390, 1984.

[27] L. J. Durlofsky and M. C. H. Chien, “Development of a Mixed Finite-
Element-Based Compositional Reservoir Simulator,” in Proceedings of the

1993 SPE Symposium on Reservoir Simulation, 1993.

[28] Todd Arbogast, Mary F. Wheeler, and Ivan Yotov, “Mixed Finite Elements
for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differ-
ences,” SIAM J. Sci. Comput., vol. 34, no. 2, pp. 828–852, April 1997.

[29] Theodor D. van Golf-Racht, Fundamentals of Fractured Reservoir Engineer-

ing, Elsevier Scientific Publishing Company, New York, NY, 1982.

[30] Roberto Aguilera, Naturally Fractured Reservoirs, PennWell Publishing
Company, Tulsa, OK, 2nd edition, 1995.

[31] Norman J. Hyne, Nontechnical Guide to Petroleum Geology, Exploration,

Drilling, and Production, PennWell Corporation, Tulsa, Oklahoma, 2001.

[32] W.F. Ramirez, Application of Optimal Control Theory to Enhanced Oil Re-

covery, Elsevier Science, Amsterdam, The Netherlands, 1987.

[33] L.S. Pontryagin, R.V. Boltyanskii, R.V. Gamkrelidze, and E.F. Mischenko,
The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

[34] W.F. Ramirez, Z. Fathi, and J.L. Cagnol, “Optimal Injection Policies for
Enhanced Oil Recovery: Part 1 - Theory and Computational Strategies,”
SPE Journal, pp. 328–332, June 1984.

[35] Z. Fathi and W.F. Ramirez, “Optimal Injection Policies for Enhanced Oil
Recovery: Part 2 - Surfactant Flooding,” SPE Journal, pp. 333–341, June
1984.

[36] W. Liu, W.F. Ramirez, and Y.F. Qi, “Optimal Control of Steamflooding,”
SPE Advanced Technology Series, vol. 1(2), no. 2, pp. 73–82, 1993.

171

[37] G. Mehos and W.F. Ramirez, “Use of Optimal Control Theory to Opti-
mize Carbon Dioxide Miscible-Flooding Enhanced Oil Recovery,” Journal of

Petroleum Science and Engineering, vol. 2, pp. 247–260, 1989.

[38] B. Sudaryanto and Y.C. Yorstos, “Optimization of Fluid Front Dynamics
in Porous Media Using Rate Control. I. Equal Mobility Fluids,” Physics of

Fluids, vol. 12(7), no. 7, pp. 1656–1670, 2000.

[39] D.R. Brouwer and J.D. Jansen, “Dynamic Optimization of Water Flooding
with Smart Wells using Optimal Control Theory,” in Proceedings of the SPE

European Petroleum Conference, Aberdeen, UK, October 2002.

[40] R.E. Bellman, Dynamic Programming, Princeton University Press, Prince-
ton, NJ, 1957.

[41] R.E. Bellman and S.E. Dreyfus, Applied Dynamic Programming, Princeton
University Press, Princeton, NJ, 1962.

[42] D. Murray, Differential Dynamic Programming for the efficient solution of

optimal control problems, Ph.D. thesis, University of Arizona, 1978.

[43] D.M. Murray and S.J. Yakowitz, “Constrained Differential Dynamic Pro-
gramming and its Application to Multireservoir Control,” Water Resour.

Res., vol. 15(5), no. 5, pp. 1017–1027, 1979.

[44] D.M. Murray and S.J. Yakowitz, “Differential Dynamic Programming and
Newton’s Method for Discrete Optimal Control,” J. Optim. Theory Appl.,
vol. 43(3), no. 3, pp. 395–414, 1984.

[45] J.F.A. De O. Pantoja, “Differential Dynamic Programming and Newton’s
Method,” Int. J. Control, vol. 47(5), no. 5, pp. 1539–1553, 1988.

[46] D.H. Jacobson and D.Q. Mayne, Differential Dynamic Programming, Amer-
ican Elsevier, New York, NY, 1970.

[47] S. Yakowitz and B. Rutherford, “Computational Aspects of Discrete-Time
Optimal Control,” Appl. Math. Comp., vol. 15, pp. 29–45, 1984.

[48] L.-C. Chang, C.A. Shoemaker, and P.L.-F. Liu, “Optimal Time-Varying
Pumping Rates for Groundwater Remediation: Application of a Constrained
Optimal Control Algorithm,” Water Resour. Res., vol. 28(12), no. 12, pp.
3157–3173, 1992.

[49] L-C. Chang, Application of Constrained Optimal Control Algorithms to

Groundwater Remediation, Ph.D. thesis, Cornell University, 1990.

[50] T.F. Edgar, D.M. Himmelblau, and L.S. Lasdon, Optimization of Chemical

Processes, McGraw-Hill, New York, NY, 2001.

172

[51] M.T. Heath, Scientific Computing: An Introductory Survey, McGraw-Hill,
New York, NY, 1997.

[52] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, New York, NY, 1981.

[53] J. Nocedal and S.J. Wright, Numerical Optimization, Springer-Verlag, New
York, NY, 1999.

[54] B. Yeten, L.J. Durlofsky, and K. Aziz, “Optimization of Smart Well Control,”
in Proceedings of the SPE International Thermal Operations and Heavy Oil

Symposium and International Horizontal Well Technology Conference, Cal-
gary, Canada, November 2002.

[55] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations, SIAM, Philadelphia, PA, 1983.

[56] N. Nishikiori, R.A. Redner, D.R. Doty, and Z. Schmidt, “An Improved
Method for Gas Lift Allocation Optimization,” in Proceedings of the SPE

Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Oc-
tober 1989.

[57] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 1984.

[58] K. Dutta-Roy and J. Kattapuram, “A New Approach to Gas Lift Alloca-
tion Optimization,” in Proceedings of SPE Western Regional Meeting, Long
Beach, California, USA, June 1997.

[59] Y-K. Yang, Finite-Element Multiphase Flow Simulation, Ph.D. thesis, Uni-
versity of Utah, 2003.

[60] J. Nocedal, “Updating Quasi-Newton Matrices with Limited Storage,” Math-

ematics of Computation, vol. 35(151), no. 151, pp. 773–782, 1980.

[61] S.Benson and J.J. Moré, “A Limited Memory Variable Metric Method in
Subspaces and Bound Constrained Optimization Problems,” Technical Re-
port ANL/MCS-P909-0901, Argonne National Laboratory, 2001.

[62] S.Benson, L.C. McInnes, and J.J. Moré, “TAO Users Manual,” MCS Divi-
sion Technical Report ANL/MCS-TM-242 - Revision 1.3, Argonne National
Laboratory, March 2002.

[63] L.A. Saputelli, S. Mochizuki, L. Hutchins, R. Cramer, M.B. Anderson, J.B.
Mueller, A. Escorcia, A.L. Harms, C.D. Sisk, S. Pennebaker, J.T. Han,
A. Brown, C.S. Kabir, R.D. Reese, G.J. Nú nez, K.M. Landgren, C.J. Mckie,
and C. Airlie, “Promoting Real-Time Optimization of Hydrocarbon Pro-
ducing Systems,” in Proceedings of the SPE Offshore Europe Conference,
Aberdeen, UK, September 2003.

173

[64] C.K. Strayhorn, “Manual for Discounting Oil and Gas Income,”
http://www.window.state.tx.us/taxinfo/proptax/ogman/index.html.

[65] C.D.F. Ridders, “Accurate Computation of F’(x) and f’(x)f”(x),” Adv. Eng.

Software, vol. 4(2), no. 2, pp. 75–76, 1982.

[66] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical

Recipes in C: The Art of Scientific Computing, Cambridge University Press,
New York, NY, 1992.

174

