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Executive Summary 
 

The Phase II Icarus CGSL project was initiated at July 1 2003. This 

report is summarizing the project activities and achievements of this 

project  

I. The modified work plan includes the following tasks.  

1. Capillary Plasma Channel Generation 
• Fabricate and test 1018 cm-3 ablative-wall capillary 
• Technical issues 5 axis (x-y-z) control , laser trigger 
• Characterize plasma density and profile; (interferometer) 
• Guiding experiments with T3 laser at low power  
2. Multi-stage Channel Guiding 
• Fabricate and test segmented capillaries 
• Characterize plasma of individual stages 
• Demonstrate multi-stage guiding using T3; comparison with TurboWAVE PIC 

simulations  
3. Guiding in Standard LWFA Regime 
• Incorporate TFL (Terawatt Femtosecond Laser) into target chamber beamline 
• Install optics for matched injection into channel (r0 ~ rM ~ 30 µm) 
• Demonstrate guiding at 1 TW, r0 ~rM, cτL ~ 0.5λp 
4   High Power Guiding and Acceleration 
• Test pump laser for 10 TW system 
• Set up 10 TW LWFA experimental beamline 
• Optical injection of MeV electrons into channel; optimization with 

TurboWAVE PIC simulations and CyberRay™. 
• Optimize injection timing using intercepting diagnostic for accelerated 

electrons (film, Čherenkov, magnetic spectrometer) 
• Demonstrate single stage standard LWFA guiding at high power (>5 TW, 1018 

cm-3, matched injection); optimize with  TurboWAVE PIC simulations 
• Measure spectrum of accelerated electrons from single-stage LWFA using 

magnetic spectrometer 
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The major tasks of the project were accomplished with significant success. During the 

project we have demonstrated control of several important parameters of capillary 

channels. We achieved the required profiles for guiding, we have demonstrated 

channels in density range between 1017-1019cm-3 in both short and long capillaries. 

The plasma temperature and density profiles were measured in both radial and 

longitudinal directions. The Boron Nitride capillary has provided a guiding medium 

that can withstand more than 1000 shots. The laser ignition of capillary discharge 

provided reliable almost jitter free approach. Both laser and experimental set up were 

upgraded. The laser system upgrade included development of a 10 TW Ti-sapphire 

laser facility that will be used for acceleration experiments instead T cube. We have 

conducted high intensity (above 1017W/cm2) guiding experiments through various 

capillaries. The concerns related to influence of relatively high current density flow 

through capillary on the injected electrons were studied extensively by us both 

theoretically and experimentally using a simple injection method. The method is 

based on the interaction of a high intensity laser pulse with a thin wire placed near 

capillary entrance. The influence of magnetic fields was found to be insignificant. 

Using this method we have studied transport of electrons though capillary discharge. 

We have simulated beam injection into a channel guided LWFA and found that under 

certain conditions the injected electron distribution can be very broad. Finally, prior to 

the staging of the capillary based accelerators, we performed a proof-of-principal 

experiment on staged optical injection and laser wakefield acceleration using two 

different short laser pulses focused into two spatially separated gas jets. The report 

includes the following sections: 

1. Fabricate and test 1018 cm-3 ablative-wall capillary 
2. Characterize plasma density and radial profile 
3. Capillary discharge experimental results: 

A. Boron nitride capillary discharge  
B. Low – current polyethylene capillary discharge  

4. Longitudinal profiles of plasma parameters in a laser-ignited capillary 

discharge and implications for laser wakefield accelerator applications 

5. Laser and experimental set up upgrade 

A. Laser system upgrade. 
B. Experimental system up-grade 

 
6. Guiding experiments 

7. Electron Propagation through capillary 
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a. Measurements of electron energy spectra 

b. Interpretation of electron energy spectra 

c. Transport of electrons through a capillary discharge 

d. Simulation of beam injection into a channel-guided lwfa 

8. Staged all-optical laser wakefield acceleration. 
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Report of  Phase II Research  
 

1. Fabricate and test 1018 cm-3 ablative-wall capillary  

Using laser trigger we have modified the capillary circuit –we have eliminated the 

need for electrical trigger- we have reduced the delay and jitter of the channel. 

There are initial indications that the achieved plasma profile is deeper (Depth of 

the channel), this feature will be of high importance for very high guided laser 

intensities .Moreover, we have eliminated the electrical interferences. The 

required plasma density conditions were found and achieved. 

 

2. Characterize plasma density and radial profile:  

The density and radial profile of the plasma channel were measured using 

spectroscopic and (not interferometric) techniques to analyze the plasma at the 

end of the capillary.  Using 20 nf capacitor , 35 ohm resistor and 10KV we were 

able to obtain 2-3 1018 cm-3 electron densities. The measurements were done using 

spectral lines emitted by Hydrogen and Carbon. The design was supported by 1-D 

MHD simulations of the capillary plasma. The density profile was measured (see 

below), and the optimal condition for guiding were found by guiding laser beam 

through capillary during various delay times and measuring the energy 
transmission. We have been able to transfer 75% through 3cm capillary.   

3. Capillary discharge experimental results: 

A. Boron nitride capillary discharge  

B. Low – current polyethylene capillary discharge  



 5 

+ 5-15 kV 5-50 nF 

Capillary Body 

Electrode 

Capillary Focusing Lens 

Ch1: Main laser pulse 
Ch2: Discharge current 
Time scale: 200 ns/div 

A.   BN capillary discharge 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.1. Experimental setup BN capillaries, d = 0.3 – 0.4 mm, l = 10 – 15 mm; C = 50 
nF, U = 4 – 20 kV, L ≈ 1 µH ; (Im = 500 – 2500 A, im = 4x106 – 3x107 A/cm2)., Laser 
ignition: 10-20mj, 10 ns, 1.064 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2. Temporal profile of the capillary discharge current (10 kV) 

Horizontal scale: 200 ns per large division Vertical scale: 500 A per division, BN 

capillary: d = 0.3 mm, l = 15 mm. 
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Fig. 3.3. Boron nitride capillary (10 mm long, 0.3 mm diameter). Delay of discharge 

breakdown vs incident laser intensity at different voltages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4 Plasma temperature and electron density at the axis of capillary vs discharge 
voltage at 400 ns delay from the beginning of discharge. BN capillaries, d= 0.3 mm, l 
= 15 mm. U = 12 -18 kV, T ≥ 8 – 10 eV (Observation of NV lines in XUV region) 
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Fig 3.5. Radial profile of electron density at delay 300 ns after the discharge start BN 
capillary, (10 kV), d = 0.35 mm, l = 15 mm, ICCD gate period- 20 ns. 
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Fig. 3,6 Simulation of capill. diam = 0.4 mm; density hole diam = 0.3 mm; density = 0.1 mg/cm3;     
N0 = 4.3 1018 cm-3;    v0 = - 1 km/s; the EOS is so that the ablation starts at ~5100 °C and 104 bar 
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Comments 
 
 
 
 
 
 
 
 
 
 
 
 
B.  Low – current (CH2)n ablative capillary discharge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.7. Experimental setup Polyethylene capillaries, d= 0.5 mm, l = 15 mm; C = 20 
nF, U = 5 – 10 kV, R ≈ 30 Ω; (Im = 150 – 300 A, im = (0.75 – 1.5) x 105 A/cm2). Laser 
ignition: (1 – 4)x108 W/cm2, 10 ns, 1.064 µm. 

+ 5…15 kV 

20 nF 

Capillary Body 

Electrode 

Capillary Focusing Lens 

30 Ohm 

• For the BN capillary, the second ablation starts at about 200-300 ns. 

• The capillary is filled quickly by dense plasma after beginning of the secondary ablation. 

• The front of the filling wave is sharp.  

• The effect may cause formation of a transient electron density hole at the axis. It takes 
place just before the moment when the filling wave reaches the axis. 
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Fig. 3.8 Breakdown delay for a polyethylene capillary (15 mm long, 0.5 mm 
diameter) vs incident laser intensity at different voltages. 
Measured electron density and temperature: 
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Fig. 3.9 Electron temperature and density 
 at the axis of the capillary discharge (7.5 kV) as function of time.   
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Fig. 3.10. Radial profiles of electron density at different delays from the beginning 
of discharge (Im = 200A). 
 

4. Longitudinal profiles of plasma parameters in a laser-ignited capillary 
discharge and implications for laser wakefield accelerator applications 
 

A laser pulse entering the capillary during the discharge can be guided when 

the plasma refraction index peaks on the capillary axis.  To obtain a proper guiding 

condition, the electron plasma density of the channel and the off-axis density gradient 

must be matched with the duration and focal size of the guided laser pulse, 

respectively.  The radial density profile was the subject of a number of earlier works. 

The knowledge of longitudinal distribution of plasma parameters in capillary 

discharges is important for the proper coupling of laser beam to the plasma, phase 

matching of injected electrons into the channel, and staging of several channels.  In 

particular, plasma channels with longitudinally varying electron density have been 

proposed to increase the dephasing length and, consequently, the energy gain of laser 

wakefield accelerators.  This technique is based on piecewise formation of the 

longitudinal profile, and assumes uniform longitudinal electron density along each 

capillary piece of constant diameter.  Interferometric measurements of the axial 

variation of plasma density have been made in a transparent square plasma capillary 

discharge,1 but this configuration is not well-suited for most guiding applications. 

Here we report on the measurements of longitudinal electron density and 

temperature profiles in plasma produced in a cylindrical, low-current Plexiglas 

capillary discharge with laser ignition. Plasma radiation was observed through a 

lateral wall of the capillary. Plexiglas has a good transmission in the UV range from 

315 to 380 nm (≥ 70 %) and in the visible range from 380 to 780 nm (≥ 90 %).2  The 

experimental setup is shown schematically in Fig. 4.1.  
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The Plexiglas capillary had a diameter of 0.5 mm and a length of 15 mm.  The 

discharge occurred in a vacuum chamber evacuated below 10-4 Torr. To ignite the 

discharge, we used a 1.064 µm, 10 ns pulse from an Nd-YAG laser.  This laser 

ignition technique15 ablates a small amount of material from the inner wall of the 

capillary and produces seed ionization that triggers the discharge after ~50 ns.  The 

energy required for reliable ignition was 10 to 15 mJ.  This technique makes it 

possible to achieve very low (less than 10 ns) shot-to-shot jitter of the ignition delay.15 

The parameters of the discharge circuit and the driving voltage were typically 

chosen to provide a peak current of 200 A and relaxation time of 600 ns. The current 

rise time was measured to be about 100 ns.  Current waveforms of 300 consecutive 

shots exhibited very little shot-to-shot variations.  They were obtained using a 

Rogowsky coil and a 300 MHz Tektronix oscilloscope. 

The information about the dynamics of plasma column was derived from 

streak photographs obtained at a rate of 20 ns/mm collected by an IMACON-700 

camera. The images indicated that the electric breakdown began on the capillary axis, 

and the plasma column maintained axial symmetry during the discharge. 

The spectra emitted by the discharge plasma were investigated in the range 

300 – 800 nm using SpectraPro 275 Acton spectrograph equipped with 2400 

grooves/mm grating and Princeton Instruments Intensified Photodiode Array (IPDA) 

detector.  The system included a turning mirror which allowed for scanning along the 

capillary axis.  With 30 µm entrance slit, the spectral resolution of the optical system 

was about 0.1 nm.  The gate-on time of the IPDA detector was 50 ns. 

We obtained longitudinal profiles of the continuum and the spectral lines at 

different delays with respect to the beginning of the discharge.  Lines of carbon atoms 

C I, carbon ions C II, C III, oxygen ion O II and hydrogen Hα line were observed.  
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.Fig 4.1 Experimental setup. 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
Fig. 4.2. Longitudinal profiles of (a) plasma temperature and (b) electron density at 
three different delay times from the triggering of the discharge. 
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2 and 4.5 eV. Fig. 2a shows longitudinal temperature distributions at three different 

times after the beginning of the discharge.  It is seen that the temperature at the 

capillary end drops by 15 – 20 % with respect to that in the middle.  In the near-outlet 

region of the plasma jet, the temperature undergoes a further drop of the same order of 

magnitude. 

Electron density was determined from the broadening of the Hα line.4,5  Under 

our experimental conditions, Stark effect is the dominant line broadening mechanism, 

and the broadening parameters are weak functions of plasma temperature.4  Fig. 4. 2b 

shows axial distribution of electron density (averaged over the plasma column 

diameter) at three different times.  It is seen that, as the discharge develops, the 

relative reduction of electron density near capillary ends increases.  At 100 ns from 

the beginning of the discharge the electron density at the capillary opening falls by a 

factor of 1.3 as compared to that in the middle. At 330 ns, this factor is about 1.7.  The 

electron density decreases sharply in the near-outlet region of the plasma jet.  In fact, 

at a distance of four capillary diameters the electron density falls to a few percent of 

its initial value. 

The variation in plasma density does not appear to interfere significantly with 

the coupling of the laser pulse into the channel.  This is probably due to the fact that 

the plasma is multiply ionized even in the transition region outside, so ionization 

defocusing effects6 are probably small.  However, this density variation may present 

substantial difficulties for externally-injected electrons in a channel-guided standard 

laser wakefield accelerator (CGS-LWFA).  In the CGS-LWFA concept, laser and 

plasma channel parameters are chosen so that the laser propagates at nearly constant 

spot size and produces a large amplitude plasma wave or wakefield that can trap and 

accelerate injected electrons.  The wakefield phase velocity is near the group velocity 

vg of the driving laser pulse, and its wavelength is near the on-axis plasma wavelength  

λp, where λp = (πc2me/e2ne0)1/2, c is the velocity of light, e and me are the electron 

charge and mass, and ne0 is the on-axis plasma electron density. 

Electrons injected into the wakefield with initial velocity v0 < vg can be 

accelerated to high energy provided they remain in portions of the wakefield that have 

an accelerating longitudinal electric field and a confining or focusing radial electric 

field.  In a uniform plasma, this accelerating and focusing region corresponds to 

exactly one-quarter of the wave period.  In a plasma channel with no axial variation in 
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density, recent analytical and simulation studies have shown7,8 that the channel 

introduces a favorable shift in the wakefield phases that are both focusing and 

accelerating, thereby reducing the minimum injection energy for trapping and 

increasing allowable acceleration (dephasing) length and final energy.   

However, if electrons are injected externally, they must traverse a region 

where the density ne0 increases continuously with z, and λp(z) ~ (ne0(z))-1/2 decreases.  

This continuous change in the plasma wavelength implies that particles that are 

injected into accelerating buckets that are far behind the laser pulse will always 

experience a defocusing electric field and are likely to be lost.  Particles that are 

introduced into the wake immediately behind the laser pulse are less affected by this 

defocusing problem but must cross a transition region where the wakefield 

accelerating field is relatively weak and are likely to fall too far behind the laser pulse. 

These effects are readily apparent in turboWAVE simulations of a CGS-

LWFA that uses the 100 ns delay axial plasma density profile shown in Fig. 2.  The 

laser had a peak power P0 = 8 TW, wavelength λ0 = 0.8 µm, and vacuum focal spot 

size r0 = 30 µm.  The radial profile of the plasma was chosen so that the equilibrium 

or matched radius was equal to r0.  The laser and plasma parameters are similar to 

those used in the earlier simulation studies that assumed a longitudinally uniform 

plasma channel density.8  Separate bunches of test particle electrons were injected 

over a range of initial phases with initial energies W0. 

The behavior was substantially different from the simulations reported 

previously.19,20  In those simulations, the minimum injection energy for trapping W- 

was 1.0 MeV, which was significantly below the theoretical uniform plasma value of 

1.6 MeV.  However, the presence of the experimentally found long density ramp 

caused W- to increase to approximately 4 MeV.  In addition, only injected electrons in 

the first accelerating bucket were trapped, while those in later buckets experienced a 

defocusing electric field at some point and were ejected from the channel. 

 Although this appears to be a fundamental problem for injection into a CGS-

LWFA, there are several possible solutions.  First, the electrons can simply be 

injected at higher energy, which primarily involves using higher power lasers for 

optical injection.  The second approach is to reduce the density gradient length so that 

it is short compared with the betatron wavelength of the injected particles, which may 

be possible by shaping the capillary nozzle or using short segmented capillary 
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discharges.  Reducing the density gradient length by a factor of 5 in the simulation 

caused W- to drop to approximately 2 MeV.  A third alternative is to perturb the 

wakefield inside the capillary so that injection is internal. 

In conclusion, the evolution of longitudinal electron density and temperature 

profiles in plasma produced in a low-current Plexiglas capillary discharge with laser 

ignition was investigated, including the plasma jet transition region near the exit of 

the capillary.  At times when the radial profile of the plasma density is suitable for 

guiding, the plasma density near the capillary ends can be up to 30 % lower than its 

value in the center of the capillary. This axial variation in plasma density does not 

significantly affect the coupling of the laser beam into the capillary.  However, 

simulations show that the density gradient may make external injection of electrons 

into a laser wakefield accelerator significantly more difficult. 

 

5. Laser and experimental set up upgrade 
 A. Laser system upgrade. 

All previous experiments were done on T-Cubed laser system. The main 

disadvantages of the system are complicity, low stability, and low repetition rate. The 

T-Cubed laser requires many hours of daily alignment procedure and special control 

for pointing and energy stability. The main amplifier of the system takes 15 to 20 

minutes to cool down and to be ready for the next shot. During this time some critical 

parameters of the system could being change and an attempt of repeating the previous 

result would fail. In order to collect enough valid and reliable data we had to perform 

very long continuous runs of 20 hours and more. The energy stability of this class 

laser system is usually worth then 15%. After double passing the 9 mm amplification 

stage we improved this parameter down to 10%. But it still can not compete with 

modern TiS lasr systems. 

The main experimental task this year was to switch the LWFA experiment 

from the old, single shot T-Cubed system, to a new 10 Hz, 50 femtosecond laser 

(TFL). The new laser allowed not only to collect more data in a shorter time, but also 

to work in the standard LWFA regime. Using this regime, external injection of 

electrons, and guiding of acceleration laser beam could make possible creation of 

compact high energy accelerators. But for the standard LWFA the plasma density in 

the guiding structure must match the laser pulse length. For 500 fs laser pulse the 

plasma density should be about 5x1016 cm-3. It is very difficult to create stable, no 



 16 

leaky channel of such low density. For 50 fs pulse, however, the plasma density 

should be 5x1018 cm-3. Optical guiding at these conditions was demonstrated by many 

experimental groups. The main amplifier of the TFL laser was recently upgrade from 

4-pass to 5-pass, that allowed to get 800 mJ before compression of the beam. This 

beam is spitted into 700 mJ and 100 mJ portions using CVI low dispersion polarizer 

and zero-order waveplate. The 700 mJ beam goes through a beam expander into 

vacuum compressor. The 50 fs, 10 TW beam is sent to the main experimental 

chamber. This beam is going to be used for acceleration in the capillary plasma 

channel. The 100 mJ beam first is going through an adjustable delay line into an air 

compressor. Compressed 1.5 TW beam is sent to the main experimental chamber. 

This beam will be used to inject electrons from the gas jet. 

In our recent setup we consider to use two different approaches for electron 

injection. The first one is the same SM-LWFA injection, used the in previous 

experiment. The advantage of this scheme is large number of injected electrons for 

relatively low intensity (1-2 TW) injection laser beam. The disadvantage is, as we 

discovered in the previous experiment, the tight alignment between injection and 

acceleration laser beams. A 10 µm misalignment between the focal spots decreased 

the number of high energy electrons to undetectably low level. This high sensitivity is 

a result of ponderomotive expulsion of misaligned electrons by the acceleration laser 

beam. As the injected electrons propagate from the first to the second jet, they are 

overtaken by the acceleration laser pulse, and are exposed to a large radial 

ponderomotive force. The pondermotive potential of the nearly focused beam is 

strong enough to deflect the low energy injection electrons and therefore to direct 

these electrons away from the accelerating structure. Only particles very close the 

laser axis, where the ponderomotive force vanishes, can be trapped and accelerated. 

The other proposed injection scheme is high density laser ionization and 

ponderomotive acceleration (HD-LIPA). The advantage of this scheme is higher 

energy electrons and relatively simple alignment. In HD-LIPA the largest number of 

the injected electrons is offset from the laser propagation direction. As the result this 

electrons can avoid pondermotive deflection by the acceleration beam. The 

disadvantages of this scheme are higher injection beam intensity and smaller number 

of the injection electrons. 

 



 17 

 
New setup of experimental system. 

The other ongoing experimental project is to integrate the ablative discharge 

capillary device into the electron injection-acceleration experiment. The tests of a new 

laser-triggered capillary were finished last year. This capillary can create long, stable 

plasma channel. Compare to the double capillary discharge, the laser-triggered 

capillary create less electrical noise and could be operated in electrically sensitive 

environment. A new 5 motorized axis mount was designed and build to hold the 

capillary.  Processing compatibility of the gas jet and the capillary was tested. For the 

initial set of experiments we are going to use 1 cm long capillary. The 5 cm long 

capillary is also ready for use. In order to keep the standard LWFA regime the plasma 

density in the capillary should be about 5x1018 cm-3. Recent experiments 

demonstrated optical guiding through the 3 cm long capillary with the plasma density 

below 1017 cm-3. 

The electron spectrometer we used in previous experiments is supplemented 

now by the second stage. The old stage (6.6 cm 0.275 T) will be used to analyze 

injection and low energy (up to 10 MeV) accelerated electrons. The new stage (15 cm 

1.2 T) is able to resolve electrons up to 200 MeV. The new Andor image intensifier 

camera was installed to image the scintillator. For higher energy electrons a larger 

magnet is required. In addition to the conventional magnetic electron spectrometer we 

consider to use fission nuclear activation. 

 

6. Guiding Experiments: 
The guiding was obtained using T3 laser 
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7. Electron Propagation through capillary 
 

One of concerns in development of capillary discharge for guiding and acceleration 

was the influence of electrical current and corresponding magnetic field on deflecion 

of injected electrons. For this purpose we designed an experiment based on all optical 

electron injector using an intense ultrashort pulse laser and a solid wire target and 

transmitted electrons through capillary.  

EXPERIMENTAL SETUP 

 The experiments were conducted using a TW short pulse Ti-sapphire laser 

with a wavelength of 800 nm. The laser delivered 45 fs FWHM pulses with a 

maximum energy up to 600 mJ at a pulse repetition rate of 10 Hz. A schematic 

drawing of the experimental set up is shown in Figure 7.1.  
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Fig 7.1  Experimental setup.  The laser is focused by an off-axis parabola onto a 

wire target, producing energetic electrons.  These electrons pass through a 

collimator and are deflected by a vertical magnetic field and detected by the 

scintillator. 

 

The laser beam was focused to a 30 µm diameter spot using an f/6 off-axis parabolic 

mirror at perpendicular incidence with respect to the target. The maximum intensity in 

the focal plane was estimated to be about 1018 W/cm2. The contrast ratio of the main 

pulse to the prepulse that precedes it by 8 ns was greater than 104. The targets were 

solid tungsten wires 13 µm wide. For purpose of comparison, electron generation 

from solid 25 µm thick foils tungsten was investigated as well. 

The electron energy distribution in the forward direction was measured with a 

magnetic spectrometer.  The detector was a BC-400 scintillator located at 19 cm from 

the backside surface of the target.  The scintillator was 14 cm long and 2.5mm thick 

and was coupled to an ICCD camera. A cylindrical collimator with an entrance 

opening of 3 mm was placed between the target and the scintillator. The collimator 
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was made of 50 mm thick graphite and 5 mm lead.  The scintillator was covered with 

two layers of 20 µm Al foil as a light shield that prevented light penetration without 

affecting electrons with energies above 100 keV.  For electrons in the energy range 

between 100 keV and few MeV, the number of photons created in this scintillator is 

proportional to the number of electrons, although there is a difference in penetration 

depth at different energies.  This feature allowed us to obtain the number of electrons 

and to derive their energy distribution. 

MEASUREMENTS OF ELECTRON ENERGY SPECTRA 

 

Figure 7.2 shows an example of the electron image recorded by the ICCD 

camera in an experiment with a vertical wire target and P laser polarization.  The three 

images correspond to spectrometer magnetic fields of (a) 83 Gauss, (b) 40 Gauss, and 

(c) zero Gauss.  The energy of the electrons was derived from calculation of electron 

trajectories using a map of the measured magnetic field.  

Figures 7.3 and 7.4 show the energy spectrum of electrons generated from 

wire targets for P and S polarization. The number of electrons calculated from the 

integrated spectrum was about 1.5x106 per pulse for wire targets under laser P 

polarization.  The electron yield was about 20% less for S polarization. The electron 

density spectrum was peaked at about 600-700 keV. A tail of hotter electrons with 

energies of up to 3 MeV is seen in the spectrum; however their number is close to the 

noise level of the detection system.  The cutoff on the low energy part of the spectrum 

can be attributed to the strong space charge field created on the surface of the wire.  

This field allows escape of only the energetic electrons.  The peak of the electron 

distribution can be controlled by the laser intensity and can be tuned for optimal 

conditions of electron injection. The curves in Figures 7.3 and 7.4 are Boltzmann fits 

to the experimental data. 

Figure 7.5 shows the energy spectrum of electrons generated from 25 µm thick 

foil targets for P laser polarization.  In this case, the electrons generation is not 

enhanced for laser P polarization, as expected in the case of a normal incident beam.  

The angular distribution of energetic electrons was measured by removing the 

collimator, surrounding with AGFA D-7 film.  The angular distribution of forward 

electrons and the raw film image are shown in Fig. 7.6.  The angular distribution of 

the electrons emitted in the forward direction shows a beam of collimated electrons 
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moving within ~ 20o of the direction of laser propagation.  This narrow bunch is 

accompanied by a low intensity ring with an angular spread of ~ 50o.  

 

 

 

 

 
 

 

Fig 7.2 The electron image recorded by the ICCD camera in an experiment with a 

vertical wire target, P laser polarization and a magnetic field of 83 Gauss (a), 40 

Gauss (b) and no magnetic field (c). 
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Fig 7.3 Spectrum of fast electrons measured in the forward laser direction for 

radiation of a wire target with P laser polarization. 
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Fig. 7.4  Spectrum of fast electrons measured in the forward laser direction for 

irradiation of a wire target with S laser polarization. 
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Fig. 7.5 Spectrum of fast electrons measured in the forward laser direction for 

irradiation of 25 µm foil targets with P laser polarization. 
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Fig. 7.6 The angular distribution relative to the laser forward direction of the energetic 

electrons emitted from a wire target.  The raw film image is shown at the bottom of 

the figure. 

 

INTERPRETATION OF ELECTRON ENERGY SPECTRA 

 

The energy spectrum of hot electrons generated by ultrashort laser pulses is 

usually well described by a Boltzmann distribution with an effective temperature Th.  

For electrons generated by ponderomotive acceleration, and laser intensity between 

1018 and 1019 W/cm2, this temperature is related to the ponderomotive potential by18 

 

)11038.1/]m cm/W[I1(cmTk 182222
0hB −⋅µλ+= .               

(1) 

 

For I = 3x1018 W.cm2, and λ = 0.8 µm, the predicted temperature is 273 keV.  

The electron temperatures were estimated by fitting experimental spectral data to a 

Boltzmann distribution  
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in the range between 500 keV and 1 MeV.  Figure 7 compares the results of the 

Boltzmann fits of the spectra in Figs 3-5 to the ponderomotive scaling, Th = 273 keV.  

The fitted electron temperature for the foil target experiments (329 keV) agrees well 

with the ponderomotive value.  For wire targets, the fitted electron temperature is 

substantially lower. 

The data obtained from wire targets also exhibits polarization dependence.  

The fitted temperatures are 205 keV for laser P polarization and 174 keV for S 

polarization in the case of wire targets.  These polarization differences may be related 

to the appearance of additional mechanisms such as resonance absorption. For wire 

targets with width smaller than the diameter of the laser spot, the laser electric field 

has a non-zero component perpendicular to the target at normal incidence, and 

resonance absorption may occur during the irradiation.  This process may contribute 

to the increase in the number of electrons in the case of a P polarized laser beam.  

Alternatively, a mechanism known as Brunel (or vacuum) heating may be more 

efficient for energetic electron generation in the case of P polarization. In Brunel 

heating the electrons are pulled into vacuum in one half-cycle of the laser field, 

accelerated in vacuum, and re-injected into the dense region and farther into the target 

in the next half-cycle. In the case of a wire target, it may be possible that electrons 

that are pulled from the sides of the wire will subsequently be accelerated away from 

the target. 
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Fig 7.7 Normalized Boltzmann fit to the energy spectra of the electrons emitted 

from wire targets for P and S laser polarization, foil target 

TRANSPORT OF ELECTRONS THROUGH A CAPILLARY DISCHARGE 

 

In order for a capillary discharge to be suitable for a channel-guided LWFA, 

energetic electrons must be injected into the capillary with high efficiency and 

transported without substantial losses.  The electrical current in the discharge 

produces substantial magnetic fields that can affect electron trajectories both inside 

and outside the capillary.  For the LWFA parameter regime, the electromagnetic fields 

produced by the laser plasma interaction are generally much larger than the discharge 

fields.  However, the fringing magnetic fields in the region just outside the discharge 

could deflect the externally-injected electrons and cause them to be lost.  This 

problem was recently examined theoretically by us and concluded that for typical 

LWFA parameters, the deflection of injected electrons by the magnetic field of the 

discharge should be small compared with the acceptance of the wakefield. 

A series of shots was taken in which electrons from a wire target were injected 

into a capillary discharge.  The polarity of the discharge current was chosen such that 

the magnetic field inside the capillary confined the electrons.  The standoff distance 

between the wire and the entrance to the capillary was 500 µm.  The average number 
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of electrons transported through the capillary was 1.5x106 when the capillary current 

was triggered.  When no discharge current was triggered, the capillary acted as a 

simple collimator, and the average number of electrons transported was actually 

slightly lower (1.4x106).  These results are consistent with our theoretical model and 

suggest that there were not significant losses due to magnetic fields outside the 

capillary. 

 

SIMULATION OF BEAM INJECTION INTO A CHANNEL-GUIDED LWFA 

 
In this section, we will examine the evolution of a beam of electrons with a 

broad energy distribution in a channel guided LWFA.  This analysis includes results 

from both analytic, one-dimensional Hamiltonian, and simulation using the two-

dimensional laser propagation code WAKE.  We show that an electron distribution 

that is consistent with the experimental results presented above can provide a useful 

electron injection bunch for an all-optical LWFA, and we will discuss the 

implications for future LWFA demonstration experiments. 

We begin with the Hamiltonian function for an electron in a one-dimensional 

plasma wakefield of magnitude 

 

φ0  in the frame moving with the wake3,21,28 

 

 

 

H γ,ψ( )= γ 1− βgβ( )mec
2 + qφ0 sinψ       (3) 

   

where 

 

γ =1/ 1− β 2  is the electron Lorentz factor, 

 

β = ve /c ,

 

βg =1−ω0
2 /2ω p

2 − λ2 /2π 2r0
2 is the laser group velocity normalized to c, 

including the finite spot size correction,3,28-30 

 

ω p
2 = 4πq2ne /me is the plasma 

frequency, 

 

q and

 

me are the electron charge and mass, 

 

ne  is the plasma density and 

 

ω0, 

 

λ , and 

 

r0 are the laser frequency, wavelength and spot size of the laser pulse, 

respectively.  This Hamiltonian can be used to get the electron equations of motion 

for the normalized momentum, 

 

p = pe /mc , and phase, 

 

ψ , with respect to the 

acceleration distance, which we take to be the z direction.  These equations are  
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This one dimensional analysis neglects the effects of the transverse electric 

field, which for an ideal wake in a uniform plasma is sinusoidal and 

 

π /2 out of phase 

with respect to the axial field.  For this ideal case, it is often assumed that only 

electrons whose phase always that remains between 0 and π experience a focusing 

transverse field, while those that move out of this range of phases are expelled. Only 

those phases between π and π/2 are both focusing and accelerating.  However, a more 

careful examination of the wakefields in the presence of a plasma channel reveals that 

the range of phases that are both focusing and accelerating is significantly larger than 

in the ideal uniform plasma case.  The simulations that we have performed show that 

there is an increased working phase in the channel-guided simulations of 

approximately π/6.  

The expected energy gain may be estimated by integrating Eqs. (4a,b).  The 

initial energy and phase of the electron is chosen to be on the lowest energy phase 

space orbit whose phase is never smaller than -

 

π /6, which thus includes the 

expansion of the focusing region described in the previous paragraph.  The dashed 

curve in Fig. 8 shows the normalized momentum for the accelerating electron as a 

function of z for a case with normalized potential φ0 = 0.45 and ω ω0 50/ p = .  The 

accelerated electrons reach their maximum energy after propagating a distance of 4 

cm, which is nearly identical to the classic dephasing length3,5-7 Ld p g= −λ β/ ( ).4 1  

Also in Fig. 7.8 are the results from a standard LWFA WAKE test particle 

simulation with (FWHM) pulse length τ L  = 67 fsec, peak laser pulse power P0  = 10 

TW, and injected laser spot size r0  = 15 µm.  The on-axis density of the plasma 

channel was n0  = 7x1017cm-3, with a parabolic channel density profile chosen so that 

the equilibrium spot size rM  was equal to r0 .  As in similar simulations reported in 

the past, this “matched” injection with an ideal plasma channel resulted in a laser 
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pulse that propagated at nearly constant spot size and generated a well-defined 

wakefield whose maximum amplitude was nearly constant. The initial test particle 

distribution was a one sided Maxwell-Boltzmann thermal distribution with a 250 KeV 

temperature, located at 1.0 radian in phase, with a 21 fs electron bunch.  The electron 

momentum from the simulation includes error bars that represent the standard 

deviation of the electron momentum for the bunch.  Notice that initially this 

momentum spread is relatively small and constant; however, after about 2.5 cm the 

energy spread begins to increase rapidly.  

This dynamic in the accelerating behavior of the electrons can be understood 

as follows.  Consider two electrons that are initially at the same phase in the 

accelerating structure with one electron having the minimum energy to be captured 

and the other electron having somewhat more energy.  As the electrons accelerate, the 

higher energy electron will reach the de-phasing limit for acceleration sooner than an 

electron with lower energy due to the difference in relative slippage between the 

electrons and the laser pulse group velocity.  Therefore, as the electrons continue 

lower energy electron continues to accelerate the electron that has reached the de-

phasing limit will begin to decelerate, thus increasing the energy spread of the 

electron bunch.  This process is clearly evident in the rapid increase in the momentum 

spread after 2.5 cm.  This process provides for a relatively small momentum spread at 

the location where the first electrons reach their de-phasing limit. 

This reduced energy spread can be seen in Fig. 7.9, which presents axial phase 

space results from the WAKE simulation discussed above.  The initial particle 

distribution, in the lower left corner and momentum referenced to the left axis, was 

the one sided Maxwell-Boltzmann thermal distribution described previously.  The 

electron distribution in the upper right corner, with momentum values referenced to 

the right axis, is for the electron bunch after approximately 2.5 cm of acceleration.  

The total energy gain is approximately 600 MeV with a relative energy spread of 3 

percent.  The electron bunch has also undergone phase compression to 0.25 radians, 

~5 fs.  Based on both the analytic and simulation results we conclude that it is 

possible to use the broad electron energy distribution provided from a wire target for 

interesting and useful exploration of LWFA schemes, particularly if large numbers of 

electrons can be produced with a simple experimental geometry.  These results also 

demonstrate that as the propagation distance approaches the dephasing length, there is 

a substantial increase in the energy spread. 
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Fig 7.8 Average momentum for the accelerating electrons as a function of 

acceleration length for both a test particle simulation using WAKE and the trajectories 

based on the one-dimensional Equations of Motion.   
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Fig 7.9  Test particle axial phase space distributions for the initial and optimal, 

e.g., minimum relative energy spread, times during the WAKE simulation.   

 

CONCLUSIONS (related to the electron propagation through capillary 

channel). 

Electron bunches with energies up to several MeV were generated by irradiating 

tungsten wires with 45 fs, 1018 W/cm2, 10 Hz laser pulses.  The energetic electron 

yield was about 1.5x106 per pulse into a 20o cone. This energetic electron bunch may 

be used as an optical injector for a channel-guided laser wakefield accelerator.  The 

proposed method provides the possibility of simplified timing between injection and 

acceleration. Although the initial energy spread in the charge bunch is substantial, 

simulation studies demonstrate that it may be possible to produce a high-quality, 

ultrashort, accelerated beam bunch with an energy spread of only a few percent.  

These favorable results are due to a combination of pruning of particles at unfavorable 

phases or initial energies, rapid acceleration, and strong phase bunching.  

The average number of electrons transported through the capillary was same when the 

capillary current was triggered or when no discharge current was triggered and the 

capillary acted as a simple collimator.  These results are consistent with our 

theoretical model and suggest that there were not significant losses due to magnetic 

fields outside the capillary. 

 

8. Staged all-optical laser wakefield acceleration. 
 Prior to the staging of the capillary based accelerators, we performed a proof-

of-principal experiment on staged optical injection and laser wakefield acceleration 

using two different short laser pulses focused into two spatially separated gas jets. We 

recently finished analyzing important results from this experiment. 
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The first gas jet was used as an injector and the second one as the accelerator. 

Both the injector and the accelerator operated in the SM-LWFA regime, but in 

different trapping conditions. Relative amplitudes of the acceleration wakefields was 

measured by forward Raman scattering (FRS). Strong dependence of the electrons 

energy gain on the timing between the injection and acceleration laser beams, and the  

Figure 8.1: Experimental setup for staged all-optical injection acceleration 

experiment. 

 

 

 

time difference between the occurrence of the maximum number of accelerated 

electrons and the peak FRS clearly identified the acceleration of injected electrons.  

 

The NRL T-cubed laser system at a wavelength of 1054 nm was used for the 

experiment [C. I. Moore, A. Ting, T. Jones, E. Briscoe, B. Hafizi, R. F. Hubbard, and 

P. Sprangle, Physics of Plasmas, 8, 2481 (2001).].  The stretched beam from the 

chirped pulse amplification laser system was split before it reaches the final amplifier. 

The first beam containing most of the energy was sent through an adjustable delay 

line and then compressed in air. This laser beam (2 TW, 500 fs, 1 J) was focused into 

a nitrogen gas jet (5x1018 cm-3 neutral density) using a 32 cm focal length (F#10 for 

this beam) off-axis parabola (Fig. 1). The adjustable delay line allowed setting the 

timing between the laser pulses. The nitrogen gas jet has a cross sectional diameter of 

about 500 µm.  The laser intensity of the 2 TW beam at focus was about 3x1017 
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W/cm2 in vacuum. During the alignment procedure the position of the gas jet was 

adjusted in order to generate the highest energy electrons. In the laser-plasma 

interaction, the nitrogen gas was up to five times ionized resulting in a plasma density 

of 3x 1019 cm-3. The 2 TW laser beam and the nitrogen gas jet are being used as the 

injector. 

 

The second laser beam was sent through an additional amplifier, a spatial filter 

(1:1.7 beam expansion) and then compressed in vacuum, resulting in a 10 TW (5 J, 

500 fs) output laser beam. After recombining collinearly with the first beam by using 

a thin-film polarizer and a half-wave plate, the second beam was focused by the same 

off-axis parabola (F#6 for this beam) into a helium gas jet that was separated by 0.5 

mm downstream from the nitrogen jet (Fig. 8.1).  To separate the focal spots of the 

two laser beams, we changed the collimation of the 10 TW beam by adjusting the 

output lens of the spatial filter.  Shifting the lens toward the spatial filter makes the 

beam slightly diverging and as a result shifts the focal spot farther. The focal spot 

positions of both lasers were fixed by the external optics. Measurements of the 

positions of laser sparks at very low intensities showed that the focal spot separation 

was 500 microns. The helium gas jet has a diameter of 1.5 mm and the neutral gas 

density was 5x1018 cm-3. The peak laser intensity of the 10 TW beam was about 

3x1018 W/cm2 as measured in vacuum. The propagation of the laser beam through the 

nitrogen gas or plasma could aggravate the coupling of the laser in the helium gas jet 

and reduce the peak intensity. During the laser-plasma interaction, the helium was 

fully ionized resulting in a plasma density of 1x1019 cm-3. The 10 TW beam and the 

helium gas jet are being used as the accelerator. The position of the helium gas jet was 

adjusted to generate the highest energy electrons. The gas flow of the helium gas jet 

overlaps with the nitrogen gas jet and since they were ejected in opposite directions 

(fig. 1), there was a sharp boundary separating the two gas regions. 
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Figure 8.2: Evolution of the FRS spectra of the 10 TW beam as function of delay 

between the 10 TW and 2 TW laser beams. After 6 ps delay the nitrogen peak 

disappears. 

 

About 4% of the 2 TW laser beam intensity was reflected from the thin-film 

polarizer and sent through a doubling crystal and an adjustable delay line.  This 

frequency doubled laser beam was aligned to pass through the gas jets transversely 

and was used as a probe in a Schlieren shadowgraphy diagnostic. This allowed initial 

sub-picosecond synchronization and 10 micrometer spatial alignment of the two laser 

beams . Using this diagnostic we tested the precision of the adjustable delay between 

the two laser beams to better than 100 fs timing. The first anti-Stokes forward Raman 

scattering spectra was measured by collecting the emission light at 10 degrees with 

respect to the direction of the laser beam propagation. Divergence and polarization 

difference between the 2 TW and 10 TW laser beams allowed the separation of the 

FRS signals of the beams. The difference in the plasma densities of the two gas jets 

also makes it possible to further separate the FRS signals from the nitrogen and the 

helium plasmas. In this experiment, we only analyzed the FRS spectra of the 10 TW 

acceleration beam. Figure 8.2 shows the evolution of the 10 TW FRS spectra as a 

function of the time delay between 2 TW and 10 TW laser beams. The nitrogen 
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plasma peak decays with the delay as expected. The helium plasma peak remains 

constant to within shot to shot fluctuations. 

Accelerated electrons that are generated in the gas jets, passed through a 

collimator with a 3 mm aperture (F#30) and an integrating current transformer (ICT) 

for absolute calibration of the number of injected and accelerated electrons. The 

minimum resolvable charge of the ICT is about 6 pC, with an input current rise time 

<1 ps. The selected electrons were sent into an electron spectrometer which consists 

of a sector electro-magnet and a 14 cm long plastic scintillator (1 mm BC-400). The 

front side of the scintillator is covered with 2 layers of 6 µm aluminum foil to block 

the ambient light and to attenuate the number of low energy electrons. The back side 

of the scintillator was imaged onto a gated optical intensifier. This allowed a single 

shot electron energy spectrum to be measured. Energy calibration of the electron 

spectrometer was obtained using a 3D ray-tracing code [D. F. Gordon, CyberRay 

electron propagation code (Icarus Research Inc., Bethesda, MD, 2003)]. 

In our previous experiments [A. Ting, D. Kaganovich, D. F. Gordon, R. F. 

Hubbard, and P. Sprangle, Phys. of Plasmas 12, 010701 (2005)] we used single laser 

beam and single gas jet to study the properties of the injected electrons. The 

maximum electron energy detected in this experiment using the same electron 

spectrometer was around 8 MeV using a laser intensity that was 3 times higher (1019 

W/cm2) and a better coupling between the laser and the gas jet. In present experiment 

we deliberately configured the coupling between the 10 TW beam and the He gas jet 

to be sub-optimized for self-trapping and acceleration of background plasma 

electrons. The focusing of the 10 TW beam was affected by both its positioning with 

respect to the helium nozzle and its passage through the nitrogen plasma. 

 

3. Analysis of the experimental results. 

Figure 3 shows the single shot electron energy spectra of the injected and 

accelerated electrons. The solid line in figure 8.3 is the noise floor. It was determined 

by studying the positron side of the scintillator, where we observe that the x-ray 

background is uniform across the scintillator. To determine the noise floor in units of 

electrons per MeV, this constant background was processed exactly the same way as 

the electron data. The maximum energy of the injected electrons was below 0.5 MeV. 

It was measured by firing the 2 TW beam and the Nitrogen gas jet only. Turning on 
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the Helium gas jet had no effect on this spectrum. The electron energy spectrum 

shown in figure 3(b) represents accelerated electrons at the optimum time delay 

between the injection and acceleration laser beams showing electrons well above 20 

MeV. For this shot, both gas jets and both laser beams were fired. It is possible that 

even higher energy electrons were generated in this and similar shots, but the number 

of these electrons was below the noise detection level. We performed the following 

null tests: 1) By firing only the acceleration (10 TW) laser beam and both gas jets, we 

detected no electrons signal, apparently because of ionization defocusing of the laser 

beam in the nitrogen gas jet; 2) Firing the 10 TW laser (with or without 2 TW beam) 

directly into the helium gas jet with the nitrogen jet being off generated electrons of 

about 1 MeV only; 3) Firing both laser beams into the nitrogen jet with the helium jet 

being off generated electrons below 1 MeV.  All these tests indicated that the high 

energy electrons were not from self trapping of the background plasma electrons. 

 

Figure 8.3: Injection and acceleration electrons energy spectrum. About 0.3% of the 

electrons between dotted lines on the injection spectrum get trapped and accelerated 

to more than 10 MeV. 

 

By changing the time delay between the injection and acceleration laser beams 

as shown in figure 8.4, we observed that the high energy electrons (> 10 MeV) appear 

in a very narrow time window of 3 ps. Note that even though each point on the graph 

represents a single shot, the data was repeatable under the same conditions. The 

vertical error bars were estimated from the experimental errors. Also shown in figure 

4 is the amplitude of the FRS signal (taken as peak value of FRS in figure 2) from the 

10 TW laser beam seeded and modulated by the nitrogen plasma. Despite the well 
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correlated behavior between the number of the high energy electrons and the FRS 

signal, there is one crucial difference. Figure 8.4 shows that the largest number of 

high energy electrons appeared at 1 ps (± 100 fs) delay of the acceleration beam after 

injection beam, while the highest FRS signal is generated when the two beams are 

fired at the same time. The peak FRS signal is expected to appear at zero delay and 

therefore provided a confirmation of the time measurement accuracy of the Schlieren 

shadowgraphy diagnostic. Taking into account the fact that the injection electrons 

need some time to propagate the 0.5 mm distance between the injector and the 

accelerator at a speed that is below the speed of light, this 1 ps time delay provides the 

proof that the accelerated electrons were in fact the injected electrons. These electrons 

can be estimated to have a ~150 keV in energy so that they require the extra 1 ps to 

propagate the 0.5 mm distance to catch up with the laser beam. This energy of the 

injected electrons agrees with the energy spectrum shown in figure 8.3(a). Although 

the injector produces about 3x108 of such electrons [between dotted lines on fig. 

8.3(a)], only about 0.3% was trapped and accelerated. This reduction occurs not only 

because exact phasing in time (1/4 cycle of the plasma period) is required [14], but 

also for the fact that the relatively low energy electrons could be trapped only by the 

few most dominant wakefield periods (among the total of many tens of periods) in the 

acceleration stage. Higher energy electrons probably were also trapped and 

accelerated. However, as it was shown in figure 8.3(a), the number of these electrons 

decreases rapidly as the energy increases. That could explain why the number of high 

energy electrons at 0-time delay is much lower than the number of similar electrons at 

the 1 ps delay in figure 8.4. 
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Figure 8.4: First anti-Stokes forward Raman intensity (solid squares) and the number 

of electrons above 10 MeV (open circles) as function of delay time between injection 

and acceleration laser beams. The data points of the number of electrons are 

represented at the lower bound of the number estimates with the error bars extending 

to higher possible numbers. 

 

The accelerated electrons were not originated as self-trapped plasma electrons 

in the self-modulated wakefield of the 10 TW beam. Since the 10 TW beam is not 

focused in the nitrogen but reaches high intensities only at the far end of this gas jet, it 

could not have developed sufficient modulations in the nitrogen plasma and must be 

seeded by the wakefield of the 2 TW beam. However, this seeding can not contribute 

to the wakefield in the helium acceleration stage, because the modulation on the 10 

TW laser beam by the nitrogen plasma does not match the helium plasma density 

which is 3 times lower. Similar seeding by the 2 TW beam in the helium plasma did 

not occur because the 2 TW laser beam has already defocused there. In fact, the FRS 

from the helium was observed to be lower than that from the nitrogen (zero time 

spectra in figure 8.2). Therefore relatively weak wakefield was generated in the 

acceleration stage and it was not strong enough to pick up and accelerate any 

background electrons to high energies. The short time window of the nitrogen FRS 

signal in figure 2 also indicates that the lifetime of the self-modulated wakefield 

created by the 2 TW beam in nitrogen is about 6 picoseconds similar to previously 

reported experiments [A. Ting, K. Krushelnick, C. I. Moore, H. R. Burris, E. Esarey, 

J. Krall, and P. Sprangle, Phys. Rev. Lett., 77, 5377 (1996); S. P. Le Blanc, M. C. 
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Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou and D. Umstadter, 

Phys. Rev. Lett., 77, 5381 (1996)]. Theoretically the sharp plasma density gradient 

between the helium and nitrogen plasmas could perturb the phase space of the 

background oscillating plasma electrons sufficiently to trigger injection into the 

plasma wakefield that passes through the boundary [H. Suk, N. Barov, and J. B. 

Rosenzweig, and E. Esarey, Phys. Rev. Lett., 86, 1011 (2001)]. However, since the 

plasma and thus the sharp boundary could persist for much longer time than a few 

picoseconds, we would not have observed the short time dependence shown in this 

experiment. 

In our previous experiment [A. Ting, D. Kaganovich, D. F. Gordon, R. F. 

Hubbard, and P. Sprangle, Phys. of Plasmas 12, 010701 (2005)] we found that 

divergence of the injected electrons is large. Acceptance angle of the acceleration 

stage is also wide [B. Hafizi, D. F. Gordon, A. Zigler, A. Ting, Physics of Plasmas, 

10, 2545 (2003)]. However the high energy electrons appeared only at the perfect 

alignment between the laser beams. A 10 µm misalignment between the focal spots 

(measured by two telescopes) decreased the number of high energy electrons to 

undetectably low level. This high sensitivity is a result of ponderomotive expulsion of 

misaligned electrons by the 10 TW laser beam. As the injected electrons propagate 

from the first to the second jet, they are overtaken by the 10 TW laser pulse, and are 

exposed to a large radial ponderomotive force. The ponderomotive potential for an 

electron is 
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where a is the peak normalized vector potential and m electron mass. Between the two 

jets the 10 TW pulse is nearly focused so that a is about unity and the ponderomotive 

potential is about 100 keV. For the low energy injection electrons, the velocity gained 

in passing through the ponderomotive potential can be approximated by 

m
Fv 2

≈  . 

The characteristic time for this to occur can be found from 

r
Ftmv =  
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where r is the laser spot size and t is the characteristic time.  This gives 

F
mrt 2

=  

For a 10 micron spot size the characteristic time is about 100 fs.  This corresponds to 

about 15 microns of propagation for the 100 keV injection electrons.  Thus, in a 

distance short compared to the separation between the two jets, the injection electrons 

can be deflected into a large angle and miss the accelerating structure entirely.  Only 

particles very close to the laser axis, where the ponderomotive force vanishes, can 

survive. From our experiment, all it took was a 10 microns mis-alignment measured at 

the source of the injected electrons, i. e. the nitrogen jet, to foul the injection. 
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