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Bifurcation theory of the transition to

collisionless ion-temperature-gradient-driven plasma turbulence

R. A. Kolesnikov and J. A. Krommes*
Plasma Physics Laboratory, Princeton University,
P.O. Boz 451, Princeton, New Jersey 08543-0451

(Dated: September 13, 2005)

Abstract

The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence
is considered with a dynamical-systems approach. The importance of systematic analysis for un-
derstanding the differences in the bifurcations and dynamics of linearly damped and undamped
systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A
four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified
and used to predict a “Dimits shift” of the threshold for turbulence due to the excitation of zonal
flows. The exact value of that shift in terms of physical parameters is established for the model;
the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the
CM equations is used to discuss possible effects of modulational instability on scenarios for the

transition to turbulence in both collisional and collisionless cases.

PACS numbers: 52.35.Ra, 52.35.Qz, 05.45.-a



I. INTRODUCTION

Nonlinearly generated turbulence in hot inhomogeneous plasmas is the main reason for
cross-field heat losses from fusion devices. Thus study of the regulatory mechanisms of
turbulent transport is important for improvement of the magnetic confinement of plasmas.

It is believed that nonlinearly generated E X B poloidal (zonal) flows (ZF’s) are ma-
jor candidates for reducing unwanted radial transport; they act by shearing apart eddies
associated with the underlying turbulence. It has been recognized both numerically’ and
experimentally? that ZF’s play a central role in the process of low- to high-confinement tran-
sitions in the edge region, as well as in the formation of internal transport barriers. Since
linear collisionless processes (Landau damping) do not damp ZF’s in toroidal geometry,?
ion—ion collisional dissipation® seems to be an important mechanism regulating the level of
ZF’s, so is one of the factors imposing limitations on confinement properties. In the hot
core of tokamak plasmas, though, collisional dissipation is very small, raising the issue of
the proper treatment of essentially collisionless nonlinear ZF dynamics. Many aspects of ZF
physics have been recently reviewed by Diamond et al.’

An extreme limit that demonstrates the importance of ZF’s is collisionless ion-
temperature-gradient-driven (ITG) physics close to linear marginality. Large-scale colli-
sionless gyrokinetic® and gyrofluid™® simulations of ITG systems show that transport is
virtually suppressed in a regime just above the threshold for marginal stability. That is,
there is an effective nonlinear upshift of the critical temperature gradient for the onset of
collisionless ITG turbulence. This is the so-called Dimits shift. In this paper, we consider
the calculation of the Dimits shift with the aid of systematic bifurcation theory, using a
simple but nontrivial model.

It has been realized that ZF’s play an important role in the formation of the Dimits shift.
In particular, Rogers et al.® argued that in this regime the plasma can generate undamped
zonal flows that are sufficiently weak to remain stable yet are sufficiently strong to suppress
the linear drift-wave (DW) mode. (Generally in this article we shall refer generically to
DW'’s rather than the more specific ITG modes.) The boundary of the Dimits shift was
asserted to be determined by the generation of tertiary modes that are observed to grow
to nonlinear amplitudes and damp the zonal flows. This scenario involves three processes:

primary instability of the DW’s; secondary (Kelvin—Helmholtz-related) instability of the



ZF’s (driven by DW’s), which then (totally) suppress the DW’s; and tertiary instability,
which destabilizes the ZF’s.

Since each of these processes has its own onset threshold, one might attempt to identify
the above scenario with a sequence of bifurcations occurring in the system as some parameter
€ (the temperature gradient for an ITG system) is increased. That works well for the
transition to turbulence in collisional plasmas'®!! or fully developed DW-ZF turbulence.!?
Consider, for example, the scenario for the transition to collisional resistive-¢g turbulence!%:!!
in a truncated model. For that case, with the Rayleigh number serving as the bifurcation
parameter, we would identify the above-described three instabilities with a sequence of three
bifurcations occurring at €(!) = ¢, €, and €® = 4. The first (Hopf) bifurcation happens at
the linear threshold, producing steady convection without shear flow. The second bifurcation
leads to steady “tilted-cell”!® convection, an indication of the presence of shear flow. The
third bifurcation results in “oscillatory convection,” a signature of shear-flow destabilization.

However, an attempt to apply the scenario outlined above to a collisionless system encoun-
ters immediate problems. In particular, both secondary and tertiary instabilities, whether
they are based on mode-coupling or modulational effects, rely on the nonlinear interaction
DW + DW — ZF (two DW’s beat together and drive a ZF). However, since the DW fluctua-
tion level vanishes in the Dimits-shift regime, it is incorrect to talk about a steady-state loop
DW — ZF — DW with no DW’s but a nonzero level of ZF’s. (Considering such a loop with
nonzero values of both DW’s and ZF’s is relevant to both the transition to weak turbulence in
collisional systems as well as the statistical theory of fully developed DW-ZF turbulence.'?)
Dastgeer et al.” seem to suggest that certain resonances enhance the ZF response, but even
then ZF’s cannot be driven if there are no DW’s at all. Also, unlike the collisional scenario,
no distinct (') and €® are observed in the collisionless simulations. Instead, as Rogers et al.
noted, ZF’s are excited by a burst of DW’s [through a Kelvin-Helmholtz (KH) instability
of radial streamers|, which then die away leaving only the ZF’s in steady state.

Although large simulations are important tools for the detailed modeling of complex be-
havior in modern tokamaks, they are frequently ill suited for the identification and detailed
understanding of basic conceptual issues. Simplified analytical models are useful to study
some aspects of the nonlinear evolution near the threshold for marginal stability. For ex-
ample, Weiland and coworkers”® have studied the generation of ZF’s in certain collisionless

fluid models with the aid of reductive perturbation theory.'> However, those calculations did



not accomodate the presence of seed ZF modes, but rather allowed only nonlinear genera-
tion (as in standard collisional calculations). They thus missed the importance of sidebands
and their role in the formation of the Dimits shift, as we will see. The present work was
inspired, in part, by our desire to better understand those earlier calculations of Weiland
and coworkers, particularly issues related to the ordering of the seed ZF’s.

14716 of a simple low-order

We shall describe a systematic dynamical systems analysis
Galerkin-truncated model of an electrostatic, collisionless, curvature-driven, fluid I'TG sys-
tem near marginal stability and study the resulting sequence of bifurcations. (A briefer
account of this work can be found in Ref. 17.) To be more specific, by “collisionless” (“col-
lisional”) we mean that the ZF’s are taken to be linearly undamped (strongly damped).
For both cases, we always assume a nonzero level of DW dissipation, npw, passing only at
the end of the calculation to the limit npw — 0. By keeping npw # 0, we ensure that
forced (background-gradient-driven), dissipative steady states are possible for the original
system of partial differential equations (PDE’s). This is in the same spirit as the usual
model of high-Reynolds-number Navier—Stokes turbulence, for which it is well known'® that
the inertial-range Kolmogorov spectrum that arises in the presence of small but nonvan-
ishing viscosity p differs radically from the Gibbsian thermal-equilibrium solutions of the
undamped, wave-number-truncated Fuler equation — the spectra being distinguished by
the interchange of the limits ¢ — oo and p — 0.1 The model we study can be seen as a
generalization of the Navier-Stokes equation in which dissipation is applied selectively to
some modes but not others. Not surprisingly, we will again encounter an interchange of
limits, here related to the dissipation on the ZF’s.

We have already mentioned the previous collisional bifurcation analysis of Horton et al.'°
It is noteworthy that such collisional calculations do not evince a Dimits shift. However,
we will show that a properly formulated bifurcation theory does predict such a shift for
a collisionless (ZF) model, in agreement with the numerical simulations. Although both
collisional and collisionless models involve the generation of ZF’s, the detailed physics of the
bifurcations in the two cases differs because of the afore-mentioned interchange of limits;
for the collisionless model, the limits must be taken in the order nzr — 0, then ¢t — oo.
This results in a rather distinctive dynamics of the transition to collisionless turbulence, and
the scenario we propose for the formation of the Dimits-shift regime differs in detail from

those implied by the previous analytic analyses. Indeed, we will argue that there is just



one bifurcation point of interest. Also, for our particular model, we are able to predict the
Dimits shift exactly as a function of physical parameters.

We stress that we do not attempt a quantitative calculation of the Dimits shift for realistic
toroidal situations, which are best studied by large computer simulations. Our model does
not capture a variety of physical processes practically important in both the production
and termination of the Dimits-shift regime, so considerable further work is called for. The
goal here is to emphasize certain qualitative issues, related to collisionless ZF dynamics
and the proper formulation of collisionless bifurcation theory, which are best illustrated
and understood by working with a relatively simple model that can be analyzed rather
completely.

The paper is organized as follows. In Sec. II we briefly describe our curvature-driven
ITG model and its lowest-order truncation relevant for collisionless dynamics. In Sec. III we
review the basics of the dynamical-systems approach and emphasize the differences between
its applications to collisional and to collisionless systems; we argue that standard methods
that have been previously applied to collisional regimes cannot be used for collisionless
ones. We apply a correct and consistent center-manifold calculation to the collisionless
regime in Sec. IV. We exploit the simplicity of our I'TG model to perform a nonperturbative
calculation of an important fixed point in Sec. V. In Sec. VI we briefly discuss the possibility
of modulational-instability effects on the transition to turbulence in both collisional and
collisionless cases. In Sec. VII we comment on the addition of weak zonal-flow damping to
the system as well as the effects of higher-order truncations. Discussion and conclusions are
presented in Sec. VIII. We also include several appendices that provide detail omitted from

Ref. 17 and the main body of this paper.

II. BASIC MODEL

Various ITG models have been discussed by Ottaviani et al.?® and Beer.?! We consider
a simplified gyrofluid ITG system?' for potential vorticity @ and pressure P driven by
magnetic curvature. (The number of two coupled fields is the minimum required to produce
a physics-based growth rate that is not just inserted “by hand”; the Hasegawa—Wakatani
paradigm'® is similar in this regard.) Let the unit vectors z, Z, and y be associated with

the magnetic field, radial, and (essentially) poloidal directions, respectively. Then in vector



form the system of PDE’s [considered as two-dimensional (2D) in the plane perpendicular
to 2] is
Oyu(x,t) = M- u+ J/\f(u, u), (1)
where u = (w, P)”, T denotes transpose, hat denotes a differential operator, and the
nonlinear term (bilinear in the field vector) describes simple E X B advection: N (u,u) =
— %X V- Vu. The electrostatic potential ¢ is obtained from ¢ = D', where D = a— V2,
@ being zero for convective cells (k; = 0) and the identity operator otherwise.'
We have slightly modified the linear matrix M originally discussed in Ref. 21 in order
to keep only the terms important for the dynamics considered; for further details, see Ap-

pendix A. The resulting matrix M has the form (A3),

—i(Q — i) —ib

M = - (2)

i€ —d
Here ) = —2i(ﬁ_1 + 'r)gy, with 7 being the ratio of ion and electron temperatures, is
associated with the linear frequency of DW’s; = — u@Q describes weak collisional damping

on the DW’s (only); b= —2i5y provides the linear coupling between w and P; d=7+ 7,

2L. and

where 7 = —V\5y| represents the Landau damping effect in the gyrofluid closure
€= —irD[R/Ly—(1 +Tﬁ)]5y, where R/ Ly is the ratio of the curvature and temperature-
gradient scale lengths.

We consider a system of finite size, so we may use for the fields the representation u =
> im Yra(t) sin(lk,z)e™ Y where the summation is over all possible I’s and m’s with m =
2mm/Lyk,. The wave numbers k, and k, correspond to the first linearly unstable DW mode.
The quantities 27 /k, and L, are associated with the finite size of the system in the radial
and poloidal directions due to magnetic shear and finite poloidal circumference, respectively.
In choosing a standing wave in z, we subscribe to an argument from Ref. 10, which asserts
this to be a crude representation of the localizing effect of magnetic shear. The rational
number m accounts for the fact that poloidal wave numbers in the above representation are

scaled to k, instead of 27/L,. We introduce it so that we can label modes by numbers of

order unity (e.g., m = 1) even though we are considering microturbulence (k,L, > 1).



A. Lowest-order Galerkin approximation

One of the methods useful for understanding the content of nonlinear systems of PDE’s is
projection of the dynamics onto a finite-dimensional subspace of modes. Some discussion of
such truncations can be found in Ref. 16. We consider only truncations that are energetically
consistent, i.e., that retain the conservation properties of the advective nonlinearities.

The general formula for the nonlinearities in Eq. (1) in terms of the w5 variables is given

by

. +o0o l
2 U1 U+
Ny (u,u) = 5( Do D i w v — Bt i s i o

m/=—o0 I'=1
+oo 0
Ui U1+ imk :
+ ) Z[ﬂm',m_mul—l',m—m'—/Bmf,m_mful+l',m—m']90l',m')6"" Wsin(lk,z), (3)
m/=—o0 I'=l
. kb (' — ' A
Qg g = kaky(m'I" —I'm"), (4a)
Ll = Kok (1 U, (4b)

For most of this work we consider the lowest energetically consistent truncation, which
retains merely w1 = u1, Ugy = U, and usz; = uz (as well as their complex conjugates).
The DW mode u; with wave numbers k, and k, represents both the first (as a function of
increasing temperature gradient) bifurcating DW as well as a damped eigenmode (a two-field
model has two eigenvalues for each Fourier amplitude). The amplitude w3 is a drift-wave
sideband (SB); u, represents zonal variation (ZF), present in the system as a result of the
nonlinear interaction between the DW and the SB. This particular model does not retain
streamers (k, = 0), so it does not capture the KH mechanism of Ref. 9; however, it does
permit ZF’s to be generated from a DW transient.

In the Fourier representation, the M operator involves various k-dependent coefficients
Q;, mi, bi, €, and d;, where ¢ = 1,2, 3. By definition of the collisionless problem (no linear
zonal damping), 7, is taken to vanish. 7, and 73 are unfolding'* parameters (the plane
of the n; and 73 variables contains a family of bifurcations). Since €; is a function of the
temperature gradient, we choose €; = € to be the bifurcation parameter of our problem.

Note that although €3 is also a function of the temperature gradient, in the parameter

regime of interest €3 does not become large enough to destabilize the SB mode and thus
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is not treated as a bifurcation parameter; it is assumed to be constant in the perturbative
expansion methods discussed later.

The vector equation (1) truncated to amplitudes u, uo, and us becomes
’(,1_1'1 = —i(Ql — im)wl — iblpl

+1 1 1 1 1 (5)
— | =< |mwe— | = — <= | w3w a
2% I\D, D,) TV \py D) TP

Plziewl—dlpl
(1) (0) (2) 3)

+3l(GR-ZR) - (3n-Zn) o
2i L\ D, Dy Dy 2 Dy )l
7,1—13 = —Z(Q3 — 7;7']3)W3 — ib3P3
1/1 1
T2 (D_1 - D_2) TR (5¢)
Pziew—dP—l(@P—@P> (5d)
3 3wW3 343 % Dl 2 D2 1)
. 1 1 _
Wy = (D_1 - D_3> Im(w703), (5e)
(4) (2) (1)
Py=Tm ( 2Py + 2Py ) —Tm ( Z1P ) (5£)
=Im| — — —Im| — .
2 Dl 3 D3 1 Dl 1

Here an overbar denotes the complex conjugate. The zonal fields @, and P, are real, so this
system possesses ten real degrees of freedom. A consistency check on the truncation can be
obtained by noting that the quantities W = |w1|? + |w3]* + w3 and P = |P,|? + |Ps|* + P}
are conserved by the nonlinearities. The cancellations of terms under P are shown by the
numbering; term 0 vanishes separately.

The choice of system (5) for the lowest truncation is not unique. Such bifurcations can
be and have been studied using various sets of modes. For example, the transition from
low-to high-confinement regimes in a resistive-g collisional system has been studied by Hu
et al.''; however, certain aspects of a systematic center manifold calculation (discussed
below in Sec. III) were not appreciated by those authors. The transition from Bohm to
gyro-Bohm scalings for turbulent intensities was investigated for collisional dynamics by
White et al.?? with the familiar set of {DW,ZF,SB} modes. This set was chosen in such
a way that there was no nonlinear interaction of DW’s that produces a ZF mode. When
applied to collisionless dynamics, that leads to an infinite-width Dimits-shift phenomenon
for the system. The presence of the nonlinear interaction of DW’s in our model system is

a necessary element for the destabilization of the Dimits-shift regime, thus determining its



upper limit.

We will show in Sec. IV that our minimum set of modes (u;, us, and us) with ten real

degrees of freedom is sufficient for understanding the basics of the collisionless dynamics in

which we are interested. However, we also consider various ways in which additional modes

influence the results. First, because we use a perturbative center manifold construction,

our predictions cannot be extended all the way to the end of a nonzero-width Dimits-shift

regime. Therefore, in Sec. V we perform a nonperturbative calculation to find the value of

the Dimits shift. In Sec. VI we consider the addition of envelope-type perturbations to the

basic modes in order to account for modulational-instability effects. In Sec. VII we discuss

the effects of higher-order truncations.

B. Linear dynamics

The characteristic equation for the eigenvalues A® of the model linearized around u; =

u3 = 0 and some chosen uy = 2o = (@), PY)T and arbitrary e is

det[M — XD (24, )]

(6)

with M = M|z, €) being the 4 x 4 matrix describing the linear dynamics of the u; and u;

amplitudes for the system parametrized by € and linearized around zg:

1€ —d1 0
M =

0 0 —i(Qg — 1773)

0 0 1€3

(H-%)=8 o
1 D%PQO —D%wg
T L 1) o

2B @

The left and right eigenvectors associated with these eigenvalues are distinct; both will be

required for our calculations. The right eigenvectors Q; obey

M- Qi(ZOa 6) = )\(i)(zo, 6) Qi(ZO; 6)-

9

(8)



For the left eigenvectors P’, we have
MT ) ’Pi(zﬂa 6) = X(Z) (Z(), G)Pi(zoa 6)5 (9)

where t denotes Hermitian conjugate and the index ¢ stands for various combinations of the
subscripts (1, 3) and superscripts (£) described below. These eigenvectors can be constrained

to satisfy the orthonormality conditions
Pi(20,¢€) - Qj(20,€) = (5; (10)

Note that both P* and Q; are four-vectors. We can constrain the first element of each Q
to be equal to one.

In the limit z; — 0 the eigenmodes become pure DW and SB modes with eigenvalues A}
(the bifurcating DW, i.e., the one that as a function of € first becomes linearly unstable), A,
(a damped DW), and A\f (damped sidebands). For general z,, the eigenmodes are actually
combinations of the pure DW and SB modes. Nevertheless, we name them using a notation
that identifies their limit as zy — 0. Thus the eigenvalue \{ (2o, €) [associated with P (2o, €)
and Q7 (2o, €)] corresponds to the branch that is the first one to become linearly unstable
as € is increased and converges to the corresponding DW branch at z; = 0. Similarly, we
refer to AJ (2o, €) [associated with P7 (20, €) and Q7 (2, €)] and A5 (2o, €) [associated with
P(z0,€) and Q5 (2o, €)].

For some given € = ¢, the dependence of Re[\] (z,¢€)] on z is shown in Fig. 1. The z
plane is divided into regions of positive and negative Re[A] (2, €)]. The curve z = z(¢)
separating these regions is called the marginal curve and is given by Re[Af (z,¢€y)] = 0. As
€9 increases, numerical investigation reveals that the upper and lower regions of positive
Re[)\] (2, )] move towards each other [Fig. 1(a)], coalesce, then spread in the horizontal
direction [Fig. 1(b)].

For the rest of the paper, we adopt the following notation for the linear quantities of the
bifurcating mode. For the eigenvalue, we write A, (2q,€) = A] (2o, €). For the eigenvectors,
we suppress the argument dependence and write @, = Q[ (29,¢) and P, = P (2o, ¢) for
the vectors calculated at arbitrary €, and Q¢ = Q7 (2o, €9) and Py = P (20, &) for the ones
calculated at the marginal € = ¢;. Further details about the eigenvalues and eigenvectors

can be found in Appendix C1.
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III. DYNAMICAL SYSTEMS APPROACH

Although a truncated system of ordinary differential equations (ODE’s) provides only an
approximate representation of the original PDE’s; it may still contain qualitatively correct
information about the complex dynamics of the original equation. Of course, one must be
cautious. The famous Lorentz system of three coupled ODE’s exhibits behavior at high
Rayleigh number that probably has little to do with the Boussinesq PDE’s from which it
was derived. Also, higher-order Lorentz-like truncations manifest behavior quite different
from that of the original Lorentz model. Nevertheless, certain kinds of qualitative questions

may be answered successfully in low-order models.

A. Center manifolds

Even though our model system (5) represents a severe truncation of the original ITG
dynamics, analytically it is still rather unmanageable with its n = 10 nonlinearly coupled
degrees of freedom. Fortunately, dynamical systems theory provides a way of reducing the
effective number of degrees of freedom. A systematic way of proceeding is to exploit the
Center Manifold Theorem.**'> We consider only the case in which there are no positive linear
eigenvalues at the point of first bifurcation. (A bifurcation is a change “in the topological

714 of a system of nonlinear equations as a parameter such as e

structure of the solutions
passes through certain values.) The theorem then states that at linear threshold the n-
dimensional system dynamics are attracted to a smooth ny-dimensional invariant subspace
[the center manifold (CM)] as t — co. At the point of bifurcation, the CM is tangent to the
linear center eigenspace spanned by the eigenvectors of the ng modes whose eigenvalues A
(0; — A) have zero real part. The other n —ny modes span the stable subspace. Because the
stable modes are damped rapidly relative to the center modes, they achieve their asymptotic
values quickly and thus become slaved to the center modes. Their effects are not negligible,
in general, but the separation of time scales enables one to eliminate them analytically from
the formalism. The ny-dimensional dynamics on the CM represent the long-time asymptotic
behavior of the original system. Essentially, the CM reduction eliminates transient dynamics

and thereby simplifies study of the bifurcations that the system undergoes. (Asymptotically,

different nonlinear systems may in fact have the same topology; possibilities are represented
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by the simplest normal forms'* of the nonlinear dynamics on the CM.) For the collisionless
ITG regime, we will find ng = 4 (and by virtue of a symmetry, we can easily reduce that
number to 3). The resulting 3D CM dynamics are substantially tractable.

To discuss the CM of Egs. (5), we begin by decomposing the Fourier amplitudes u; and
u3 as

u=|"\1=ng,+y. (11)
us

Again, Q¢ and P, are the right and left eigenvectors [Egs. (8) and (9)] of the linearly
unstable DW branch, calculated at the marginal € = ¢, for given zy. Here Y = (y;,y3)” is
assumed to be orthogonal to the left eigenvector Py in the sense of the usual complex-valued
scalar product: P} -Y = 0. With the normalization (10), this implies that D = P} -U. The
real and imaginary parts of the complex number D (the amplitude of the bifurcating DW)
provide two real (contravariant) coordinates on the center eigenspace. For further discussion
of such decompositions, see Appendix B.

It remains to state how w, is to be treated. To that end, we must distinguish between
the collisional and collisionless problems because, as we will show, the dimensionality of the

center eigenspace (and thus the CM) differs for those two cases. Although our interest is

with the collisionless situation, insight is gained by first reviewing the collisional analysis.

B. Collisional center manifold

For the collisional problem in the regime of stable DW’s, ZF modes are linearly damped;
even if ZF’s were initially present in the system at some finite level, they would be damped on
a short time scale. Thus, in the collisional case the system (5) may only be expanded around
zg = 0. We call ¢, the bifurcation parameter at which the system expanded around zy = 0
undergoes bifurcation. The entire collection of modes in the complex A (eigenvalue) plane is
shown in Fig. 2; the modes associated with the center eigenspace (and which thus determine
the dynamics on the CM) are in the shaded area. For this case, the center eigenspace is
2D, described entirely by the complex D amplitude (for further discussion of such complex

representations, see the last paragraph of Appendix B), and the complete decomposition for
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the special case of zg = 0 becomes

u; = Dqy + yi, (12a)
Uo = Yo, (12b)
Uus = Ys. (120)

Here D = pg - w1 and the two-vectors gy and py are composed of the first two elements of
Qo and Py, respectively. y; describes the nonlinear curvature of the 2D CM with respect
to the flat Cartesian center eigenspace.

If one pursues this collisional calculation (see Appendix C2), one is led to a standard

normal form [Eq. (C15)] for the intensity I = |D|?:
I = 2{Re[\, (0, €)]] — Re(By)I%}, (13)

where A, (0,€) is the eigenvalue of the unstable DW branch and By is a known constant.
Equation (13) (together with a phase equation that is not written here) describes a Hopf bi-
furcation (a complex-conjugate pair of eigenvalues crosses the imaginary A axis) at the e = ¢,
given by Re[A;(0,¢.)] = 0. Many physicists’ intuitions about bifurcation phenomenology
have been strongly influenced by the simple qualitative features of such a Hopf bifurcation
(which is frequently relevant for systems with linear waves; see the last paragraph of Ap-
pendix B). If Re(By) > 0 (an example of a supercritical bifurcation; see Ref. 18 for some
introductory discussion), then slightly above linear threshold the DW’s would saturate at a
small intensity Iy oc Re[A, (0, €)] o< (e —¢€.)'/? [see Eq. (C16)]. Fig. 3 shows schematically the
transition to such a “finite limit cycle” regime; for related discussion, see the calculations of
collisionally damped ZF’s in Refs. 10 and 11. If instead the bifurcation were subcritical'®
[Re(By) < 0], then the DW’s would jump to a finite level as € is increased beyond e..
However, neither of these behaviors is observed in the collisionless simulations.

It is important to appreciate that each undamped zonal component contributes to the
dimensionality of the CM. We included a single zonal mode us into our formalism (Sec. IV)
to emphasize the importance of zonal modes being coordinates in the CM for collisionless
systems and the roles of ZF’s and SB’s in the formation of the Dimits-shift regime. The
simplicity of this collisionless model with just one (vector) ZF mode (i.e., two real ZF fields,
resulting in a 4D CM) allows one to clearly identify the differences in the application of

bifurcation theory and the resulting dynamics from their collisional counterparts. However,
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a complete dynamical systems analysis would require inclusion of zonal flows with all possible
radial wave numbers [not only (2k,,0)] into the CM, since all linearly undamped ZF’s (with
different wave numbers) would have to be included in the center eigenspace and would
eventually become coordinates on the CM. Thus, the realistic dynamics of the original
collisionless PDE (1) would include the effects of an infinite zonal mode spectrum and
would in principle be described by an infinite-dimensional CM. In particular, the nontrivial
fixed point F that later figures prominently in our analysis (Fig. 9) would have coordinates
not just on a 2D plane but rather in an infinite-dimensional space of various ZF amplitudes.
Nevertheless, we claim that our minimum model with only one ZF us mode is sufficient for

understanding the basics of the collisionless dynamics in which we are interested.

1. Collisionless center-manifold decomposition

Since we assume here that the zonal modes are not linearly damped, the initial ZF level
zo may be finite; thus the system (5) needs to be linearized around an arbitrary zy. For the

collisionless problem, we thus employ the decomposition

u = DQO + ya (14&)
Uy = z, (14b)
with U = (uy,u3)" and
1 0
zZ =2y + zp . (15)
0 1

The latter expansion is a special case of the contravariant representation (B5). That is, the
vectors (1,0)” and (0,1)” are linearly independent eigenvectors of the 2 x 2 null matrix (7, =
0); with Egs. (14b) and (15), we are stating that z, and zp provide two real coordinates on
the center eigenspace. (For the zonal variables, there is no stable subspace, so yo = 0.) Thus
D = P} -U (one complex amplitude) and z (two real fields) provide four real coordinates on
the 4D Cartesian center eigenspace, while ) = (y;,y3)” describes the nonlinear curvature
of the CM with respect to that space.

The collisionless system is significantly different from the collisional one. In particular,
instead of having only one point (at € = €.) where the collisional DW eigenvalues cross the

imaginary axis, in the collisionless system at any given ¢, (even ¢ < €.) there are an infinite
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number of points on the marginal curve (given by Re[A (2, €)] = 0) where DW eigenvalues
cross the imaginary axis. Alternatively, if one is given the initial conditions z = 2y and € is
increased, in linear theory the initial level persists and one DW branch becomes unstable
at some € = ¢ (found from Re[A;(zy,€)] = 0). It will be shown, however, that this does
not mean that the system (initialized with z,) bifurcates at €, since this transition does not
necessarily change topology. This suggests that the bifurcation of a collisionless system (and
thus the width of the Dimits shift regime) may depend on the initial conditions with which

the system is started.

2. Numerical evidence for the collisionless center manifold

Numerical studies of our model system (5) of ODE’s (ten real degrees of freedom) confirm
the existence of a Dimits shift and the relaxation to a CM in that model. For ¢, < € < e,
it is found that for almost all initial conditions (IC’s) an initial burst of fluctuations occurs
that eventually dies away leaving only ZF’s. This is illustrated in Fig. 5 for k£, p; = 1,
7 = 0.1, g = 0.01 (but 72 = 0) and v = 1; in terms of the temperature gradient, the
linear threshold (associated with ¢.) is found to be (R/Lr). = 1.8. At R/Ly ~ 2.2 for
many IC’s, the final state is essentially unique; that is, many trajectories are attracted at
least to the close vicinity of a nontrivial fixed point (at z = zx # 0, with all other fields
vanishing). However, other IC’s can lead to final states dependent on the IC’s. For the
chosen set of parameters, the Dimits shift terminates at (R/Ly)x =~ 2.4 (associated with
ex). For temperature gradients beyond the Dimits-shift regime (e > €x), the model does not
saturate in general. That is not important for a qualitative discussion of the Dimits shift

since higher-order truncations (see Sec. VII) do saturate.

IV. CENTER MANIFOLD CALCULATION FOR COLLISIONLESS SYSTEM

As was mentioned earlier, the problem with the simple extrapolation of the collisional
three-bifurcation scenario to a collisionless system is a misunderstanding of which modes
must necessarily be included in the center eigenspace and in subsequent calculation of
the CM. We will demonstrate that explicitly for our model (5) by both perturbative con-
struction of the 4D CM and qualitative analysis of the dynamics on the CM (this section),
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and by exact calculation of the relevant fixed point of the full nonlinearity (Sec. V). Both
saturated collisionless dynamics and the Dimits shift Ae can be predicted by analysis that
involves the construction of the CM. It is critical to realize that when the zonal components
are undamped |1, = 0; see Egs. (5e) and (5f)], for any chosen bifurcation parameter €, there
is a marginal curve (Fig. 1) on the z plane, satisfying Re[A; (2, €)] = 0, at each point of
which one of the DW branches becomes linearly unstable and the CM is 4D (Fig. 4; the
modes in the CM are shaded). A significant difference from the collisional case, in which the
expansion is done around the marginal point € = €., 2o = 0 where the nontrivial solution
bifurcates, is that collisionless dynamics (for some given €y) requires expansion around this
marginal curve.

To construct the CM, we write the decomposition (14), where {D, z} provides four real
coordinates on the center eigenspace and Y describes the nonlinear curvature of the CM
with respect to that space.

It is also important to recall that we take the DW modes to be linearly damped (1, 3, d1 3 #
0) in our collisionless model; “collisionless” refers only to linearly undamped ZF’s. The
dissipative terms in the linear dynamics of the DW’s may be viewed as taking into account
various small numerical dissipation effects always present in simulations. Eventually we will
take the limit of zero DW dissipation and will show that it does not qualitatively change
the dynamics resulting from our CM calculation.

Note that for understanding the form of the primary bifurcation in collisional dynamics,*!
it may be enough to identify the center eigenspace and only the ZF contribution to the
nonlinear curvature part. However, such an approach, although it yields a correct result
for the form of the collisional Hopf bifurcation (Appendix C2), in general will not give
correct quantitative or possibly even qualitative results a finite distance away from that
bifurcation. (Perturbation theory provides only local information.) More importantly, it
cannot give correct dynamics in the collisionless limit. Introduction of nonlinear curvature

due to coupling to linearly damped sideband branches is a systematic way to proceed.

A. Center manifold calculation around the marginal curve Re[A;(z,€0)] = 0

For a given z;, we choose €y so that Re[A; (2o, €)] = 0. To lowest order in an expansion

around the marginal curve (Appendix C3), we are led to the 4D system (C19) for the

16



dynamics on the CM. That can immediately be reduced to a 3D system for I = |D|? and 2
by writing D = pe'® and noting that the § dependence entirely decouples. Thus we find that
the CM dynamics up to O(|D, D, z — zg, € — ¢|?) in the vicinity of 2y and €, obey

I =2Re[[(2,20,¢,6)|l, 2z=g(20,¢€)l. (16)
The two-vector g(zo, €y) and the function I'(z, 2y, €, €) are known. Note that I'(z, 2, €, €)
is effectively an expansion of A\ (z,€) around z = z; and € = ¢. Supporting algebra and
explicit formulas for these quantities are presented in Appendix C 3.

The origin O (I = 0, z = 0) is a fixed point for this reduced dynamics; it is linearly
stable for € < €. (the collisionless analog of €. here is found from Re[A,(0,¢.)] = 0) and
unstable otherwise. However, the striking feature of this dynamics is that the entire I = 0
plane is invariant (I = 0, 2 = 0). This unusual behavior is the first indication that for the
collisionless situation the origin does not have the same preferred status as in other, more
conventional problems.!? Indeed, for any given € the system also admits a nontrivial fized

point F = (I, zr = zx(€)), which is the solution of
Iy: = 0, g(Z}', 6) =0. (17)

As was demonstrated in Fig. 5, such a fixed point is observed in numerical investigations
of the original system (5). We will show that the stability of F determines the Dimits
shift. A striking difference from the collisional Hopf bifurcation is that F is present even
in the submarginal regime. Also, collisional analysis predicts that the normal form (13)
is a function of the zonal dissipation 7, (By o 7; ') that does not converge to (16) in the
17, — 0 limit. Collisional analysis is equivalent to taking the t — oo limit first, then taking
the 1, — 0 limit (thereby calculating 2D CM dynamics). It is necessary to emphasize that
collisionless dynamics requires that the 7o — 0 limit be taken first, thus ensuring that the
following calculation of the CM dynamics (i.e., the ¢ — oo limit) is performed in 4D space.

Since the solution of g(0,¢y) = 0 [Eq. (17)] is ¢¢ = 0, F passes through the origin as €
passes through zero (Fig. 6). As € increases, both the marginal curve and the fixed point
move on the z plane, as schematically shown in Figs. 1 and 6.

The system (16) for describing the dynamics near the marginal curve was derived under
the assumption that the coefficient g(zo, €y) is nonzero. Remembering that the location of F

is given by Eq. (17), we note that Eqgs. (16) are valid only before F crosses the marginal curve
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(i.e., for € sufficiently small so that F is stable in the I direction). The dynamics predicted
by Egs. (16) are relatively trivial: depending on the sign of the initial Re[I'(z, 2o, €, €9)], all
trajectories starting in the vicinity of the marginal curve are either attracted to the I = 0
plane (and end up close to the initial starting point) or are initially repelled but eventually
attracted.

The point at which F crosses the marginal curve is obviously significant. We denote the €
at which that occurs by ex. That is, there is some € = ex such that F = (I = 0,2f =

zr(ex)) simultaneously satisfies
9(zF, ex) =0, Re[[(zF, 27, ex, &x)] = 0. (18)

To understand the I, z dynamics in the vicinity of ex and 2, it is necessary to expand the

z equation up to O(|D, D, z — 2%, ¢ — ex[*); we obtain [Egs. (C24)]
D =T(z,2% e, ex)D, 2 =2Re[A(zE)- YD, (19)

where A is a known 2 X 4 matrix.
An expansion in terms of modes on the center eigenspace {D,z,e} (or symmetry

considerations,

require that ) be independent of D), dictates that Y = W*P(2%)-(z—2z%) D+wP¢(zX)D(e—

i.e., periodic boundary conditions applied in the poloidal direction, which

€x) + -+, where W?P(z%) is a constant 4 x 2 matrix and w”¢(z}) is a two-vector to be
determined. That may be accomplished!*!'® by equating the time derivative of the power-
series expansion of Y to the right-hand side of the evolution equation that follows from the
restriction of Eqs. (5) to the CM. In detail, we follow the projection method described by
Kuznetsov,'® which does not require a preliminary linear diagonalization. That procedure,
essentially a determination of the contravariant representation of the shape of the CM in
terms of the nonorthogonal right eigenvectors of the linear matrix (although it was not
described in those terms by Kuznetsov), is reviewed in Appendix B.
Finally, we obtain [Eq. (C32)] the equations for the dynamics on the CM close to ex and
z5:
I = 2Re[[(z, 2%, ¢, ex)]1, (20a)
5 = [—(e—ex)a(zE) + A=) - (2 = ZDIL. (20b)
The two-vector a(z5) = 2Re[A(2z}) - wP(zE)] and the 2 x 2 matrix A(z}) = 2 Re[A(z}) -

W=D (2%)] are known.
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At any given ¢, there is an infinite number of points on the marginal curve Re[A, (z,¢)] =0
where one of the DW branches becomes linearly unstable and the CM variables evolve
according to the normal form (16). But since for € < ex the topology of the system does not
change, we do not think of these €’s as bifurcation points. It will be shown later that € = ex
is the only point where topology changes, thus making the system undergo a bifurcation

(Fig. 7) with the normal form given by Egs. (20).

B. Local analysis around € = 0 and z9 = 0

If one is interested in dynamics close to the origin O, or alternatively if zX is close to
O, one can consider a simplified version of (20). In particular, since F passes through O at

¢ = 0, one may set z5 = 0 and ex = 0 in Egs. (20) to obtain

I =2Re[l'(z,€)]I, z=(—ae+A-2)], (21)

with @ = a(0), A = A(0), and TI'(z,¢) = I'(2,0,¢,0) being known through O(z?). All
elements of A are positive and both of its eigenvalues are negative. Supporting algebra
and explicit formulas for these quantities are presented in Appendix C3. Considering the
system (21) instead of (20) is equivalent to following the derivative of the F trajectory
(while € changes) at z; = 0 until it intersects the marginal curve (when Re[A; (2o,€)] =0 is
satisfied), instead of following the trajectory itself (Fig. 8).

Equations (21) give a simplified prediction for the fixed point F [Egs. (18)]:

I]: = O, ZF = GA_1 - Q. (22)

This fixed point is neutrally stable against small variations in z because the variational

equations are

61 = 2Re[[']6I + 20 Re[l')Ir = 2Re[[']01, (23a)
0z = (—CLG +A- Z}")dl +A- 52[_7: =0. (23b)

This result can be confusing because a phase-plane analysis of Eqgs. (21) predicts that the
fixed point is absolutely stable on the invariant plane I = 0. One may perform that analysis
by noting that I cancels out under Py/wy = 2p/25 = v(z)/u(2). A sketch of the phase

trajectories is shown in Fig. 9. Note that these are not the actual trajectories of the 3D

19



dynamics but merely the projection of the dynamics onto the plane; once the system point
reaches the I = 0 plane, it stays there, since that plane is “filled up with fixed points.”
All qualitative properties of Fig. 9 can be determined analytically. In particular, since both
of its eigenvalues are negative (Appendix C3), F is attracting in the z plane for all €; in
structure, it is a stable node.

In spite of the fact that F is absolutely stable on the z plane, the final z can be either F
or may depend on IC’s; the z position at ¢ = oo cannot be obtained from the phase-plane
analysis because the temporal I dynamics have been eliminated. A simple example that
illustrates this unusual behavior is presented in Sec. IV C.

In the submarginal regime € < €., in which there are no linearly unstable modes, one has
Re[l'(z,¢€)] < 0 for all sufficiently small z’s. This means that all trajectories starting in the
vicinity of O are attracted to the I = 0 plane and end up close to the initial starting point.

In the supermarginal region €. < € < €%, the region in the vicinity of z = 0 has
Re[l'(z,¢)] > 0 [Eq. (21)], while the vicinity of F has Re[['(z,€)] < 0. Initially, most
trajectories starting close to the origin O move away from it; eventually they end up either
very close to F [for sufficiently large initial DW level I(¢ = 0)] or sometimes on the I = 0
plane at positions strongly depending on IC’s. Such dynamics are consistent with the ob-
served behavior (Fig. 5) above marginality: an initial burst of DW’s generates ZF’s, which
then annihilate the DW’s leaving only a steady ZF component as ¢ — oo. This generation
(secondary instability)/annihilation process is transient, so does not involve a distinct bifur-
cation point €®. Also, note although @ changes stability at € = €., F does not. Since the
whole I = 0 plane is invariant, the global topology of the system does not change. Thus, ¢,
does not serve as a distinct bifurcation point ¢ for the global system dynamics.

As € is increased further through ex, Re[l'(2}, €)] becomes positive and many IC’s are
repelled from the I = 0 plane; numerically, we observe that the system does not saturate.
This property of our specific model (5) is of little concern since simulations verify that
higher truncations do saturate with nonzero levels of DW activity and characteristic chaotic
behavior (Sec. VII).

Note that not all IC’s explode for € > €x; that is a property of only some of the trajectories
starting in the region of positive Re[['(z,€)]. Many IC’s with z sufficiently far away from
the origin still have Re[l'(z)] < 0 and thus are attracted to the I = 0 plane. This makes the

system started with this kind of IC become unstable at some € larger than ex. We associate
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Ae = ex — €, with the Dimits shift for the system started with a low level of initial ZF’s.
For more general IC’s, the Dimits shift depends on the IC’s and Ae is the minimal possible
width for the system.

It is useful to note that if we did not allow coupling to the linearly damped SB modes that
contribute to the curvature of the CM (the way it is usually done for collisional systems), we
would not get the sophisticated CM dynamics given by Eqs. (21). In particular, the Az - W3
term (Appendix C3) in the equation would be absent and the dynamics would be trivially
stable for any €, thus giving an infinite Dimits shift.

Also, it is important to emphasize that using both the D and z amplitudes to describe the
dynamics on the CM is necessary in order to recover the normal form (21). For example,
White et al.?? considered a collisional system of similar {DW, ZF, SB} modes. However,
since their set was chosen so that the nonlinear interaction of DW’s does not couple back
to the ZF mode, a CM calculation of this system would lead to Eq. (21) without the a
and A, - W?P terms (Appendix C3). That would again lead to a trivially stable dynamics
and prevent those authors from obtaining the finite-width Dimits-shift phenomenon in the
collisionless limit of their model system. The presence of the nonlinear interaction of DW’s

in our model is critical for the destabilization of the Dimits-shift regime.

C. A simple illustration of the dependence of time-asymptotic dynamics on initial

conditions

To understand how trajectories need not be attracted to F as ¢ — oo even though

phase-plane analysis predicts that the fixed point is absolutely stable, consider the model
I=-)\, z=(zr—2), (24)

where the variables I and z are scalars and the parameters A and z# are real numbers with
A > 0. This system has a neutrally stable fixed point at I = 0, z = z#. The exact solution
is

I(t) = Ioe™, 2(t) = 25 + (20 — 27)S(2), (25)

S(#) = exp [—10 (%‘f—”)] . (26)

where
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For fixed I = Iy (A = 0), zx is clearly stable by inspection of Eq. (24). [In more detail,
for A = 0 S(t) — exp(—Ipt), limy_,o S(t) = 0, and limy_,, 2(t) = zx; this is the analog of
the phase-plane analysis of zx described above.] However, for A # 0 one has lim;_,,, S(t) =
exp(—po), where py = Iy/ ), so the time-asymptotic behavior depends on py. For large po,
the final position is exponentially close to zz; for small py, however, z(c0) differs by a finite
amount from zx. Only the single trajectory with I, = oo actually attains the fixed point
as t — oo. This behavior arises because JF is neutrally stable in the z direction; it is
in qualitative agreement with numerical integration of the original model, as discussed in
Sec. ITIB 2. Another way of explaining that the dynamics (25) need not necessarily end up
at zr as t — oo is that any point (I = 0, 2) is a fixed point of Egs. (24).

V. NONPERTURBATIVE CALCULATION OF THE FIXED POINT F

The center manifold calculation for collisionless systems presented in the previous section
is perturbative around ¢ = 0, with the amplitudes of the undamped modes in the center
eigenspace being O(e) and the other modal amplitudes being at least O(¢?). Perturbative
CM calculations provide only approximations to the value of ex and the location zx of F.
Performing an expansion up to only O(e?) cannot guarantee that the obtained global dy-
namics are qualitatively the same as for the original unperturbed system, since perturbation
expansion is local.?? For example, there may be other fixed points that do not intersect the
origin at € = 0. Fortunately, the present model is simple enough that F and ex can be cal-
culated exactly. By doing so, we will shown that the perturbative CM calculation captures
the basic dynamics in the Dimits-shift regime.

Rigorous equations for fixed points are motivated by the observation that the dynamics
ought to relax rapidly to the CM. Since the DW vorticity w; always has a component in

the CM (since we are discussing the bifurcating DW), we define the normalized variables

P! = P/ /w = (le, (27a)
@y = ws/w = phe'’s, (27b)
P} = P3/w) = (4", (27c)

z is not normalized, being already entirely in the CM. Although for ¢ < ex all original

variables (except for z) are dynamically driven to zero, the normalized variables remain
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nonzero as t — oo. This expedites tracking the fixed point zx. Upon deriving evolution
equations for the normalized variables from Eqgs. (5) and passing to an amplitude-phase
representation, we are led after tedious algebra to evolution equations for (i, i, p}, @}, ¢4,
and 0. For example, when written in normalized variables, the zonal vorticity () equation

(5e) becomes

1 1 .
= -1 (E — D_3> ps sin 05, (28)

where I = |w;|? is the DW intensity. Similarly, the zonal pressure (P) equation (5f)

transforms to
P2 = JIm LC’e—i‘ﬁ'e» + ip' Clei(a’s—¢’1)
Dl 3 Dg 351

1, i
—I'Tm (D_l e d’l) : (29)

Demanding the steady state o, = 0 in Eq. (28) leads to the constraint sin 6} = 0 or 65 = nr.

Similarly, requiring P, = 0 gives from (29) the constraint

D
v [1- o () ) v (30
3
where we use the notation
X; =(cos¢), Y,=(sing,, i=1,3. (31)

Similar steady-state constraints on the other variables can also be obtained; they deter-
mine the locations of the fixed points on the CM. For #; = nx, the steady-state conditions

for P;, w3, and P; can be transformed to

PI
0O+ 1) + (o5 = 2 ) X1 = 0 (32a)
1
Pl
~Guxp v+ (e - i )V = 0, (320)
1
1 1 1
(1)} — Ay = 0, (320)
Pl
0P+ V) + (i + (1) X = o, (32)
1
PI
~Cuxg 1)+ (e - i ) ¥ = 0, (321)
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where

Xi = Xi/py, Y] =Yi/py, i=13. (33)
wy = wa/py, Py =P/ps, i=1,3. (34)
Ci=di—m=v, (35a)
C3 = ds—m=v+An, (35b)
An = n3 —m. (35¢)

We seek solutions for p} that scale with €. For n = 0 there is a consistent solution with

that ordering:
An
Vi) = SLeho). (30)

wo-{[(E) (D)2 o

The position zx = (ws(€), Po(€)) of the fixed point on the I = 0 plane is then

e

y [AQ _ (%) An] (). (38b)

Here AQ) = Q3 — ; < 0. This fixed point passes through the origin at ¢ = 0. Further
nontrivial algebra also shows that to lowest order in e the result (38) agrees with the location
of F [Eq. (22)] found from the perturbative CM construction. For any €, numerical solution of
the fixed-point equations demonstrates agreement with the numerically observed F through
six decimal places, providing an important check on the tedious algebraic details.
Although solutions of these nonperturbative equations capture all (possibly global) fixed
points of the original system (the perturbative CM calculation is local), we have found
only the F described above. We have no categorical proof that no other fixed points exist,
although no other stable ones have emerged from an admittedly very incomplete numerical
search of the phase space. We believe that if they do exist they are all saddle points, which

would not modify the qualitative asymptotics we have described.
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With nonperturbative results in hand, we can formulate an exact equation for the Dimits

shift. From Eq. (5a) for w; = p;e?" and the steady-state conditions, one finds
p1 = (—m + b1Y1)p1, (39)
Thus the fixed point F is destabilized in the I direction when
Yi(ex) = m/by. (40)
Upon combining this with Eqs. (37) and (40), we obtain

_mbs Q2 + v? QR +C3\] An
6*_Anb1{[( v + 03 b3 G (41)

The condition (41) is equivalent to the requirement Re['(2, ex)] = 0 for the destabilization

of F in the CM calculation. Numerical work demonstrates agreement with our simulation
value of ex; for the set of parameters used in Sec. III to obtain Fig. 5, Eq. (41) yields
(R/L7)% = 2.4, which agrees with the simulation result. The destabilization process is not
a KH instability but rather an I'TG instability modified by stabilizing ZF shear.

So far in the calculation we have kept nonzero DW collisional dissipation 7; 3. The reason
is that the right-hand sides of Egs. (36) and (40) vanish with the DW dissipation, and this
singular situation would not allow us to obtain any tractable results if we set 7,3 to zero
in the very beginning. Instead, we take the limit 7,3 — 0 in Eq. (41). An important

observation emerges in this limit, for which it is easy to show that Eq. (41) transforms to
ex = —es(bs/by)[(k2 + k;)/8k§] > €, (42)

the latter inequality following straightforwardly from the fact that ¢, = 0 at n; = 0. Thus a
nonzero Dimits shift Ae = ex — ¢, arises even in the limit of vanishing DW collisional dissipa-
tion, which substantially enhances the relevance of our model to the large-scale collisionless
simulations.

Using the expressions for the coefficients in Eq. (2), we can rewrite formula (42) in terms

of physical quantities to obtain

1

R 1+ 9k2 + k2 8k2 -
— 1) =1 1+ k%2 + k%) + 87k2 i z 1 43
(LT)* Tk )+ ”[<1+k§+k5) <k3+k;)+ ] - W)

where k, and k, are normalized to p;'. The temperature gradient at marginality is

(R/Lr). = 14 7(1 + k2 + k2), so the last term in Eq. (43) gives the Dimits shift. To
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give some comparison with the results of gyrofluid simulations,?* we take equal electron and
ion temperatures (7 = 1), k;ps = 1 for the fastest growing modes, and no drift wave dissi-
pation (u = 0). Equation (43) yields (R/Lt). ~ 4 and (R/Lt)x ~ 4.5 for the values of the
temperature gradient at marginality and the Dimits shift termination, respectively. (Flux
tube toroidal gyrofluid simulations predict these quantities to be roughly 4 and 5, with only
half the shift accounted for according to the gyrokinetic results of Dimits et al.%) Note that
although our model is obviously too simplistic to give precise quantitative results, it still

can capture important qualitative aspects of the dynamics.

VI. MULTIPLE-SCALE ANALYSIS AND MODULATIONAL INSTABILITY

The possibility of modulational instability must also be addressed when discussing the
mechanisms of the transition to turbulence. Envelope-type long-wavelength modulations®
imposed on the low-order truncated system (5) may be unstable under certain circumstances.
In particular, the steady-state solutions that exist between the bifurcation points found in
Appendixes C2 and C 3 may become modulationally unstable, thus complicating the picture
of the transition to turbulence. Our work in this area is incomplete; however, we include
some discussion in order to both make contact with the reductive perturbation approach used
by Dastgeer et al.” and to emphasize important qualitative differences between collisional
and collisionless systems. Further exploration of the inhomogeneous equations derived here
would be an interesting area for future research.

We assume that the characteristic spatial scale of envelope-type modulations R of the
original pump (linearly unstable) DW mode is much larger than the wavelength of the DW
itself, and also that the evolution of the modulational instability (with characteristic time
scale T') is much slower than the linear DW growth rate. This permits expansion of the time

and space derivatives with respect to a smallness parameter 6. Upon letting ¢, and V' be

the typical time and space scales of the original DW mode in the system and introducing
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multiple slow scales, we expand

8, = Oy, + 00r

= Oy + 007, + 820, + - -, (44a)
0 = Vo +00r = Vo +6 (9x, Oy)"

= Vo+ 60gr, +0°0r, + - . (44b)

The parameter ¢ is chosen so that a minimum number of expansions is needed to arrive at
the dynamics on the time scale of interest, while at the same time not losing any important
fast dynamics. For a collisional system the parameter may be conveniently chosen to be
§ = (¢ — €.)'/?, which measures the distance of the temperature gradient away from the
marginal point. For a collisionless (or weakly collisional) system, § = ¢ — €y (€9 being found
from Re[\; (29, €)] = 0 with 2y being some chosen point on the z plane) scales with the

distance of the temperature gradient away from the marginal curve (Sec. IIB).

A. Collisional system

In a collisional system [where zonal flow modes are linearly damped by 7o = O(1)],
the O(d) expansion will generate the original DW mode with marginal eigenfrequency
Qp = iA(0,¢.), which constitutes the center eigenspace. Zonal modes do not enter at
this order, since if introduced they would be linearly damped. They do enter at O(6?) in a
balance between (i) nonlinear generation by DW-DW interaction, and (ii) linear damping.
These DW and ZF modes are enough to obtain a nontrivial equation for an envelope. The
evolution of the envelope modulation D(T, R) of the underlying DW harmonic is described
by [Eq. (D15)]

8eyD = (8 + Vi -0r) D (45a)
=MD+ AYD - By|DI*D, (45b)

where the coefficients S\E} and By describe the basic linear and nonlinear interactions while

Vp gives the group velocity of the ITG wave packet. The notation Alnl denotes the expan-
sion of the e-dependent eigenvalue through n orders in € — €., excluding the zeroth-order
term [which is accounted for in the underlying, rapidly varying harmonic dependence; see

Eq. (D2)]. Clearly the S\E] in Eq. (45b) is an approximation to 5\[:0] = A;(0,€) — A (0, €).
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The nonuniform operator Kg) = (Or)T - A - Or (where A is a known matrix), deter-
mines the form of the “neutral surface” [defined by o(Akneutr,€) = 0 with o(Ak,e) =
Re A — Ak - A - AK] for the first bifurcating mode [which destabilizes at k, = (kq, ky)7]-
Note that sidebands are generated only at third order, so do not contribute to Eq. (45b).
That equation may be reduced to Eq. (13) with A, (0,¢) ~ —iQp + S\[i] via the addition of
high-frequency DW dynamics by the transformation

D = (8y, + 8¢,,) De "0 (46)

and the neglect of nonuniform terms.

Equation (45b) is a two-dimensional version of the standard Ginzburg-Landau equation,?®
with expansion performed in both the X (radial) and Y (poloidal) directions. It allows
solutions of the form

D = Dyelllketak)-Betnl 4 5D(R, €p), (47)

where the first term is the steady-state solution of the uniform equation with an envelope
type of modulation (k.+ Ak)- R+wép, where w = —Ak-Im A- Ak —Im Byo(Ak, €)/ Re By.
The amplitude |Dy|? = o(Ak,€)/ Re By is related to the corresponding fixed point (C16).

The second term

5'5(R’ gD) = a(R)ei[(kc+Ak’)-R+wI§D]
+ b(R) ei[(kc +Ak”).R+wu£D] (48)

is its perturbation with some k. + Ak’ and k. + Ak"” wave numbers, which may become
unstable by feeding from the base pump DW. The relationships between the wave numbers

and growth rates are given by
AK' + AK" =2Ak, W+ W' = 2w. (49)

Analysis of the Ginzburg-Landau equation shows®’ that if |k, + Ak| < f(Akneutr) |ke +
Akpeusr| with some f(Akpeutr) < 1, then the wave numbers k.+ Ak’ and k.+ Ak” are stable.
In a range f(Akneutr)|ke+ Akneutr| < |ke+Ak| < |ke+ Akneusr|, the wave number k. + Ak is
unstable due to feeding from the base pump wave k.+Ak. This effect is called the Benjamin—
Feir resonance mechanism.?” Note that the nature of toroidal configurations allows only a

discrete number of modes in both the poloidal and the radial directions. In particular,
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the minimum poloidal wave number is determined by the poloidal circumference, while
the minimum radial wave number is set by the properties of linear (or possibly nonlinear)
eigenfunctions in the presence of magnetic shear. Thus, collisional analysis predicts that as
the temperature gradient increases away from marginality, the spread of the neutral surface

2 €. one or more modes enter the range unstable to the Benjamin—Feir

~J

grows and at some €,

mechanism.

B. Collisionless system

Collisionless systems differ substantially from collisional ones. Applying multiple-scale
analysis to a weakly collisional system requires the introduction of zonal flow modes at O(d)
[as opposed to a collisional system, in which they enter the problem at O(6%)]. This is
another way of stating that the collisionless center eigenspace contains both DW’s and ZF’s.
This presence of ZF’s at O(§) forces sidebands to be generated at O(6%) [as opposed to
a collisional system, in which the sideband modes are generated at O(6%)]. The resulting

system of nonuniform equations up to O(6%) (Appendix D 2) for the envelope is [Eq. (D35)]

e D = [TW(z,6) + AF)D + AP (2, D), (50a)
Orz = (—ea+A-2)| D2+ Y (D, D). (50b)

There is no ZF linear dissipation term, since we assume a purely collisionless regime (7, = 0).
[More precisely, collisionless means 7, = O(d™) with n > 4, since we carried out the expansion
only up to O(4*).] Also note that without the nonuniform terms, the system (50) reduces
to Egs. (21) under the transformation (46). Thus, it captures both the dynamics of Egs. (5)

in the Dimits-shift regime as well as modulational effects.

1. Modulational stability in the Dimits-shift regime

Obviously the stability properties of Egs. (C35) in the Dimits-shift regime A (e < ex),
particularly the stability of the fixed point F(Ir = 0, zx) pertain to Egs. (50) as well except
that the location of F is slightly perturbed to

zr=A""" (ea - E(I?) (51)
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and the criterion Re[l' (2% = zx(ex), ex)] = 0 for finding the critical e is slightly changed
to

Re[TM (2%, ex) + A(I? + A(I?zji_] = 0. (52)

Here A(I?, A(I? and 2%) are the k-space versions of the operators Kg), etc. Thus, the
CM dynamics of the collisionless system (50) are modulationally stable in the Dimits-shift
regime. This differs from the collisional CM dynamics (45b), which become modulationally
unstable near marginality € = €.

Calculations similar to our multiple-scale analysis have been attempted with regard to
the dynamics of the Dimits-shift regime. Weiland et al.® used the reductive perturbation
method!® to approach the generation of ZF modes in a collisionless reactive model. That
calculation did not allow the presence of ZF modes at first order, but rather only allowed
them to be generated at second order above linear marginality threshold as in the standard
collisional calculations. Such an approach misses the importance of sidebands and their role
in the formation of the Dimits shift. In particular, in that analysis generation of ZF’s is found
from the O((e — €.)*) equation drz = f]%) (lN),B), which does not capture the saturation
mechanism for ZF’s in the collisionless system or allow one to calculate the destabilization

(upper limit) of the Dimits-shift regime.

2. Transition to collisionless ITG turbulence

At e = €® = ¢4 satisfying Eq. (52), the Dimits-shift regime Ae = ex—e, of no DW activity
is terminated. Above this instability limit, the system (50) cannot saturate for some IC’s. As
we remark in the next section, higher-order modal truncations do saturate. In essence, the
multiple-scale analysis also adds more modes, although ones ordered to be of long wavelength
relative to the primary modes retained in the homogeneous theory. Ultimately, we cannot
make definitive statements about the transition to collisionless turbulence until we combine
multiple-scale analysis with higher-order truncations; that remains to be done. However, we
will comment briefly on the general structure of the theory and derive the general form of a
collisionless Ginzburg-Landau equation.

To find the dynamics of the original system above ex, one needs to expand Egs. (1) up to
O(6*). Following the formalism presented in Appendix D 2, we collect the O(4*%) terms and

calculate their contribution to the z part of the constraint equations (50); we will see later
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that corrections to the D part of (50) are unnecessary. This constraint includes corrections
to already existing uniform terms as well as various new nonuniform ones. The resulting

system for the envelope amplitudes is

9, D = [TW(z,€) + AD1D + AY (2, D), (53a)
Orz = (—ae+A(2) - 2)|D|> + =0)(D, D)
+SO(D, D)+ 59 . 2. (53b)

As one can see, the equation for the D amplitude is unchanged, whereas the uniform part of
the z equation now involves an amplitude-dependent matrix A(z) and its nonuniform part
has two new terms involving the f]g) and ig) operators.

For € < ex, the system (53) is stable for any IC’s. The nonuniform terms slightly change
the stability and the location of the special fixed point, but otherwise do not play any
interesting role in the dynamics.

For € > ex, some solutions (with IC’s that generate trajectories ending up close to F)
become unstable (cannot saturate via just uniform terms). After some transient dynamics,
these solutions satisfy Re[l'(zx,€)] > 0 and —ae + A(zx) - zr = 0. Thus, to study the

evolution of these solutions for € > ex we use the system

8, D = [T (25, €) + AD]D + AW (2, D), (54a)
orz = S2(D,D) +59 - 2. (54b)

In a regime where the z amplitude variation is slow compared to that of ﬁ, the system

(54) converges to®

9, D = [T (25, €) + AD]D + AW (2, D), (55a)
z = -(S@) £P(D, D). (55b)

Since in the 0/0Y = 0 limit the last operator in the first equation turns out to be a constant
(independent of R)® multiplied by |D|2D, Egs. (55) provide a collisionless version of the
Ginzburg-Landau equation that describes the usual Benjamin—Feir resonance mechanism
just above the ex of the collisionless system. In particular, since the poloidal wave num-
bers are discrete (determined by the poloidal circumference), as the temperature gradient
increases away from € = ex the spread of the neutral surface grows; at some €, > e€x,
we predict that one or more modes should enter the range unstable to the Benjamin—Feir

mechanism for the transition to collisionless turbulence.
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VII. EFFECTS OF WEAK COLLISIONALITY AND HIGHER-ORDER TRUN-
CATIONS

Now consider the addition of very weak zonal damping: 2 = —nez + ---. (12 can also be
considered to be an unfolding parameter.) By weak, we mean that the zonal modes are still
placed into the 4D center eigenspace. Alternatively, the weakness of zonal damping means
that 7, = O(6™) (n > 2) and thus enters no sooner than third order in the multiple-scale
expansion described in Sec. VL

If one assumes that 7, = O(6*), expansion up to O(d%) (with the neglect of nonuniform

terms) yields

D = I'(z,€)D, (56a)
N——r
0(5%)
z = S—ae+ﬁ-z)|D|i— Mz . (56b)
0(83) O(é*)

Here we changed back to the D variable (which includes the DW harmonic dependence) by
performing the transformation (46) and neglecting nonuniform terms.

The collisionless dynamics involves different time scales: ¢y is associated with the DW
linear damping rate, 77 characterizes motion of the wave packet with the group velocity, and
T, describes evolution toward the F determined by the O(4?) terms in (56). The presence of
the small damping parameter 7, introduces a new, very long time scale T3 and perturbs the
position of F. For € < €x, arbitrary initial conditions typically move rapidly to the vicinity
of the original fixed point (of the undamped dynamics), then slowly relax to the final steady
state determined by all of the underbraced terms. That state involves a small, nonturbulent
DW component.

This disparity of time scales underlies the bursting behavior observed in Ref. 4 for weakly
collisional runs. That does not occur in the lowest-order truncation studied here, but does
occur in higher-order ones, whose additional degrees of freedom allow F to be destabilized
in other directions and, thus, the trajectories to be ejected from its vicinity after the slow
relaxation, producing a bursting type of dynamics with a characteristic collision frequency.
Preliminary long-time (many-burst) integrations of such truncations show relaxation to a
quasiregular state (Fig. 11). We believe that limited computational resources precluded the

authors of Ref. 4 from integrating more than a few bursts and seeing this quasiregular state
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on a long time scale.

In real experiments one observes, and one is interested in, plasma turbulence occurring on
the transport timescale T, (n > 3), which is of the order of a second, much longer than the
characteristic damping time of zonal flows (of the order of the ion-ion collision time). Strictly
speaking, study of this regime requires higher-order expansions and truncations than we
have considered here. Nonetheless, as is easy to see from our treatment of weakly collisional
systems, the smallness of the damping parameter results in a sophisticated mechanism of

the transition to turbulence that includes the Dimits-shift phenomenon.

VIII. DISCUSSION

In summary, we have considered a simple yet instructive model for the transition to
collisionless ion-temperature-gradient-driven plasma turbulence. The excitation of zonal
flows, important in a variety of physics contexts, plays a crucial role in the dynamics of that
transition. A quantitatively accurate calculation of the critical temperature gradient for the
onset of turbulence (known as the Dimits shift) with complete toroidal physics is best left
to large simulations. Here we focused on the detailed understanding of basic conceptual
issues and clarified some subtle asymptotic behavior. Unlike some other models of recent
interest,'1?2 our model captures a zonal-flow-driven Dimits shift even with a very simplified
set of modes. By using tools from dynamical systems theory, we have shown how the Dimits
shift is related to a certain fixed point of the nonlinear system (with just one bifurcation
point of interest) and how that shift can be calculated in terms of the physical parameters
of the model.

As opposed to systems with linearly damped (weakly damped in reality) zonal modes
with a 2D center manifold, the systems with linearly undamped zonal modes have at least
a 4D CM, thus leading to nontrivial dynamics in the Dimits-shift regime. The differing
dimensionality of the CM’s for the two cases is the result of the interchange of the limits
t — oo and zonal damping 7, — 0. The Dimits shift occurs when the 7, — 0 limit is taken
first. This important conceptual issue has been previously overlooked when trying to apply
standard collisional dynamical-systems techniques to collisionless models. We wish to stress
that this asymptotic interchange of limits, related to very weak zonal damping, underlies the

very existence of the Dimits shift. The significance of such subtle asymptotology has been
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previously discussed in the related context of the collisionless simulation of drift waves.®

We employed multiple-scale analysis to study the possibility of the fixed point becoming
unstable to modulational (envelope) perturbations. For collisionless systems, we derived the
system of nonuniform equations (D35) as a generalization of the Ginzburg-Landau equation.
We concluded that the Dimits-shift regime is not destroyed by modulational instability.

The low-degree-of-freedom methods that work well for our Galerkin-truncated model
cannot be practically applied to the original collisionless ITG system (1) of PDE’s, even
close to marginality. To do so, one would have to add an infinite number of undamped zonal
modes into the CM calculation (Appendix C3) or into the solution of the O(4) equation
in multiple-scale analysis (Appendix D). The resulting CM would be infinite-dimensional,
and one would have to calculate the fixed point in infinite-dimensional space. (In practice,
not all zonal modes can be considered to be collisionless, but the relevant space would still
be very large.) A related point is that the Dimits shift depends on the order of truncation.
Together, these observations point to the desirability of alternate methods of calculation
that apply directly to the PDE’s.

In any event, we do not claim to have calculated the Dimits shift for a realistic system
of PDE’s. We do, however, believe that the insights gained from this calculation remain
relevant for more complicated and physically complete models. Systematic dynamical sys-
tems analysis has been little used for problems of many-mode plasma microturbulence, and
indeed the difficulties are severe for situations of fully developed turbulence. However, for
qualitative discussion of the dynamical mechanisms involved in the transition to turbulence,
the present calculation demonstrates the utility of such analysis and emphasizes the impor-
tance of the center manifold. The detailed study of models with a small number of degrees
of freedom has important pedagogical worth and, for qualitative understanding, provides a

viable alternative to large, brute-force, and expensive numerical simulations.
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APPENDIX A: APPROXIMATIONS TO THE LINEAR MATRIX

As a basis for the linear matrix M in our Eqs. (1), we begin with the original linear matrix

from Ref. 21 for the description of reactive ITG dynamics of the (p, P)? fields:

~ 1(—wx +2wq)/(T+0b 2iwg/(T+ b
o[ e+ 20/ o (7 +b) "
—i(1 + n;)ws + 3iwa[l — (7 +b)] Biwy
Here 7 is the ratio of ion and electron temperatures, b = -2 pZ, and p; is the ion gyroradius.
The ion diamagnetic drift frequency wx is given by wx = —k,p;vy/L,, and the toroidal

drift frequency wy for a large-aspect-ratio tokamak in the outer midplane of the torus is
wqg = wxL,/R. Here vy is the ion thermal velocity, L, is the ion density-gradient scale
length, and R is the magnetic curvature. Hats denote integro-differential operators; with
our choice of boundary conditions, those become multiplicative in k space.

We shall modify the original matrix (Al) in order to retain only terms essential for
the dynamics in which we are interested. In particular, we consider the flat-density limit
and neglect all terms involving wx except for the nwx driving term (which is proportional
to L7').

One significant feature of such reactive models (which contain no classical collisional
dissipation) is the need to somehow include the Landau damping effect. That can be done
through a gyrofluid closure.?! In particular, the presence of Landau damping terms in the
pressure equation enforces physically correct properties like the dependence of the dispersion
relation on 7 or the finite frequency of the first bifurcating mode.

Upon introducing wgs = wy/7 and incorporating the above corrections, we transform the

matrix (A1) in terms of the (w = D=1y, P)T fields to obtain

I\/‘il/(-‘)ds =
( 2D 2% )
. R ~N—1 . rN—1
( — ZTL—TD +3ir(D™' —71) (6” _ (A2)
|was| o ) + |wd$|7’l/)
TV Was
- /

Here we used D = (@ — V2) [with @ being zero for convective cells (k) = 0) and the identity

operator otherwise.'?] and 7; = L,,/Ly. The parameter v accounts for Landau damping.
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In the limit of small 7, the system (w, P)” with the linear matrix (A2) becomes linearly
unstable at R/Ly = (1 + 7D). Thus, by neglecting terms of higher order in 7 while simul-
taneously appropriately modifying the definitions of the driving term and the frequency ﬁ,
we are able to obtain a system that both is as simplified as possible and also possesses the
correct linear threshold as a function of various parameters.

The resulting matrix M has the form

~

—i(Q — i) —ib

- b
A —d

(A3)
Here ) = —2i(D~' +7)8, and € = —irD~'[R/Ly — (1 + 7D)],. The coefficient 7j = — V2
describes weak collisional damping and is included here to extend Eq. (A1) to the dissipative
case; b = —2i5y; and d = 7 + 7}, where 7 = —V\gy\. Note that the coefficients in Eq. (A3)

are dimensionless and normalized to wg.

APPENDIX B: PROJECTION METHOD FOR PERTURBATIVE CENTER
MANIFOLD CALCULATIONS

We review the methodology for perturbative calculation of the center manifold of the
n-dimensional system

0w = M(€) - u + Nul, (B1)

where N = O(u?). We assume that we can write M(e) = M©® + eM®); generalization to
arbitrary € dependence is straightforward. M(e) is an arbitrary n x n matrix, not neces-
sarily Hermitian, parametrized by e. It possesses eigenvalues \;(€) (i = 1,...,n) with left
eigenvectors p’ and right eigenvectors g;, assumed to obey p'' - g; = 6:. It is assumed that
at € = 0 ny eigenvalues lie on the imaginary axis. The associated eigenvectors span an
no-dimensional subspace, the center eigenspace; all other eigenvalues are assumed to be sta-
ble. The Center Manifold Theorem (CMT) then states that there exists an ng-dimensional
invariant manifold, the center manifold, that is tangent to the center eigenspace at € = 0.
This basic version of the theorem characterizes the CM for fixed ¢ = 0. In order to deal
with systems parametrized by €, and thus to consider dynamics at € # 0, one may adjoin to
Eq. (B1) the equation ¢ = 0, thus including € as a dynamical variable and augmenting the

dimensionality by one.'%5 The CMT applies to this new (n+1)-D “suspended” system, and

36



predicts an (ng + 1)-D CM tangent at the origin to an (ng + 1)-D center eigenspace. The
goal is to calculate the shape of that surface perturbatively.?® (Note that in this paper we
quote the dimensionality of the CM as ng, not ng + 1.)

In early accounts of the perturbative calculation,'* a preliminary linear transformation
was performed to bring M to diagonal form. That is unnecessary, however; projection
methods!® based on general contravariant representations can be used instead. We shall
discuss two variants of this approach, Method A and Method B. In both, we exploit the fact
that the g’s form a nonorthogonal basis, with the p’s providing a dual or reciprocal basis.
In Method A, we expand w contravariantly in terms of the gy’s, where gy = g(e = 0) and
po = p(e = 0). Thus

u = Z Diyqoi + Yo, (B2)

1€Ng
where yo = Zkgno y¥qox lies in the stable subspace. The contravariant coordinates D'
and y* are interpreted in Fig. 12 for the case n = 2, ng = 1. The modal amplitudes are
obtained by noting from Eq. (B2) that D{ = p{' - u. Then, by applying the operator
Po = Y icn, oi pl| (which projects onto the center eigenspace) to Eq. (B1) and recalling
that the pj’s are associated with the eigenvectors of MO that lie on the imaginary axis, one
obtains
Di = i} ;D) + pif - (N + N') (B3)
(summation convention), where Qf),j = ipf;r MO qo,; gives the marginal eigenfrequencies
and N’ = eM®) . (D7qo; + yo) is a contribution to the effective nonlinearity that arises
because we choose to expand around marginality. The term epf)T MM - go,; provides an O(e)
correction to the unstable eigenvalue(s), while the O(y,) part of N’ will generate eigenvalue
corrections of O(e?). On the CM, the CMT guarantees that the y*’s are at least quadratic
in any combination of € and D’. They can be calculated perturbatively?® by assuming a
Taylor expansion for y, (beginning at second order), then equating its time derivative to
the right-hand side of the dynamical equation for y,, obtained by applying the orthogonal
projection operator Qo = | — Py to Eq. (B1):

9o =M9 .y, + Q- (N + N'). (B4)

The resulting solution for y, can then be used to evaluate the nonlinear terms in Eq. (B3)

to any desired order.
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Although this method is completely systematic and furnishes the shape of the CM directly
in terms of the original variables, one disadvantage is that the unstable eigenvalue is produced
perturbatively, cluttering the algebra. It is therefore sometimes convenient (Method B) to

expand in terms of the g = g(¢) basis:

u = D'q; +y, (B5)

where p'' -y = 0. One has (having utilized Q=1—-P, P =3, q;p'l)
D' = \(e)D' +p't - N, (B6a)
y=My+Q-N. (B6b)

Here there is no O(e€) correction to the nonlinearity; the full A;(¢) has appeared directly.
The basic perturbation expansion proceeds as before. However, it is important to note that,
because the eigenvectors rotate as a function of €, the geometric shape of the coordinate-
independent CM is now represented by different contravariant coordinates; that is, D #
Di and the final equation for D' on the CM differs by small terms involving e from the
equation for Dg Effectively, Method B incorporates a nonlinear transformation of variables
that must be calculated explicitly if connection needs to be made to the original Dy’s.
However, topological properties, including the stability of fixed points, are invariant to this
transformation.

In the present work, we use Method A exclusively.

In Sec. III B we discuss the 2D Hopf bifurcation, yet write Eq. (12a), u; = Dgy + y; [an
example of the Method A decomposition (B2)], in terms of a single basis vector go. This is
correct because we do not explicitly consider the complex conjugates of the w amplitudes
(which are required for reality of the original x-space fields). A basic example is furnished

by the harmonic oscillator equations & = Qy and § = —Qx (where we consider = and y to

be real), or £ = M - & with M = Q. The eigenvalues of M are AL = Fi2, and the
-10

eigenvectors are g+ = (1, Fi)” and p* = %qi. g, and g_ span a 2D space of complex-valued
vectors. The representation of a general complex vector z, z = a™q, + a q_, reduces for
real z = & to € = aTq, +c.c.; here g, is analogous to the gy in Eq. (12a). Furthermore, the
oscillator amplitude D = DT = p™.@ = 2 (z+iy) obeys D = —i2D. In this representation,
the complex-conjugate pair of eigenvalues discussed in the Hopf bifurcation arises because

the equation D = iQ2D is also satisfied.
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APPENDIX C: CENTER MANIFOLD CALCULATIONS

Here we provide details of the perturbative construction of the CM for both the collisional

and collisionless cases.

1. Linear dynamics

The eigenvalues A4 (0, €) for the two DW branches are
1
/\:t(o, 6) = 5{—(1/1 + 2771 + ZQl) + [(1/1 — iQ1)2 + 4b16]1/2}. (Cl)

The branch with A, (0, ¢€) is the first to become linearly unstable; it does so at the €. found
from Re[A;(0,¢.)] = 0. At marginality A\, (0,¢.) = —iQ2p is purely imaginary with Qp =
d194 /(d1+m). This result is most easily obtained by decomposing the characteristic equation
into real and imaginary parts, rather than by manipulating Eq. (C1) directly.

Because M has no special symmetry, the left and right eigenvectors associated with these
eigenvalues are distinct; as explained in Appendix B, both will be required. The right
eigenvector g obeys M; - g+ = A.(0,¢€)g+. Because the normalization of g is arbitrary, we

may fix its first (vorticity) component to one. Then

w= . (C2)
(—i( — imy) — Ax (0, €)]/(iby)

For the left eigenvector p, we have MJ{ “py = Xi(O, €)p+ and

1 1

TN iby/[dy + A+ (0, €)] )

Here we choose N. to satisfy the arbitrary normalization pl - q+ = 1. Also note that
the orthogonality conditions pl - g+ = 0 are satisfied. Nontrivial consequences of this
orthonormality are that the o and P components of the p’s satisfy p_ , = 1 — py  and
P—p = —P+,pP-

When 7, = 0, the DW threshold is ¢, = 0. At that threshold, the DW eigenvalues are
A+(0,0) = —i€2; and A_(0,0) = —7. For this special case, the bifurcating ITG mode has no

pressure component at the point of bifurcation: g, = (1, 0)%.
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2. Center manifold calculation for collisional system

Here we consider the CM calculation of the collisional [, = O(1)] system (5) in or-
der to allow comparison with the weakly collisional calculations presented in Sec. IV and
Appendix C3. The overall collection of modes in this low-order truncated model in the
eigenvalue plane is shown in Fig. 2. Shaded on the figure are the modes included in the

center eigenspace and which therefore determine the dynamical constraints on the CM. Note

10
that the two damped zonal modes with linear matrix My = —1n5 are not coordinates

01
on the CM for 1, = O(1).

We apply the projection method A (see Appendix B) to the suspended system, yielding
CM dynamics described by the D = pg -u; € T° variable on the center eigenspace. Here
po=pi(e =¢) and gy = g, (e = ¢.) = (1,¢P)T. The vectors {y1,yo,ys} € T° span the
stable eigenspace.

Application of the projection operator Py to the u; equations of the system (5) gives for

the dynamics on the CM

D = pl-M . gD +p} - (N, + N}), (C4a)
¢ =0, (C4b)

where M = M, (e = ¢.) and N| = (e — e )M - (oD + y1) with M{" = §.M; .. Note that
in this method only M§°) is treated as a linear term; the other terms of the expansion of M;
are considered to be nonlinear (since they involve at least one power each of € — ¢, and D).

The vectors {y1, ¥2, y3} € T° are slaved to the center modes; they are at least O(|D, D, e—

€c|*) and thus contribute to the nonlinear curvature of the CM. Application of the orthogonal

projection operator Qy = | — qq pg to Egs. (5) gives, upon using Egs. (12),
g = MYy + Q- (Ny + N)), (C5a)
g2 = MY -y + N, (C5b)
g3 = MY - y3 + N3, (C5c)

Keeping only terms up to O(|D, D, e — ¢.|*) in Eq. (C4a) gives

D =1\0,6) + Gy - 45]D + (e — e)pl, - MY - gy, (C6)
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where A" denotes the expansion of A through order n in € — ¢, and

1 1
1 GT_EJ 0
G - 1', 2 1 . C7
0= 5P 1o 1 (©7)
D, D,

Analogously, keeping only terms up to O(|D, D, € — ¢|?) in Eqgs. (C5) gives

g = MY .y + KoD(e — €,), (C8a)
g = MY -y, + Re(J,) DD, (C8b)
g3 = MO g, (C8c)

)

Here Ky = i(l — gop}) - €. [the specific form MY « e e” and the constraint e” - gy = 1

were used, where e = (1,0)” and e, = (0,1)7] and

Jo = 1 (0 ! <2>>T. (C9)

We seek solutions for the y; (i = 1,2, 3) curvatures in terms of the coordinates on the CM

up to O(|D, D, e — ¢|?) in the form

y; = wP’D? + wPPDD + wPPDD + wPD(e — ¢,)

+wPDle— o) +wi(e— )+ (C10)

Time-differentiating y; yields

)\+(O, CC)D + o
. dy; Oy; Oy; - —
i = ) ) : ) 11
y <6D -~ ae) X.(0,¢.)D + (C11)
0

where the various derivatives are obtained from the ansatz (C10). Upon replacing the g; in

(C8) by the right-hand sides of Eqgs. (C8), we obtain

—MY . wPP = Re(Jy), (C12a)
A(0,e)l = MO wP = KyD(e —e.). (C12b)

The solution of Eq. (C12a) is straightforwardly w?? = n;* Re(Jp). Solution of Eq. (C12b)
for wP¢ is complicated by the fact that the matrix M§°) — A4 (0, €.)! has a null eigenvector,

so it is not invertible in the conventional sense. However, upon recalling the Fredholm
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Alternative Theorem, we note that the solvability condition pf) - Ky = 0 is satisfied and that
also y is constrained by definition to satisfy pg -y = 0. Because the two right eigenvectors
qo and g, [where gq; = q_(e = ¢.)] are linearly independent and span the 2D DW subspace,

we conclude that w{¢ o< g5 and find

pe_. [ Ple=¢)-er B
wy =1 </\+(O, (0. Gc)> q - (C13)

The rest of the coefficients in Eq. (C10) vanish. Thus the curvature contributions to the CM

up to O(|D, D, e — ¢|?) are given by
y = wD(e—¢.), y2=mn;"Re(Jy)DD. (C14)
The dynamics on the CM can now be obtained by substituting Eqgs. (C14) into Eq. (C6):

D = A?(0,¢)D — By|D|*D, (C15)

[o0]

with By = —Gg-Re(Jy) /ne. )\[f] is obviously an approximation to A} = A, so we drop the
superscript. This equation has the normal form of a system undergoing a Hopf bifurcation
at Re[A;(0,¢)] = 0. That is, with I = |D|?, the trivial fixed point of Eq. (C15), I = 0, is
stable for Re[A; (0, ¢)] < 0 and unstable otherwise.

The other fixed point is the nontrivial one
I = Re[\;(0,¢)]/ Re(By). (C16)

This exists only above the linear threshold, i.e., Re[A, (0, €)] > 0. Since Re(Gy)-Re(Jy) < 0,

one has By > 0; this solution is supercritical (Fig. 3).

3. Center manifold calculation for collisionless system

Here a system with no zonal damping is considered and a systematic CM calculation is
performed to identify the collisionless dynamics. To proceed, we set 72, do = 0 and note that
the zonal modes, now with My = 0, possess trivial linear dynamics.

Since in the collisionless system the whole plane I = 0 is invariant, it is necessary to
consider the system in the vicinity of an arbitrary z, (Sec. II B) on that plane. In particular,
for any given ¢, there is on that plane a curve Re[A; (2, €)] = 0 on which one of the DW

branches is marginally stable (Fig. 1).
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For any point on this marginal curve, the overall collection of modes in our low-order
truncated model (5) in the eigenvalue plane is shown in Fig. 4. The shaded modes are the
ones in the CM. Note that undamped zonal modes are part of the CM, which is now 4D.

Collisionless dynamics requires expansion around the marginal curve.

a. Center manifold calculation: Around the marginal curve Re[Ay(z,€0)] =0

Again, we follow the projection method A (Appendix B) for a suspended CM calculation.
Here, for some given z,, we choose ¢, so that it is on the marginal curve Re[\ (2, €)] = 0.
Utilizing the Py and Qg operators, which serve to project the dynamics onto the center
and stable eigenspaces respectively, we perform the decomposition (14). The eigenvectors
Qo = Q7 (20, €) and Py = P (20, €) are calculated on the marginal curve.

Application of the Py operator to the original DW-SB set U = (u, u3)” gives the new
(complex) variable D = ’Pg -U. Since the zonal mode wu, is linearly undamped, the z variable
also spans part of the center eigenspace. Hence the {D,z} € T° set of variables serves as
coordinates on the 4D CM.

The equations for the D and z coordinates on the CM are obtained from the original

equations (5):

D= Po-MP.Q,D+P}- (N+N), (C17a)
= N, (C17b)
é = 0. (C17c¢)

Here N = (N1, N3)T, MO = M(e = ¢y), and N' = MWD (Q,D+Y) with M = .M.
Again, note that in Method A only M is treated as linear, while the other terms of the
M expansion are considered to be nonlinear.

The equation for the Y variable, which describes the dynamics on the stable manifold, is

obtained by applying the orthogonal projection operator Qy = | — Qo P} to Eq. (5):
Y =MD Y+Q- (N +N). (C18)
Since Y € T° lies on the stable manifold, it describes the nonlinear curvature of the CM

and thus is at least O(|D, D, z — zg, € — €|?).
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Keeping only terms up to O(|D, D,z — zg,¢ — €?) in the equations for the D and z

variables gives

D = F(Z,Zo,ﬁ, Eo)D, z= g(Z(),C())DD. (Clg)

Here z is assumed to be in the vicinity of zy. The function I'(z, g, €, €) is an expansion of

the complete eigenvalue A, (z,€) around 2y and eg:
(2, 20, €, €0) = A (20, €) + PJ - G(20, 0) - (2 — 20). (C20)

The functions G(zy, ¢y) and g(zy, €y) are given by

(D%—Dz)+ %—%) @ 0
1 142 4 L 11,0
G(Zo,Go) = - D q P Dsq ) (C21a)
2 (L _ L) 0
D D
207 5
(L _ _) 7®
9(z0,6) = Im Lo Ds . (C21b)

%(6(4) _ q(3)q(2)) + Dqu@)q(?’)

1

Here we have used the notation Q¢ = (1,¢®, ¢®,¢™)™ and Py = (p(V), p®, pB®, p™)T.
Keeping terms up to only O(|D, D, z — zg, € — ¢|?) in Eq. (C18) for Y gives

V=M. Y+H (z—2)D+hD(—c), (C22)

where h = i[(0,1,0,0)T — 5 Qo] and the 4 x 2 matrix H is given by H= (I — Qo P}) - G
0

At some € = e, there is a 2z = zx(ex) such that

Re[[(zf, 25, ex, ex)] = 0, (C23a)
g(zF,ex) = 0. (C23b)

To understand the z dynamics in the vicinity of € = ex and z = zX, it is necessary to expand

Eq. (C17b) up to O(|D, D, z — 2%, € — ex|?); we obtain

D =T(z,2%,6,ex)D, %=2Re[A(zX)-YD], (C24)
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with the 4 x 2 matrix A(zF) = (20)7'(A1(25), As(2F)),
1 (3) 0
Ai(zo) = (Dl >q ’ (C25a)
DL@ )_5(2)) — 16(3)4_@11
1 1
—| 5 — 7 0
A3(Zo) = b1 Dg) . (0251))
1 52 1
Dsq Dy

We seek solutions of Eq. (C22) for the Y curvature in terms of coordinates on the CM
up to O(|D, D, z — 2%, € — ex|?) in the form

V=W"2})(z—25)D+w"(25)D(e —ex) + - . (C26)

Various terms representing other quadratic combinations of the set {D, D, z—z¥, ¢ —ex } are
not written explicitly in Eq. (C26); it can be easily shown that those have zero coefficients.

Time-differentiating Eq. (C26) yields

3\ * D e
Y — <0y oy 0y 3)’) A (z5, ex)D + | (C27)

oD’ (‘)D 0z’ Oe

where the various derivatives are estimated according to Eq. (C26). Upon equating the

representations (C27) and (C22), we obtain

A (2E, ex)l = MO]-W=P(2%) = H, (C28a)
A (2E, ex)l = MO] - wP<(2%) = h. (C28b)

To obtain W?P(2%) and w?”¢(z%), we note that the matrix A\, (2%, ex)l — M© is not in-
vertible; upon using the Fredholm Alternative Theorem, we find that w”¢(z%) is a linear

combination of the eigenvectors that span the stable eigenspace:

w”(2¥) = [of Q7 (20, €0)

+o7 Q3 (2o, €0) + o5 Q3 (20, €0) ] zo=2% (C29)

€EQ—€x
where the coefficients o], a4, and a3 are to be found from Eq. (C28b). We do not write

them explicitly because the approximation in Sec. C3b is much simpler.
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The coefficient W*P(2}) is a 4 X 2 matrix:

WP (27) = Z Qi(20, €) - (Bis Vi)l zo=z2 - (C30)

co=¢x
where the summation parameter ¢ stands for the following combinations of superscripts
and subscripts: (—,1), (+,3), and (—,3). The various coefficients are to be found from
Eq. (C28a).

Thus the curvature contribution to the CM up to O(|D, D, z — 2z, € — ex|?) is given by

YV =W?P(25) - (z — z5)D + wP(z5)D(e — €x). (C31)

Substituting this expression into equation (C24) yields
D = [(z,25, ¢ ex)D, (C32a)

& = 2Re[~(c — ex)b(z])
+A(2%) - (z — z5)]DD, (C32b)

with A(zF) = A(z5) - WP (2%) and b(zf) = A(zF) - wP(2F).

b. Local analysis around zg = 0 and € = 0.

In the general case, the expressions (C23) for the location of F and its nearby dynamics
[Egs. (C19) and (C24)] are quite tedious to analyze. However, in the case when ex is
sufficiently close to zero [and upon noting from Eq. (C23) that F crosses the origin at
e = 0], those expressions may be simplified by expansion around zg = 0 and € = 0.

Linear quantities are obtained from Egs. (6), (C2), and (C3) at 2y = 0 and expanded

around € = 0:

. . b1€
A (0,6) = —i(y —im) + Do (C33a)
A_(0,¢) = A\ (0,¢€) = —(v1 +m1), (C33b)

Q7 (0,0) = (g0,0)", P7(0,0) = (po,0)", and Q7(0,0) = (g5 ,0)", with go = (1,0)",

q = ! , (C34a)
(V1 — ZQl)/(Zbl)

1

Do = . (C34b)
ibl/(l/l + ZQl)
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Upon substituting these quantities into Eqgs. (C32), we obtain
D=T(z,&)D, %= (—ac+A-z)D (C35)
with @ = 2Re[b(0)] = 2Re[A(0) - wP¢(0)], A = 2Re[A(0)] = 2 Re[A(0) - WP (0)], and

['(z,e) = I'(2,0,¢,0)

= A4(0,6) +p} - G(0,0) - 2, (C36a)
(3-%) o
1 0 B
G(0,0) = 5| (L - L) : (C36b)
D1 D
o -k
The matrix A(0) = (2i)"1(A.(0), A3(0)) is given by
0 0
A1 (0) = ; (C37a)
0
1 _ 1
(L -1) ¢
A3(0) = (7’1 7’3) . (C37b)
"

Since local analysis performs an expansion around z; and € = 0, the last two elements of
the various eigenvectors vanish, meaning that the CM variable D = P} - U = p} - u; € T is
a combination of the DW components only and is decoupled from the SB dynamics, which
contribute only to the stable eigenspace. Hence Eqs. (C26) for the nonlinear curvature in

the local approximation transform to
Y13 = Wi5(0) - 2D + wi’5(0) De, (038)

and the equations for the coefficients (C28) are given by W=P(0) = (W=P(0), WzP(0))"
and wP¢(0) = (wP<(0), wP<(0))", with

A4 (0,001 = MPT-W2P(0) = H, (C39a)
A (0,0)1 — M{Y]-W2P(0) = H;, (C39b)
A+ (0,001 — M{]- wP<(0) = Ay, (C39¢)
[A+(0,0)1 = M{T- wd<(0) = o, (C39d)



1 [0 —p®@
H, = C40
"Tami g 1 ) (C402)
1 Dy, —D; 0
= — C40b
3 2ZD1D2 0 D2 ( )

The solution of the system (C39) is

WiP(0) = g5 - (o, B), (C4la)
WiP(0) = [A4(0,0)1 = MP]71 - Hy, (C41b)
De(o ' P - C41

w0 = 30,0 - ©,0% (Caic)

w?<(0) = 0, (C414)
where a« = 0 and o
—(2

8= L P (C42)

DA (0,6) — A_(0,6)

The vector a is easily calculated to give a = (0, —2Q,/D; (% + Q2))".
It is easy to see that all elements of A are positive. Some nontrivial algebra shows that

all of its eigenvalues are negative if the product of |det(),(0,0)l — M{)|2 and the (2,2)

element of Re[A;(0) - WP (0)] is positive, which is always satisfied.

APPENDIX D: MULTIPLE-SCALE ANALYSIS

We record here some details of the multiple-scale analysis of both collisional and col-
lisionless systems. The procedure can be seen as a generalization of the CM calculation
to include the essentially infinite number of long-wavelength modes that may be excited
in a spatially extended system. When such modes are ignored (i.e., when weak envelope
inhomogeneity is neglected), the method reduces to an alternate algorithm for constructing
the dynamics on the CM. In that case, the distinction between the projection method de-
scribed in Appendix B and the multiple-time-scale analysis presented here is that the former
works directly with the “final” amplitude D on the center eigenspace, whereas the latter
constructs D order by order in the slow time variations, determining different dynamical

equations at each order that are eventually added together to obtain the final result. A
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useful introduction to the envelope formalism for spatially extended systems is given by

Manneville.??

1. Collisional system

We perform the time and space expansion (44) of various derivatives in the original
equation (1) with the smallness parameter for time and space expansion 0 chosen to be
§ = (€ —¢€,)'/?; this is a measure of the distance (in terms of the temperature gradient) from
the linear threshold. We seek solutions of (1) of the form u = du® + 6?u® +---. Note
that the assumption of a collisional system implies that 7, = O(1).

O(6): Upon collecting the O(J) terms, we have

B, — M ) - u® = 0. (D1)

Here |\7|(n) is the nth-order term in the ¢ expansion of the linear M operator.
If u(” is expanded in the complete set of right eigenvectors gy = q. (¢ = ¢.), the compo-
nents in the stable subspace (including both ZF’s and SB’s) will rapidly damp to zero on

the ¢y time scale, leaving one with the marginally stable drift wave
u = DWqp 4 cc., (D2)

where qp = qoe*v¥ sin(k,z)e~*?t, and D) = DM(T, R) is the modulation (envelope)

function of the drift-wave carrier. Note that the various ¥ modes used here differ from the

ones used in previous sections by the explicit retention of harmonic dependences. For the

DW frequency Qp = i\, (0, ¢.) and the eigenvectors py and qp, refer to Appendix C 2.
0O(6%): At second order, we have

(Ol — |\7|(0)) u® = —opu® + M O
+NO (D), ). (D3)

In order that this equation be solvable, the right-hand side must be orthogonal (in the sense

of the usual complex-valued scalar product) to any left null eigenvectors of the lowest-order
~ (0

operator Oyl — M( ). Those have the form of gp except that qq is replaced by py. Upon

applying the ﬁo operator
T L L
~ ) dt ["dx vd
PO = lim / / —y qo pD (D4)
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(i.e., projecting onto the center eigenspace) to Eq. (D3), we obtain a constraint on the D)

amplitude involving the 7} time scale:
0, DY = pj- M - gD =~V - 9, DI. (D5)

It can be shown that Vg) is just the DW group velocity: V[(,l) = 0Qp/0k.
Having satisfied the solvability equation (D5), we may write Eq. (D3) in the form

< (0)

@1 = M) u® = Q- Y . u®

+ NO (0, M), (D6)

One can construct the most general solution of Eq. (D6) as a sum of homogeneous (D®)qp)

and inhomogeneous (y?) parts:

u? = D®qp 4+ y? +coc., (D7)

where Py - y@ = 0 and y® = ¥ + ¢{?. [As usual, the subscripts denote wave-number

dependence; the (2,0) zonal harmonic arises from the nonlinearity.] Here the methodology
has led us again to the contravariant construction of the CM, with y® describing the
second-order curvature; cf. Eq. (B2).

The homogeneous amplitude D) is undetermined at this order.

The inhomogeneous solution yéQ) = 'wgD(l)E(l) sin(2k,x) describes the nonlinearly gen-

erated zonal modes with
—1
Wy = — (Mgﬂ)) . NQ(O) (u®, uM). (D8)

Here we introduced the notation

Tat [Ledx [Ivdy
N"(a,b) = (1— 14, /—/ —/ -
K (a" ) ( 2 ;b) 0 0 L;U 0 Ly

x [N® (a, b)e™ckvy sin(l,ckwx)e_m’ct] (D9)

for the nonlinear term(s) averaged over the harmonic dependence of mode K = (I, my) with

10
frequency Q. Note that since g, = O(1), Mgo) = -1 is a nontrivial, invertible,
01

order-unity matrix. Thus w, may be easily calculated to give Eq. (C12a).

The other inhomogeneous term can be written in the form
yi” = sWDWgp. (D10)
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With g5 = gy €Y sin(k,z)e™" ! and gy = q_(e = ¢.), SO can be calculated to give

pl(e=e) MY g
A (0,e.) — A (0,¢.)”

S (D11)

Both y§2) and y§2) will be used in the third-order constraint.
O(6%): Upon collecting the O(6%) terms, we have

(0)

Bl =M ) - u® =~ u® — op,u
0 1 2

+ |\7|(1) cu® 4 |T/I<2) u

L NO (u(l),u(2)) 4 ﬁ(l)(u(l),u(l))_ (D12)

Upon applying the /P\O operator to Eq. (D12), we get a constraint on the D) amplitude

involving the 75 time scale:

o, DY + 8y, + Vp - 0g,)D?
_a(®)
= pg . Mgl) . qO S D(l) +p$ . MgQ) . qOD(l)

+p) - N (u®, y$). (D13)

There is sufficient freedom to constrain D to propagate with the group velocity; thus
D® just provides a trivial correction to the basic amplitude. Upon introducing a new
variable according to D = 6D + §2D® and adding the constraints (D5) and (D13), we
obtain a constraint on the envelope D:

~ (1) =~ ~
9, D = p}-M" - q;S D +pl-MP . gD

+P$ : N1(O) (u1,u2), (D14)

with w; = IN)qo + 52y§2), Uy = (52y§2), and O¢, = Or + Vp - Or. Here the notation has
been changed back to the 7" and R variables according to Eq. (44). The group velocity
Vp = VD(I) + (5VD(2) includes a second-order correction; see Eq. (D16).

After computing the various coefficients in the above constraint, we have up to O(6°)

8, D = A?D + A2 D — By|D|*D. (D15)

Here we used

()
ph-MY . grS 7 + pi-MP . g

S IR (C) (D16)
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:\[f] is an approximation to 5\530] = A4 (0,¢) — A (0,¢.). Refer to Appendix C1 for that
quantity and the mode-coupling coefficient By. The linear dispersive nonuniform operator
Kg) is of second order in the long-scale gradient operator Or; we do not write its complicated
explicit form here. It describes the form of the nonneutral surface close to the bifurcation
point of the first linearly unstable mode, thus incorporating a continuous unstable band of

modes into the formation of unstable envelope modulations.

2. Collisionless system (€ < €x)

Now we apply the expansion (44) of various derivatives to the original equation (1) with
no ZF damping (1, = 0). We seek solutions of (1) of the form u = su® + §2u® 4 ... The
smallness parameter § is now chosen to be § = € — ¢, with ¢y found from Re[\; (2, ¢€p)] =0
(2o is some given point on z plane). This is a condition for the system to be close to the
marginal curve (Sec. II B).

O(6): Upon collecting the O(J) terms, we have

(8l = M) .y = o, (D17a)
0,1 — M) ul) = 8, ul’) = 0. (D17b)

The quantity U describes the marginally stable DW, while the linearly undamped ZF
ul" is initially introduced into the system. The solution of Eq. (D17a) describes two
types of DW'’s: ugl), with harmonic dependence e™*+¥sin(k,x)e™*'P%; and uggzs, with
etk sin(3k,x)e “*st. Here the DW frequencies obey —iQdp = A, (20, €) = A (20,€0) and

—iQs = A\ (20, €). Therefore
U = (uy”, ufp,)" = DVQp +cc, (D18)

where Qp is the Qg vector with elements multiplied by the corresponding harmonic depen-
dences. The solution of Eq. (D17b) is given by ul" = 2() sin(2k,z). Thus the O(8) solution
of the original system (5) is

u® =ul + ol + ugg)zs. (D19)
The quantities D(T, R) and 2((T, R) are amplitude modulations on the large time

and space scales. For the DW frequencies and the eigenvectors Py and Q, refer to Ap-

pendix II B.
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The other possible DW-like modes in the system are also solutions of Eq. (D17a); however,
being linearly stable, they will eventually be driven to zero on the ¢, time scale even if they
are initially excited. It is important to note that the other possible ZF-like modes [other
than (2k,,0)] in the system also give nontrivial solutions to (D17b). We constrain these to
vanish in our simplified model; our minimal model with only one ZF mode is sufficient to
understand the basics of the collisionless dynamics.

O(6?): Upon collecting the O(6?) terms, we have

(8,1 — M(O)) U@ = _aTlu(l)
+ MO y® 4 N W u), (D20a)
Ous) = —0nul) + NO@®, u®), (D20b)

with N = (WO, Oz,
Upon acting on Eq. (D20a) by the projection operator

Tat [Ledx [Tvd
PO / / 33/ l QO'P (D21)

we get a constraint on the DY amplitude on the 7} time scale:

8y, DV = Pl MY . QDM

T
+P}- (N0, uf"),0) ", (D22)
where the first term
Pl MDY . Qy = —Vp - 05, DY + DO (D23)

describes propagation of the DW’s at the group velocity Vj, and linear growth at the rate
X\[f] ~ 5\[4(:0] = A (20,€) — A (20, €). In the nonlinear term in Eq. (D22) we used the fact
that Néf?zs (ugl), ull )) = 0; the subscript emphasizes that the averaging in Eq. (D9) is done
over frequency Qg (if a frequency is omitted from a subscript, it is assumed to be Qp).

The constraint on the z(!) amplitude is easily obtained from Eq. (D20b):
05,z = Nl ulV). (D24)

Upon introducing new variables according to D = 6D® and z = 62, then changing

back to the 7" and R variables, we obtain from Egs. (D22) and (D24)

8, D =T (2, 20, ¢,€0) D, drz = g(z0,€0)| D). (D25)
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The functions I'M(z, 29, €,60) = T'(2z, 20,€,€0) — A (20, €) and g(zo,€) result from the
linear and nonlinear uniform terms in Eqgs. (D22) and (D24). Refer to Appendix C2 for
these quantities.

With solvability satisfied by Eq. (D22), Eq. (D20a) transforms to an equation with the
nontrivial solution

U = pAg,+ Y, A —y® Ly (D26)

For simplicity, we have dropped the second-order homogeneous solution; that can be treated
the same way as in Sec. D 1. The modes described by Y are linearly damped but have a

nonzero amplitude due to nonlinear generation. y?’ is a secondary DW:

y?) _ (—iQD| N M(O))INV ‘H.
. o NT
AMD . DO, + (N1(0) (ugl),ugl))e_’QDt,Oe_mst)

x ey sin(kzac)} +c.c., (D27)

with H = (1— Qg - P}) and the notation INV referring to the generalized inverse calculated
according to the Fredholm theorem. y:(f) is a SB mode:

yé” _ (_Z-QD|_M(O))INV.
. . T
, ( NO @Dyt Oe—zﬂst)

x ¥ sin(3k,x) + c.c. (D28)

In Egs. (D27) and (D28) we used N1(f)s)25 (ugl),ugl)) =0 and Néfgs (ugl), ugl)) =0.
The O(6?%) solution to the original system (5) is

u® = ul? +ugy, +u? +y? + g, (D29)

where DX Qp, = (u§2), u:(fgzs)T and Y = (y§2) + y§2), 0)”.

3. Collisionless system (e = €x)

Suppose that at some z = z5 and € = ex we have NQ(O) (ugl),ugl)) = 0; that is, the z

dynamics on the 7 scale (D24) are trivial:

oz =o. (D30)
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0O(63): Upon collecting the O(6%) terms, we have

(O] — M) Y® = —o, U? — o, UV
+ MO .y L Mm@ gyy®
0
+ N @, u@) + N (@@, ). (D31)
Upon acting on Eq. (D31) by the ﬁo operator, we obtain the constraint on the DM amplitude

involving the T, time scale. Similarly, upon averaging over the ZF harmonic dependence,

we obtain a constraint on the z() amplitude involving the T, time scale:
or, 2 = N (i, + 4”). (D32)

The nontrivial solution of (D31) includes both corrections to already existing modes found
above as well as various new SB and ZF various modes. We do not write down this solution
since it is not important for the dynamics of the time- and space-scales in which we are
interested.

Upon again introducing new variables according to
D=6DY 4+ 62Dy, 2= 6u1 + (52u1 2 2= 621 45222, (D33a)
Vis= (41307, yi3= 522'/%,2?2 (D33b)

and changing back to the 7" and R variables, we sum up the constraints on the D() amplitude

arising from the various time scales to obtain

9e, D = TW(z, 29, ¢,60) D
+ Py MY Y+ Pl MP QoD
i (0) r
+ Py - (Nl (U2ayl+y3),0)
i (1) T
+ Po - (N1 (UI:UZ)aO) ; (D34a)
Orz = Nz(o) (w1, Y1 + y3)- (D34b)

I

4. Collisionless system (local analysis around zp = 0 and € = 0)

In the special case of zy = 0 and ¢ = 0, Egs. (D34) may be rewritten as

e D = [[M(z,6) + AF|D + AR (2, D), (D352)
0rz = (—ea+A-2)|DP? + S0 (D, D). (D35b)
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Many terms in Eqs. (D34) yield unimportant corrections to the '")(z, €) and Vp coefficients

in Egs. (D35). Refer to Appendix C3 for the details of calculation of the uniform terms in
Egs. (D35).
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FIG. 1: The z plane is divided by the marginal curve into regions with positive and negative
Re[A;(z,€p)]. As € increases the two parts of the curve move towards each other (a), coalesce, then

move away from each other (b).
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FIG. 2: For a collisional system, a schematic representation of the collection of eigenvalues in the
complex A plane. There are in total four drift wave modes )%W = /\fC (0,¢), four side-band modes
Mgz = A5 (0,¢), and two zonal modes Azp = —72. Only the two DW modes Ay, are included in the
center eigenspace; the system undergoes a Hopf bifurcation when those modes cross the imaginary

axis as a parameter € goes through e..

Ts
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FIG. 3: The collisional system undergoes a supercritical Hopf bifurcation at the linear threshold
€ = €.. The model has a 2D stable eigenspace T (and consequently a 2D CM) and an 8D stable

manifold 7% (shown in 1D). See also similar figures in Refs. 14 and 15.
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FIG. 4: The collection of eigenmodes in a collisionless system in the complex A eigenvalue plane;
A%W = A (z,¢), )\éEB = )\gt(zo,e) for arbitrary zg. In addition to two DW modes /\%W, two

undamped ZF modes Azr are also included in the center eigenspace.
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FIG. 5: Projection of the 10D phase space into the two DW directions w; and P; and the ZF
direction ws. For ease of visualization, the trajectory is divided into ten differently colored segments
(online only); points equally spaced in time are also projected onto the coordinate planes. Following
an initial transient, the trajectory is attracted to a hypersurface in the phase space. Ultimately,
it evolves to a fixed point for which the drift-wave and sideband amplitudes vanish but the zonal

amplitudes are nonzero. Color online.
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FIG. 6: The trajectory of the nontrivial fixed point F on the z plane. Note that F exists even for

e < 0.
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FIG. 7: The fixed point F crosses the marginal curve at ¢ = ex making the system change topology

(and thus undergo a bifurcation).
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FIG. 8: The bifurcation point e4 is found from the intersection of the line tangent to the trajectory

of F at z = 0 with the marginal curve.

FIG. 9: Representative phase trajectories in the z plane, showing the nontrivial fixed point F
(stable in the z plane) the overall stability of which determines the Dimits shift. Horizontal solid
line: z, axis; vertical solid line: zp axis; upper dashed line: v(z) = 0 (slope dzp/dz, = 0);
lower dashed line: u(z) = 0 (slope = o0); dash-dotted lines: eigenvector directions (one such line
is obscured by the trajectory at approximately 45°). Figure reprinted with permission from R.
Kolesnikov and J. Krommes, Phys. Rev. Lett. 94, 235002/1 (2005). Copyright (2005) by the

American Physical Society.
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FIG. 10: Level curves for the dynamics of Egs. (24) with zx = 0.1 and A = 0.1. In spite of the
presence of a fixed point at z = zx, only the single trajectory with Iy = oo actually ends up at the

fixed point at t = oco.
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FIG. 11: Time dependence of DW vorticity in an 82-mode, energy-conserving truncation of a
weakly collisional ITG system. The bursting behavior relaxes to a quasiregular nonturbulent state.

The parameters used are k) ps = 1, 7 = 0.1, p = 0.01 (but 5, =0.01), v =1, and R/Ly = 2.2.

63



<>

xl'=corist

9&'

p=
RS
I

=

&

N

N\
%, 1N

FIG. 12: An example of the contravariant representation of the center manifold (heaviest solid line).
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In a local Cartesian z—y coordinate system, the contravariant coordinates z' = z and 22 =z + y
are used. The basis vectors are q1 = 0x/0x' = Z — 9, go = 0z/0z% = g, p* = Va! = Z, and
p? = V22 = £ 4+ 4. The center eigenspace is the g; = q axis; the stable eigenspace is the y = g
axis. The CM is tangent to the center eigenspace at the origin. A point on the CM is represented
by u = Dg+1y (vectors with concave open arrowheads), where in this example D = D!, y = y%qs.
The y direction is perpendicular to the direction reciprocal to q: p' -y = 0. The covariant

representation of w is also indicated by the vectors with convex open arrowheads.

64



External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia

Professor Jodo Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil

Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil

Dr. P.H. Sakanaka, Instituto Fisica, Brazil

The Librarian, Culham Science Center, England

Mrs. S.A. Hutchinson, JET Library, England

Professor M.N. Bussac, Ecole Polytechnique, France

Librarian, Max-Planck-Institut fiir Plasmaphysik, Germany

Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research
Institute for Physics, Hungary

Dr. P. Kaw, Institute for Plasma Research, India

Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India

Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro, Indonesia
Professor Sami Cuperman, Plasma Physics Group, Tel Aviv University, Israel
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy

Dr. G. Grosso, Instituto di Fisica del Plasma, Italy

Librarian, Naka Fusion Research Establishment, JAERI, Japan

Library, Laboratory for Complex Energy Processes, Institute for Advanced Study,
Kyoto University, Japan

Research Information Center, National Institute for Fusion Science, Japan

Professor Toshitaka Idehara, Director, Research Center for Development of Far-Infrared Region,
Fukui University, Japan

Dr. O. Mitarai, Kyushu Tokai University, Japan

Mr. Adefila Olumide, Ilorin, Kwara State, Nigeria

Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People’s Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China

Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China

Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China

Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia

Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia

Kazi Firoz, UPJS, Kosice, Slovakia

Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita,
SK-842 15 Bratislava, Slovakia

Dr. G.S. Lee, Korea Basic Science Institute, South Korea

Dr. Rasulkhozha S. Sharafiddinov, Theoretical Physics Division, Insitute of Nuclear Physics, Uzbekistan
Institute for Plasma Research, University of Maryland, USA

Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA

Librarian, Institute of Fusion Studies, University of Texas, USA

Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA

Library, General Atomics, USA

Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA
Plasma Physics Library, Columbia University, USA

Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA

Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA

Director, Research Division, OFES, Washington, D.C. 20585-1290

05/16/05



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract
with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751
e-mail: pppl_info@pppl.gov
Internet Address: http:/www.pppl.gov





