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We have studied the nonlinear evolution of fixed-boundary instabilities
using a 3-D ideal-MHD computer simulation. Here, we concentrate on the effect
of elongation and peaked profile. It is found that the dominant process is
convection around essentially fixed velocity vortex cells.

Introduction

Over the last year, we have been using a 3-D nonlinear MHD computer
code [1]} to study the effect of internal instabilities [2] in diffuse cylinm-
drical pinches with square and rectangular cross section. Our computer code
is very simple and fast running. It solves the primitive MHD equations as an
initial boundary-value problem using an explicit leap frog difference scheme on
a Cartesian grid. (We have developed more sophisticated programs to handie
curved boundaries and toroidicity, but the work presented here was prepared
with the original version of the code [1] completed in November, 1974). As
-such, our code is best suited to study large-scale internal instabilities- such
as those which appear to be churning away inside tokamak discharges{3]- for
high-B diffuse pinches.

The instabilities observed fall into two broad classes of behavior depend-
ing upon the equilibrium: Weak, localized instabilities churn up the central
part of the plasma but leave the edge untouched. Stronger, large scale in-

" stabilities {m = 1 kink) hurl the plasma against the wall where it appears to
splash. For a given periodicity length down the cylinder, and for the centr-
ally-peaked profiles we have been considering, the central churning behavior
is typical of equilibria with low current density and the instability interacts
more with the wall as the longitudinal current is turned up. As the profiles
become more peaked in the center, for fixed central g-value, we find that the

= 1 instability becomes more localized near the center.
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Results

To date, we have used equ111br1a characterized bg P (g ch(wlq )
Neg = 1, 2, .. =1, 0= (1 ~ ) P/P 2 whete J = cen-
tral current den51%y and o = central vﬁfuc of fﬁe flux“ﬁold1ng y = 07at the
wall, . By incredsing Neq wé get more centrally peaked current and pressure pro-
files, and more shear closer to the center of the plasma. For the instabili-
ties illustrated here, Neq = 2 has been used.

Figures 1 and 2 show typical examples of a weak - localized and a strong -
broad m = 1 fixed-boundary instability. For both cases the cross section has
elongation bfa = 2 and the cylinder has length 27a, .where a is half the width.
In cach figure, the top and the bottom rows represent cross sections separated
by a quarter wavelength down the cylinder. Each row shows the velocity and
perturbed B-ficld for the linear instability and then a time scqueice of con-
tour plots for pressurc (Fig. ]) and temperature (Fig. 2). In the vector plots,
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arrows rcpresent the poloidal components, closed and open circles represent
components into or cut of the paper. Each of the contour plots is normalized
separately--the ficld of 5's representing the maximum value, the edge remain-
ing at zero.

A localized instability is shown in Fig., 1 (q_ . = .9, J ¢ = 2.418, Ypin =
.228 (dimensionless units, see Ref. 4)). From the time evo%ution of the pres-
sure, we see that the instability affects only the central part of the plasma.
The central high pressure peak is convected around to form a small anulus
(t = 5.87). Convection then continues to mix the central part of the plasma.
Temperature and density respond in a similar way. The vortex cells remain
essentially fixed, but there is a rapid increase in the longitudinal velocity
towards the end of the sequence shown. The magnetic axis does not move notice-
ably: Where the shear is low, the convection around helically twisted vortex
cells maps helical field lines into helical field lines. However, there are
alterations in the magnitude of the B-fields which significantly change the
current density.

A stronger broader m = 1 instability is shown in Fig. 2 (q_ = .6, Jz =
3.6267, Yiin = .52). The vortex cells nearly fiil the plasma dSmain and“fheir
centers are further apart. There is more longitudinal velocity, driven by
pressure gradients which develop along the magnetic field lines, because the
field lines do not have the same helical pitch as the instability. The per-
turbed B-field, Bl, has additional vorticies (hence currents) near the top and
bottom. Additional Bl vorticies are also observed in toroidal geometry [4].
The sequence of temperature contours show steep temperature gradients develop-
ing near the wall

We have reported similar convective behavior for square cross sections
(m=1and m = 2) in November, 1974, [2] and for rectangular cross sections
with a broader current profile in April, 1975. {5]. These results appear to be
confirmed by Strauss [6] using a completely different method.
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