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Abstract

Radiation transport calculations have been performed with the DOT-III
code for a 14-MeV neutron source and a tactical weapon fission neutron
source in air—over-ground and air-over~seawater geometries. The source
heights were 1, 50, 100, 200, and 300 m for the air-over-ground calcula-
tions and 50 m for the air-over-seawater calculations. The results were
obtained as neutron and secondary-gamma~ray fluxes throughout a cylindrical
system having a height of approximately 1300 m and a radius of about 1500 m,
the lower 50 cm of the cylinder being either ground or seawater. Several
ionization and tissue-dose response functions were applied to the fluxes
obtained for positions on the interfaces. The air-over-ground results
indicate that an optimal source height can be specified for the maximum
neutron dose at a given ground range. They also show the source height
and ground-range combinations for which the air-over-ground neutron and

gamma-ray tissue doses are greater than those at equivalent ranges in
infinite air.






Introduction

During the past seven or eight years -~ since the advent of multigroup
transport computer codes that can handle neutron and gamma-ray interactions
simultaneously -~ several calculations have been performed to predict the
neutron and secondary-gamma-ray fields produced by the detonation of nuclear
weapons at various heights above the ground.l * The neutron sources used
for the calculations have included a fission source, a thermonuclear source,

and monoenergetic sources with energies up to 14 MeV.

Calculations of this type yield sets of data that are too massive for
publication and are usually stored on magnetic tape. In an attempt to aid
the users of such data, the Defense Nuclear Agency (DNA) sponsored the
development at Science Applications, Inc. of a computer code (called the ATR
code®) that constructs radiation environments for specified weapons from
the data sets. Since all the transport data available to ATR were ob-
tained with cross sections that predated the latest ENDF/B-IV release,

DNA requested that ORNL provide an updated data base by performing a new

set of air-over-ground calculations for two sources —— a tactical weapon

fission source and a 14-MeV source. At the same time, DNA requested that
ORNL also perform similar calculations for an air-over-seawater geometry

in order to compare the relative effects of ground and seawater on the

radiation environments.
This report describes the calculations and discusses those results
obtained for positions on the air-ground and air-seawater interfaces for

several source heights.

Problem Description

The air-over-ground and air-over-seawater problems were calculated
with the DOT-III discrete ordinates code® in two-dimensional cylindrical
geometry using an Sg (48-angle) angular quadrature. In each case the
cylinder height was 1300 m and its radius was 1490 m. The ground (or

seawater) was treated as a 50-cm thickness at the bottom of the cylinder,



and the air was assumed to comprise the remainder of the system. The
sources were placed on the cylinder axis at various heights above the
ground (or seawater), and the neutron and gamma-ray fluxes were calculated
for "all points" in the surrounding medium. However, due to the need

for a reflective air mass beyond the points of interest, the results are
considered to be accurate only for heights less than 1000 m and for radii
(ground ranges) less than 1200 m. The overall geometry of the problem is

shown in Fig. 1.

The elemental compositions assumed for the ground, seawater, and air
are given in Table 1, along with the corresponding MAT and MOD numbers of
the cross sections used from the ENDF/B-IV files. The ENDF/B point data

were processed into the required multigroup structure by the AMPX code.’

w Source Height = 300 m
Q Source Height = 200 m
g Source Height = 100 m
m Source Height = 50 m
= I1m

b Source Height
%////////%f,ﬁf}‘}ﬁ’fllgﬁﬁﬁﬁilir/ffla)’la}ﬁ}/%/////////

Fig. 1. Schematic of Air-Over-Ground and Air-Over-Seawater Geom-~
etries. The system's height and radius were 1295.5 m and 1490 m, respec~
tively. The detectors were 0.5 m above the interface.



Table 1. Material Compositions and Cross Sections
Used in Calculations

Cross Sectionsa Composition (atoms/b-cm)
Mat Mod. Air Ground Seawater
Element No. No. (p=1.22 g/2) (p=1.7 g/cc) (p=1.025 g/cc)
H 4148 2 9.7656-3 6.64—2
4133 4 4.0242-5%
0] 4134 2 1.0697-5 3.4790-2 3.32-2
Na 4156 0 2.81-4
Mg 4512 0 3.00-5
Al 4135 3 4.8828-3
Si 4151 2 1.1597-2
Cl 1149 - 3.30-4

8Read: 4.0242 x 10 5.

They were first put into a structure consisting of 105 neutron groups and
18 gamma-ray groups, after which the neutron cross sections were collapsed
into 22 groups. All the cross sections were then 14-MeV flux-weighted via
one-dimensional ANISN® calculations for the air-over-ground and air-over-
seawater environments. The angular dependence of scattering was approxi-

mated by a P3 Legendre polynomial series for both neutrons and gamma rays.

As pointed out above, the two sources used for the calculations were a
14-MeV neutron source and a tactical weapon fission source. The fission
source, originally described by seven energy groups between 0.0033 MeV and
10 MeV, was expanded to the 12 groups included for this energy region in
the 22-group structure (see Table 2). The source heights were 1, 50, 100,
200, and 300 m for the air-over-ground problems and 50 m for the air-over-

seawater problems.

The sources were represented in the calculations as point sources,
which in the past has introduced ray effects. However, the DOT-III code

has a special option available with which the point source can be



Table 2. Energy Spectrum of Tactical Weapon
Fission Neutron Source

Group Upper Energy (MeV) Fraction per Energy Group
1 17 0.0
2 12.2 0.0
3 10 7.342-3°
4 8.18 1.274-2
5 6.36 1.832-2
6 4.96 1.177-2
7 4,06 5.481-2
8 3.01 2.871-2
9 2.46 5.743-3
10 2.35 1.060-1
11 1.83 1.468-1
12 1.11 2.159-1
13 0.55 1.693-1
14 0.111 2.227-1
15-22 0.00335b 0.0

8Read: 7.342 x 1073.

bLower energy limit is 1.1-11.

distributed over the entire system as a first-collision source. DOT-III
then calculates the collided flux, adding it to the uncollided flux at
problem termination.

Another difficulty in the calculations was overcome through the use
of a weighted diamond difference option in DOT-III. 1In a preliminary set
of calculations use of the linear step option for flux transport across a
single interval resulted in a radial flux distribution which exhibited
step-function type changes at certain spatial positions. But when the
weighted diamond difference option was used, the calculation converged

to a smooth flux distribution in a shorter time.

‘



Results

Several response functions were applied to the neutron and gamma-ray
fluxes calculated for positions on the interfaces, and it is these results
that are presented in this report. Scalar flux tapes for the entire series
of calculations are available from the ORNL Radiation Shielding Information

Center.

The response functions applied to the neutron interface fluxes were

neutron ionization response functions, Henderson tissue dose response func-

9 10

tions,” and Auxier-Snyder tissue dose response functions. Those applied

to the gamma-ray fluxes were gamma-ray ionization response functions, Hen~

derson tissue dose response functions,9

11

and Claiborne-Trubey tissue dose
response functiomns. These response functions are listed in Tables 3 and
4 for mneutrons and gamma rays respectively. Plots of the resulting
ionizations and tissue doses were obtained for each source at each source
height and are included as an appendix to this report. All the results
are normalized to one source neutron since both sources were normalized

to 1.0.

Study of the neutron dose plots from the air-over~ground calculations
indicates that an optimal relationship exists between the source height and
the ground range. That is, a burst height may be specified which will
give the maximum dose for a given ground range. This is illustrated in
Fig. 2, in which the Henderson tissue dose is plotted as a function of
the height of the 14-MeV source for several ground ranges. (This figure
is designed to show the relative shapes of the curves for the four ground
ranges. Absolute values of the dose are to be read from Table 5.)

Figure 2 shows that as the ground range increases, the source height that
yields the largest calculated dose also increases. Although an adjoint
calculation would be required to identify the exact optimal source height
for a specific ground range, Fig. 2 clearly demonstrates the existence of
an optimal source height. Similar observations may be made concerning
the results of the air-over-ground calculations performed with a weapon

fission source.



Table 3. Neutron Response Functions .

Upper Henderson Auxier-Snyder .
Energy Neutron Ionization Tissue Dose Tissue Dose
Group (MeV) [(rad-Si)/ (n/cm?)] [rads/ (n/cm?) ] [rads/ (n/cm?)]
1 1.700+1% 8.60-10 5.46-9 7.61-9
2 1.221+1 9.90-10 5.13-9 6.68-9
3 1.000+1 8.10-10 4,84~9 6.16-9
4 8.1874+0 5.50-10 4.61-9 5.87-9
5 6.360+0 1.60-10 4.44-9 5.56-9
6 4.966+0 9.00-11 4.13-9 5.15-9
7 4.066+0 5.40-11 4.01-9 4.55-9
8 3.012+0 3.60-11 3.39-9 4.03-9
9 2.466+0 3.00-11 3.15-9 3.83-9
10 2.350+0 2.70-11 3.09-9 3.74-9
11 1.827+0 2.10-11 2.64-9 3.52-9
12 1.108+0 1.70-11 1.97-9 2.92-9 -
13 5.502-1 1.40-11 1.12-9 1.47-9
14 1.111-1 0.0 2.29-10 5.21-10 °
15 3.355-3 0.0 0.0 4.95-10
16 5.829~4 0.0 0.0 5.57-10
17 1.013~4 0.0 0.0 5.96-10
18 2.902-5 0.0 0.0 6.21-10
19 1.068-5 0.0 0.0 6.34-10
20 3.059-6 0.0 0.0 6.30-10
21 1.126-6 0.0 0.0 6.07-10
22 4.140—11b 0.0 0.0 5.31-10

8Read: 1.700 x 10%.
bl ower limit is 1.000-11.




Table 4. Gamma-Ray Response Functions

Upper Gamma-Ray Henderson Claiborne-Trubey
Energy Ionization Tissue Dose Tissue Dose
Group __(MeV) [(rad-Si)/(y/em®)] [rad/(y/cm®)] _[rad/(y/em?)]

1 1.20+1° 2.80-9 2.42-9 2.43-9

2 8.00+0 2.28-9 2.07-9 2.07-9

3 6.50+0 1.83-9 1.76-9 1.76-9

4 5.00+0 1.48-9 1.59-9 1.50-9

5 4.00+0 1.20-9 1.27-9 1.27-9

6 3.00+0 9.85-10 1.08-9 1.09-9

7 2.50+0 8.40-10 8.75-10 9.58~10

8 2.00+0 7.12-10 7.35-10 8.37-10

9 1.66+0 6.10-10 6.44-10 7.29-10
10 1.33+0 5.05-10 5.30-10 6.09-10
11 1.00+0 4.10-10 4.45-10 5.03-10
12 8.00-1 3.28-10 3.50-10 4.17-10
13 6.00-1 2.37-10 2.56-10 3.22-10
14 4.00-1 1.65-10 1.77-10 2.32-10
15 3.00-1 1.17-10 1.22-10 1.77-10
16 2.00-1 7.25-11 6.60-11 1.20-10
17 1.00-1 9.75-11 3.90-11 7.47-11
18 5.00—2b 4.13-10 8.37-11 1.47-10

8Read: 1.20 x 101,
bLower limit is 2.00-2.



ORNL-DWG 74-11297 Fig. 2. Plot Showing Relative .
Shapes of Henderson Neutron Tissue
_ Doses at Various Ground Ranges (GR)
194 ¢\ from a 14-MeV Source at Various Heights. >
\\ See Table 5 for exact values of doses.

The air-over-ground plots also

show the effect of the ground on the

1,3

dose. Earlier investigators have

[
10 A

\E\E\\~ reported that the presence of the

ground enhances the dose at short slant

ranges but depresses the dose at large

slant ranges, compared to the dose at
[}

— | the same position obtained from an

infinite-air calculation. Figure 3

DOSE (rads/source neutron)

indicates the ground ranges for which

a p—
“,,r”" ground enhances the neutron and gamma-
///"/’ GR = 1295 m ray doses (area to the left of the lines) .
2 ? as a function of source height for the
14-MeV source. The regions to the right .
of the lines therefore represent 1l4-MeV
0 0 100 200 300 burst height and ground range combina-
SOURCE HEIGHT (m) tions for which an infinite-air

Table 5. Henderson Neutron Doses Produced by a 14-MeV Source
in an Air-Over-~Ground Geometry

Ground Dose (rads/source neutron) at Source Height of
Rangea
(m) lm 50 m 100 m 200 m 300 m
95 4.14-18" 4.56-18 2.80-18 1.01-18  4.42-19
515 4.11-20 5.35-20 6.40-20 5.67-20 4.84-20
905 2.76-21 3.53-21 4.05-21 4.67-21 4.33-21
1295 2.31-22 2.97-22 3.41-22 4.01-22 4.17-22

8petector is 0.5 m above the ground.
b

Read: 4.14 x 10 18 rads/source neutron.
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Fig. 3. Plots of 14-MeV Source Height and Approximate Ground Range
Combinations for Which the Air-Over-Ground Neutron and Secondary-Gamma-Ray
Interface Doses Are Equivalent to Infinite-Air Doses. For combinations to
the right of the lines the infinite-air calculations yield higher doses, and
for combinations to the left of the lines the air-over-ground calculations
yield higher doses.
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calculation is conservative. Figure 4 shows similar plots for the neutron
and gamma-ray doses produced by the weapon fission source, and Fig. 5 shows

similar plots for the total tissue doses produced by both sources.

The air-over-seawater calculations (50-m source height) showed that
the neutron dose at the interface was depressed while the gamma-ray dose was
enhanced relative to the air-over-ground results. Table 6 shows compara-
tive doses at the interface for air-over-ground (A/G) and air-over-seawater
(A/SW) calculations at three ground ranges for the 14-MeV and weapon fis-
sion sources, respectively. Note that the total dose is dominated by the
neutron dose and is therefore depressed for A/SW relative to A/G. Figure 6
shows the calculated gamma-ray dose due to a weapon fission source as a

function of ground range along the air-ground and air-sea interfaces.

Analysis of the results showed that the seawater both reduced the neu-
tron flux and softened the neutron spectrum to a greater extent than the
ground did, thereby reducing the neutron dose but increasing the gamma-ray
dose due to increased capture-gamma-ray production. In a detailed investiga-
tion of the gamma-ray production involved, one-dimensional spherical ANISN®
calculations were performed for the fission source in the air-over-seawater
configuration with and without chlorine and also for the air-over-ground
configuration. The results are given in Table 7 as a function of gamma-ray
energy. The thermal (n,y) reaction for chlorine produces gamma rays with
energies primarily from 6 to 8 MeV, while hydrogen produces only a 2.2-MeV
gaﬁma ray. As Table 7 indicates, the chlorine and hydrogen captures
contribute substantially to the gamma-ray dose at the interface, but the
presence of chlorine has a dominant effect, although it is only a trace

element,as indicated by the number densities given in Table 1.
Conclusions
The air-over-ground calculations demonstrate the existence of an

optimal height of burst for a specific ground range. They also delineate

the conditions under which air-over-ground calculations are conservative
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Fig. 4. Plots of Weapon Fission Source Height and Approximate
Ground Range Combinations for Which the Air-Over-Ground Neutron and
Secondary-Gamma-Ray Interface Doses Are Equivalent to Infinite-Air Doses.
For combinations to the right of the lines the infinite-air calculations
yield higher doses, and for combinations to the left of the lines the
air-over-ground calculations yield higher doses.
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Doses. For combinations to the right of the lines the infinite-air
calculations yield higher doses, and for combinations to the left of the
lines the air-over-ground calculations yield higher doses.
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Table 6. Henderson Neutron and Gamma-Ray Tissue Doses 0.5 m Above

Air-Over-Ground (A/G) and Air-Over-Seawater (A/SW) Interface

(Burst height = 50 m)

Ground Range Neutron Dose (rads)

Gamma-Ray Dose (rads)
(m) A/G A/SW az? A/G A/SW A%

Total Dogse (rads)

A/G A/SW AZ
Fission Source
0 1.14;-17b 8.47-18 -26 6.41-19 2.00-18 212 1.20-17 1.05-17 =13
515 1.73~-20 1.14-20 =34 2.69-21 4.35-21 62 2.00-20 1.58-20 =21
995 3.50-22 2.29-22 =35 1.28-22 1.70-22 33 4,78-22  3.99-22 ~-16
14-MeV Source
0 2,51-17 2.14-17 ~15 2.67-18 2.90-18 9 2,78-17 2.43-17 -13
515 5.35-20 4.27-20 =20 1.09-20 1.21-20 11 6.44-20 5.48-20 =15
995 1.98-21 1.48-21 =25 6.73~22 7.46~22 11 2.65~21 2.23-21 -16
)y = AISW —A/G 50z,
A/G
bRnead: 1.14 x 10717,
10‘17 AIR-OVER-GROUND DOSE VERSUS AIR-OVER-SEA-WATER DOSE
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Fig. 6. Henderson Gamma-Ray Tissue Doses at the Air-Ground and Air-

Seawater Interfaces for the Weapon Fission Source.
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Table 7. Henderson Gamma-Ray Tissue Doses 0.5 m Above
Air-Over-Ground and Air-Over-Seawater Interfaces,
With and Without Chlorine in Seawater
(Fission Source at Height of 50 m) .

A/SW Dose A% for

Energy Range A/G Dose A/SW Dose A%? for (w/o C1) A/SW

(MeV) (rads) (rads) A/SW (rads) w/o Cl
2.5-12.0 1.45-10°  2.32-10 + 60 5.08-11  — 65
2.0-2.5 3.61-11 1.64~10 +354 2.02-10 +460
9.02~2.0 6.75-11 1.42~10 +111 1.04-10 + 54
0.02-12.0 2.49-10 5.38-10 +116 3.56-10 + 43

a,, _ A/SW - A/G
A/G

Read: 1.45 x 10 10,

o9

x 100%.
b

with respect to infinite—-ailr calculations for the sources and span of ground

ranges considered here.

The air-over—-seawater results indicate that compared to air-over-ground
results, the neutron dose is lower and the gamma-ray dose is higher. Also,
the presence of the trace element chlorine in seawater has a strong effect
on the gamma-ray dose due to the production of capture gamma rays in the 6-

to 8-MeV range.

Finally, this study indicated that the weighted diamond difference
option in DOT-III is more satisfactory for air-over-ground calculations

than the linear-step option used in previous calculations.
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Appendix .
This appendix contains a series of plots of the calculated responses .

at the air-ground and air-seawater interfaces for the weapon fission neutron
source and the 14-MeV neutron source at various heights. The responses in-
cluded are neutron ionizations, Henderson neutron tissue doses, Auxier-
Snyder neutron tissue doses, secondary gamma-ray ionizations, Henderson
gamma-ray tissue doses, and Claiborne~Trubey gamma-ray tissue doses. An

index to the plots is as follows:

Source
Height Fig.
Source Geometry (m) Response No.
Fission A/G 1 Neutron ionization A-1
Henderson neutron tissue dose A-2
Auxier-~Snyder neutron tissue dose A-3
Gamma-ray ionization A-4
Henderson gamma-ray tissue dose A-5
Claiborne~Trubey gamma-ray tissue dose A-6 .
50 Neutron ionization A-7
Henderson neutron tissue dose A-8 N
Auxier-Snyder neutron tissue dose A-9
Gamma~-ray ionization A-10
Henderson gamma-ray tissue dose A-11
Claiborne-Trubey gamma-ray tissue dose A-12
100 Neutron ionization A-13
Henderson neutron tissue dose A-14
Auxier-Snyder neutron tissue dose A-15
Gamma-ray ionization A-16
Henderson gamma-ray tissue dose A-17
Claiborne~Trubey gamma-ray tissue dose A-18
200 Neutron ionization A-19
Henderson neutron tissue dose A-20
Auxier-Snyder neutron tissue dose A-21
Gamma-ray ionization A-22
Henderson gamma-ray tissue dose A-23
Claiborne-Trubey gamma-ray tissue dose A-24
300 Neutron ionization A-25
Henderson neutron tissue dose A-26
Auxier-Snyder neutron tissue dose A-27
Gamma-ray ionization A-28
Henderson gamma-ray tissue dose A-29

Claiborne-Trubey gamma-ray tissue dose A-30
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Source

Height Fig.

Source Geometry {m) Response No.
14-MeV A/G 1 Neutron ionization A-31
Henderson neutron tissue dose A-32
Auxier-Snyder neutron tissue dose A-33
Gamma-ray ionization A-34
Henderson gamma-ray tissue dose A-35
Claiborne~Trubey gamma-ray tissue dose A-36
50 Neutron ionization A-37
Henderson neutron tissue dose A-38
Auxier-Snyder neutron tissue dose A-39
Gamma-ray ionization A-40
Henderson gamma-ray tissue dose A-41
Claiborne-Trubey gamma-ray tissue dose A~42
100 Neutron ionization A-43
Henderson neutron tissue dose A-44
Auxier-Snyder neutron tissue dose A-45
Gamma-ray ionization A-46
Henderson gamma-ray tissue dose A-47
Claiborne-Trubey gamma-~ray tissue dose A-48
200 Neutron ionization A-49
Henderson neutron tissue dose A-50
Auxier~Snyder neutron tissue dose A-51
Gamma-~ray ionization A-52
Henderson gamma-ray tissue dose A-53
Claiborne-Trubey gamma-ray tissue dose A-54
300 Neutron ionization A-55
Henderson neutron tissue dose A-56
Auxier-Snyder neutron tissue dose A-57
Gamma-ray ionization A-58
Henderson gamma-ray tissue dose A-59
Claiborne-Trubey gamma-ray tissue dose A-60
Fission A/SW 50 Neutron Ionization A-61
Henderson neutron tissue dose A-62
Auxier-Snyder neutron tissue dose A-63
Gamma-ray ionization A-64
Henderson gamma-ray tissue dose A-65
Claiborne-Trubey gamma-ray tissue dose A-66
14-MeV A/SW 50 Neutron ionization A-67
Henderson neutron tissue dose A-68
Auxier-Snyder neutron tissue dose A-69
Gamma-ray ionization A-70
Henderson gamma-ray tissue dose A-71
Claiborne-Trubey gamma-ray tissue dose A-72
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