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MECHANICAL AND PHYSICAL PROPERTIES OF 2 1/4 Cr-1 Ho STEEL TJI SUPPORT OF
CRBKP STEAM GENERATOR DESIOT

C. S. Brinkman, R. K. Williams, R. L. Klueh, and T. L. Hebble

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830

Mechanical and physical property tests on annealed 2 1/4 Cr-1 Mo steel

were conducted in an effort to define behavior in support of the design of the

Clinch River Breeder Reactor Plant (CRBRP) steam generator design. Interim

empirical expressions and/or data are reported froa the results of tensile,

creep, fatigue, creep-fatigue, subcritical crack growth, theraal conductivity,

thermal diffusivity, and thermal expansion tests and analysis. These expressions

cover behavior, where appropriate, over a range of temperatures from 25 to as

high as 700°C. Comparisons between thermal conductivity and diffusivity values

and those found in the American Society of Mechanical Engineers (ASMS) Code

indicated that the new values were significantly higher than those found

presently in the Code. The Importance and complexity of obtaining valid

mechanical and physical properties for the Clinch River Breeder Reactor Plant

(CRBRP) steam generator are discussed.

INTRODUCTION

Design of steam generators for the Clinch River Breeder Reactor Plant

(CRBRP) requires an extensive knowledge of both physical and mechanical

properties in order to follow the design guidelines and procedures established

for Class I Components in Section III of the American Society of Mechanical

Engineers (ASME) Boiler and Pressure Vessel Code. However, additional infor-

mation concerning material performance is required in order to develop con-

stitutive equations for inelastic analysis. Material studies must produce

information concerning fabricability, weldability, and variability of properties



for a specified aaterial resulting from Minor variations in composition,

melting practice, and thermoaechanical processing history from heat-to-heat.

Finally, data are required to quantify potential long-term degradation from

other factors such as metallurgical instability resulting from thermal aging (1)

and environmental effects (2). Consider a partial list of some of the more

important physical and mechanical property tests in Table I. These tests must

be performed at appropriate temperatures and strain rates and, when applicable,

with additional tests for environmental and metallurgical stability. Such

an undertaking requires well thought out and coordinated interdisciplinary

materials investigations, which are currently under way in several laboratories

in the Dcited States. For CRBRP steam generator development, first attention

is being directed at understanding the behavior of 2 1/4 Cr-1 Ho steel (annealed)

as the base material, with associated weldment filler metals for transition

joints such as Inconel 82 and type 16-8-2 stainless steel (Fe-162 Cr-82 Hi—22 Mo).

While both mechanical and physcial property tests are currently under

way on all these materials, only the base material 2 1/4 Cr-1 Mo steel behavior

will be discussed. It was the objective of this paper, therefore, to present

recent results of some of the experimental tests and analytically developed

mathematical descriptions aimed at characterizing the mechanical and physical

properties of 2 1/4 Cr-1 Mo steel.

MECHANICAL PROPERTIES

Because of the complexity of mechanical data and the limitations of

space, only representative indications of mechanical behavior defined by the

tests in Table I will be discussed herein. Additional results from this effort

can be found elsewhere (3—5).



Tensile Properties

An extensive tensile testing program was conducted in order to obtain

tensile properties from a given heat of material for comparison with previously

obtained data and to provide some* of the data base required for establishment

of Interim constitutive equations for this material.

The tensile studies to be described were conducted on a single heat of

commercial 2 1/4 Cr-1 Mo steel, which was in the form of a 25.4-mm-thick plate

obtained from Babcock and Wilcox Company (B&W heat 20017). The chemical

composition is given in Table II. Tests were conducted on this heat in the

annealed condition: 1 hr at 927°C, then furnace cooled. The microstructure

of the material was primarily proeutectoid ferrite with small amounts of pearlite

and bainite.

Tests were conducted over the range 25 to 593°C and at strain rates of

2.67 * 10~6 to 144/sec. Therefore, the variation in tensile properties with

strain rate could be described over eight orders of magnitude (4,5).

Figures 1 to 4 show the three-dlmenstional representations of the 0.2Z

offset yield stress, ultimate tensile strength, total elongation, and reduction

of area over strain rates of 2.7 x 10"' to 144/sec and from 25 to 566#C. With

two exceptions, the topography of the yield-stress strain-rate temperature

surface was quite smooth (Fig. 1). The only exceptions were a minor peak at

about 371°C and 0.16/sec and a rather large increase in yield strength with

increasing strain rate and decreasing temperature as the high-strain-rate

room-temperature corner was approached.

The ultimate-tensile-strength strain-rate temperature relationship shown

in Fig. 2 was much more complex. As with the yield strength, there was a large

increase in the ultimate tensile strength in the high-strain-rate low-temperature

corner. The main distinguishing feature of the topography, however, is the



ridge that has its peak at about 371°C and 2.7 x KT'/sec (the lowest strata

rate) and extends diagonally downward toward the high-strain-rate high-temperature

corner. At 144/sec, the highest strain rate tested, the peak occurred near

566*C. Note also that, although the peak strength occurred at the lowest

strain rate at about 371*C, the strength at this strain rate rapidly decreased

as the temperature was increased.

Strain rate effects on the ultimate tensile strength can be broken into

two types, both of which occur in this steel. Nornally, strength decreases

with decreasing strain rate and increasing temperature, conditions that promote

recovery during testing. This is the reason for the large drop in ultinate

tensile strength at the low-strain-rate high-temperature corner of Fig. 2.

The second effect, dynamic strain aging, strengthens the steel and gives rise

to the ridge in Fig. 2. Dynamic strain aging is the result of interactions of

solute atoms (e.g., carbon and nitrogen) with dislocations. The increase in

the temperature at which the peak strength occurs with increasing strain rate

is a reflection of the increased diffusion rate of the solutes with increased

temperature (i.e., at the highest temperatures for the high strain rate, the

solutes that led to dislocation locking can diffuse rapidly enough to enhance

the strength).

The effect of strain rate on total elongation, Fig. 3, tends to be the

inverse of the effect on tensile strength. The behavior of the reduction of

area, Fig. 4, paralleled that for the total elongation.

To determine the best empirical analytical representation of the stress-

strain behavior of annealed 2 1/4 Cr-1 Mo steel, the true-stress true-plastic-

strain data between the 0.2% offset yield stress and the ultimate tensile

strength for tests between 25 and 593°c and 2.7 x 10"3/sec were f.*t with a

model proposed by Voce (6).



The Voce equation is a three-parameter equation,

a - Ah exp(Ce ) + Bh , (1)

where a is the true stress, e the true plastic strain, and A*, BH, and Ci» are

material constants. For strain rates of 6.7 * 10"3 to 6.7 * 10~s/sec, the

equation for the upper limit, el"8*, was obtained by fitting a straight line

to the uniform elongation data:

e? ln( 1.133 - O.OOO1O427 ) , (2)

P °

where T is temperature in °C. Although the lowest measured value of e fit

to Eq. (1) was 0.002, the extrapolated values at C * 0.001 were in good

agreement with the original true-stress true-plastic-strain curves. Below

£ * 0.001, the observed stresses decrease more rapidly than predicted by Eq. (1).

A comparison of the proportional limits (e » 0) estimated from the load strain

charts with those obtained from Eq. (1) indicated that the estimated values

for stress are 10 to 202 high.

In Figs. 5, 6, and 7, /li», Si,, and Ct, are shown as functions of temperature.

All three constants show a dependence on strain rate and are nonmonotonic

functions of temperature. Since At, and Bi» define the magnitude of the stress,

it is not unreasonable to expect a relationship between these constants and

strength. Indeed, AH and Bi» were found to be linear functions of the ultimate

tensile strength, T:

AH - -1.059T + 27.49 , (3)

and

- 1.231T - 6.954 , (4)



where /U, B*, and T are In ksi (1 kai • 6.895 MPa). Kote chat one relationship

fits all temperatures and strain rates. (Linear relationships were also found

with the yield strength.) Hence, if the ultimate tensile strength is known,

both A* and 5% can be determined. As expected, no relationship between CM and

T was evident. When Ci was plotted against the uniform elongation, however, a

nonlinear relationship that appeared independent of strain rate was obtained.

Knowing how tensile properties for a single heat of annealed 2 1/4 Cr-1 Ho

steel vary as a function of temperature and strain rate, one might Ilka to know

the range of values possible doe to slight variations in composition, product

form, etc. In Fig. 8 values of yield strength are plotted as a function of

temperature. The data represent the results of a large number of tests con-

ducted at our laboratory and elsewhere on 2 1/4 Cr-1 Ho steel in the annealed

or isothermally annealed condition. Data shown are from tests conducted on

several product forms including tube and pipe, bar and rod, and plate made of

material conforming to the following ranges of composition and room-temperatures

mechanical properties:

Carbon content: 0.07-0.15 wt %
Chromium content: 2.0—2.5 wt Z
Molybdenum content: 0.9—1.1 wt Z
Minimum room temperature ultimate tensile strength:

60 ksi (414 MPa)
Minimum room temperature (0.2Z offset) yield strength:

30 ksi (207. MPa)

Upper, lower, and expected values are indicated by the solid line through the

data. The upper and lower lines represent the (P » 0.90, A • 0.95) tolerance

limits; that is, at a confidence level of 0.95; 95Z of the observed values are

expected to be greater than the lower limit.



Creep Properties

Using the results of 37 creep tests from several laboratories over the

temperature range of 454 to 593*C for test times up to 5000 hr, a creep equation

was formulated (3). The equation is considered to be valid for annealed

material exhibiting clearly defined primary and secondary stages in the creep

curve and having room-temperature ultimate tensile strengths between 70 and 75 ksi

(483 and 517 MPa), yield strengths at least 30 ksi (207 HPa), and the coaposition

limitations 0.07-0.15 vt X C, 2.0-2.5 wt X Cr, and 0.9-1.1 vt X Ho. The equation

may be expressed as:

where e « creep strain (%),

* - time (hr),

t • minimum creep rate (2/hr),

and A, B, and t depend upon stress and temperature as follows:

log A - 12.26 - 3.348 x 1O-*T2 + 9.353 * 1 0 ~ V - 1.167 x lO'T ,

log B - -52.19 + 8.682 x 1Q-2T - 3.368 x 1O"5T2 - 1.152(log a ) 2 ,

log tm « -30.04 + 1.516 x io-
2r + 2.001 x 10-32*(log a ) 2 ,

where o - stress (ksi) and T * temperature (#F + 460).

The above model is expected to predict reasonable values of creep strain for

annealed material in the following stress, temperature, and time regions:

1 ksi ( 7 HPa) < a < 65 ksi (448 HPa) ultimate tensile strength,

700'F (371°C) < T < 1100*F (593°C),

T < time to tertiary creep.

An interim empirical equation for predicting the onset of tertiary creep was

then developed and is as follows:



Jog ftj - io + bx log 0 + 622- + i3(10)(r log o ) / l 0 0 ° , C6)

where tj - tlae to tertiary creep (hr),

a - stress (Mpa or ksi),

T - temperature (K or *R), K - #C + 273, *R - #F + 460.

Table III lists the coefficients found for Eq. (6) and their standard errors.

The stress and temperature ranges over which the aodel predicts reasonable and

consistent results are 644 K (1160*R) < 7 < 866 K (1S6O*R), 0 < 276 MPa (40 ksi),

t < 50,000 hr. Additional inforaation concerning the creep behavior of this

material can be found elsewhere (3,7).

Fatigue Properties

Fatigue analysis is an Important consideration in the design of reactor

coaponents that are subject to thermal transients. At the onset of this

Investigation there was not a valid set of elevated-teaperature ASME Code

approved fatigue curves for 2 1/4 Cr-1 Mo steel. Therefore, a concerted effort

was directed at obtaining new and collecting literature fatigue data to

establish valid fatigue curves. Fully reversed load- and strain-controlled

fatigue tests were conducted over the range from room temperature to 593*C (8).

Fatigue curves below 315?C plotted at each temperature (9) were compared, and

temperature had little or no effect on low-cycle fatigue resistance. However,

in the high-cycle region (i.e., >10s cycles to failure) the fatigue resistance

of this material was actually greater at 315*C than it was at room temperature.

This was attributed to dynamic strain aging. To avoid crossover complications

and because of the minimal overall reduction in fatigue life attributable to

temperature effects alone up to 427°C, we decided to construct only three

fatigue design curves beginning at 427eC. The design curves were established

as follows:



Using conventional ASME practice, average curves were derived for the data at

427, 482-538, and 593'C. Lower limit design curves were then obtained by

taking the lesser of safety factors of 2 on strain range and 20 on cycles to

failure (10) graphically smoothing the result into a single curve. This last

curve was then fit by a fourth degree polynomial in In N». The final design

curves shown in Fig. 9 were calculated from the polynoalal equations, which are:

[427*Cj In Act - 7.103 x 10"
s(ln Sd)

h - 4.246 x 10-3(ln NJ3

+ 8.995 x lO-s(ln Nj)2 -1.173<ln H£ - 0.5925 , (7)

[482-538#C] In Ae^ - 1.299 x lO"*(ln H£h - 6.852 x 10"3(ln NJ3

+ 0.137(ln NJ2 - 1.391(ln ffj) - 0.369 , (8)

[593*C] In Let - 7.007 x io-
5(ln S^" - 3.910 x 10"3(ln ff,)3

+ 8.821 x lO"2(ln NJ2 - 10.59(ln H£ ^ 1.256 , (9)

where Ae. Is the total strain range and Hi is the design cyclic life tine. The

above proposed design curves are considered to be valid in air over the range

shown (10 to 108 cycles) and for strain rates equal to or in excess of 4 x 10~3/sec.

However, these curves do not take into account dynamic strain aging, creep-

fatigue, or environmental interaction other than in air. In an effort to

provide some guidance as to the effects of dynamic strain aging over the

temperature range 275 to 400*C, a number of low-strain-rate fatigue tests were

conducted. Results from these tests conducted at 371°C for several strain rates

are shown in Fig. 10. Continuous cycling as well as tests with compressive

hold times were conducted. The compressive hold time tests were run at a

strain rate of 4 x 10"3/sec during the ramp portion of the cycle. Then, for

the overall cycle including the hold periods shown for strain ranges of 1 and

0.5Z, the strain rates were 5.48 x 10~s and 2.6 x io~"/sec, respectively. The

teatu conducted with compressive hold times given above failed after about the
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same number of cycles as those tests conducted In continuous cycling at nearly

corresponding strain rates, indicating perhaps that vave fora was not lmportaatc

The authors recouend that for applications Involving low-strain-rate fatigue

(i.e., considerably less than 4 * 10~3/sec) where dynamic strain aging is a

poasiblity, the 427"C design curve be aodifled according to the reduction

indicated in Fig. 10.

Tests are currently under way over the range 427 to S93*C to define the

extent to which strain-controlled fatigue properties are adversely influenced

by strain rate and hold or dwell periods at given values of strain. Edmunds

and White (11) clearly demonstrated that the strain-controlled fatigue resistance

of this material at 593°C was reduced by hold tines and that the reduction

increased with decreasing strain range. Manson et al. (L2) shoved that at this

same temperature the amount of reduction in strain-controlled iatigue life for

a given hold time depended upon the type of hold tine (i.e., tension, compression,

or both) with compressive hold times being the most damaging at lower strain

ranges. In Fig. 11 continuous cycle fully reversed fatigue data are compared

with 538°C test data that contained a tension, compression, or both a tension

and compression hold time during each cycle for the duration indicated. The

preliminary data are plotted as a diagram of time to failure versus cycles to

failure (t-N) so that the reader might easily compare the fatigue life of a test

that contained a given hold time for each cycle with the results of a zero hold

time or continuous cycle test. Although creep-fatigue testing on this material

is still in progress, some preliminary conclusions are possible from Fig. 11.

Consistent with the conclusion reported from previous investigations (11, 12)

for a given hold time the magnitude of the reduction in fatigue life increases

with decreasing strain range (Ac,). Compressive holds are more damaging than

tensile holds, but again the difference depends upon strain range, with greater

differences occurring at lower strain ranges. Test information available at
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both 482 and 427*C Is consistent also with these tentative conclusions. The

Magnitude of the reduction in fatigue life attributed to the hold tiae effect,

which probably results froa both creep and environmental Interaction, is

greater at 538 and 482*C than at 427*C.

Cyclic crack growth tests using a Wedge Opening Load (WOL) specimen geoaetry

and concepts of linear elastic fracture mechanics for treating the data have also

been accomplished on this material. Figure 12 compares results from a number

of tests conducted from room temperature to S93*C at several frequencies.

Consistent with the results of the strain-controlled facigue tests, crack

growth rates (da/dr.) or Incremental change in crack length per cycle increased

with increasing temperature. All the crack growth data were obtained from

tension-tension tests, with the ratio of minimum to maximum load expressed as R.

The data Indicate only a small frequency effect over the range 40 to 300 cycles/min

at 5iO*C. The data of Johnson (13) axe also included in Fig. 12 for coaparison;

they were obtained on the sane heat and heat treatment of 2 1/4 Cr-1 Mo steel

that was used by ORNL (8), but with a 204-sec hold period at peak load each

cycle. At 593°C there was a more pronounced "frequency effect over the range

4 to 40 cycles/min; decreasing frequency resulted again in an increase in

crack growth rates as shown. Above the knee in the curve for the elevated-

temperature data shown in Fig. 12 the data can be represented by an equation of

the form:

§*• -Abf t (10)

where A and n are constants for a given temperature, R ratio, and frequency.

Values of these constants are listed in Table IV.

Few of the components of reactor systems manufactured from this material

and subject to cyclic loading will operate at zero mean stress. Therefore,

mean stress effects must be accounted for, and R ratio studies were conducted.
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The results of a number of tests at 510*C are shown in Fig. 13. Since

frequency effects at 510°C are important, only those data at similar test

frequencies are reported. The summary line for R » 0.05 at higher frequency

is shown for comparison. The rate of crack growth increases markedly with

increasing mean stress.

The data were reanalyzed with the concept of effective stress intensity

factor used by Walker (14). The effective stress intensity factor, K ,-, is

given by

*eff " W 1 " *)W •

where m varies with the material. Using a value of m • 0.5 gave the results

shown to the right in Fig. 13. The varying growth rates above the knee were

effectively consolidated into a single line. However, the lower rates below

the knee of the curve were not.

Above the knee in the curve the equation of the line is as follows:

|2-« 3.852 x 10-15(Xfiff)2.17 (12)

1/2where #_£f is again in units of psi in.

PHYSICAL PROPERTIES

The physical properties that are most important for the design of the

1MFBR steam generators are the coefficient of thermal expansion, the thermal

conductivity (A) and the thermal diffusivity (2?). Most of the material

presented here has been covered in much more detailed fashion elsewhere, and,

with the exception of some new material on X, this section is largely a

condensation of the earlier work (15). In presenting this synopsis, the

intention is to emphasize (1) the values that we currently believe are the

most appropriate for design, (2) the technical rationale for the choices, and
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(3) the amount of variability that night reasonably be expected. The three

properties are discussed separately below.

Thermal Expansion

The thermal expansion behavior of a material nay be described in several

different ways by (1) tabulating the percentage change in length as a function

of temperature or (2) tabulating values for the slope of the length-temperature

curve (instantaneous expansion coefficient) or (3) giving values of the linear

slope required to generate the length change observed at each temperature.

These quantities are all interrelated, and discussion is therefore limited to

the third method of describing the length change data, which is commonly called

the mean coefficient of expansion, CL..

In a ferromagnetic alloy, existing theoretical treatments are known to be

inadequate, and the expansion behavior must be obtained from experimental data.

Unfortunately, experimental data are frequently subject to systematic errors.

For example, the a,, data (16) on pure iron show a range of 62 at room temperature

and 11% at 600°C. Somewhat less scattered, 4 and 82, exists in the three sets

of data (17—19) for 2 1/4 Cr-1 Ho steel, but this spread shows the danger

inherent in relying on any one set of measurements.

The a estimates due to HcSlroy (15) are shown in Table V. These values

were obtained by using Kirby's (.16) values for pure iron, cu. (Fe) and developing

an empirical equation involving a temperature- and concentration-dependent

correction term. A best value for the constant was obtained by use of

experimental data for several low-alloy steels (19—21), and the result was

«W - aAf(Fe) - O . O 7 5 ^ ^

where: T is temperature in K, X is total concentration of all solutes

expressed in atomic percent, and ou and Ow(Fe) are in units of 10~6/K.



14

Slace the value of the constant, 0.075, was determined by the deviation of

experimental data for steels from Kirby's values for pure iron, the estimate

really does not rely heavily on the uncertain <^(Fe) values The obvious

disadvantages of this approach are (1) it treats all solutes equally, (2) it

is purely empirical, and (3) a temperature dependence is forced upon the data.

Despite these difficulties, the equation is in reasonably good agreement with

the 3 sets of data for 2 1/4 Cr-1 Ho, but favors the data of Fink et al. (19).

An obvious advantage of this approach is that Eq. (13) can be used to

estimate how heat-to-heat composition variations will alter the expansion

behavior. For 2 1/4 Cr-1 Mo, the allowable composition ranges correspond to

a variation in total solute concentration of about 2.6 at. Z. Using this result

with the empirical equation results in an estimate that heat-to-heat variations

could affect a*, by 1.8% at room temperature and 2.8Z at 600°C. Also, since the

best currently attainable measurements a~e probably accurate to about ±1%,

designers should bear in mind that the expansion behavior cannot be determined

to better than about ±2.5% at 600°C.

The 0L, values that are shown in Table V were believed to be within about

±4Z of the true values. In Fig. 14 the OL, values are compared with the ASME

Code (22), and the difference is seen to be about —1.52 at all temperatures.

This agreement, though encouraging, probably indicates that the ASME Code is

primarily based on the data of Fink et al. (19). The ±4% uncertainty assigned

to the Oak Ridge National Laboratory values still seems reasonable, since at

600°C the three sets of data spread by ±4%, compositional variations could

contribute ±1.4%, and the experimental uncertainties associated with the parti-

cular measurements were probably larger than ±1%.
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Thermal Conductivity

In the 1MFBR heat exchanger, the heat transfer coefficients are very high,

and conduction through the tube walls contributes a large part of the steady-

state temperature drop between the two fluids. Further, in alloys the thermal

conductivity, X, is sensitive to small variations in microstructure and composition.

Therefore, designers must have available detailed information on the magnitude

and variability of X.

The ORNL estimates for 2 1/4 Cr-1 Ho were based on (1) a small amount of

accurate lower temperature (25-1CO°C) data and (2) the results of some earlier

work (23) on mechanisms of the thermal conduction in pure iron. The method

used for analyzing and extrapolating the X data is somewhat complex, but a

summary is useful because it illustrates how a band of X values was obtained

and shows how the complex temperature dependence of X arises.

In an optically opaque solid, energy can be carried by the conduction

electrons and by the lattice vibrations or phonons. Both Copper and BeO are

good thermal conductors, yet, they represent limiting cases in which energy is

transported by essentially only one mechanism. In transition metals, such as

iron, the conduction electrons are scattered more strongly than in copper, and

the electrical resistivity, p is much higher. In this situation, significant

amounts of energy can be transmitted by the parallel conduction of the lattice

vibrations and the behavior becomes complicated:

X - \ + \ , (14)
e p

where X = thermal conductivity due to conduction electrons, and

X <• thermal conductivity due to lattice vibrations.

In general, the two terms do not have the same temperature dependence. In non-

ferromagnetic metallic elements, experiments show that X rises to a peak at

very low temperatures and then decreases to a nearly constant value at high
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temperatures. Also, at high temperatures the Wiedemann-Franz-Lorenz lav la

approximately valid so that

\ - f •
where L « a constant at high temperaures.

Since p of simple metals Is proportional to T, the A should renain essentially

constant at high temperatures. Both theory and experiment (24) indicate that

the thermal conduction from lattice vibrations dies away as the temperature is

increased

Thus, in a case where both A and A are significant at room temperature, A

is expected to dominate at high temperatures.

This simple picture does not account for the complex temperature dependence

derived for 2 1/4 Cr-1 Mb steel. In this material, the A first increases with

T, reaches a miximum in the vicinity of 300 to 400 K, and then decreases at

higher temperatures. Ihi high-temperature decrease is due to the loss of

ferromagnetism which causes the p to rise much faster than T (25), and thus

both A and A decrease in this range. This explanation holds for both iron and

low-alloy steels. At lower temperatures, the measurements indicate a positive

A temperature coefficient, a situation observed for many alloys. This is

explained by assuming that the alloying elements increase the scattering (p) by

a large roughly temperature independent amount, A, and the magnetic disorder p

is unimportant at lower temperatures. Then, involving the Wiedeaann-Franz-Lorenz

lav:

\9 - LTIU +BT) . (16)
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For 2 1/4 Cr-1 Mo Steel (15), A is about 15 to 20 pfl-ca and B i*

0.045 uft-ca K"1. Thus A Is saall at low teaperature, but Increases with inert—*

Ing temperature. The computational aodel used in obtaining the O U L X vMLwm

is somewhat sore coaplex, and includes a t e n to account for the effects of

chroaium and molybdenum in solid solution on the A of iron, separate Weidaaa-

Franz values (Lorenz numbers) for the Impurity and intrinsic p contributions and

three constants derived from a treatment of data on high-purity iron (23).

This approach has several advantages: (1) it is consistent with existing

theory, (2) the constants involved are derived from reliable experimental A

and p data, (3) it can account for the complex temperature dependence observed,

and (4) heat-to-heat variations can be estimated through variations in p.

The minimum range for A was generated in this way. Electrical resistivity

data on several heats and for several heat treatment conditions were used In the

extrapolated equation:

«Fe " • - ' "
+

1.002 Lo [1 - exp(-27l95 + 0.214))T
(17)

-I + — + 1.364 x i05(p - p_ )298K|

J 1 " __ J
where p - electrical resistivity of the 2 1/4 Cr-1 Mo Steel at T, fl-ca;

T » temperature, K;

p_ • electrical resistivity of high purity at Tt ft-cm;

Lt - 2.443 x 1O~S V2/K2;

(p — p_ )298 K - electrical resistivity values at 298 K, fl-cm.

This generated a range of A values, which was based on the variability In available

p measurements.

Current work at ORNL involves further testing and refineaent of the values

that are shown in Table V. Lower teaperature (26-100*C) A and p data are being

obtained on annealed material from nine coaaerclal heats of 2. 1/4 Cr-1 Mo Steel,

and in a later phase of the work high-temperature A data will be obtained on
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two or three of these heats. The first A results fro* this work on four heats

fall within the upper half of the scatter band and show the predicted temperature

dependence.

Thermal Diffuslvity

This property is Important for analyzing heat exchanger behavior during

transients, and is related to the thermal conductivity:

D - \/dC (18)

where D » thermal diffusivity,

d - density, and

C - specific heat capacity.

However, physically, D is more complicated than A since it is determined by

the ability of the material to absorb energy as well as the carrier concentrations

and mobilities. At present, direct D measurements have not attained the

accuracy that can be achieved in A experiments, and the best D data are usually

good to about ±5%. The ORNL D values, which are shown in Table V and compared

with the ASME code values in Fig. 14, were calculated from Eq. (18) using

estimated d and C values and the A values from Table V. The variability

quoted includes additional contributions from uncertainties in the specific

heat and density values (15) but is principally due to anticipated A variations.

It is interesting to note that the D estimates are in good (3—7%) agreement with

the data of Fink et al. (19) for a steel (No. 6) that lies within the 2 1/4 Cr-1

Ho composition range, and the OL, data on this steel were also in good agreement

with the ORNL estimates. As can be seen from Fig. 14, the ASME code values

fall consistently below the ORNL estimates, as was the case for the A results.
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CONCLUSIONS

Much information defining the physical and mechanical properties of 2 1/4

Cr-1 Mo steel for steam generator design has recently becoste available. Although

elevated-temperature behavior of this material is complicated by variables such

as composition, heat treatment, thermomechaniciil processing, and temperature—

and straln-rate-related effects; for annealed material tensile and creep behavior

can be satisfactorily represented by empirical equations. Interim correlations

for subcritical crack growth fatigue and creep-fatigue data were given to show

progress in quantifying behavior under cyclic loading conditions. Key physical

properties for steam generator design including thermal expansion, conductivity,

and diffusivity were described in detail and compared with ASME Code values.

presently accepted ASME Code values. The new thermal conductivity and diffusivity

values were found to be significantly higher than the ASME Code values in the

temperature range of interest for LMFBR heat exchanger applications.
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Figure Captions

Fig. 1. Three-dimensional representation of. yield strength as a function of

temperature and strain rate.

Fig. 2. Three-dimensional representation of ultimate tensile strength as a

function of temperature and strain rate.

Fig. 3. Three-dimensional representation of total elongation as a function of

temperature and strain rate.

Fig. 4. Three-dimensional represenation of the reduction in area with

temperature and strain rate.

Fig. 5. The variation of A* of the Voce equation with temperature and

strain rate.

Fig. 6. The variation of BH of the Voce equation with temperature and

strain rate.

Fig. 7. The variation of d» of the Voce equation with temperature and

strain rate.

Fig. 8. Expected value of Yield strength (0.2Z Offset) with upper and

lower tolerance limits.

Fig. 9. Proposed ASME design curves for 2 1/4 Cr-1 Mo steel in the annealed

condition for temperatures indicated without mean stress corrections.

Fig. 10. Total strain range, Ae^, versus cycles to failure at 700*F (371*C),

showing the influence of strain rate on the strain-controlled

fatigue properties of 2 1/4 Cr-1 Ho steel.

Fig. 11. Time to failure versus cycles to failure diagram showing the

influence of various hold periods on the strain-controlled cyclic

lifetime of 2 1/4 Cr-1 Ho steel tested at 1000'F (538*C).

Fig. 12. Effect of temperature and frequency of fatigue crack propagation

of 2 1/4 Cr-1 Ho steel.



Fig. 13. Effect of stress ratio on fatigue crack propagation of 2 1/4 Cr-1 Ho

steel at 950*C (510*C) in air.

Fig. 14. Difference in physical property value as a function of temperature

for 2 1/4 Cr-1 Mo steel.
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Figure 1. Three-Dimensional Representation of Yield Strength as a Function of

Temperature and Strain Rate.
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Figure 2. Three-Dimensional Representation of Ultimate Tensile Strength as a Function

of Temperature and Strain Rate.
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Figure 3. Three-Dlmenslonal Representation of Total Elongation as a Function of

Temperature and Strain Rate.
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Figure 4. Three-Dimensional Representation of the Reduction in Area with Temperature

and Strain Rate.
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Table I
Partial Tabulation of Mecbanlcal and Physical Property Testa Bequirai

In order to Establish Behavior of CRBSF Steam Generator Materials

I . Mechanical

A. Monotonic and cyclic uniaxial tensile
B. Constant-load uniaxial creep
C. Friction and Wear
D. Step- and reversed-load creep
E. Cyclic Creep
F. Elastic property
G. Relaxation
H. Complex Loading
I . High-cycle and low^cyde fatigue
J . Subcritical crack growth
K. Toughness
L. Creep-fatigue-environment Interaction

II. Physical

A. Theraal expansion
B. Theraal conductivity
C. Emittance
D. Density
E. Electrical resistivity
F. Thermal diffusivity
G. Specific heat



Table II

Cheaical Coaposition of 25.4-aa (1-in.) Plate of Annealed 2 1/4 Cr-1 Ho
Steel (Bfiff Heat 20017)

Analysis

Vendor

ORHL

0

0

C

.11

.135

Mn

0.55

0.57

Cheaical

Si

0.29

0.37

Coaposition, wt

Cr

2.13

2.2

Ho

0.90

0.92

Z

Hi

0.16

S

0.014

0.016

P

0.011

0.012



Table III

Coefficients of Equation for Predicting Onset of Teriary
Creep in 2 1/4 Cr-1 Mo Steel

Value and Standard Error
Coefficient

SI Units (MPa and K) English Units (ksl and *R)

b0 12.05 ± 5.4 18.94 ± 1.7

bx -0.465 ± 1.6 -3.15 ± 0.57

fc2 -0.00759 ± 0.0037 -0.00805 ± 0.00083

2>s -0.0389 ± 0.017 -0.00370 ± 0.0024



Table IV
Constants for da/dn - A M " for 2 1/4 Cr-1 Ho Steel

Constants
Teaperature „ Frequency

CO (cycles/«ln) .

Rooa 0.05 40-4800 3.26 x 1O"ZZ 3.65

510

510

510

593

593

0.05

0.2

0.5

0.05

0.05

40-300

50

50

40

4

2.47 >

8.96 >

9.95 >

7.05 >

3.14 >

« io- 1 5

c 10- 1 2

c 1 0 - «

t 10-13

t 10"1H

2.15

1.41

2.15

1.72

2.08

*For &K in psi(in.)1/2.



Table V

Physical Property Estimates for 2 1/4 Cr-1 Mo Steel

Temperature
CO

25

100

200

300

400

500

600

700

Thermal

Value
W cm"1 K~l

0.363

0.370

0.374

0.366

0.354

0.338

0.320

0.302

Conductivity

Minimum Expected
Variability ± X

11
10
8

7
6
4
4

3

Thermal Diffusivity

Value
(cm2/8ec)

0.103

0.0986

0.0926

0.0846

0.0759

0.0664

0.0557

0.0431

Minimum Expected8

Variability ± X

13

12

11

9

8

7
6

5

Mean Coefficient of
Thermal Expansion

(deg-1)
All Values ±4Z •

11.45 x 10-*

11.94

12.53

13.03

13.46

13.82

14.10

14.30

'Variation includes uncertainties in specific heat capacity, density, and thermal conductivity.


