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Parallel Algebraic Multigrid Methods - High

Performance Preconditioners

Ulrike Meier Yang

Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, Box 808, L-560, Livermore, CA 94551, USA umyang@llnl.gov

Summary. The development of high performance, massively parallel computers
and the increasing demands of computationally challenging applications have ne-
cessitated the development of scalable solvers and preconditioners. One of the most
effective ways to achieve scalability is the use of multigrid or multilevel techniques.
Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems
on unstructured grids. While much of it can be parallelized in a straightforward way,
some components of the classical algorithm, particularly the coarsening process and
some of the most efficient smoothers, are highly sequential, and require new par-
allel approaches. This chapter presents the basic principles of AMG and gives an
overview of various parallel implementations of AMG, including descriptions of par-
allel coarsening schemes and smoothers, some numerical results as well as references
to existing software packages.

1 Introduction

The development of multilevel methods was a very important step towards
being able to solve partial differential equations fast and efficiently. One of
the first multilevel methods was the multigrid method. Multigrid builds on a
relaxation method, such as the Gauß-Seidel or the Jacobi method, and was
prompted by the discovery, that while these relaxation schemes efficiently
damp high frequency errors, they make little or no progress towards reducing
low frequency errors. If however one moves the problem to a coarser grid
previously low frequency errors turn now into high frequency errors and can
be damped efficiently. If this procedure is recursively applied, one obtains a
method with a computational cost that depends only linearly on the problem
size.

There are two basic multigrid approaches: geometric and algebraic. In ge-
ometric multigrid, the geometry of the problem is used to define the various
multigrid components. Algebraic multigrid (AMG) methods use only the in-
formation available in the linear system of equations and are therefore suitable
to solve problems on more complicated domains and unstructured grids. AMG
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was first introduced in the 80s [7, 8, 5, 45]. Since then, a lot of research has
been done and many new variants have been developed, e.g. smoothed aggre-
gation [55, 54], AMGe [11], spectral AMGe [14], to just name a few. Whole
books have been written on this topic [37, 51]. A good tutorial on multigrid,
including AMG, is [12]. A very detailed introduction on AMG is [48].

Focus of this chapter is not an overview of all existing AMG methods
(there would not be enough space), but a presentation of the basic idea of
AMG, the challenges that come with a parallel implementation of AMG and
how to overcome them, as well as the impact this challenge has had on AMG.

With the advent of parallel computers one has sought parallel algorithms.
When vector computers where developed in the 70s, it was important to de-
velop algorithms that operated on long vectors to make good use of pipelines
or vector registers. For parallel computers with tens or hundreds of proces-
sors and slow intercommunication it was necessary to be able to partition
an algorithm into big independent pieces in order to avoid large communica-
tion cost. Multigrid methods, due to their decreasing levels, did not appear
to be good candidates for these machines. However with the development of
high performance computer with tens or hundreds of thousands of processors
it has become very important to develop scalable algorithms, and therefore
multigrid methods as well as the application of multilevel techniques in other
algorithms have become very popular in parallel computing.

In this chapter, the concept of AMG as well as various parallel variations
will be described. While most of AMG can be parallelized in a straightfor-
ward way, the coarsening algorithm and the smoother are more difficult to
parallelize. Therefore a large portion of this chapter is devoted to parallel
approaches for these components. Additionally, interpolation as well as a few
numerical results are presented. Finally, an overview of various parallel soft-
ware packages is given that contain algebraic multigrid or multilevel codes.

2 Algebraic Multigrid - Concept and Description

We begin by outlining the basic principles and techniques that comprise AMG.
Detailed explanations may be found in [45]. Consider a problem of the form

Au = f, (1)

where A is an n× n matrix with entries aij . For convenience, the indices are
identified with grid points, so that ui denotes the value of u at point i, and
the grid is denoted by Ω = {1, 2, . . . , n}. In any multigrid method, the central
idea is that “smooth error,” e, that is not eliminated by relaxation must
be removed by coarse-grid correction. This is done by solving the residual
equation Ae = r on a coarser grid, then interpolating the error back to the
fine grid and using it to correct the fine-grid approximation by u← u+ e.
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Using superscripts to indicate level number, where 1 denotes the finest
level so that A1 = A and Ω1 = Ω, the components that AMG needs are as
follows:

1. “Grids” Ω1 ⊃ Ω2 ⊃ . . . ⊃ ΩM with subsets:
Set of coarse points or C-points Ck, k = 1, 2, . . .M − 1,
Set of fine points or F -points F k, k = 1, 2, . . .M − 1.

2. Grid operators A1, A2, . . . , AM .
3. Grid transfer operators:

Interpolation P k, k = 1, 2, . . .M − 1,
Restriction Rk, k = 1, 2, . . .M − 1.

4. Smoothers Sk, k = 1, 2, . . .M − 1.

These components of AMG are constructed in the first step, known as the
setup phase.

AMG Setup Phase:
1. Set k = 1.
2. Partition Ωk into disjoint sets Ck and F k.

a) Set Ωk+1 = Ck .
b) Define interpolation P k.

3. Define Rk (often Rk = (P k)T ).
4. Set Ak+1 = RkAkP k.
5. Set up Sk, if necessary.
6. If Ωk+1 is small enough, set M = k + 1 and stop. Otherwise,

set k = k + 1 and go to step 2.

Once the setup phase is completed, the solve phase, a recursively defined cycle,
can be performed as follows:

Algorithm: MGV (Ak, Rk, P k, Sk, uk, fk).
If k = M , solve AMuM = fM with a direct solver.
Otherwise:

Apply smoother Sk µ1 times to Akuk = fk.
Perform coarse grid correction:

Set rk = fk −Akuk.
Set rk+1 = Rkrk.
ApplyMGV (Ak+1, Rk+1, P k+1, Sk+1, ek+1, rk+1).
Interpolate ek = P kek+1.
Correct the solution by uk ← uk + ek.

Apply smoother Sk µ2 times to Akuk = fk.

The algorithm above describes a V(µ1, µ2)-cycle, other more complex cycles
such as W-cycles can be found in [12].

Coarse grid selection and interpolation must go hand in hand and affect
each other in many ways. There are basically two measures which give an
indication about the quality of the AMG method, both need to be considered
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and are important, although depending on the user’s priorities one might be
more important than the other. The first one, the convergence factor, gives
an indication on how fast the method converges, i.e. how many iterations are
needed to achieve the desired accuracy, the second one, complexity, affects the
number of operations per iteration and the memory usage.

There are two types of complexities that need to be considered: the oper-
ator complexity and the average stencil size. The operator complexity Cop is
defined as the quotient of the sum of the numbers of nonzeroes of the matrices
on all levels, Ak, k = 1, ...,M , divided by the number of nonzeroes of the orig-
inal matrix A1 = A. This measure indicates how much memory is needed. If
memory usage is a concern, it is important to keep this number small. It also
affects the number of operations per cycle in the solve phase. Small operator
complexities lead to small cycle times. The average stencil size s(Ak) is the
average number of coefficients per row of Ak. While stencil sizes of the original
matrix are often small, it is possible to get very large stencil sizes on coarser
levels. Large stencil sizes can lead to large setup times, even if the operator
complexity is small, since various components, particularly coarsening and to
some degree interpolation, require that neighbors of neighbors are visited and
so one might observe superlinear or even quadratic growth in the number of
operations when evaluating the coarse grid or the interpolation matrix. Large
stencil sizes can also increase parallel communication cost, since they might
require the exchange of larger sets of data.

Both convergence factors and complexities need to be considered when
defining the coarsening and interpolation procedures, as they often affect each
other; increasing complexities can improve convergence, and small complexi-
ties lead to a degradation in convergence. The user needs therefore to decide
his/her priority. Note that often a degradation in convergence due to low com-
plexity can be overcome or diminished by using the AMG method as a precon-
ditioner for a Krylov method like conjugate gradient, GMRES, BiCGSTAB,
etc.

Many parts of AMG can be parallelized in a straightforward way, since
they are matrix or vector operations. This is generally true for the evaluation
of the interpolation or prolongation matrix as well as the generation of the
triple matrix product RkAkP k. Certainly all those operations require com-
munication among processors and data exchange in some way, however all of
this can be done in a straightforward way. There are however two components
which present potentially a serious challenge, the coarsening routine as well
as the relaxation routine. The original coarsening routine as described in [45]
as well as the basic aggregation procedure are inheritantly sequential. Also,
the relaxation routine used in general is the Gauß-Seidel algorithm, which is
also sequential in nature. In the following sections, the various components,
coarse grid selection, interpolation and smoothing are described.
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3 Coarse Grid Selection

Before describing any parallel coarsening schemes, we will describe various
sequential coarsening schemes, since most parallel schemes build on these.

3.1 Sequential Coarsening Strategies

There are basically two different ways of choosing a coarse grid. The first ap-
proach (which can be found e.g. in [45, 48]) strives to separate all points i into
either coarse points or C-points, which will be taken to the next level, and
fine points or F -points, which will be interpolated by the C-points. The sec-
ond approach, coarsening by aggregation or agglomeration ([55]), accumulates
aggregates which will be the coarse “points” for the next level.

“Classical” Coarsening

Since most likely not all matrix coefficients are equally important for the de-
termination of the coarse grids, one should only consider those matrix entries
that are sufficiently large. We introduce the concept of strong influence and
strong dependence. A point i depends strongly on j or j strongly influences i
if

−aij ≥ θmax
k 6=i

(−aik). (2)

Note that this definition was originally motivated by the assumption that A is
a symmetric M-matrix, i.e. a matrix that is positive definite and off-diagonally
nonpositive, it can however formally be applied to more general matrices. The
size of the strength threshold θ can have a significant influence on complexities,
particularly stencil size, as well as convergence, as is demonstrated in Section
6. In the classical coarsening process (which we will denote Ruge-Stüben or
RS coarsening) the attempt is made to fulfill the following two conditions:

(C1): For each point j that strongly influences an F -point i, j is either a C-
point or it strongly depends on a C-point k that also strongly influences
i.

(C2): The C-points should be a maximal independent subset of all points, i.e.
no two C-points are connected to each other, and if another C-point is
added the independence is lost.

(C1) is designed to insure the quality of interpolation, while (C2) is de-
signed to restrict the size of the coarse grids. In general, it is not possible
to fulfill both conditions, therefore (C1) is enforced, while (C2) is used as a
guideline. We will show in section 4 why (C1) is important.

RS coarsening consists of two passes and is illustrated in Figure 1 for a
4×4-grid. In the first pass, each point i is assigned a measure λi, which equals
the number of points that are strongly influenced by i. Then a point with a
maximal λi (there usually will be several) is selected as the first coarse point.
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Now all points that strongly depend on i become F -points. For all points that
strongly influence these new F -points, λj is incremented by the number of
new F -points that j strongly influences in order to increase j’s chances of
becoming a C-point. This process is repeated until all points are either C- or
F -points.

2 4 3 3

3 4 8 3

3 5 4 4

2 3 3 2

2

3

3

2 3 3 2

Pass 2:

3

4

4

2 4 4 23 4 4 2

Pass 1:

Fig. 1. RS coarsening. Black points denote C-points, white points with solid border
denote F -points, white points with dotted border denote undetermined points.Pass
2: solid lines denote strong F − F connections that do not satidfy condition (C1).

Since this first pass does not guarantee that condition (C1) is satisfied, it
is followed by a second pass, which examines all strong F − F connections
for common coarse neighbors. If (C1) is not satisfied new C-points are added.
This is illustrated in the second part of Figure 1, where solid lines denote
strong F − F connections that do not satisfy condition (C1).

Aggressive Coarsenings

Experience has shown [48] that often the second pass generates too many C-
points, causing large complexities and inefficiency. Therefore condition (C1)
has been modified to the following.

(C1′): Each F -point i needs to strongly depend on at least one C-point j.
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Now just the first pass of the RS coarsening fulfills this requirement. This
method leads to better complexities, but worse convergence.

Even though this approach often decreases complexities significantly, com-
plexities can still be quite high and require more memory than desired. Al-
lowing C-points to be even further apart leads to aggressive coarsening. This
is achieved by the following new definition of strength: A variable i is strongly
n-connected along a path of length l to a variable j, if there exists a sequence
of variables i0, i2, . . . il, with i = i0 and j = il and ik strongly connected
(as previously defined) to ik+1 for k = 0, . . . , l − 1. A variable i is strongly
n-connected w.r.t. (p, l) to a variable j, if at least p paths of lengths ≤ l exist
such that i is strongly connected to j along each of these paths. This can
be most efficiently implemented by applying the first pass of RS coarsening
twice, the first time as described in the previous section, the second time by
defining strong n-connectivity w.r.t. (p, l) only between the resulting C-points
(via neighboring F -points). For further details see [48]. The result of applying
aggressive A2 coarsening, i.e. choosing p = 2 and l = 2, and aggressive A1
coarsening, i.e. p = 1 and l = 2, to the 5-point Laplacian on a 7 × 7-grid is
illustrated in Figure 2.

A2 Coarsening A1 Coarsening

Fig. 2. Various sequential coarsenings for a 5-point Laplacian.

Coarsening by Aggregation

For the aggregation scheme, a different concept of strength is used. Here only
matrix coefficients aij are considered, if they fulfill the following condition:

|aij | > θ
√

|aiiajj |. (3)

An aggregate is defined by a root point i and its neighborhood, i.e. all points
j, for which aij fulfills (3). Now the basic aggregation procedure consists of
the following two phases. In the first pass, a root point is picked that is not
adjacent to any existing aggregate. Then the aggregate is defined by the root
point and all its neighbors. This procedure is repeated until all unaggregated
points are adjacent to an aggregate. It is illustrated in Figure 3 for a 5-point
Laplacian on a 6 × 5-grid. In the second pass, all remaining unaggregated
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Fig. 3. Coarsening by aggregation. Black points denote root points, boxes and
triangles denote aggregates.

points are either integrated into already existing aggregates or used to form
new aggregates. Since root points are connected by paths of length of at
least 3, this approach leads to fast coarsening and small complexities. While
aggregation is fundamentally different from classical coarsening, many of the
same concerns arise. In particular, considerable care must be taken within the
second pass when deciding to create new aggregates and what points should
be placed into already existing aggregates. If too many aggregates are created
in this phase, complexities grow. If aggregates are enlarged too much or have
highly irregular shapes, convergence rates suffer.

3.2 Parallel Coarsening Strategies

There are various approaches of parallelizing the coarse grid selection schemes
described in the previous section, which are described in the following subsec-
tions.

Decoupled Coarsening Schemes

The most obvious approach to parallelize any of the coarsening schemes de-
scribed in the previous section is to partition all variables into subdomains,
assign each processor a subdomain, coarsen the variables on each subdomain
using any of the methods described above, and find a way of dealing with the
variables that are located on the processor boundaries.

The easiest option is to just coarsen independently on each subdomain
while ignoring the processor boundaries. Such an approach is the most efficient
one, since it requires no communication, but will most likely not produce a
very good coarse grid. The decoupled RS coarsening, which will be denoted
by RS0 coarsening, generally violates condition (C1) by generating strong
F − F connections without common coarse neighbors (see Figure 5a, which
shows the coarse grid generated by RS0 coarsening on 4 processors; black
points denote C-points, while white and gray points denote F -points.) and
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often leads to poor convergence, see Section 6 and [25]. While in practice this
approach might lead to fairly good results for coarsening by aggregation [52],
it can produce many aggregates near processor boundaries that are either
smaller or larger than an ideal aggregate and so lead to larger complexities or
have a negative effect on convergence. Another disadvantage of this approach
is that it cannot have fewer coarse points or aggregates than processors. In the
case of thousands of processors this leads to a large grid and a large system
on the coarsest level and might be inefficient to solve using a direct solver.
Ways to overcome this problem are described at the end of this section.

Coupled Coarsening Strategies

If we want to improve RS0 coarsening, we need to find ways to deal with the
variables that are located on the processor boundaries. This starts with a de-
cision about whether one wants to compute the measures locally or globally,
i.e. whether one wants to include off processor influences. The use of global
measures can improve the coarsening and convergence, but is in general not
enough to fulfill condition (C1). One possible way of treating this problem is
— after one has performed a first and a second pass on each processor indepen-
dently — to perform a third pass only on the processor boundary points which
will add further C-points and thus ensure that condition (C1) is fulfilled. This
approach is called RS3 coarsening and can be found in [25]. It is illustrated in
Figure 5a for a 5-point Laplacian on a 10×10-grid on 4 processors. The black
points denote the C-points that have been generated in the first (and second)
pass, the gray points denote the C-points generated in the third pass. One of
the disadvantages of this approach is that this can generate C-point clusters
on the boundaries, thus increasing stencil sizes at the boundaries where one
would like to avoid those, in order to keep communication cost low.

In the coupled aggregation method, aggregates are first built on the bound-
ary. This step is not completely parallel. When there are no more unaggregated
points adjacent to an aggregate on the processor boundaries, one can proceed
to choose aggregates in the processor interiors, which can be done in parallel.
In the third phase unaggregated points on the boundaries and in the interior
are swept into local aggregates. Finally, if there are any remaining points, new
local aggregates are formed. This process yields significantly better aggregates
and does not limit the coarseness of grids to the number of processors, see
[52].

Parallel Independent Set Coarsenings

A completely parallel approach is suggested in [17, 25]. It is based on parallel
independent set algorithms as described by Luby and Jones and Plassman in
[36, 30]. This algorithm, the CLJP (Cleary-Luby-Jones-Plassman) coarsening,
begins by generating global measures as in RS coarsening, and then adding
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a random number between 0 and 1 to each measure, thus making them dis-
tinctive. It is now possible to find unique local maxima. The algorithm, which
is illustrated for a small example on a 4 × 4-grid in Figure 4, proceeds as
follows: If i is a local maximum, make i a C-point, eliminate the connections
to all points j that influence i and decrement j’s measure. (Thus instead of
immediately making C-point neighbors F -points, we increase their likelihood
of becoming F -points. This models the two passes of the RS coarsening into
one pass.) Further for all points j that depend on i, remove its connection to
i and examine all points k that depend on j on whether they also depend on
i. If i is a common neighbor for both k and j decrement the measure of j and
remove the edge connecting k and j from the graph. If a measure gets smaller
than 1, the point associated with it becomes an F -point. The advantage of

2.7 4.3 3.0 3.9

3.2 4.7 8.5 3.2

3.9 5.1 4.8 4.9

2.7 3.6 3.3 2.8

2.7 1.3 0.0 0.9

3.2 1.7 0.2

3.9 2.1 1.8 1.9

2.7 3.6 3.3 2.8

2.7 1.3

3.2 1.7

3.9 2.1 1.8 1.9

2.7 3.6 3.3 2.8

2.7 3.3 2.0 2.9

3.2 3.7 2.2

3.9 4.1 3.8 3.9

2.7 3.6 3.3 2.8
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2.7 1.3
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0.1 1.8 1.9

0.7 2.3 2.8

3.9
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1.3

2.2 1.7
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2.3

2.7

2.8

Fig. 4. CLJP coarsening. Black points are C-points, white points with solid border
F -points, white points with dotted border undetermined points.

this procedure is, assuming one uses the same global set of random numbers,
that it is completely independent of the number of processors, a feature that is
desired by some users. It also facilitates debugging. The additional advantage
of this procedure is that it does not require the existence of a coarse point
in each processor as the coarsening schemes above and thus coarsening does
not slow down on the coarser levels. While this approach works fairly well
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on truly unstructured grids, it often leads to C-point clusters and fairly high
complexities, see Figure 5b. These appear to be caused by the enforcement of
condition (C1).

To reduce operator complexities, while keeping the property of being inde-
pendent of the number of processors, a new algorithm, the PMIS coarsening
[19], has been developed that is more comparable to using one pass of the
RS coarsening. While it does not fulfill condition (C1), it fulfills condition
(C1′). PMIS coarsening begins just as the CLJP algorithm with distinctive
global measures, and sets local maxima to be C-points. Then points that are
influenced by C-points are made F -points, and are eliminated from the graph.
This procedure will continue until all points are either C- or F -points. For an
illustration of the PMIS coarsening applied to a 5-point Laplacian see Figure
5c.

Another aggregation scheme suggested in [52] is also based on a parallel
maximally independent set algorithm. Since the goal is to find an initial set
of aggregates with as many points as possible with the restriction that no
root point can be adjacent to an existing aggregate. Therefore maximizing the
number of aggregates is equivalent to finding the largest number of root points
such that the distance between any two root points is at least three. This
can be accomplished by applying a parallel maximally independent set (MIS)
algorithm, e.g. the asynchronous distributed memory algorithm ADMMA [1],
to the square of the matrix in the first phase of the coupled aggregation
scheme.

Subdomain Blocking

Another parallel approach is subdomain blocking [33]. Here, coarsening starts
with the processor boundaries, and one then proceeds to coarsen the inside
of the domains. Full subdomain blocking is performed by making all boundary
points coarse and then coarsening into the interior of the subdomain using
any coarsening scheme one wishes to use, such as one pass of RS coarsening
or any of the aggressive coarsening schemes. The disadvantage of this scheme
is that it generates far too many C-points on the boundary, which can cause
problems on the coarser grids. For an illustration see Figure 5d. A method,
which avoids this problem, is minimum subdomain blocking. This approach
uses standard coarsening on the boundaries and then coarsens the interior of
the subdomains.

Combination Approaches and Miscellaneous

Another option which has shown to work quite well for structured problems is
the following combination of the RS and the CLJP coarsening which is based
on an idea by Falgout [25]. This coarsening starts out as RS0 coarsening,
it then uses the C-points that have been generated in this first step and are
located in the interior of each processor and uses them as the first independent
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set, i.e. they will all remain C-points and feeds them into the CLJP-algorithm.
The resulting coarsening will fill the boundaries with further C-points and
possibly add a few in the interior of the subdomains and satisfy condition (C1),
see Figure 5e. A more aggressive scheme, which satisfies condition (C1′), and
uses the same idea, is the HMIS coarsening [19]. It performs only the first pass
of RS0 coarsening to generate the first independent set, which then is used by
the PMIS algorithm. Figure 5f shows its application to a 5-point Laplacian
on 4 processors. The black C-points are the first independent set, which have
been generated by the first pass of the RS0 coarsening, whereas the gray
C-points have been determined by the application of the PMIS coarsening.

Another approach is to color the processors so that subdomains of the
same color are not connected to each other. Then all these subdomains can
be coarsened independently. This approach can be very inefficient since it
might lead to many idle processors. An efficient implementation that builds
on this approach can be found in [31]. Here the number of colors is restricted
to nc, i.e. processors with color numbers higher than nc are assigned the color
nc. Good results were achieved using only two colors on the finest level, but
allowing more colors on the coarser levels.

a. RS0/RS3 b. CLJP c. PMIS

d. Full subdomain
blocking

f. HMISe. Falgout

Fig. 5. Various parallel coarsenings of a 5-point Laplacian on a 10× 10-grid using
4 processors. White points are F -points, black points are C-points, gray points are
C-points generated during special boundary treatments.
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Dealing with the Coarser Levels

One of the difficulties that arises when parallelizing multilevel schemes is the
treatment of the coarser levels. Since many AMG schemes use the sequential
approach on each processor and this often requires at least one coarse point or
aggregate on each processor, coarsening will slow down on the coarser grids
leading to a coarsest grid of the size of at least the number of processors.
This could be thousands of unknowns and lead to a very inefficient coarse
grid solve, and potentially prevent scalability. There are various possibilities
to deal with this situation. Via aggregation one can combine the contents of
various processors, when a certain size is achieved. This approach also coarsens
previous processor boundaries and thus deal with cluster of coarse points in
these areas. One disadvantage of this approach is that it requires a lot of
communication and data transfer across processors.

Another possibility to deal with a slowdown in coarsening is to switch to
a coarsening scheme that does not require C-points on each processor, such
as CLJP or PMIS, when coarsening slows.

4 Interpolation

In this section, we will consider the construction of the interpolation operator.
The interpolation of the error at the F -point i takes the form

ei =
∑

j∈Ci

wijej (4)

where wij is an interpolation weight determining the contribution of the value
ej in the final value ei, and Ci is the subset of C-points whose values will be
used to interpolate a value at i.

In classical AMG the underlying assumption is that algebraically smooth
error corresponds to having very small residuals; that is the error is smooth
when the residual r = f − Au ≈ 0. Since the error, e, and the residual are
related by Ae = r, smooth error has the property Ae ≈ 0. Let i be an F -point
to which we wish to interpolate, Ni the neighborhood of i, i.e. the set of all
points, which influence i. Then the ith equation becomes

aiiei +
∑

j∈Ni

aijej = 0. (5)

Now, ”classical” interpolation as described in [45] proceeds by dividing Ni into
the set of coarse neighbors, Ci, the set of strongly influencing neighbors, F s

i ,
and the set of weakly influencing neighbors, Fw

i . Using those distinctions as
well as condition (C1), which guarantees that a neighbor in F s

i is also strongly
influenced by at least one point in Ci yields the following interpolation formula
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wij = −
1

aii +
∑

k∈F w
i

aik



aij +
∑

k∈F s
i

aikakj
∑

m∈Ci
akm



 . (6)

Obviously, this interpolation formula fails whenever (C1) is violated, since
there would be no m and one would divide by zero. One can somewhat remedy
this by including elements of F s

i that violate (C1) in Fw
i , but this will affect

the quality of the interpolation and lead to worse convergence. Nevertheless
often good results can be achieved with this interpolation, if the resulting
AMG method is used as a preconditioner for a Krylov method, see [19]. One
advantage of this interpolation formula is that it only involves immediate
neighbors and thus is easier to implement in parallel, since it requires only
one layer of ghost points located on a neighbor processor.

Another interpolation formula which also requires only immediate neigh-
bors, and can be used when (C1) is violated, but leads in general to worse
convergence rates is direct interpolation:

wij = −

(

∑

k∈Ni
aik

∑

l∈Ci
ail

)

aij

aii

. (7)

It is easy to implement sequentially as well as in parallel.
However, if one needs an interpolation that yields lower convergence rates,

a better approach is standard interpolation, which uses an extended neighbor-
hood. For all points j ∈ F s

i , one substitutes ej in (5) by −
∑

k∈Nj
ajkek/ajj .

This leads to a new formula

âiiei +
∑

j∈N̂i

âijej = 0, N̂i = {j 6= i : âij 6= 0}. (8)

The interpolation weights are then defined as in the direct interpolation by
replacing a by â and N by N̂ .

If one uses any of the aggressive coarsening schemes, it is necessary to use
long range interpolation, such as multipass interpolation, in order to achieve
reasonable convergence. Multipass interpolation starts by deriving interpola-
tion weights using direct interpolation for all fine points that are influenced
by coarse points (which are connected by a path of length 1). In the following
pass it evaluates weights using the same approach as in standard interpolation
for points that are influenced by those points for which interpolation weights
have already been determined and which are connected by a path of length
1. This process is repeated until weights have been obtained for all remaining
points. One disadvantage of multipass interpolation is that since it is based on
direct interpolation it often converges fairly slowly. Therefore it has been sug-
gested to improve this interpolation formula by using an a posteriori Jacobi
relaxation and applying it to the interpolation operator as follows

P
(n)
FC = (I −D−1

FFAFF )P
(n−1)
FC −D−1

FFAFC , (9)
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where PFC and (AFF AFC) consist of those rows of the matrices P and
A that refer to the F -points only, and DFF is the diagonal matrix with the
diagonal of AFF . Of course using one or more sweeps of Jacobi interpolation
will increase the number of nonzeroes of P and also the complexity of the
AMG method. Therefore often interpolation truncation is used, which trun-
cates those elements in the interpolation operator that are absolutely smaller
than a chosen truncation factor τ , leading to smaller stencil sizes.

Parallel implementation of long range interpolation can be tedious, since
due to the long ranges it involves several layers of off processor points. Some
of these points might even be located in processors that are not neighbor
processors according to the chosen data structure. Therefore this approach
might require expensive communication. One way to avoid this problem has
been suggested in [48]. There, interpolation proceeds only into the interior
of the subdomain and not across boundaries. While this approach can be
implemented very efficiently on a parallel computer, it can cause convergence
problems.

Aggregation methods use a different type of interpolation. At first a ten-
tative interpolation operator (P k)(0) is created using one or more seed vec-
tors. These seed vectors should correspond to components that are difficult to
smooth. The tentative interpolation interpolates the seed vectors perfectly by
ensuring that all of them are in the range of the interpolation operator. For
Poisson problems the entries are defined as follows:

(P k)
(0)
ij =

{

1 if point i is contained in aggregate j
0 otherwise,

(10)

For specific applications such as elasticity problems, more complicated ten-
tative prolongators can be derived based on rigid body motions. Once the
tentative prolongator is created it is smoothed via a damped Jacobi iteration

(P k)(n) = (I − ω(Dk)−1Ak)(P k)(n−1), n = 0, . . . , (11)

where Dk is the diagonal matrix with the diagonal of Ak. For a more detailed
description of this method see [55, 54].

5 Smoothing

One important component of algebraic multigrid is the smoother. A good
smoother will reduce the oscillatory error components, whereas the ’smooth’
error is transferred to the coarser grids. Although the classical approach of
AMG focused mainly on the Gauß-Seidel method, the use of other itera-
tive solvers has been considered. Gauß-Seidel has proven to be an effective
smoother for many problems, however its main disadvantage is its sequen-
tial nature. For elasticity problems, Schwarz smoothers have shown to be ex-
tremely efficient, here again the most efficient ones are multiplicative Schwarz
smoothers, which are highly sequential.
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The general definition of a smoother S applied to a system Au = f is

en+1 = Sen or un+1 = Sun + (I − S)A−1f, (12)

where en = un − u denotes the error. Often S is the iteration matrix of an
iterative solver S = I −Q−1A, where Q is a matrix that is part of a splitting
Q+(Q−A) of A, e.g. Q is the lower triangular part of A for the Gauß-Seidel
method. Other approaches such as polynomial smoothers or approximate in-
verse set Q−1 to be an approximation of A−1 that can easily be evaluated.
Often iterative schemes that are used as smoothers are also presented as

un+1 = un +Q−1(f −Aun). (13)

5.1 Parallel Relaxation Schemes

There are various conventional relaxation schemes that are already parallel,
such as the Jacobi or the block Jacobi algorithm. Here Q is the diagonal ma-
trix (or block diagonal matrix) with the diagonal (or block diagonal) elements
of A. These relaxation schemes require in general a smoothing or relaxation
parameter for good convergence, as discussed in the next subsection. Another
equally parallel related algorithm that in general leads to better convergence
than Jacobi relaxation, is C-F Jacobi relaxation, where first the variables asso-
ciated with C-points are relaxed, then the F -variables. In algebraic multigrid
C-F Jacobi is used on the downward cycle, and F-C Jacobi, i.e. relax the
F -variables before the C-variables, on the upward cycle.

5.2 Hybrid Smoothers and the Use of Relaxation Parameters

The easiest way to implement any smoother in parallel is to just use it in-
dependently on each processor, exchanging boundary information after each
iteration. We will call such a smoother a hybrid smoother. Using the termi-
nology of (13), for a computer with p processors Q would be a block diagonal
matrix with p diagonal blocks Qk, k = 1, ..., p. For example, if one applies this
approach to Gauß-Seidel, Qk are lower triangular matrices (we call this par-
ticular smoother hybrid Gauß-Seidel; it has also been referred to as Processor
Block Gauß-Seidel [3]). While this approach is easy to implement, it has the
disadvantage of being more similar to a block Jacobi method, albeit worse,
since the block systems are not solved exactly. Block Jacobi methods can
converge poorly or even diverge unless used with a suitable damping param-
eter. Additionally, this approach is not scalable, since the number of blocks
increases with the number of processors and with it the number of iterations
increases. In spite of this, good results can be achieved by using suitable relax-
ation parameters. Finding good parameters is not easy and made even harder
by the fact that in a multilevel scheme one deals with a new system on each
level, which requires new parameters. It is therefore important to find an au-
tomatic procedure to evaluate these parameters. Such a procedure has been
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developed for symmetric positive problems and smoothers in [56] using conver-
gence theory for regular splittings. A good smoothing parameter for a positive
symmetric matrix A is ω = 1/λmax(Q

−1A), where λmax denotes the maximal
eigenvalue of A. A good estimate for this value can be obtained by using a few
relaxation steps of Lanczos or conjugate gradient preconditioned with Q. This
procedure can be applied to any symmetric positive definite hybrid smoother,
such as hybrid symmetric Gauß-Seidel, Jacobi, Schwarz smoothers or sym-
metric positive definite variants of sparse approximate inverse or incomplete
Cholesky smoothers.

5.3 Multicoloring Approaches

Another approach to parallelize Gauß-Seidel or similar smoothers such as
block Gauß-Seidel or multiplicative Schwarz smoothers is to color subsets of
points in such a way that subsets of the same color are independent of each
other and can be processed in parallel. There are various parallel coloring
algorithms available [30], however use of those as smoothers has shown to
be inefficient, since often they generate too many colors, particularly on the
coarser levels. Another approach is to color the processors, which will give
some parallelism, but is overall not very efficient, since it leads to a large
number of processors being idle most of the time.

One truly efficient implementation of a multicolor Gauß-Seidel method is
described in [2, 3]. Here the nodes are ordered in such a way that interior nodes
are processed while waiting for communication necessary to process boundary
nodes. The algorithm first colors the processors and uses an ordering of the
colors to receive an ordering of the processors. Each processor partitions its
nodes into interior and boundary nodes, which are further divided into bound-
ary nodes that require only communication with higher processors, those that
communicate only with lower processors and the remaining boundary nodes.
Interior nodes are also divided into smaller sets which are determined by tak-
ing into account computational cost to ensure that updates of boundary points
occur at roughly the same time and thus idle time is minimized. For further
details see [2].

5.4 Polynomial Smoothers

Another very parallel approach which promises to be also scalable is the use
of polynomial smoothers. Here Q−1 in (13) is chosen to be a polynomial p(A)
with

p(A) =
∑

0≤j≤m

αjA
j . (14)

To use this iteration as a multigrid smoother, the error reduction properties
of q(A) = I − p(A)A must be complementary to those of the coarse grid
correction. One way to achieve this is by splitting the eigenvalues of A into
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low energy and high energy groups. The ideal smoother is then given by a
Chebyshev polynomial that minimizes over the range that contains the high
energy eigenvalues subject to the constraint q(0) = 1. If one knows the two
eigenvalues that define the range, it is easy to compute the coefficients of the
polynomials via a simple recursion formula.

Another polynomial smoother is the MLS (multilevel smoother) polyno-
mial smoother. It is based on a combined effect of two different smoothing
procedures, which are constructed to complement each other on the range of
coarse grid correction. The two procedures are constructed so that their error
propagation operators have certain optimum properties. The precise details
concerning this polynomial can be found in [10] where this smoother was first
developed in conjunction with the smoothed aggregation method.

The advantage of these methods is that they are completely parallel and
their parallelism is independent of the number of processors. The disadvantage
is that they require the evaluation of eigenvalues. Both require the maximal
eigenvalue of a matrix and the Chebyshev polynomial smoother also the lower
range of the high frequency eigenvalues. However, if these smoothers are used
in the context of smoothed aggregation, which is usually the case, the maximal
eigenvalues are already available since they are needed for the smoothing of
the interpolation. Further details on this topic can be found in [3].

5.5 Approximate Inverse, Parallel ILU and more

Obviously, one can use any other parallel solver or preconditioner as a
smoother. Q−1 can be chosen as any approximation to A−1, e.g. a sparse
approximate inverse. The use of approximate inverses in the context of mul-
tilevel methods is described in [50, 13, 38]. ParaSails, a very efficient parallel
implementation of an approximate inverse preconditioner, approximates Q
by minimizing the Frobenius norm of I − QA and uses graph theory to pre-
dict good sparsity patterns for Q [15, 16]. Other options for smoothers are
incomplete LU factorizations with Q = L̃Ũ , where L̃ and Ũ are sparse ap-
proximations of the actual lower and upper triangular factors of A. There are
various good parallel implementations available such as Euclid [28, 29], which
obtains scalable parallelism via local and global reorderings, or PILUT [32],
a parallel ILUT factorization. It is also possible to use conjugate gradient as
a smoother.

6 Numerical Results

This section gives a few numerical results to illustrate some of the effects
described in the previous sections. We apply various preconditioned AMG
methods to 2-dimensional (2D) and 3-dimensional discretizations (3D) of the
Laplace equation

−∆u = f, (15)
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with homogeneous Dirichlet boundary conditions on a unit square or unit
cube. We use the codes BoomerAMG and MLI from the hypre library.
BoomerAMG is mostly built on the ”classical” AMG method and provides the
coarsening algorithms: RS0, RS3, CLJP, Falgout, PMIS and HMIS. It deals
with a slowdown in coarsening by switching to CLJP, and uses Gaussian
elimination on the coarsest level, which is at most of size 9. It uses a slightly
modified form of the ”classical” interpolation described in Section 4 [25, 19].
MLI is an aggregation code and uses the fast parallel direct solver SuperLU
[49] on the coarsest level, which is in our experiments chosen to be larger
than the number of processors in our largest test run and is between 1000
and 4000. MLI’s coarsening strategy is decoupled aggregation. We consider
two variants: aggregation (Agg.), which uses the unsmoothed interpolation
operator (P k)(0) in (10), and smoothed aggregation (SA), which applies one
step of smoothed Jacobi to (P k)(0). For all methods, hybrid symmetric Gauß-
Seidel smoothing was used. While RS3, Falgout and CLJP work almost as
well as stand-alone solvers for the first two test problems, all other methods
are significantly improved when accelerated by a Krylov method. Therefore
in all of our experiments, they were used as preconditioners for GMRES(10).
All test problems were run on the Linux cluster MCR at Lawrence Livermore
National Laboratory. We use the following notations in the tables:

• p: number of processors,
• θ: strength threshold as defined in (2) for RS0, RS3, CLJP, Falgout, PMIS

and HMIS, as defined in (3) for Agg. and SA, (Section 3),
• τ : interpolation truncation factor (Section 4),
• Cop: operator complexity (Section 2),
• savg: maximal average stencil size, i.e. max1≤k≤M s(A

k), (Section 2),
• #its: number of iterations,
• tsetup: setup time in seconds,
• tsolve: time of solve phase in seconds,
• ttotal: total time in seconds.

The first test problem is a 2D Laplace problem with a 9-point discretization
on a unit square with 350×350 grid points per processor. For the aggregation
based solvers Agg. and SA, θ = 0 was chosen. For almost all other solvers,
θ = 0.25 was used, since this choice led to the best performance. RS0, however,
performed significantly better with θ = 0. Table 1 contains complexities and
number of iterations for the 4 processor and 1024 processor runs. It shows that
operator complexities are constant across an increasing number of processors,
while stencil sizes increase for RS0, RS3, Falgout and SA. The aggregation
methods obtain the best operator complexities. while CLJP’s operator com-
plexities are the highest. The overall best stencil sizes are obtained by Agg.,
HMIS and PMIS. The most significant growth in stencil size occurs for RS3,
apparently caused by the addition of the third pass on the boundaries. The
effect of this stencil growth can clearly be seen in Figure 6a. Agg. and RS0
have the largest number of iterations, showing the influence of the decoupled
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p = 4 p = 1024

Method Cop savg #its Cop savg #its

RS0 1.33 11 14 1.33 18 172
RS3 1.34 20 6 1.36 69 7
Falgout 1.34 16 6 1.35 32 8
CLJP 1.92 32 8 1.96 36 9
PMIS 1.25 11 24 1.23 11 42
HMIS 1.33 9 10 1.33 12 19
Agg. 1.13 9 37 1.13 9 93
SA 1.13 9 10 1.13 27 21

Table 1. Complexities and number of iterations for GMRES(10) preconditioned
with various AMG methods

coarsening. It also turns out that increasing the strength threshold for RS0
leads quickly to disastrous convergence results: for θ = 0.25, p = 1024, RS0
needs more than 700 iterations to converge. While SA also uses decoupled
coarsening, its interpolation operator is significantly improved by the use of
one weighted Jacobi iteration, leading to faster convergence.

Figure 6 contains both setup times and total times for an increasing num-
ber of processors. The results show that the overall fastest method for this
problem is Falgout, closely followed by HMIS and CLJP. While RS3 has
slightly better convergence, the fact that its average stencil sizes increase
faster with increasing number of processors than those of the other coarsen-
ings, leads to faster increasing setup times and worse total times than Falgout,
HMIS and CLJP. The smallest setup time is obtained by RS0, which requires
no communication during the coarsening phase, followed by PMIS and HMIS,
which benefit from their small stencil sizes. SA’s setup times are larger than
those of Agg. due to the smoothing of the interpolation operator. Note that
while the results for the aggregation methods demonstrate good complexi-
ties, and thus low memory usage, they are not necessarily representative of
smoothed aggregation in general or other implementations of this method.
The use of more sophisticated parallel aggregation schemes, a different treat-
ment of the coarsest level and the use of other smoothers might yield better
results.

The second test problem is a 7-point finite difference discretization of the
3-dimensional Laplace equation on a unit cube using 40× 40× 40 points per
processor. For three-dimensional test problems, it becomes more important
to consider complexity issues. While the choice of θ = 0.25 often still leads
to best convergence, complexities can become so large for this choice that
setup times and memory requirements might be unreasonable. The effect of
using different strength thresholds on complexities and convergence is illus-
trated in Table 2 for Falgout-GMRES(10) for 288 processors. Based on the
results of this experiment we are choosing θ = 0.75 for our further experi-
ments. Another useful tool to decrease stencil size is interpolation operator
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Fig. 6. Setup and total times for a 2-dimensional Laplacian problem with a 9-point
stencil with 350× 350 grid-points per processor.

θ Cop savg #its tsetup tsolve ttotal

0.00 3.26 458 6 21.82 2.67 24.49
0.25 6.32 3199 5 96.77 7.93 104.70
0.50 5.32 538 7 18.60 5.97 24.57
0.75 6.08 232 10 11.05 6.73 17.78

Table 2. Effect of strength threshold on Falgout-GMRES(10) for a 7-point finite
difference discretization of the 3-dimensional Laplacian on 216 processors with 403

degrees of freedom per processor
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truncation. Increasing the truncation factor τ also decreases savg, while only
slightly decreasing Cop. Best timings when choosing θ = 0 and increasing τ

Method θ τ Cop savg #its tsetup tsolve ttotal

RS0 0.50 0.0 3.70 170 14 6.69 4.67 11.36

RS3 0.75 0.0 6.18 457 9 19.35 5.83 25.18
0.00 0.3 3.52 756 6 42.83 5.69 48.52

CLJP 0.75 0.0 13.38 119 16 14.94 13.23 28.17
0.00 0.3 4.46 232 9 17.94 2.80 20.74

Falgout 0.75 0.0 6.12 237 10 13.79 5.88 19.67
0.00 0.3 3.22 275 7 19.14 2.56 21.70

PMIS 0.00 0.0 2.09 49 20 4.69 4.29 8.98
HMIS 0.00 0.0 2.75 61 13 5.15 3.44 8.59
Agg. 0.08 0.0 1.25 16 36 3.22 11.74 14.96
SA 0.08 0.0 1.75 172 13 4.96 5.90 10.86

Table 3. AMG-GMRES(10) with different coarsening strategies applied to a 7-point
finite difference discretization of the 3-dimensional Laplacian on 512 processors with
403 degrees of freedom per processor

were achieved for τ = 0.3. In general, this choice leads to larger stencil sizes
than choosing θ = 0.75 and τ = 0, but better convergence, as can be seen
in Table 3. When increasing the number of processors and with it the overall
problem size, operator complexities and stencil sizes initially increase notice-
ably, particularly for RS3, Falgout and CLJP, however cease growing for large
problem sizes. The complexities presented in Table 3 are therefore close to
those that can be obtained for larger problem sizes. Operator complexities
are overall larger than in the previous test problem, particularly for the CLJP
coarsening, when no interpolation truncation is applied. Best operator com-
plexities are obtained for the aggregation based schemes, followed by PMIS
and HMIS. The best overall timings are achieved by HMIS. RS0 performs very
well for this problem for this particular parameter choice, however if applied
to the 7-point 3D problem using 393 instead of 403 unknowns per processor,
p = 1024, Cop is twice, #its is four times and ttotal is three times as large as
the values reported in Table 3, while the other coarsenings are affected to a
much lesser degree by the change in system size.

Finally, we present results for the 3D Laplace problem on the unit cube
using an unstructured finite element discretization. Note that operator com-
plexities are overall lower here. RS0 is performing the worst due to a large
number of iterations, the best timings are achieved by PMIS, followed by
HMIS and SA. Interestingly enough, while CLJP’s operator complexities were
much larger than Falgout’s and convergence was slightly worse for the struc-
tured test problems, it performs slightly better than Falgout for this truly
unstructured problem. A similar effect can be observed for HMIS and PMIS.
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Method θ Cop savg #its tsetup tsolve ttotal

RS0 0.75 2.51 47 86 3.55 15.53 19.08
RS3 0.75 2.65 56 41 4.87 11.69 16.56
CLJP 0.75 2.71 76 18 5.79 6.33 12.12
Falgout 0.75 2.84 77 21 6.42 7.20 13.62
PMIS 0.25 1.46 53 22 2.41 3.60 6.01
HMIS 0.25 1.60 61 21 2.91 3.64 6.55
Agg. 0.00 1.06 18 54 2.13 12.22 14.35
SA 0.00 1.24 102 18 2.73 5.68 8.61

Table 4. AMG-GMRES(10) with different coarsening strategies applied to an un-
structured finite element discretization of the 3-dimensional Laplacian on 288 pro-
cessors with approx. 20,000 degrees of freedom per processor

Results for a variety of test problems applied to various coarsening schemes
in BoomerAMG can be found in [25, 19]. Numerical test results for various
elasticity problems comparing BoomerAMG and MLI can be found in [9].

7 Software Packages

There are various software packages for parallel computers which contain al-
gebraic multilevel methods. This section contains very brief descriptions of
these codes. Unless specifically mentioned otherwise, these packages are open
source codes, and information on how to obtain them is provided below.

7.1 hypre

The software library hypre [23] is being developed at Lawrence Livermore
National Laboratory and can be downloaded from [27]. One of its interesting
features are its conceptual interfaces [23, 21], which are described in further
detail in Chapter ??. It contains various multilevel preconditioners, including
the geometric multigrid codes SMG and PFMG [20],the AMG code Boomer-
AMG and the smoothed aggregation code MLI, as well as sparse approximate
inverse and parallel ILU preconditioners.

7.2 LAMG

LAMG is a parallel algebraic multigrid code, which has been developed at Los
Alamos National Laboratory. It makes extensive use of aggressive coarsening,
such as described in [48]. It has shown to give extremely scalable results on
upto 3500 processors. Further information on the techniques used in LAMG
can be found in [31]. LAMG is not an open source code.
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7.3 ML

ML [26] is a massively parallel algebraic multigrid solver library for sparse
linear systems. It contains various parallel multigrid methods, including
smoothed aggregation, a version of classic AMG and a special algebraic
multigrid solver for Maxwell’s equations. The smoothed aggregation code of-
fers all the parallel coarsening options for aggregation based AMG described
above and among other features polynomial and multi-colored Gauß-Seidel
smoothers. It is being developed at Sandia National Laboratories and can be
downloaded from [40].

7.4 pARMS

The library pARMS contains parallel algebraic recursive multilevel solvers.
These solvers are not algebraic multigrid methods in the sense described
above, but are algebraic multilevel solvers which rely on a recursive multi-level
ILU factorization. Further details on these methods can be found in [46, 34]
The pARMS library has been developed at the University of Minnesota and
is available at [41].

7.5 PEBBLES

PEBBLES (Parallel and Element Based grey Box Linear Equation solver) is
an algebraic multigrid package for solving large sparse, symmetric positive def-
inite linear equations which arise from finite element discretizations of elliptic
PDEs of second order [24]. It is a research code with element preconditioning,
different interpolation and coarsening schemes and more that is being devel-
oped at the University in Linz. More information on the package and how to
obtain the code is available at [42].

7.6 PHAML

PHAML (Parallel Hierarchical Adaptive Multilevel solvers) is a parallel code
for the solution of general second order linear self-adjoint elliptic PDEs. It uses
a finite element method with linear, quadratic or cubic elements over triangles.
The adaptive refinement and multigrid iteration are based on a hierarchical
basis formulation [39]. For further information and to download the software
package which is being developed at the National Institute for Science and
Technology (NIST) see [43].

7.7 Prometheus

Prometheus is a parallel multigrid library that has been developed originally
at the University of California at Berkeley. It contains a multigrid solver for
PDE’s on finite element generated unstructured grids, but also a smoothed
aggregation component named ATLAS. Prometheus is available at [44].



Parallel AMG 25

7.8 SAMGp

SAMGp (Algebraic Multigrid Methods for Systems) is a parallel software
library which has been developed at Fraunhofer SCAI. It uses subdomain
blocking as a parallel coarsening scheme [33] and allows for various different
coarsening schemes, such as aggressive coarsening, making it very memory
efficient. SAMGp is a commercial code. Information on how to purchase it as
well as a user’s manual can be found at [47].

7.9 SLOOP

A parallel object oriented library for solving sparse linear systems named
SLOOP [18] is being developed at CEA (Commisariat a l’Energie Atomique)
in France. SLOOP’s primary goal is to provide a friendly user interface to the
parallel solvers and ease the integration for new preconditioners and matrix
structures. It contains various parallel preconditioners: algebraic multigrid,
approximate inverse and incomplete Cholesky. This library is currently not
an open source code, but there are plans to change this in the near future.

7.10 UG

UG (Unstructured Grids) is a parallel software package that is being devel-
oped at the University of Heidelberg particularly for the solution of PDEs on
unstructured grids [4]. It has various features, including a parallel AMG code,
adaptive local grid refinement and more. For further information and a copy
of the code see [53].

8 Conclusions and Future Work

Overall, there are many efficient parallel implementations of algebraic multi-
grid and multilevel methods. Various parallel coarsening schemes, interpola-
tion procedures, parallel smoothers as well as several parallel software pack-
ages have been briefly described. There has truly been an explosion of research
and development in the area of algebraic multilevel techniques for parallel
computers with distributed memories. Even though we have tried to cover as
much information as possible, there are still various interesting approaches
that have not been mentioned. One of those approaches that shows a lot of
promise is the concept of compatible relaxation. This was originally suggested
by Achi Brandt [6]. Much research has been done in this area. Although many
theoretical results have been obtained [22, 35], we are not aware of an efficient
implementation of this algorithm to this date. However, once this has been
formulated, compatible relaxation holds much promise for parallel computa-
tion. Since the smoother is used to build the coarse grid, use of a completely
parallel smoother (e.g. C-F Jacobi relaxation) will lead to a parallel coarsening
algorithm.
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