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DETERMINING THE NATURAL FREQUENCIES 
OF SPHEROIDS VIA THE BOUNDARY-VALUE 

PROBLEM FORMULATION 

Abstract 

Equations by which one can determine the natural frequencies of prolate and oblate 
spheroids are derived using the boundary-value-problem approach. Both transverse 
magnetic and transverse e lectric excitations are considered. Numerical results are given 
for the natural frequencies of transverse-magnetic-excited prolate spheroids with various 
eccentric i t ies , demonstrating natural mode dependence on eccentricity. Numerical 
d i f f icul t ies , however, precluded obtaining natural frequencies for oblate spheroids, 
transverse-electric-excited prolate spheroids, and transverse-magnetic-excited prolate 
spheroids with sheaths. 

Introduction 

Metallic structures excited by incident pulses radiate complex frequencies natural 
to the structures pulsed. These natural frequencies can be determined using integral-
equa.ion methods and boundary-value problem-formulation techniques, two classical 
analytical procedures. Integral equations, for example, have been used to find the 
natural frequencies of cylinders and the boundary-value problem formulation has been used 
in studying spheres. The integral-equation approach, however, can be applied to 
a wider variety of shapes than boundary-value problem formulation. Consequently, the 
majority of natural-frequency data available has been obtained using integral equations. 
Nonetheless, boundary-value-problem results are useful and are used in this study to 
examine the natural frequencies of prolate and oblate spheroids (el l ipses rotated about 
their major and minor axes, respectively). 

These spheroidal shapes axe 2 of the 11 different orthogonal coordinate systems 
for which the scalar wave equation i s separable. The other coordinate systems 
include: rectangular, circular cylinder, e l l i p t i c cylinder, parabolic cylinder, 
spherical, parabolic, conical, e l l ipsoidal , and paraboloidal. For these 11 systems, 
there are only 3 f inite-s ized, constant-coordinate surfaces : the sphere 
(occurring in the spherical and conical coordinate systems), the prolate spheroid 
(occurring in the prolate spheroidal system), and the oblate spheroid (occurring in the 
oblate spheroidal system). Our intrvest in prolate and oblate spheroids arises from the 
fact that many weapons problems ( e . g . , electronagnetic scattering from missiles and 
aircraft) concern finite-sized bodies. 
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While the natural frequencies of spheres have been tabulated extensive]} (

f c ' , > * 4 the 
natural frequencies of prolate and oblate spheroids have not . Equations governing these 
frequencies can be determined, however, using a boundary-value problem-formulatior. 
technique analogous t o that used in determining the natural frequencies of a sphen;. 

Background Information 

I t is assumed here that the reader is familiar with the spherical coordinate 
system, but unfamiliar with the prolate and oblr te spheroidal coordinate systems (Figs. 
1 and 2, respect ive ly) . Ell ipses of various sizes are described in both the oblate and 
prolate systems by the parameter C. For the prolate system, £ ^_ 1, with 5 * 1 
representing a needle and t, •* °- representing a sphere. For the oblate system, 
0 < 5 < o", with t = 0 representing a disc and £ -* « representing a sphere. 
The parameter n describes a system of hypexrbolas for both systems, and the variable if is 
equivalent t o the right c i rcular cylindrical coordinate system variable s . A degenerate 
case of both prolate and oblate spheroids i s a sphere, occurring when the major find minor 
axes of the e l l ipse are equal. 

Here, we are concerned with the source-free exci ta t ion of these f i n i t e sized 
bodies, with in teres t in both the transverse magnetic (TM) and transverse e l e c t r i c (TE) 
mode.* of osc i l l a t ion . Because these natural modes have to sat isfy the radiation 
condition at in f in i ty , they must be outuavd-propagating modes. Hie radiation condition 
is automatically imposed on the natural-frequency model solutions for spheres and prolate 
and oblate spheroids. 

Mien the sources of a f ie ld ( thus, the field i t s e l f ) do not van- with the 
coordinate 9, Maxwell's eqmt ions , expressed in the rotat ional ly symmetric coordinate 
system (u,v,rt), reduce to 

5 - (hAH.) = iuch h j - , U) 

h o y v * --iut"uhi;v • ( 2 } 

§7 a y y . - j W h v h ^ u , ( « 

fa Oify) • *J<*l>uh4Hv . (S) 



n. = 0.707 

1 - 0 . 5 

n = 0.259 

= -0.259 

0.707 

n= -0.966 1= -0.866 

Fig. 1. The prolate spheroidal coordinate system (£ * seroifocal length, a * semUunor 
axis, b * senimajor axis}. 

The quantities h , h , h^ are scale factors for the coordinate system, and (E , E , 
and (H , H , H.) are, respectively, the orthogonal components of the e lectric and 
£?gnetic field intensit ies in the (u,v,$} coordinaire system. The u,v,<t,h 
are identified in Table 1 in terns of the different coordinate-system variables 

Coabining Eqs. (1) through (3} or (4) through (6) and defining A * h.H. o: 
* " h.E. results in 

V 
,h ,h variables 
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n = o.5 

0.259 

•1 =-0.707 

Fig. 2. The oblate spheroidal coordinate system (S. = semifocal length, a = semiminor 
axis , b = semimajor ax i s ) . 

3 ( \ 3 A \ 3 ( \ 3 , \ \ 2 h u h v 
S»\EJ£3»J *SV\KJVST; • U * E - I $ -

By assuming A = U(u) V(v) , Eq. [7) is separable in to 

(7) 

h h, ,2,, ^ 

u du 
(8) 

h h, ,2,, », 
- f l ^ 4 + [f,lv)u) 2ue * s ] V= 0 (9) 

where s i s the separation constant and the quanti t ies f , ( u ) , f* 3(v), h h. /h , and 
h h. /h are given in Tab.e 2. Also given u <p v 
(9) in the respective coordinate systems. 
h h. /h are fiiven in Tab.e 2. Also given in Table 2 are the solutions of Eqs. f?) and u <p v 



Table 1. Definitions of orthogonal variables and scale factors . 

Spherical Prolate spheroidal Oblate spheroidal 

u * r u = £ u = £ 
v = -cos 6 v « n * cos 6 v = r\ = cos 6 
J = ij .J = $ ® * 0 

h = 1 h = * / 4 ^ •. - i E I Z 
u Vr - i u Vr^T 

h . i/si-=-4 H =sp^4 
v VT77 v V i - s 2 

h 4 - r sin e h„ = i/tt2 - DCi - n 2) h. - */(S 2 * i)( i - n2: 

Table 2. Useful relationships for use in Eqs. (8) and (9) and the character is t ic 
solutions of these equations. 

Spherical Prolate spheroidal Oblate spheroidal 

fjCu) = r 2 fjCu; = t V f,Cu) = l V 

f 2 (v) = 0 f 2 ( \0 = - A 2 f-,(v) » i V 

h i " , h h . , h h , 
- ^ - r 2 _ v J U U f ; 2 . i ) ^ i . t K 2 . ! ) 

n h , h b , , h, hA ., 
_£JL „ s l n 2 9 - £ ± • £(1 - n 2 ) -jj-*- > *(1 - O 

U(u) = n ^ i 5 ( k r ) U(uj = A2 - 1 " j ^ C c S ) , J ^ U - * / r - 1 R ^ V i c . i O 

V(v) = Pm(-cos 6) V(v) = A - TI2 S J n(c,Ti) V(v) = A - n 2 S l n ( - i c , n ) 

NOTE: c = u n ^ 4 . 

The constant coordinate variable specifying a sphere is u=u Q =r o , that specifying 
a prolate spheroid i s u=u -=£ , and that specifying an oblate spheroid i s u=u^-C0. For 
B?tal l ic spheres and spheroids, the tangential e l e c t r i c fields on the metallic surface 
u*constant=u aTe zero. This constraint specifies the natural frequencies, as shorn in 
the following paragraph. 

For 'iM fields (E ,E ,H ) , the surface tangential e l ec t r i c f ie ld is E y . Using 
Eq. (2) and applying the boundary condition at the surface u , 
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E v = - iweinr l r ( V V I = ° • ' 1 0 > 
• u 4> v i | u = u 

o 
The quantity hji =A sa t i s f i e s Eq. (7) , kith solutions given in Table 2. Using Eq. (10) 
and the resul ts in Tables 1 and 2 , we can show that the source-free TM excitation of a 
metal l ic sphere s a t i s f i e s 

IF l ' C » " l I = 0 • tm 

3 
3? = 0 , (12) 

h ( 2 H L 
1 V 

the source-free TM excitat ion of a metal l ic prolate spheroid sa t i s f i e s 

and the source-free TM excitat ion of a metal l ic oblate spheroid sa t i s f i e s 

k l ^ " 7 7 "in' 1 - 1 0 ' 1 0 ] . . = ° • C135 

o 

In Eqs. (11) through (13), the radiation condition on the source-free solutions has been 
imposed on the appropriate U(u) functional behavior described in Table 2 [ i . e . , 
z « ( k r ) = h f V ) , R ^ C c . 0 = K^lc.O, and R ^ C - i c . i O * R ^ 5 £ - i c , i O ] • 

Equation (11) i s the well-known condition for determining the TM natural 
frequencies of a metal l ic sphere. , - > Equations (12) and (13) are the not-so-well-known 
conditions for determining the TM natural frequencies of metal l ic prolate and oblate 
spheroids, respectively. These resu l t s can be inferred, however, from previous work 

7-9 10-12 
pertaining t o metal l ic prolate and oblate spheroids with TM exci ta t ion. 

For TE fields (U ,H ,E ) , the surface tangential e l e c t r i c f ie ld i s E.. Using 
Eqs. (4) through (7) , Tables 1 and 2, and the condition E. = 0 at u = u „ > 

E * jL U(uQ) V(v) = 0 . (14) 

Thus, from Table 2, i t is seen that the source-free TE excitation of a metal l ic sphere 
s a t i s f i e s 

h ( 2 ) ( k r ) = 0 , (15) 
n o 

the source-free TE excitat ion of a metall ic prolate spheroid sa t i s f i es 

R ^ ( c , 5 0 ) = 0 , (16) 



and the source-free TE excitation of a metallic oblate spheroid sat isf ies 

Here, Eq. [15) i s the well-known condition for determining the TE natural 
2 3 frequencies of a metallic sphere, * and Eqs. (16) and (17) are the not-so-well-known 

conditions for determining the TE natural frequencies of metallic prolate and oblate 
spheroids, respectively. These results also can be inferred from earlier i i.*aT ' 

9 10-12 
metallic prolate and oblate spheroids with TE excitation. 

The prolate spheroid with TM excitation has been studied previously by Marin, l 

who sampled the f ie ld at 32 locations and used an integral-equation formulation to 
determine natural frequencies. In this study, we compare the exact boundary value with 
approximate integral-equation results for a prolate spheroid to i l lustrate their close 
correlation. 

Also of interest i s the effect a sheath surrounding a metallic object has on the 
natural frequencies of the object. This effect can be determined for a sphere (for TM 

14 and TE excitations) and for a prolate spheroid (for a TM excitation). The governing 
equation for a TM-excited metallic spheroid (described by £ * £. ) surrounded by a 
confocal sheath (between the surfaces t, • £. and E, * E ^ ) i s that the determinant of 
A i s zero, where 

(18) 

with P,, P., P., P., R,, and R, being diagonal matrices in which the mth elements (with 
m odd and I = ' p are 

«Vn ' H™ t cin- W • ( 1 9 > 

( V n - ^ ' i n ' W ' C 2 0 ) 

VJu - k P^" 7 7 CC cin'«l I , , • < 2 » 
I in 

L J I * 4 i n 

ffl'u-ST l ^ 7 1 O ' in^ l L , • < 2 » 
*• J I * ^out 

(•hhl'kl^71 Rlm}tcin'«] L . • < 2 4 > 
L J I * *out 
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Matrices Qj and Sj are general matrices with elements of (with m and n odd and 

« l > t t • - N » m R l n ) ( c o u t ' «out J • ( » ) 

*lh* " - ̂ \ n k [ « ^ C « i n ^ ] I , . • (*> 
where r Slntc«fn> " t a V d n • C 2 7 > 

Note t h a t , although matrix A is i n f i n i t e , i t can be truncated t o a large, but f i n i t e , 
s i ze . One can then vary c t o approximate natural frequencies for various combinations 
o f e i n ' e o u t > * > S i n , a n d £ Q U t . 

Numerical Studies 

I t i s recognized, of course, that degenerate cases of both prolate and oblate 
spheroids can be spheres. A second degenerate case of a prolate spheroid i s a needle, 
and a second degenerate case of an oblate spheroid i s a d i sc . In th i s study using the 
boundary-value-problem approach, we are interes ted in the behavior of natural frequencies 
for spheroids between these two extremes. As noted e a r l i e r , others have presented 

2-4 boundary-value-problem resul ts for spheres, and ^proximate integral-equation resul ts 
for prola te spheroids. "* The numerical studies reported here are meant t o complement 
th i s previous work. 

The numerical approach used in t h i s analysis was to evaluate the spheroidal 
functions of complex argument c (c = ajv̂ IFi,) for a number of c values and t o use 
optimisation procedures t o determine those values of c that best meet the prescribed 
conditions. This approach has been used previously for the sphere. 

Numerical resul t s for the natural frequencies of a TM-excited, perfectly conducting 
prola te spheroid in an in f in i t e medium are shown in Fig. 3. The resu l t s shown are for the 
f i r s t layer of poles. Several shape factors are presented (spheroid major-to-minor axis 
ra t ios b/a of 1, 5, 10, and 100) t o i l l u s t r a t e the dependence of the natural frequencies 
on object shape. As the eccentr ic i ty of the spheroids i s enhanced (— •* «•), the poles 
approach the asymptotic limit of poles for a thin cylinder, a resul t demonstrated in 

4 13 previous s tudies . ' 
The boundary-value-problem resul t s shown in Fig. 3 were compared with the in tegra l -

equation resul ts obtained by Marin, ** and the agreement was good. This can be seen by 
comparing Marin's integral-equation resul t s with the boundary-value-problem resul t s for 
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the first layer of poles (see Tables 3 and 4). Agreement is quite good, considering the 
different approaches used in determining the natural frequencies. 

14 
-

i • i ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' " 

- 0 b/a = l 

A b/a = 5 s*~ 1 
— D b/a = 10 __ 1 - 0 b/a = 100 I , — -

1 / / « 
n = 8° / / _ , . °— 

n = 7 < ( / S 

— V b/o -•-» 
I , — -
1 / / « 

n = 8° / / _ , . °— 
n = 7 < ( / S 

- n = 6<» / ^~"~°~~ 
. j / ^ -j / ^ -
- n = J S** 
- n - j S* 

— "-* ^a—a——0— — "-* ^a—a——0— — 

i 1 I 1 
n = l < ^ 

1 , 1 , 1 , 1 , 1 , 1 , 1 , 

- 12 

- TO 

_.4 8 -

- b 

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 
Re (Vb) 

Fig. 3. Locus of natural frequencies for TM-excited prolate spheroids with various 
eccentrici t ies . (Note: y = IO/UT, b = ££-,.) 

Table 3 . Integral-equation versus boundary-value-problem results for yb with a major-
to-minor axis of 10:1. 

Pole number Integral equation Boundary-value problem 

-0.265 + i 1.458 
-0.400 + i 2.977 

1.497 + i 4.510 
-0.S82 + i 6.051 
-0.658 + i 7.598 
-0.727 • i 9.149 
-0.793 * i 10.703 
-0.855 + i 12.260 

-0.263 + i 1.453 
-0.391 + i 2.955 
-0.485 + i 4.467 
-0.562 + i 5.985 
-0.630 • i 7.506 
-0.690 + i 9.030 
-0.744 + i 10.56 
-0.795 • i 12.08 
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Table 4. Integral-equation versus boundary-value-problem results for yb with a major-

to-nnor axis of 5:1. 

Pole nunber Integral equation Boundary-value problem 

1 -0.336 + i 1.374 -0.335 + i 1.402 
2 -0.S16 + i 2.817 -0.512 • i 2.807 
3 -0.655 + i 4.277 -0.648 + i 4.257 
4 -0.773 -i i 5.745 -0.761 + i 5.713 
5 -0.876 + i 7.220 -0.860 • i 7.175 
6 -0.970 + i 8.698 -0.949 • i 8.639 
7 -1.0S7 + i 10.180 -1.03 + i 10.11 
8 -1.138 + i 11.666 -1.10 + i 11.57 

An interesting sidelight was to compute the angle functions S. (c,ri) for the values 
of c corresponding to natural frequencies. (The functions were normalized using 
Flammer's normalization procedureO This was done for various eccentricit ies as there 
was some speculation concerning the natural mode behavior for spheroids of various 
eccentric i t ies . As shown in Figs. 4 through 9, the angle functions S l n (c , t i ) are 
predominately real, but have a f ini te imaginary component. This i s consistent with 
Marin's observations. Also, as eccentricity increases, the variation of the angle 
functions S. (c,n) departs from legendre function behavior and approaches that of a pure, 
real angle function of sin 2HH and cos -j- . 

Unfortunately, numerical di f f icul t ies were encountered in solving the oblate-
spheroidal and the TE-excited prolate-spheroidal problems. A few poles could be found, 
but the overall layer structure could not be defined. Due to the large number of 
numerical problems encountered, this effort was terminated. 

A number of attempts were made to attain reasonable answers to the problem of a 
TM-excited prolate spheroid with a sheath. However, after much effort with no discernible 
progress, this effort was abandoned. Several root-finding procedures ' were tr ied, 
but reasonable results were precluded by the numerical noise generated in formulating 
the spheroidal functions, the errors contributed by using a truncated matrix to 
approximate the inf inite matrix, and the sensit ivity of the root-finding procedures to 
noise. 

Conclusions 

This study demonstrates that the analytical expressions by which one can determine 
the TM and TE natural frequencies of prolate and oblate spheroids can be derived using 
the boundary-value-problem approach. Also, numerical results for the natural 
frequencies of > TM-excited, prolate-spheroidal, metallic object can be evaluated using 
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t h i s technique. Moreover, these boundary-value-problem resul t s compare favorablj' with 
previously obtained resul ts based on integral equation formulation. Numerical 
d i f f i cu l t i e s , however, prevented obtaining natural frequencies for oblate spheroids, a 
TE-excited prolate spheroid, and a TM-excited prolate spheroid with a sheath. 

*1 

Fig- 4. Natural frequency behavior of S _(c,n) i s predominantly real and appears t o 
pass from Legendre function behavior (for b /a = 1) to cos ^-n behavior as 
eccentr ici ty increases. (Note: z ~ Jt£ 0n.) 
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*! 

*b 

2.8 

2.4 

2.0 

1.6 

u 
"^- 1.2 

0.8 

0.4 

"• 1 

a b/a = 10 

0 b/a = 100 

" I f" 

°fr 1.0 

Fig. 5. Natural frequency behavior of S .(c,ri) i s predominantly rea l and appears to pass 
from Legendre function behavior (for b / a = 1) t o cos y TI behavior as 
eccentr ic i ty increases. 
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Fig. 6. Natural frequency behavior of Re(S 1 2(c,n)) i s predominantly real and appears to 
pass from Legendre function behavior (for b/a « 1) to sin mi behavior as 
eccentricity increases. 
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"1 r-

o fa/a = 10 

• b/a » 100 

Tig. 7. Natural frequency behavior of Re(S]2(c,rO) is predominantly real and appears to 
pass from Legendre function behavior (far b/a * 1) to sin im behavior as 
eccentricity increases. 
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4.0 

3.0 

"i 1.0 
o 

b/a = 10 

b/a = 100 

p\w 

1.5 cos^ 1 

-3.0 j L 
0.2 0.4 0.6 0.8 1.0 

Fig. 8. Natural frequency behavior of S ,(c,r|) i£ predominantly real and appears to 
pass from Legendre function behavior (for b/a * 1) to cos *— n behavior as 
eccentricity increases. 
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1 

Fig. 9. Natural frequency behavior of S , (c ,n) is predominantly real and appears to 
pass from Legendre function behavior (for b/a = 1) to cos a— n behavior as 
eccentricity increases. 
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Symbol Definitions 

t*t Angular frequency 
e Permittivity of the medium 
u Permeability of the medium 
£ Semi focal length 
c co/uTs. 
u,v,$ Three orthogonal coordinates 
5 System of e l l ipses describing tne u variation in the oblate and 

i i-olate spheroidal coordinate systems 
n System of hyperbolas describing the v variation in the oblate am' 

prolate spheroidal coordinate systems 
r,<t>,6 Spherical coordinate system coordinates 
^A'^u'^v Scale factors for the u.v,*" coordinate system 
E ,E ,E Orthogonal components of the e lectric f ield intensity in the u,v,$ 

coordinate system 
H ,H ,H Orthogonal components of the magnetic field intensity in the u.v.if 

coordinate system 
U(u) Separable part of the f ield that varies with u 
V(v) Separable part of the f ie ld that varies with v 
TM T r a n s v e r s e m a g n e t i c (E ,E .H . ) 
TE Transverse e lectr ic (H ,H,,E.) 

u v IJI 

Z ^ ( x ) Spherical Bessel function of order n and type i 

h (x) Spherical Hankel function of the second kind of order n 

p"(x) Legendre function of order n and degree m 

R, (c .O Prolate spheroidal radial function of order n and type i 

A»t 

Prolate spheroidal angle function of order n 

R" '(-ic.iC) Oblate spheroidal radial function of order n and type i 
S (-ic,n) Oblate spheroidal angle function of order n 
b Semimajor axis dimension (b * £$;[_ 
a Semiminor axis dimension (a : *#" 

WOS/lt 
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