DETERMINING THE NATURAL FREQUENCIES OF SPHEROIDS VIA THE BOUNDARY-VALUE PROBLEM FORMULATION

R. J. Lytle
F. J. Deadrick
April 25, 1975
\title{ MASTER }

Prepared for U.S. Energy Research \& Development
Administration under contract No. W-7405-Eng-48

NOTICE

"This repoit was prepared as an account of work sponsored by the Unived States Government, Neither the United Stetes nor the United States Energy Research $\frac{1}{2}$ Development Administration; nor any of their enoploytes, not any of their contractors, subcontractors, or their employees, makes nny Wrranty, exprese or implizd, or acumes any legal Wablity or stesponefbitity for the acemiacy, completenest or usefulmess of any information, epparatus, product or procers disciosed, or sepresents that its would not infringe privately-owned fights."

Printed in the United States of America Available from
National Technical Information Service
U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151
Price: Printed Copy \$_ \# Microfiche $\mathbf{\$ 2 . 2 5}$

${ }^{*}$ Pages	NTIS $1-50$
$51-150$	$\$ 4.00$
$151-325$	$\$ 5.45$
$326-500$	$\$ 7.60$
$501-1000$	$\$ 10.60$
	$\$ 13.60$

UC: $\mathbf{L L}$-5 1794
 DETERMINING THE NATURAL FREQUENCIES OF SPHEROIDS VIA THE BOLNDARY-VALUE PROBLEM FORMULATION

R. J. Lytie

F. J. Deadrick

MS. date: April 25, 1975

This motice
sponsored by the prepared as an account of work sponsored by the United States Governtivent. Neither the Uinted Stated nor the United Stater Eacrgy Research and Development Administration, nor any of their enployets, nor amy of their contractors. subcontractors, or their employces, mikes any wacranty, express or inaplied, ar ternimis any theal lindity of tesponalitity for the accuracy, compietencs or usefulneas of any information, aporacy, completencss or usefuline of any in formation, a pparates, product or procest disclosed, of repiesents that its use mould not infinga privately owned fights.

Foreword

This work was sponsored by the Air Force Weapons Labosatory under AFWL purchase orders 73-165, 74-066, and 74-212.

Contents

Forehord ii
Abstract 1
Introduction 1
Background Information 2
Numerical Studies 8
Conclusions 10
References 17
Symbol Definitions 18

DETERMINING THE NATURAL FREQUENCIES OF SPHEROIDS VIA THE BOUNDARY -VALUE FROBLEM FORMULATION

Abstract

Equations by which one can determine the natural frequencies of prolate and oblate spheroids are derived using the boundary-value-problem approach. Both transverse magnetic and transverse electric excitations are considered. Numerical results are given for the natural frequencies of transverse-magnetic-excited prolate spheroids with various eccentricities, demustrating natural mode dependence on eccentricity. Numerical difficulties, however, precluded obtaining natural frequencies for oblate spheroids, transverse-electric-excited prolate spheroids, and transyerse-magnetic-excited prolate spheroids with sheaths.

Intraduction

Metallic structures excited by incident pulses radiate complex frequencies natural to the structures pulsed. These natural frequencies can be determined using integral-equa-ion methods and boundary-value problem-formulation techniques, two classical analytical procedures. Integral equations, for example, have been used to find the natural frequencies of crlinders and the boundary-value problem formulation has been used in studying spheres. The integral-equation approach, however, can be applied to a wider variety of shapes than boundary-value problem formulation. Consequently, the majority of natural-frequency data available has been obtained using integral equations. Nonetheless, boundary-value-problem results are useful and are used in this study to exadíne the natural frequencies of prolate and oblate spheroids (ellipses rotated about their major and minor axes, respectively).

These spheroidal shapes are 2 of the 11 different orthogonal coordinate systens for which the scalar wave equation is separable. The other coordinate systens include: rectangular, circular cylinder, elliptic cylinder, parajolic cylinder, spherical, parabolic, conical, ellipsoidal, and paraboloidal. For these 11 systems, there are only 3 finite-sized, constant-coordinate surfaces ${ }^{1}$: the sphere (occurring in the spherical and conical coordinate systems), the prolate spheroid (occurring in the prolate spheroidal system), and the oblate spheroid (occurring in the oblate spheroidal system). Our intriest in prolate and oblate spheroids arises frow the fact that many weapons problems (e.g., electronagnetic scattering from missiles and aircraft) concern finite-sized bodies.

While the natural frequencies of spheres have been tabulated extensirely, 2, 3, the natural frequencies of prolate and oblate spheroids have not. Equations governing these frequencies can be determined, however, using a boundary-value problem-formulation technique amalogous to that used in determining the natural frequencies of apheri.

Background Information

It is assumed here that the reader is faniliar with the spherical coordinate systes, but unfaniliar with the prolate and oblate sphernidal coordiaate systems ${ }^{5}$ (Figs. 1 and 2, respectively). Ellipses of various sizes are described in both the oblate and prolate systems by the parameter ξ. For the prolate system, $\xi \geq 1$, with $\xi=1$ represeniing a needle and $; \rightarrow$ a representing a sphere. for the oblate system, $\theta \leq \xi<\infty$, with $\xi=0$ representing a disc and $\xi \rightarrow \infty$ representing a sphere.
The parameter n describes a system of hyperbolas for both systems, and the variab ia 4 is equivalent to the right circular cylindrical coordinate system variable \odot. A degenerate case of both prolate and oblate spheroids is a sphere, occurring when the major and minor axes of the ellipse are equid.

Here, we are concerned with the source-free excitation of these finite sized kodies, with interest in both the transverse magnetic (TM) and transverse electric (TE) modes of osciliation. Because these natural modes have to satisfy the radiation condition at infiniry, they must be outwa:d-propagaring modes. The radiation condition is automatically imposed on the natural-frequency model solutions for spheres and prolate and oblate spheroics.

When the sources of a field (thus, the field itself) do not vare with the coordinate φ, Naxwell's eq'ations, expressed in the rotationally symetric coordinate system ($u, v, \phi)$, reduce to 0°

$$
\begin{align*}
& \frac{\partial}{\partial v}\left(h_{\phi} H_{\phi}\right)=j \omega E h_{v} h_{\psi} E_{u}, \tag{1}\\
& \frac{\partial}{\partial u}\left(h_{\phi} H_{\phi}\right)=-j \omega H_{u} h_{v}, \tag{2}\\
& \frac{\partial}{\partial u}\left(h_{v} L_{v}\right)-\frac{\partial}{\partial v}\left(h_{u} E_{u}\right)=-j \omega L_{u} h_{v} H_{\phi}, \tag{3}\\
& \frac{\partial}{\partial v}\left(h_{\phi} E_{\phi}\right)=-j u \mu h_{v} h_{\phi} H_{u}, \tag{4}\\
& \frac{\partial}{\partial u}\left(h_{\phi} E_{\phi}\right)=+j \omega u h_{u} h_{\phi} H_{v}, \tag{5}\\
& \frac{\partial}{\partial u}\left(h_{v} H_{v}\right)=\frac{\partial}{\partial v}\left[h_{u} H_{u}\right)=+j \omega E h_{u} h_{v} H_{\phi} . \tag{6}
\end{align*}
$$

Fig. 1. The prolate spheroidal coordinate syster ($\ell=$ semifocal length, $\quad=$ semicinor axis, $b=$ semimajor axis).

The quantities h_{u}, h_{v}, h_{ϕ} are scale factors for tise coordinate system, and (E_{u}, E_{v}, E_{ϕ}) and (H_{u}, H_{v}, H_{ϕ}) are, respectively, the orthogonal components of the electric and Engnetic field intensities in the (u, v, ϕ) coordinaze system. The u, v, ϕ, h_{u}, h_{v}, h variables are identified in Table 1 in terms of the different coordinate-systen veriables.

Conbining Eqs. (1) through (3) or (4) through (6) and defining $A=h_{\phi} H_{\phi}$ or $A=h_{\phi} E_{\phi}$ results in

Fig. 2. The oblate spheroidal coordinate system $\ell=$ semifocal length, $a=$ semiminor axis, $b=$ semimajor axis).

$$
\begin{equation*}
\frac{\partial}{\partial u}\left(\frac{h_{v}}{h_{\phi} h_{u}} \frac{\partial A}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{u}}{h_{\phi} h_{v}} \frac{\partial \lambda}{\partial v}\right)+\omega^{2} \mu E \frac{h_{u} h_{v}}{h_{\phi}} A=0 . \tag{7}
\end{equation*}
$$

By assuming $A=U(u) V(v)$, Eq. (7) is separable into

$$
\begin{align*}
& \frac{h v^{h} \phi}{h_{u}} \frac{d^{2} u}{d u^{2}}+\left[f_{1}(u) w^{2} u \varepsilon-s\right] u=0 \tag{8}\\
& \frac{h u^{h} \Phi}{h_{v}} \frac{d^{2} v}{d v^{2}}+\left[f_{2}(v) w^{2} \mu \varepsilon+s\right] v=0, \tag{9}
\end{align*}
$$

where s is the separation constant and the quantities $f_{1}(u), f_{2}(v), h_{v} h_{\phi} / h_{u}$, and $h_{u} h_{\phi} / h_{v}$ are given in Tab.e 2. Also given in Table 2 are the solutions of Eqs. $f ?$ and (9) in the respective coorasnate systems.

Table 1. Uefinitions of orthogonal variables and scale factors.

Spuerical	Prolate spheroidal	Oblate spheroidal
$\mathbf{u}=\boldsymbol{r}$	$\mathbf{u}=E_{0}$	$u=\xi$
$v=-\cos \theta$	$v=n_{1} \times \cos \theta$	$v=\eta=\cos \theta$
$\hat{*}=0$	$\pm=\varnothing$	
$h_{u}=1$	$h_{u}=s \sqrt{\frac{\xi^{2}-n^{2}}{\xi^{2}-1}}$	$h_{u}=2 \sqrt{\frac{\xi^{2}+n^{2}}{\xi^{2}+1}}$
$h_{v}=\frac{T}{\sin \theta}$	$h_{v}=\ell \sqrt{\frac{\xi^{2}-r_{1}^{2}}{1-\xi^{2}}}$	$h_{v}=\Sigma \sqrt{\frac{\xi^{2}+\Gamma^{2}}{1-\xi^{2}}}$
$h_{\phi}=r \sin \theta$	$h_{\varphi}=\Omega \sqrt{\left(5^{2}-1\right)\left(1-n^{2}\right)}$	$h_{\Phi}=2 \sqrt{\left(5^{2}+1\right)\left(1-n^{2}\right)}$

Table 2, Useful relationships for use in Eqs. (8) and (9) and the characteristic sclutions of these equations.

Spherical	Prolate spheroidal	Oblate spheroidal
$f_{1}(i)=r^{2}$	$f_{1}(\mathrm{~L})=\chi^{3} \xi^{2}$	$f_{1}(u)=l^{3} \xi^{2}$
$\mathrm{f}_{2}(v)=0$	$f_{2}(v)=-2^{3} n^{2}$	$f_{2}(v)=\ell^{3} n^{2}$
$\frac{h_{v} h_{\varphi}}{h_{u}}=r^{2}$	$\frac{r^{\prime} \mathrm{V}_{\phi}}{h_{u}}=l\left(\xi^{2}-1\right)$	$\frac{h_{v^{h}} h_{u}}{h_{u}}=\ell\left(\xi^{2}+1\right)$
$\frac{n_{u} h_{q}}{h_{v}}=\sin ^{2} 9$	$\frac{h_{u} h_{\phi}}{h_{v}}=\ell\left(1-n^{2}\right)$	$\frac{h_{u} h_{\phi}}{h_{v}}=l\left(1-n^{2}\right)$
$u(u)=r z_{n}^{(i)}(k r)$	$U(u)=\sqrt{\xi^{2}-1} \mathrm{R}_{1 \mathrm{n}}^{(\mathrm{i})}(\mathrm{c}, 5)$	
$V(v)=p_{n}^{m}(-\cos \theta)$	$v(v)=\sqrt{1-n^{2}} S_{1 n}(c, n)$	$V(v)=\sqrt{1-\eta^{2}} S_{j n}(-i c, n)$

NOTE: $c=\omega \sqrt{\mu E} \ell$.

The constant coordinate variable specifying a sphere is $u=u_{0}=r_{0}$, that specifying a prolate splecoid is $u_{=} u_{0} 2 \xi_{0}$, and that specifying an oblate spheroid is $u=u_{0} \cdot \xi_{0}$. For netallic spheres and spheroids, the tangential electric fields on the metallic surface $u \approx \operatorname{constant}=u_{0}$ are zero. This constraint specifies the natural frequencies, as shown in the following paragraph.

For 'iN fields (E_{u}, E_{v}, H_{ϕ}), the surface tangential electric field is E_{v}. Using Eq. (2) and applying the boundary condition at the surface u_{0},

$$
\begin{equation*}
E_{v}=-\left.\frac{1}{j \omega \varepsilon h_{u} h_{\phi}} \frac{\partial}{\partial u}\left(h_{\phi} H_{\phi}\right)\right|_{u=u_{0}} ^{=} . \tag{10}
\end{equation*}
$$

The quantity $h_{\phi} H_{\phi}=A$ satisfies Eq. (7), with solutions given in Table 2. Using Eq. (10) and the results in Tables 1 and 2 , we can show that the source-free TN excitation of a metallic sphere satisfies

$$
\begin{equation*}
\left.\frac{\partial}{\partial r}\left[r h_{n}^{(2)}(k r)\right]\right|_{r=r_{0}}=0, \tag{11}
\end{equation*}
$$

the source-free $T N$ excitation of a metallic prolate spheroid satisfies

$$
\begin{equation*}
\left.\frac{\partial}{\partial \xi}\left[\sqrt{\xi^{2}-1} \mathrm{R}_{\ln }^{(4)}(c, \xi)\right]\right|_{\xi=\xi_{0}}=0 \tag{12}
\end{equation*}
$$

and the source-free TM excitation of a metallic oblate spherojd satisfies

$$
\begin{equation*}
\left.\frac{\partial}{\partial \xi}\left[\sqrt{\xi^{2}+1} R_{\ln }^{(4)}(-i c, i \xi)\right]\right|_{\xi=\xi_{0}}=0 \tag{13}
\end{equation*}
$$

In Eqs. (11) through (13), the radiation condition on the source-free solutions has been imposed on the appropriate $U(u)$ functional behavior described in Table 2 [i.e., $z_{n}^{(m)}(k r)=h_{n}^{(2)}(k r), R_{l n}^{(m)}(c, \xi)=R_{1 n}^{(4)}(c, \xi)$, and $\left.R_{1 n}^{(m)}\left(-i c_{n}, i \xi\right)=R_{l n}^{(4)}(-i c, i \xi)\right]$.

Equation (11) is the wellknown condition for determining the TM natural frequencies of a metallic sphere. ${ }^{2,3}$ Equations (12) and (13) are the not-so-well-known conditions for determining the TM natural frequencies of metallic prolate and oblate spheroids, respectively. These results can be inferred, however, from previous work pertaining to netallic prolate ${ }^{7-9}$ and oblate ${ }^{10-12}$ spheroids with TMY excitation.

For TE fields (H_{10}, H_{v}, E_{ϕ}), the surface tangential electric field is E_{ϕ}. Using Eqs. (4) through (7), Tables 1 and 2, and the condition $E_{\phi}=0$ at $u=u_{0}$,

$$
\begin{equation*}
E_{\phi}=\frac{1}{h_{\phi}} U\left(u_{o}\right) V(v)=0 \tag{14}
\end{equation*}
$$

Thus, from Table 2, it is seen that the source-free TE excitation of metallic sphere satisfies

$$
\begin{equation*}
h_{n}^{(2)}\left(k r_{0}\right)=0 \tag{15}
\end{equation*}
$$

the source-free TE excitation of a metallic prolate spheroid satisfies

$$
\begin{equation*}
\mathrm{R}_{1_{n}}^{(4)}\left(\mathrm{c}, \xi_{0}\right)=0, \tag{16}
\end{equation*}
$$

and the scurce-free TE excitation of a metallic oblate spheroid satisfies

$$
R_{1 n}^{(4)}\left(-i c, i \xi_{0}\right)=0
$$

Here, Eq. (15) is the well-known condition for determining the TE natural frequencies of a netallic sphere, ${ }^{2,3}$ and Eqs. (16) and (17) are the not-so-well-known conditions for determining the TE natural frequencies of metallic prolate and oblate spheroids, respectively. These results also can be inferred fromearlier 1 sear . . metallic prolate ${ }^{9}$ and oblate ${ }^{10-12}$ spheroids with TE excitation.

The prolate spheroid with TM excitation has been studied previously by Marin, ${ }^{13}$ who sampled the field at 32 locaticons and used an integral-equation formulation to determine natural frequencies. In this study, we compare the exact boundary value with approximate integral-equation results for a prolate spheroid to illustrate their close correlation.

Also of interest is the effect a sheath surrounding a metallic object has on the natural frequencies of the object. This effect can be determined for a sphere (for TM and TE excitations) and for a prolate spheroid ${ }^{14}$ (for a TW excitation). The governing equation for a TM-excited metallic spheroid (described by $\xi=\xi_{i n}$) surrounded by a confocal sheath (between the surfaces $\xi=\xi_{i n}$ and $\xi=\xi_{\text {out }}$) is thet the determinant of A is zero, where

$$
A=\left(\begin{array}{lll}
p_{1} & p_{2} & Q_{1} \tag{18}\\
p_{3} & p_{4} & 0 \\
R_{1} & R_{2} & S_{1}
\end{array}\right)
$$

with $P_{1}, P_{2}, P_{3}, P_{4}, R_{1}$, and R_{2} being diagonal matrices in which the mth elements with m odd and $\ell=\frac{+1}{2}$ are

$$
\begin{align*}
& \left(P_{1}\right)_{\ell \ell}=R_{\text {lm }}^{(1)}\left(c_{\text {in }}, E_{\text {out }}\right), \tag{19}\\
& \left(P_{2}\right)_{l \ell}=R_{\text {Im }}^{(2)}\left(c_{i n}, \xi_{\text {out }}\right), \tag{20}\\
& \left(P_{3}\right)_{\ell Q}=\left.\frac{\partial}{\partial \xi}\left[\begin{array}{ll}
\sqrt{\xi}-1 & R_{I m}^{(1)}\left(c_{i n}, \xi\right)
\end{array}\right]\right|_{\xi=\xi_{i n}} . \tag{2I}\\
& \left(P_{4}\right)_{\ell \ell}=\frac{\partial}{\partial \xi}\left[\left.\sqrt{\xi^{2}-1} \mathrm{R}_{\mathrm{im}}^{(2)}\left(\mathrm{c}_{\mathrm{in},}, \xi\right]\right|_{\xi \times \xi_{\mathrm{in}}},\right. \tag{22}\\
& \left(R_{1}\right)_{l t}=\left.\frac{\partial}{\partial \xi}\left[\begin{array}{ll}
\sqrt{\xi^{2}-1} & R_{1 m}^{(1)}\left(c_{i n}, \xi\right]
\end{array}\right]\right|_{\xi=\xi_{\text {out }}} \text {. } \tag{23}\\
& \left(R_{2}\right)_{\ell t}=\left.\frac{\partial}{\partial \xi}\left[\sqrt{\xi^{2}-1} R_{1 m}^{(2)}\left(c_{i n}, \xi\right)\right]\right|_{\xi=\xi_{\text {out }}} . \tag{24}\\
& \text {-7~ }
\end{align*}
$$

Natrices Q_{1} and S_{1} are general matrices with elements of (with mand n odd and $\ell=\frac{m+1}{2}$ and $\left.k=\frac{n+1}{2}\right)$

$$
\begin{align*}
& \left(Q_{1}\right)_{\ell k}=-\mathrm{N}_{\mathrm{mn}} \mathrm{R}_{\mathrm{ln}}^{(4)}\left(\mathrm{c}_{\text {out }}, \xi_{\text {out }}\right\}, \tag{25}\\
& \left(\mathrm{S}_{1}\right\}_{\ell k}=-\left.\frac{\varepsilon_{\text {in. }}}{\varepsilon_{\text {out }}} N_{m n} \frac{\partial}{\partial \xi}\left[\begin{array}{ll}
\sqrt{\xi^{2}-1} & R_{1 n}^{(4)}\left(c_{\text {in }}, 5\right)
\end{array}\right]\right|_{\xi=\xi_{\text {out }}}, \tag{26}
\end{align*}
$$

where

$$
\begin{equation*}
N_{m n}=\int_{-1}^{+1} s_{l n}\left(c_{\text {out }}, n\right) s_{1 m}\left(c_{i n}, n\right) d \eta \tag{27}
\end{equation*}
$$

Note that, although matrix A is infinite, it can be truncated to a large, but finite, size. One can then vary c to approximate natural frequencies for various combinations of $\varepsilon_{\text {in }}, \varepsilon_{\text {out }}, \ell, \xi_{\text {in }}$, and $\xi_{\text {out }}$.

Numerical Studies

It is recognized, of course, that degenerate cases of both prolate and oblate spheroids can be spheres. A second degenerate case of a prolate spheroid is a needle, and a second degenerate case of an oblate spheroid is a disc. In this study using the boundary-value-problem approach, we are interested in the behavior of natural frequencies for spheroids between these two extremes. As noted zarlier, others have presented boundary-value-problem results for spheres, ${ }^{2-4}$ and α_{i} rroximate integral-equation results for prolate spheroids. ${ }^{13}$ The numerical studies reported here are meant to complement this previous work.

The numerical approach used in this analysis was to evaluate the spheroidal functions ${ }^{15}$ of complex argument $c(c=\omega \sqrt{\mu \varepsilon \ell})$ for a number of c values and to use optimization procedures to deternine those values of c that best meet the prescribed conditions. This approach has been used previously for the sphere. ${ }^{3}$

Numerical results for the natural frequencies of a TM-excited, perfectly conducting prolate spheroid in an infinite medium are shown in Fig. 3. The results shown are for the first layer of poles. Several shape factors are presented (spheroid major-to-minor axis ratios b / a of $1,5,10$, and 100) to illustrate the dependence of the natural frequencies on object shape. As the eccentricity of the spheroids is enhanced $\left(\frac{b}{a} \rightarrow \infty\right)$, the poles approach the asymptotic limit of poles for a thin cylinder, ${ }^{16}$ a result demonstrated in previous studies. 4,13

The boundary-value-problem results shown in Fig. 3 were compared with the integralequation results obtained by Marin, ${ }^{15}$ and the agreement was good. This can be seen by comparing Marin's integral-equation results with the boundary-value-problem results for
the first layer of poles (see Tables 3 and 4). Agreement is quite good, considering the different approaches used in determining the natural frequencies.

Fig. 3. Locus of natural frequencies for TM-excited prolate spheroids with various eccentricities. (Note: $\gamma=\omega \sqrt{\mu E}, b=2 \xi_{0}$.)

Table 3. Integral-equation versus boundary-value-problem results for γ b with a major-to-minor axis of $10: 1$.

Pole number	Integral equation	Boundaxy-value problem
1	$-0.265+i 1.458$	$-0.263+i 1.453$
2	$-0.400+i 2.977$	$-0.391+i 2.955$
3	$1.497+i 4.510$	$-0.485+i 4.467$
4	$-0.582+i 6.051$	$-0.562+i 5.985$
5	$-0.658+i 7.598$	$-0.650+i 7.506$
6	$-0.727+i 9.149$	$-0.690+i 9.030$
7	$-0.793+i 10.703$	$-0.744+i 10.56$
8	$-0.855+i 12.260$	$-0.795+i 12.08$

Table 4. Integral-equation versus boundary-value-problem results for fb with a major-to-minor axis of 5:1.

Pole number	Integral equation	Boundary-value problem
1	-0.336 + i 1.374	-0.335 + i 1.402
2	$-0.516+$ i 2.817	$-0.512+\mathrm{i} 2.807$
3	-0.655 + i 4.277	-0.648 + i 4.257
4	-0.773 + i 5.745	$-0.761+$ i 5.713
5	-0.876 + i 7.220	$-0.860+$ i 7.175
6	$-0.970+$ i 8.698	-0.949 + i 8.639
7	$-1.057+$ i 10.180	$-1.03+\mathrm{i} 10.11$
8	$-1.158+\mathrm{i} 11.666$	$-1.10+i 11.57$

An interesting sidelight was to compute the angle functions $S_{i n_{n}}(c, n)$ for the values of c corresponding to natural frequencies. (The functions were normalized using Flarmer's ${ }^{5}$ normalization procedure.) This was done for various eccentricities as there was some speculation ${ }^{17}$ conceming the natural mode behavior for spheroids of various eccentricities. As shown in Figs. 4 through 9, the angle functions $S_{1 n}(c, n)$ are predominately real, but have a finite imaginary conponent. This is consistent with Narin's observations. ${ }^{13}$ Also, as eccentricity increases, the variaticn of the angle functions $S_{1 n}(c, n)$ departs from legendre function behavior and approaches that of a pure, real angle function of $\sin \frac{4 \pi \eta}{2}$ and $\cos \frac{\pi \pi \eta}{2}$.

Unfortunately, numerical difficulties were encountered in solving the oblatespheroidal and the TE-excited prolate-spheroidal problems. A few poles could be found, but the overall layer structure could not be defined. Due to the large number of numerical problens encountered, this effort was terminated.

A number of attempts were made to attain reasonable answers to the problem of a TM-excited prolate spheroid with a sheath. However, after much effort with no discernible progress, this effort was abandoned. Several root-finding procedures 18,19 were tried, but reasonable results were precluded by the numerical noise generated in formulating the spheroidal functions, the errors contributed by using a truncated matrix to epproximate the infinite matrix, and the sensitivity of the root-finding procedures to noise.

Conclusions

This study demonstrates that the analytical expressions by which one can determine the TM and TE natural frequencies of prolate and oblate spheroids can be derived using the boundary-value-problem approach. Also, numerical results for the natural frequencies of a TM-excited, prolate-spheroidal, wetallic object can be evaluated using
this technique. Moreover, these boundary-value-problem results compare favorably with previously obtained results based on integral equation formulation. Numerical difficulties, however, prevented obtaining natural frequencies for oblate spheroids, a TE-excited prolate spheroid, and a TM-excited prolate spheroid with a sheath.

Fig. 4. Natural frequency behavior of $S_{11}(c, n)$ is predominantly real and appears to pass from Legendre function behavior (for $b / a=1$) to $\cos \frac{\pi}{2} n$ behavior as eccentricity increases. (Note: $z=\ell F_{0} n_{\text {. }}$)

Fig. 5. Natural frequency behavior of $S_{11}(c, n)$ is predominantly real and appears to pass from legendre function behavior (for $b / a=1$) to $\cos \frac{\pi}{2} n$ behaviur as eccentricity increases.

Fig. 6. Natural frequency behavior of $\operatorname{Re}\left(S_{12}(c, \eta)\right)$ is predoninant ly real and appears to pass from Legendre function behavior (for $b / a=1$) to \sin in behavior as eccentricity increases.

Fig. 7. Naturul frequency behavior of $\operatorname{Re}\left(\mathrm{S}_{12}(\mathrm{c}, \mathrm{n})\right)$ is predominantly real and appears to pass from legendre function behavior (for b/a $=1$) to $\sin \pi n$ behavior as eccentricity increases.

Fig. B. Natural frequency behavior of $S_{1 z}(c, n)$ is predominantly real and appears to pass from Legendre function behavior (for $b / a=1)$ to $\cos \frac{3 \pi}{2} \eta$ behavior as
eccentricity increases. eccentricity increases.

Fig. 9. Natural frequency behavior of $\mathrm{S}_{13}(\mathrm{c}, n)$ is predominant ly real and appears to pass from legendre function behavior (for $b / a=1$) to $\cos \frac{3 \pi}{2} n$ behavior as eccentricity increases.

References

1. P. Moon and D. E. Spencer, Fjeld Theor; Handbook (Springer-Verlag, BerIin, 1961).
2. C. E. Baum. Un the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems, Air Force Weapons Laborat ory, Albuquerque, NM, Interaction Note 88 (197i).
3. J. P. Martinez, J. L. Pine, and K. M. Tesch, Numerical Results of the Singularity Expaision Method as Applied to Plane Kave Incident on a Perfectly Conducting Sphere, Air Force Weapons Laboratcry, Albuquerque, NM, Interaction Note 112 (1972).
4. F. M. Tesche, On the Singularity Expansion Nethod As Applied co Electromagnetic Scattering By Thin Wires, Air Force Weapons laboratory, Albuquerque, NM, Interaction Nore 102 (1972), see also IEEE Irans, on Antennas and Propagation AP-22, 53-62 (1973).
5. C. Flamer, Spheroidal Wave Functions (Stanford Univ. Press, Palo Alto, CA, 1975).
6. H. L. Weeks, Electromagnetic Theory for Engineering Applications (John Wiley E Sons, Inc., New York, 1964).
7. J. R. Wait, Radio Sci. 1, 475 (1966).
8. C. D. Taylor, Radia Sci. 2, 351 (1967).
9. J. R. Wait, "Electromagnetic Radiation From Spheroidal Structures," Antenna Theory, Part 1, R. E. Collin and F. J, Zucker, Eds. (McGraw-Hill Book Company, New York, 1969), Chpt. 13.
10. C. Flammer, J. App1. Phys. 24, 1218 (1953).
11. J. Meixner, Ann. Physik. Lpz. 12 (Ser. 6), 227-2j6 (1953).
12. C. Flamer, Radiation from Electric and Nagnetic Dipoles in the Presence of a Conducting Circular Disk, Stanford Research Institute, Tech. Rept. 49, Ienlo Park, CA (1953).
13. L. Marin, Natural-Made Representation of Transient Scattering from Rotationally Symetric, Perfectly Conducting Budies and Numerical Results for a Prolate Spheroid, Air Force Weapans Laboratory, Albuquerque, NM, Interaction Nate 119 (1972).
14. R. J. Lyt le and F. V. Schultz, 1EEE Trans, on Antennas and Propagation AP-17 (ia. 4), 496-506 (1969).
15. R. J. Lytle and F. J. Deadrick, Prolate and Oblare Spheroidal Have Functions of Complex Argument, Air Force Weapons Laboratory, Albuquerque, NA, Mathematics Note 32 (1973).
16. S. W. Lee and B. Leung, The Natural Resonsmee Frequency of a Thin Cylinder and its Application to EMP Studies, Air force lieapans Laboratory, Albuquerque, MM, Interaction Note 96 (1972).
17. C. E. Baim, Air Force Weapons Laborat ory, private comunication (Dec. 10, 1974),
18. K. 1. Zangwil1, Computer Journal 10, 293-296 (1967).
19. S. 1. Gass, Linear Propraming (NcGraw-Hill, New York, 1969).

Symbol Definitions

j	$\sqrt{-1}$
ω	Angular frequency
ε	Permittivity of the medium
${ }^{\mu}$	Permeability of the medium
1	Semifocal length
c	$\omega \sim$
$\boldsymbol{u}, \boldsymbol{v}, \phi$	Three orthogonal coordinates
5	System of ellipses describing tne u variation in the oblate and ; rolate spheroidal coordinate systems
7	Systen of hyperbolas describing the v variation in the oblate an" prolate spheroidal coordinate systems
$\mathbf{r}, \theta, \theta$	Spherical coordinate system coordinates
h_{ϕ}, h_{u}, h_{v}	Scale factors for the $u, v, 4$ coordinate system
E_{u}, E_{v}, E_{ϕ}	Orthogonal components of the electric field intensity in the u, v, ϕ coordinate system
$\mathrm{H}_{\mathbf{u}}, \mathrm{H}_{\mathbf{v}}, \mathrm{H}_{\phi}$	Drthogonal components of the magnetic field intensity in the u, v, ϕ coordinate system
U(u)	Separable part of the field that varies with u
Y(v)	Separable part of the field that varies with v
TM	Transverse magnetic (E_{u}, E_{v}, H_{ϕ})
TE	Transverse electric ($\mathrm{H}_{\mathbf{u}}, \mathrm{H}_{v}, \mathrm{E}_{\phi}$)
$z_{n}^{(i)}(x)$	Spherical Bessel function of order n and type i
$h_{n}^{(2)}(x)$	Spherical Hankel function of the second kind of order n
$\mathrm{p}_{\mathrm{n}}^{\mathrm{m}}(\mathrm{x})$	Legendre function of order n and degree on
$\mathrm{R}_{\text {ln }}^{(\mathrm{i})}(c, 5)$	Prolate spheraidal radial function of order n and type i
$S_{1 n}(c, n)$	Pralate spheroidal angle function of order \mathbf{n}
$R_{\ln }^{(i)}(-i c, i \xi)$	Oblate spheroidal radial function of order n and type i
$S_{1 n}(-i c, n)$	Oblate spheroidal angle function of order n
b	Semimajor axis dimension ($b=25$)
8	Semiminor axis dimension (a= $\ell^{5} \sqrt{2}^{2}-1$)

