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DETERMINING THE NATURAL FREQUENCIES
OF SPHEROIDS VIA THE BOUNDARY -VALUE
FROBLEM FORMULATION

Abstract

Equations by which one can determine the natural frequencies of prolate and oblate
spheroids are derived using the boundary-value-problem approach. Both transverse
magnetic and transverse electric excitations are considered. Numerical results are given
for the natural frequencies of transverse-magnetic-excited prolate spherocids with various
eccentricities, demunstrating natural mode dependence on eccentricity. Numerical
difficulties, however, precluded obtaining natural frequencies for oblate sphervids,
transverse-electric-excited prolate spheroids, and transverse-magnetic-excited prolate
spheroids with sheaths.

Introduction

Metallic structures excited by incident pulses radiate complex frequencies natural
to the structures pulsed. These natural frequencies can be determined using integral-
equa.ion methods and boundary-value problem-formulation techniques, two classical
analytical procedures, Integral equations, for example, have teen used to find the
natural frequencies of cylinders and the boundary-value problem formulation has been used
in studying spheres. The integral-equation approach, however, can be applied to
a wider variety of shapes than boundary-value problem formulation. Consequently, the
majority of natural-frequency data available has been obtained using integral equations.
Nonetheless, boundary-value-problem results are useful and are used in this study to
exaiine the natural frequencies of prolste and oblate spheroids (ellipses rotated about
their major and minor axes, respectivelyl.

These spheroidal shapes ave 2 of the 11 different orthogonal coordinate systems
for wvhich the scalar wave equation is separable. The othexr coordinate systems
include: rectangular, circular cylinder, elliptic cylinder, parabolic cylinder,
spherical, parabolic, conical, ellipsoidal, and paraboloidal. For these 11 systems,
there are only 3 finite-sized, constant-coordinate surfncesl: the sphere
(occurring in the spherical and conical coordinate systems), the prolate spheroid
(occurring in the prolate spheroidal system), and the oblate spheroid (occurring in the
cblate sphercidal system). Our inteiest in prolate and cblate spheroids arises from the
fact that many wespons problems (e.g., electromagnetic scattering from missiles and

aircraft) concern finite-sized bodies.
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While the natural frequencies of spheres have been tabulated extensivel:, +3.4 the
natural frequencies of prolate and oblate spheroids have not. Equations governing these
frequencies can be determined, however, using a boundarv-value problem-formulation
technique analogous to that used in determining the natural frequencies of u sphere,

Background Information

1t is assumed here that the reader is familiar with the spherical coordinate
system, but unfamiliar with the prolate and oblate sphernidal coordinate s_\'ste:nss (Figs.
1 and 2, respectively). Ellipses of various sizes are described in both the oblate and
prolate systems by the parameter §. For the prolate system, § > 1, with £ = 1
represeniing a needle and 4 + o representing a sphere.  For the cblate system,
0 < § <=, with & = 0 Tepresenting a disc and § ~ « representing a sphere.
The parameter n describes a system of hyperbolas for both systems, and the variabia ¢ is
equivalent to the right circular cylindrical coordinate system variable s. A degenerate
case of both prolate and oblate spheroids is a sphere, occurring when the major and minor
axes of the ellipse are equal.

tlere, we are concerned with the source-free excitation of these finite sized
bodies, with interest in both the transverse magnetic (M) and transverse electric (1E)
modes of osciliation. Because these natural modes have to satisfy the radiation
condition at infinity, they must be outward-propagating modes. The radiation condition
is automatically imposed on the natura}-frequency model solutions for spheres and prolate
and oblate spheroids.

when the sources of a field (thus, the field itse!f) do not vary with the
coordinate 9, Maxwell's eqrations, expressed in the rotationally symmetric coordinate

0O
system (u,v,$}, reduce to

& ) = feh hE n
3 I

Ll ¢H a) = -jueh RE. , 2)
4 (E) - % (hEDY = Juh b, ' (3)
oV W Yt uv ¢

2 ; 4
& (B = -suh hli, o)
2 . )

2 (g = <juihgil )
& (h 4 ) -2 (hB) = +juchhH (6)
o Yy v M TR
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Fig. 1. The prolate spheroidal coordinate system (£ = semifocal length, & = semininor
axis, b = semimajor axis).

The quantities hu, hv’ h N are scale factors for tue coordinate system, and (Eu, Ev’ E ¢)
and (Hu, Hv’ H¢J are, respectively, the orthogonzl components of the electric and
cagnetic field intensities in the (u,v,$) coordinate system. The u,v,d:,hu,hv,h variables
are identified in Table 1 in terms of the different coordinate-system variables.
Combining Eqs. (1) through (3} or (4) through (6) and defining A= h ¢H 4 oF

A h¢E. results in

=3«
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Fig. 2. The oblate spheroidal coordinate system (4 = semifocal length, a = semiminor
axis, b = semimajor axis).

@

h h \ h h
v_9A ) u_ A\ 2 uv _
E(W?G)‘W(hTW}*w“ET— A=0. (7
U] v -]
By assuming A = U(u) V(v), Eq. (7) is sepurable into
bh, 2

”
v ¢ 9—%4- [f](u)m"ue: -s}u
u du

(8)

n
[=]

=

h .2
;: 2 i-‘é-* [fztv)mzue +s}]¥=0, @

v dv

vhere s is the separation constant and the quantities fl(uJ, fz(vJ, hvh¢/hu' and
huhd>/hv are given in Tab.e 2, Also given in Table 2 are the solutions of Eqs. f?) and

(9) in the respective coorc.nate systems.
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Table 1. befinitions of orthogonal variables and scale factors.

Spierical Prolate spheroidal Oblate spheroidal
u=r usf u=g
v = -cos € v=n=cos b vamn=cos §
=0 i=¢ ¢ x
aa ] 2 2
. _ & -n 3 n
h, =t h =g [ by = & f5—
£" - EX
5: = 3 7
2 —— - -0 - £ +n”
L ] by =t [ h=i )7
1-8 1-¢
: /2 2 ] 2
h¢=rsm6 h¢=l(£-l)(1-ﬂ) h¢=2[£ + {1 -n7)

‘Table 2. Useful relationships for use in Eqs. (8) and (9) and the characteristic
sclutions of these equations.

Spherical Prolate spheroidal Oblate spheroidal

NORES £ = % £, = 077
£,00) = 0 £,00) = 2%’ £, = 257
h.h k_h hh

L L2a0® - 2= e

u u u
nh h h K h

L2 . o’ g ) 202201 - Y

v v v
v = rz{ ) vy = /87 - 1R (.0 ar = Ve - 1R (e, i0)

PR(~cos ©) v = /A - nf s (e, vy e A - o2 S, (-ic,n)

NOTE: ¢ = w/iE 2.

V(v)

[}

The constant coordinate variable specifying a sphere is usu =T, that specifying
a prolate spreroid is u=u°=£°, and that specifying an cblate spheroid is u=u°=-E,°. For
metallic spheres and spheroids, the tangential electric fields on the metallic surface
u=consiant=u, are zero. This comstraint specifies the natural frequencies, as shown in

the following paragraph,
For iM fields [Eu’Ev'Hcp)' the surface tangential electric field is Ev' Using

Eq. (2) and applying the boundary condition at the surface u,
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1

v = - -_'—iweh T 35 = 0 . (10)
o u ¢

rp)
The quantity h¢Hv=.-\ satisfies Eq. (7), with solutions given in Table 2, Using Eq. {10)

and the results in Tables 1 and 2, we cun show that the source-free TM excitation of a

metallic sphere satisfies

> [ hlgznm]

the source-free TM excitation of a metallic prolate spheroid satisfies

=0, (11)
r=T
°

AT (4
gT [E -1 Rgn)(c,.‘;] -0, (12)
E—EO
and the source-free TM excitation of a metallic oblate spheroid satisfies
%[/241 R 1c1£)} -0, (13)
€=E°

In Egs. (11) through (13), the radiation condition on the source-free solutions has been
imposed on the appropriate U(u) functional behavior described in Table 2 [i.e.,
™y < P an, R e,0 = RV (e,6), md kI (ie,i8) = &Y (-ic,10)].

Equation {11} is the well-knwn condition for determining the T natural
frequencies of a metallic sphere.z’s Equations (12) and (13) are the not-so-well-known
conditions for determining the TM natural frequencies of metallic prolate and oblate
spheroids, respectively, These results can be inferred, however, from previous work
pertaining to metallic prolate7~9 and ublatem'l2 spheroids with T™™ excitation.

for TE fields (“u’Hv'E¢) , the surface tangential electric field is E¢. Using

Eqs. (4) through (7), Tables 1 and 2, and the condition E¢ =0 at usu_,

S =

E¢ v U(uo) Viv) = 0. Q14
[

Thus, from Table 2, it is seen that the source-free TE excitation of 2 metallic sphere

satisfies

(2) =
ke ) =0, (1)

the source-free TE excitation of a metallic prolate spheroid satisfies

R e =0, (16)
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and the source-free TE excitation of a metallic oblate spheroid satisfies
M, .. .
RED (ic,ig) = 0 . (n

Here, Eq. (15) is the well-known condition for determining the TE natural
frequencies of a metallic sphere,2’3 and Eqs. (16) and {17) are the not-so-well-known
canditions for determining the TE natural frequencies of metallic prolate and oblate
spheroids, respectively. These results also can be inferred from earlier 1 sear -
metallic prolate9 and oblare’®~1? spheroids with TE excitation.

The prolate spheroid with TM excitation has been studied previously by Marin,
who sampled the field at 32 locatioms and used an integral-equation forrulation to
determine natural frequencies. In this study, we coupare the exact boundary value with
appreximate integral-equation results for a prolate spheroid to illustrate their close

i3

correlation.

Also of interest is the effect a sheath surrounding a metallic object has on the
natural frequencies of the object. This effect can be determined for a sphere {for T
and TE excitatiomns) and for & prolate spheroid14 (for a TM excitation). The governing
equation for a TM-excited metallic spheroid (described by § = Ein) surrounded by a
confocal sheath (between the surfaces § = Ein and £ = E uut) is that the determinant of

A is zero, where

LSRRI
A<{p; P, 0 a8
Ry Ry 8

with P], Pz, PS' P4 s Rl’ and R2 being diagonal matrices in which the mth elements [with

moddandlz'i’j’-— are

® g = B2 Cins Eoed » (19)
2)
(PZ)ML = le [cin’ Eout) 4 (20}
2 m
TR [Jsi -1 el (cm,k:)] . @n
in
3 3 2
o * o [/z -1 e (c.n,EJ] e, (22)
in
)y = & [T -1 2P0 . (23)
e T Ee€ .
o
3 2)
Ry = 3 [/sz -1 rE (cin.s)] e 24)
at .




Matrices Ql and Sl are general matrices with elements of (with m and n odd and

g2k 200

= 4
Qg = 'Nmnnln)(cout’ Sout) ¢ (25)
£,
_ in. ., 2 ') 4)
Gpe = - Eo_u:‘\mn T [ £ -1 Ry (cin's)] ’ (26)
E=8 ut
where
+1
N = f S 1nCoug M Sy (e;n) dn @7
-1

Note that, although matrix A is infinite, it can be truncated to a large, but finite,
size, One can then vary c to approximate natural frequencies for various combinations

of €’ Sours b Ein' and Eout'

Numerical Studies

It is recognized, of course, that degenerate cases of both prolate and cblate
spheroids can be spheres. A second degenerate case of a prolate spheroid is a needle,
and a second degenerate case of an oblate spheroid is a disc., In this study using the
boundary-value-problem approach, we are interested in the behavior of natural frequencies
for spheroids between these two extremes. As noted zarlier, others have presented
boundary-value-problem results for spheres,z'4 and ¢proximate integral-equation results
for prolate spheroi.ds.15 The numerical studies reported here are meant to complement
this previous work. '

The numerical approach used in this analysis was to evaluate the spheroidal
functions15 of complex argument ¢ (c = w/pER) for a number of ¢ values and to use
optimization procedures to determine those values of ¢ that best meet the prescribed
conditions. This approach has been used previously for the sphere.3

Numerical results for the natural frequencies of a TM-excited, perfectly conducting
prolate spheroid in an infinite medium are shown in Fig. 3, The results shown are for the
first layer of poles. Several shape factors are presented (spheroid major-to-minor axis
ratios b/a of 1, 5, 10, and 100) to illustrate the dependence of the natural frequencies
on object shape, As the eccentricity of the spheroids is enhanced (%-' ®), the poles
approach the asymptotic limit of poles for a thin cylinder,16 a result demonstrated in
previous studies.4’13

The boundary-value-problem results shown in Fig. 3 were compared with the integral-
and the agreement was good. This can be seen by

equation results obtained by Marin,l"

comparing Marin's integral-equation results with the boundary-value-problem results for
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the first layer of poles (see Tables 3 and 4). Agreement is quite good, considering the
different approaches used in determining the natural frequencies.

T I T ' 1 ' T l L l T l 1 | L T T I T '4
a p
e e oy e o e e iy
- o b/a=1 e s el e 12
//'
- & b/u=5 / —______o—-————{
/ o O
- o bla=10 Ve -110
| P S
- ¢ b/a=100 | / e e e B
— v bla=w» | / / _____o—————-—na o~
n=8° / / - e ol | E |
n= 7! / 7 , E
/ —— e -
B ! O 6
n=6 / -~
I {7 ,
i =5t S e
d i
- e [ s hemtaae" .
n=3 (//A ) ?
I n=2 e D e =y
n=1
PRSI AT RN I SN NN TR SR TN SN S R P S T R 0
~2.0 -1.8 -1.6 ~1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0
Re (vb)
Fig. 3. Locus of natural frequencies for TM-excited prolate spheroids with various
eccentricities. (Note: ¥ = wpe, b = 2&0.)
Table 3. Integral-equation versus boundary-value-problem results for yb with a major-
to-minor axis of 10:1.
Pole number Integral equation Boundary-value problem
1 -0.265 + i 1,458 -0.263 + 1 1.453
2 -0.400 + i 2,977 -0,391 + i 2.955
3 1.497 + i 4.510 -0.485 + i 4.467
4 -0,582 + i 6.051 -0.562 + 1 5.985
5 -0.658 + i 7.598 -0.650 + i 7,506 j
6 -0.727 + i 9.149 -0.650 + i 9.030
7 -0.793 + i 10.703 -0.744 + i 10.56
8 -0.855 + i 12.260 -0.795 + i 12.08
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Table 4. Integral-equation versus boundary-value-problem results for yb with a major-
to-minor axis of 5:1, ’

Pole number Integral equation Boundary-value problem
1 -0.336 + i 1.374 -0,335 + i 1,402
2 -0.516 + i 2.817 -0.512 + i 2.807
3 -0.655 + i 4,277 -0.648 + i 4,257
4 -0.773 + i 5.745 -0.761 + i 5.713
5 -0.876 + i 7,220 -0.860 + i 7.175
6 -0.,970 + i 8.698 -0.949 + i 8.639
7 ~1,057 + i 10.180 -1,03 + i 10.11
8 -1.138 + i 11.666 -1.10 + i 11.57

An interesting sidelight was to compute the angle functions Sm(c,n] for the values
of ¢ corresponding to natural frequencies. (The functions were normalized using
Flammer's~ normalization procedure.) This was done for various eccentricities as there

was some speculation17 concerning the natural mode behavior for spheroids of various

eccentricities. As shown in Figs. 4 through 9, the angle fumctions Sm(c,n) are
predominately real, but have a finite imaginary component. This is consistent with

Marin's observations.ls Alsp, as eccentricity increases, the variation of the angle

funictions Sln(c.n) departs from legendre functiom behavior and approaches that of a pure,
real angle function of sin m% and cos Il‘-sz .

Unfortunately, numerical difficulties were encountered in solving the oblate-
spheroidal and the TE-excited prolate-spheroidal problems. A few poles could be found,
but the overall layer structure could not be defined. Due to the large number of
mmerical problems encountered, this effort was terminated.

A number of attempts were made to attain reasonable answers to the problem of a
However, after much effort with no discernible

TM-excited prolate spheroid with a sheath.
18,19 were tried,

progress, this effort was sbandoned. Several root-finding procedures
but reasonable results were precluded by the numerical noise generated in formulating
the spheroidal functions, the errors contributed by using a truncated matrix to
approximate the infinite matrix, and the sensitivity of the root-finding procedures to

noise.

Conclusions

This study demonstrates that the analytical expressions by which ene can determine

the TM and TE natural frequencies of prolate and oblate spheroids can be derived using

the boundary-value-problem approach. Also, numerical results for the natural

frequencies of a TM-excited, prolate-spheroidal, metallic object can be evaluated using

-10-
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this technique. Moreover, these boundary-value-problem results compare favorably with
previously obtained results based on integral equation formulation. Numerical
difficulties, however, prevented obtaining natural frequencies for oblate spheroids, a
TE-excited prolate spheroid, and a TM-excited prolate spheroid with a sheath.

‘-4 T ' T l o " T I T
1.2 |
- A
1.0
— A
s 0.8 .
¥
h-:_ .
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o o  bfa=100
0.4~ '——f
x P: m)=N1-y“=sin6
-
0.2 + COS'ZLr n
0 1 ) 1 | : |
2 0.2 0.4 0.6 0.8 1.0 :

7

Fig. 4. Natural frequency behavior of Sn(c,n) is predominantly real and appears to i

pass from Legendre function behavior (for b/a = 1) to cos ;—rn behavior as

eccentricity increases., (Note: 2z = EEOn.)
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Fig. 5. Natural frequency behavior of S”(c,n) is predominantly real and appears to pass

from Legendre function behavior (for b/a = 1) to cos %n behavior as
eccentricity increases.
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L s b/a=10 /

Re(S1, (€m)

0 0.2 0.4 0.6 0.8 1.0
n
Fig. 6. Natural frequency behavior of Re(Su(c.n)) is predominantly real and appears to
pass from Legendre function behavior (for b/a = 1) to sin 'm behavior as
eccentricity increases.
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eccentricity increases.
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Symbol Definitions

VT

Angular frequency

Permittivity of the medium

Permeability of the medium

Semifocal length

Ww/hER

Three orthogonal coordinates

System of ellipses describing tne w variation in the oblate and

. rolate spheroidal coordinate systems

System of hyperbolas describing the v variation in the oblate am’
prolate spheroidal coordinate systems

Spherical coordinate system coordinates

Scale factors for the u,v,¢ coordinate system

Orthogonal components of the electric field intensity in the u,v,d
coordinate system

Orthogonal components of the magnetic field intensity in the u,v,t
coordinate system

Separable part of the field that varies with u

Separable part of the field that varies with v

Transverse magnetic (Eu,Ev,H )

Transverse electric (Hu’Hv’E¢]

Spherical Bessel function of order n and type i
Spherical Hankel function of the second kind of order n
Legendre function of order n and degree m

Prolate spheroidal radial function of order n and type i
Prolate spheroidal angle function of order n

Oblate spheroidal radial function of order n and type i
Oblate spheroidal angle function of order n

Semimajor axis dimension (b = ££) R
Semiminor axis dimension (a = & 52 - 1)
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