Lawrence Livermore Laboratory

AUTOMATED SAMPLE CHANGER FOR X-RAY

Fluorescence analysis of bio-medical samples
U. C. Camp
A. L. Voegele
R. D. Friesen
L. Kaufman
B. Hruska

July 22, 1975

This paper was prepared for presentation at the Denver X-Ray Conference, Denver, CO , August 6-8, 1975.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be mace before publication, this preprint is made available with the understanding that it will not be cited or refroduced without the permission of the author.

AUTOMATEU SAMPLE CIANGLR FOR X-RAY F: ORESCEMGE ANALYSIS OF

BIO-ALHICAL SANPLES*

U. C. Camp, A. l. Voegede, an: R. b. Friesen

Laurence Livermore laboratory
livermore, Califomia 94550
and
L. Kaufman and B. Hruska

University of Caljformia at San Francisco

San Francisco, Califorma 94145

INTRODUCTIOA

The first demonstration of a clinically useful application of fluorescent excitaticn analysis (FEA) was that of thyroid imaging (l). A collimated source of Am-241 was scanned across a thyroid gland, thus fluorescing the naturally occurring iodine within the gland. A Si(Li) detector mounted in close proximity to the source recorded iodine x rays which resulted in an image of the iodine distribution, Later, quantitation of the iodine content of the theroid was shown to be of clinical significance (2,3).

Another successful application of FEA in medical work has involved in-vivo and in-vitro quantitation of purposefully administered stable tracers (4). For reasons discussed elsewhere in these Proceedings (5), in-vitro techniques are particularly useful, both in their application
*ibork performed under the auspices of the U.S. ERDA.
and acceptance. The number of clinically significant uses of FEA and the number of samples being analyzed have been increasing; therefore, the need for an automated sample changer asiapted to the requirements imposed became apparent over a year ago. To date, conmercial sample changers have been developed around the concept of turntables which accept circular samples or 35 mm slide-mounted samples. A sample changer useful for in-vitro techniques has substantially different requirements, including the roliowing:

- Preserve the desired 90-deg geometry between exciting and fluorescencing beams.
- Automatically change and count a preset number of samples.
- Incorporate a mixing capability for liquid samples such as heparinized whole blood which will settle relatively quickly.
- Incorporate the inexpensive and disposable 2-cc vials already in use, if possible.
- Operate in a manual or aut omatic mode, single or multiple cycle.
- Allow for eacy interchange of Am-241, Cd-109 or other useful excitation sources.

In addition to these features, there were the standari requirements of simple and easy operation by medical technicians and reasonable cost for the changer. In the following sections, the changer's basic components and operation are described; the more important mechanical features are presented; and finally, a brief description is given of the basic electronic logic used for control.

DESCRIPTION OF THE GHANGER
Two views of the sample changer with the detector housing and cryostat removed are shom in Figs. 1 and 2. In Fig. 1, two of the $35-\mathrm{cm}-$ diameter sample trays are shown; the left one is in position for counting, while the right one rests on top of a swing-out graded shield ($12.5-\mathrm{mm}$ aluminum, $3.1-\mathrm{mm}$ lead, $1.6-\mathrm{mm}$ cadmium, $0.8-\mathrm{mm}$ copper, and $0.8-\mathrm{mm}$ aluminum, anodized). This shield is needed because FEA results are often compared to results from simultaneous radio-tracer studies.

Fig. 1. Sample clanger without $S i(L i)$ detector, cryostat, and radiation exciter. The lefthand tray is in proper position for counting; the sanple holder is down.

The sample trays are stackable and have a capacity of 482 -cc vials. The vials are inexpensive and disposable.

The sample lift mecharism shom in the left foreground of fig. 1 consists of an almost closed loop which when raised encircles and captures the sample vials. Within the tray the vials are supported by a small, raised, round platform at the end of a slim radial arm extending from the inside edge of the ringnshaped tray. This platform is easily seen in Fig. 3 . A circular, recessed indentation in the bottom of the vial aids in selfwcentering the vials when they are returned to the tray. Shortly after the vials are captured by the nearly closed loop, an accessory arm gently presses down on the top of the vial to positively

Fig. 2. Sample changer with graded shield closed and sample in proper position for counting. Detector, cryostat, and radiation exciter have been removed.
hold it in place. The accessory arm prevents loss of th vial during an optional MX mode. Figwes 1 and 2 show the sample lift mechanism in its lower and upper positions, without and with a sample. The unique four-right-angle configuration of the vial holder prevents the exciting radiation from scattering from or exciting the metal.

The MIX mode is necessary because whole blood settles during the period prior to assay, hithout mixing, concentration determinations cease to be representative of tracer concentrations in the sample. If the MIX mode is selected by means of the MIX switch on the primary control panel (Fig. 4), the 2-cc vial will be tumbled end-overmend four times during the last 10 cm of travel ($2.5 \mathrm{~cm} / \mathrm{s}$). Three times is sufficient to completely mix heparinized blood which has settled for 24 hours. At the end of lift, the sample is located at the intersection of the collimated source radiation beam and detector colm limation. These lower and upper positions are shown from another perspective in Figg. 5. This is a double exposure - the first taken with the sample holder down, the second with the sample captured and positioned in front of the source and detector.

The changer may be operated either in a manual or aut omatic mode (Fig. 4). In the manual mode, sample advance, Ioad and unload are activated by means of single-action push button switches located on the secondary control panel, a triple width Nim bin module shown in Fig. 6. In the manual mode the associated multichanmel analyzer is operated in the traditional fashion in order to accumulate data. In the aut omatic mode the changer is controlled by pre-programmed software loaded in the

analyzer and appropriate data entered via the zeletypewriter. When the automatic mode is selected, generally the nunber of samples to be analyzed - up to 48 - is first entered on the digital selection switch on the primary control panel. Then the sample turntable is set to the 'home' position (Sample 1), and the MIX or non-MIX M1X light off) mode is chosen.

The initial counting cycle begins immediately after the LOAD switch on the primary contral panel is depressed. This initiates the sample lift mechanism and also loads the number of samples, n, into a counter. When sample lift is completed, a logic signal is sent to the analyzer and data accumulation begins for a pre-set time or number of comis. Mien data accumulation ends, pre-loaded software carries out appropriate spectral region integrations, backgrownd subtraction, and calibrations with the elemental concentrations (in $m g / g$ or meq/1) printed out by the teletype. After data output, the analyzer returns a logic pulse to the changer which initiates "unloading," i, e. returns a sample to the tray. The sample turntable then automatically advances to the next sample

Fig. S. A double exposure showing the sample holder in the down posi九ion (no sample captured), and in the raised position (sample captured).

Fig. 6. Push outton and toggle switch controls on the secondary control panel (triple width Nim-bin). This panel provides for control of the sample when the changer is in the Ma.VUAL mode.
position. This loading, analyzing, and unloading cycle contiaues through the number of samples entered via the digital selection switch (the counter counts down to zero). Fclloning analysis and uloading of the last sample, the changer will advance to its 'home' position. At this point a switch on the secondary control panel allows for either SINGLE or REPEAT analysis of the group of n samples.

SICHANICAL DRIVL :EACHWMSMS

The sample changer contains three mot orized subassemblies, each driven by small Bodine double-gear reduction motors with fixed-toraue slip clutches. The first of these is shown at the top of fig. 7 and labeded $M 1$ (40 rpm). It drives the tumatile through a Geneva-type intermittent motion. When Ml is tumed off, a dynamic brake ni il st op the rumtable at an indexed position to $\mathrm{hithin}-0.25 \mathrm{~mm}$. One complete revolution of the turntable (48 sample positions, requires 30 seconds. The 'home" position is sensed by a microswit ch witich is operated by the cam seen inflig. 7. In the event the iumtable ians, the clutch in ill slips and continues to slip until the ian condition is removed, No reset or retiming is necessary once the iam is cleared. Tho additional microswitches (not visible) sense when the tumtable is in a proper indexed position and tum sif off.

The samile is raised 18.9 on by a ball sorew shaft wich is driven by motor 122 (52 rpm) and is shown in lig. 5. The microswitch seen above S5 govems the lift height. Its iocation on the stationare dift rod seen in Fig. \& is adjustable. When this nicroskitch is tripped an electric clutch-brake unit, shown between 50 and M2, stops Mi within -0.25 am so that sample height is accurately maintained. Reversal of Mi loiers the sample, and when a microswitch located near the bottom of the rod is tripped the clut ch-brale again stops liz. Nigure 8 shows the lift mechanism in the sample down position. Note the contact between the adjustable screw and the loner nicroswitch. A safety slip cIutch snuts off power to the entire changer wit in the event a jom occurs either during sample lift or lovering. Ihis is to prevent or minimize damage to the sample lift arm. A flip-out pin in the clutch must be mariall: reset before polier co the changer can we restored.
 Iift : ©hanism raises tine sampie, shasseniby 95 moves uy as a result of a coumling to the right shaft or tube, as shown in fig. 8 . When fixed microssirch 5 semses a depressinn (iam? in the moving subassembly, MJ is turned on. The pause allows ine sample to clear the turntable and shield cover (about 9 cm of travel) before the mixing antion starts. A four-posicion reneva mechanism is used to turn the large gear at the bottom of the wis subassenbly. Through the Geneva gear and a $1-t 0-4$ gear system, M3 rotates a long vertical shaft which is coaxially contained within the rightmost tube of lig. 8 , The inner shaft terminates inside of the small mixing head unit shom in Fig. 2. inithin this unit

$$
\because-
$$

Fig. 7. Rear of the sample changer (panel removed) shoving motor Mllich advances the sample tray.

Fig. 3. One side of the sample changer (110 AC interlock door open) showing the motors M2 and MS which control the lifting and mixing motions of the sample.
a right-angle dxive converts vertical to horizontal rotary motion, The sample located at the end of a small anm (see ligs, 1 and 2) is therefore flipped end-over-end four times. The Geneva gear also creates a flip action followed by a short well rather than a continuous end-over-end motion. The flip-dwell motion results in a more desirable mixing action tham a ilar continuous tum.

Since the sample is captured dy une loor and tian fripped, it is necessery to positively clarp the swe le at wition during the mixing action. The snall wire cany :unit de in :ogs. : and -1 is part ly cont rolled by the epring- loaded ad swis :h di: upper enter
 pressed spring, the clamp aut enatically patios duritg tice first 3 cm of lift, then moves down to clamp the intured ait: at !lace the clamp has an adjustathe consion comtro:lea in the lifting tach. Only the clamy action is reverses when tice surpis :s waste the flipping a tion does not occur during sample return te tow irw.

 power in the cuent the dons is operd. are se boce is ciosed, a whit swita or the secondary (i:..-tn wetre: ! funt te depresed to regain farer to the dianger.
in summary, the thre tecters $\because 1, \therefore$ and $\because 3$ are $\because:$ when the sample is in position for fiucressuce. fict a sarpie is returne to the

The electronic control logic of tie task consit: of three major control areas: the control logic, tre elat cgin, wat motor wiring
 consists of eransistor-te-transistor logis : i, integrated circuits that keen track of the samise count anc rolite or receioe control signals in the proper sequence via relays $t i$ the there rotors.

The relay logic is contained in a trople-midabsintin. it leven relays are contained in this bin with four others toused in the mechenical motor section (lig. B). Thas triple - idti. muluic a:so contains the single-step controi circijtm used in the whal rite. hisn this mode is chosen, all paier to any AUlC mode coltreis are byrassed. The front panel of this three-wicth module, i.e. the secondary control pancl, is shown in Fig. 6. This module also contains the interface circuitr; from the $110-1$ ac required for motor contra to the 3 ! required for 17 l . Iogic. Electronic white noise gencratec ly closure of vari us relay contacts created serious problems in tie conterl logic even when extensive shielding was used. It was only afte: installition of separate filters on each logic and voltage inc etinem the relay and the comrol
logic fiat all interference nar elminated ine reitangatar box seen in lig. ${ }^{\text {; }}$.
bion sequince riow olagham

SET DIGITAC COUNTR
to mumetr of sampifs
simelt on ripigi anairsis.

SICNAL BHALYERR Sample in plact

Fig. リ. A simidified il.m diagrat. for the low sequence of the sample changer, The oval boxes indicate operator preselect require. ments while the rectanguas boxes indicate those oper~ ations automatically programmed ind winch todow depression of LbAir on the primary coneroi panel.

 and ralat. vace an "of:" contro!

astre . s.mos a somethatic

 Arrc. vrice ot inttialisation stop ?rior io depresing Loat on the prifury suntrol panel (Eig. t).
 stitsi bs luated on the secondary Eantrui ratel (lis. U). The restang:tar boxes shon automatically rorerimed sefueree steps that Fo:low once loading action bugins a.e.. sample elowator when the Misemeisit analyer returns a logic uhise signailing that data analysis is sompete, the flow logic shown in fig. lo hegins. Following :oreal sampie disance, LOAD returns contro: to the lafittor UP step Fhow in the prevedirg figure.

SHMAR:

A. autumated sample change: has bee: develoned for fluorescent pacitation amalesis of selected rracers in biomedical samples. The sanple changer contains separately programaed nechanisms drisen br
hdyamce sequence fiow diagram

Fig. 10. A simplified flow diagram for the advance sequence of the changer. All these steps follow automatically once the analyzer signals that data analysis is complete.
three small motors coupled with fixed-torque safety clutches. An intermittent motion accurately positions (tolerance $\pm 0.25 \mathrm{~mm}$) a $35-\mathrm{cm}-$ diameter tray which nolds $482-\mathrm{cc}$ vials. The second mechanism lifts the $2-\varepsilon \mathrm{c}$ vials about 19 cm into position (tolerance $\pm 0.25 \mathrm{~mm}$) through eithes a mix or non-mix mode. The mixing mechanism is an integral part of the lift mechanism and tumbies the vials end-over-end four times within 10 cin. This is enough to mix settled, heparinized blood. The lift mechanisin clutch shuts off changer power in the event of malfuncion or jaming. Safety clutches are set for minimum torque to eliminate hazards to operating personnel. So maintenance of the changer's mechanical parts or bearings is required.

The sample changer is interfaced to an Ultima 2000 programmable pulse-height analyzer which controls the sample changer. The detector is a low-background KeVex spectrometer. The sample changer operates in a manual or autonatic mode, and incorporates a digital selection switch which sets the number of samples to be analyzed. A repeat or single-option switch allows a pre-selected number of samples to be counted once, then return to "home" position, there to stop or to be once again analyzed until manually or program stopped. The changer is controlled by relay and integrated circuit sequential logic systems. The changer's control electronics are contained in a Nim-bin which also supplies all of the power needed for the changer. After storage of the pulse-height spectrum in the analyzer for a pre-set time interval, pre-programmed
portions of the spectrum are integrated and through stored calibration constarts and equations, the trace element concentrations in the derived units, along with statistical errors and sample [D, are printed out. A logic signal is then retumed to the changer caling for the next sample, the analyzer memory is cleared, and the cycle begins again.

REFERENCES

1. P. B, Hoffex, B, K, Jones, R. B. Crawford, R. N. Beck, and A. Gottschalk, "Fluorescent Thyzoid Scaming: A New Method of Imaging the Thyroid," Radiology 90, 342 (1468).
2. L. Kaufman, T'. Nelson, D. Price, D, Shames, and C. T. Wilson, "Some Applications of Si (Li) Detectors to Clinical Problems," ILEE Trans. Nuc1. SCi. NS-20, 402 (1973).
3. T. A. Patton, A. B. Brill, G. Blanco, and R. Highfill, 'Experiences With Semiconductors in lmaging and Functions Studies at Vanderbilt, ${ }^{*}$ L. Kaufmar and U. C. Price, Editors, Semíconductor Deteczors in Nedicine, AEC Conf-730321, p. 253 (1972).
4. L. Kaufman, C. J. Wiison, J. A. Neison and D. M. Shames, "Techniques for In-Vitro and In-Vivo Ejemental Quantitation by Fluorescent Excitation," L. Kaufman and D. C. Price, Editors, Semiconductor Detectors in Medicine, AEC CONF-730321, 1973.
5. L. Kaufman, P. Guesty, B. Hruska, D. C. Price, S. T. Swant, C. T. Wilson, D. C. Camp, A, L. Voegele, R. D. Friesen, F. Deconinch, and T. A. Nelson, "An Automated Fluorescent Excitation Analysis System for Medical Applications," in these Proceedings.
> "Reference to a company or produc: name does not imply approval or recommendation of the product by the University of California or the U.S. Energy Research \& Development Administration to the exclusion of others that may be suitable."
