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Introduction 
 
As the U.S. Department of Energy’s (DOE’s) Solar Energy Technologies Program initiates new cost-
shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience 
gained from cost-shared R&D projects that have been funded through the program to date. This report 
summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic 
Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV 
Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of 
government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D 
investments.  
 
Each project provides unique lessons, because each targets technologies in different stages of 
development. The PVMaT/PVMR&D project focuses on improving PV manufacturing technology to 
improve manufacturing processes, reduce costs, increase product reliability, and increase overall 
production of proven PV technologies. The Thin-Film PV Partnership project focuses on improving the 
efficiency and reliability of emerging thin-film PV technologies through collaboration among industry, 
national laboratories, and universities.  
 
Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV 
Partnership projects, this report presents lessons learned from the projects on 13 topics:  
 

1. Public-private cost sharing  
2. Project proposal evaluation panel composition  
3. Intellectual property and collaboration  
4. Contracting delays  
5. Scale of contracts  
6. Company maturity, stage of development, and iterative processes 
7. Addressing common problems across companies 
8. Link between applied R&D and technology development 
9. Limitations of cost and performance projections 
10. The difficulty of first-time manufacturing 
11. Module reliability problems during introduction of innovative technologies 
12. Reluctance of successful companies to adopt innovative approaches 
13. Budget adequacy 

 
These topics were identified as being potentially relevant through dialogue with management/staff at 
DOE, the National Renewable Energy Laboratory (NREL), and Sandia National Laboratories. 
 
For each topic, we discuss three issues: the context, the lessons learned, and recommendations. The 
context is the event or problem that resulted in the lessons being learned. It provides background for 
understanding where the lessons came from, with references to specific examples where possible. The 
lessons learned are the knowledge or understanding gained by the experience—the experience may be 
positive or negative. A lesson must be significant in that it has a real or assumed impact on performance, 
installed cost, operation and maintenance, or reliability; valid in that it is factually and technically correct; 
and applicable in that it identifies a specific design, process, or decision that reduces or eliminates the 
potential for failures, or reinforces a positive result. The recommendations are actions that should be 
taken in response to the lessons learned. Ideally, these recommendations should have applicability to 
other similar situations. 
 
The body of this report is divided into three sections. First, we describe key findings from across all the 
topics. Second, we provide brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership 
projects. And third, we discuss each of the 13 topics and their context, lessons learned, and 
recommendations. 
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Key Findings 
 
The PVMaT/PVMR&D and Thin-Film PV Partnership projects helped move U.S. PV companies ahead at 
a faster pace than their previous trajectory suggested during the past decade. Mechanisms such as cost-
sharing and wide-ranging collaborations resulted in companies having better products available for the 
rapidly expanding PV market during this period than they would have had without these projects. During 
the next decade, the PV industry is expected to continue to expand rapidly within the United States and 
worldwide. Thus, it is an ideal time to launch a concerted effort under the SAI to work collaboratively with 
industry to solve a wide range of R&D challenges that will enable the U.S. PV industry to play a significant 
role in meeting the demands of the domestic and international PV markets.  
 
Numerous lessons about cost-shared solar energy R&D have been learned during the course of the 
PVMaT/PVMR&D and Thin-Film PV Partnership projects. One thing this report makes clear is that the 
approach used to engage the private sector in collaborative R&D must evolve as an industry matures. 
The lessons discussed in this report should help government navigate this process of change. Many of 
the report’s lessons and recommendations are summarized in the three broad categories below. As an 
overall finding, there are no simple formulas for creating a successful cost-shared PV R&D project. The 
best decisions stem from in-depth knowledge of PV technologies and the PV industry as well as strong 
relationships with project participants. 
 
Tailor projects to meet specific objectives 
Projects have specific objectives that should influence major decisions. Different objectives call for 
different project specifications. This is illustrated by similarities and differences between 
recommendations from the PVMaT/PVMR&D project, which focuses on more mature companies and 
technologies; and the Thin-Film PV Partnership project, which focuses on emerging companies and 
technologies. Factors such as the size and history of participating companies, the risk/reward profile 
associated with more mature and emerging technologies, and the trade-off between selection panel 
independence and expertise influence project decisions. Table 1 shows examples of objective-based 
project recommendations. For lessons learned and recommendations particularly relevant to tailoring 
projects to meet specific objectives, see Topics 1, 2, 5, and 9. 
 
Table 1: Objective-Based Recommendations of PVMaT/PVMR&D and Thin-Film PV Partnership 
Projects 

 PVMaT/PVMR&D 
(More mature Companies/Technologies)

Thin-Film PV Partnership  
(Emerging Companies/Technologies) 

Decision Objective Recommendation Objective Recommendation 
Evaluation 
panel 
composition  

Credibility, broad 
stakeholder buy-
in 

Independent panels 
representing a wide 
spectrum of industry 
(knowledgeable 
about but not 
directly tied to the 
PV industry) 

Deep, up-to-date 
knowledge of 
emerging PV 
technologies 

Highly expert panels 
immersed in the 
technologies in 
question 

Scale and 
number of 
subcontracts 

Decrease risk of 
any company 
failing, provide 
sufficient funds for 
companies to 
accomplish goals 

Provide large 
awards to a small 
number of highly 
capable companies 

Decrease overall 
project risk (“not 
putting all eggs in 
one basket”) and 
increase potential 
for innovation 

Spread funding around 
to a larger number of 
companies and 
technologies 
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Cost-share Improve PV 
product 
performance and 
manufacturing 
processes and 
capacity 

50%+ cost-share for 
large companies 
with large-dollar-
value subcontracts; 
30% cost-share for 
small less mature 
companies with 
smaller-dollar-value 
subcontracts; as 
industry matures it is 
reasonable to 
expect large and 
small companies to 
cost-share at 50%+ 

Advance the 
technological 
development and 
commercial 
introduction of 
emerging thin-film 
PV technologies 

40% cost-share for 
large company 
technology 
partnerships; 20% 
cost-share for large 
company R&D 
partnerships; 20% 
cost-share for small 
company technology 
partnerships; 10% 
cost-share for small 
company R&D 
partnerships 

 

Understand benefits and challenges of collaborative R&D 
Collaboration among government, academic, and industrial organizations offers important benefits. 
Government support of industry R&D reduces the financial and technological risk for PV companies, thus 
encouraging companies to advance technologies that provide societal benefits. The pace of innovation 
can be increased by combining the knowledge and expertise of national laboratories, universities, and 
private companies. Solving generic industry problems, such as handling ultra-thin silicon wafers or 
reducing the thickness of thin-film layers, benefits large segments of the PV industry. Despite these 
advantages, there are significant barriers to collaboration.  
 
Intellectual property (IP) concerns are a major barrier to collaboration and a major cause of 
subcontracting delays. A company’s IP is vital to its competitiveness, so companies are reluctant to enter 
any relationship that could expose their IP to other companies or even to universities and the 
government. Lack of relevance is a barrier to solving generic industry problems collaboratively: Because 
PV manufacturers are always seeking a competitive edge, they have an incentive to use proprietary 
equipment to solve problems instead of choosing a widely available solution. Fluctuations in government 
funding are a barrier to the success of long-term efforts.  
 
Understanding and overcoming these barriers to collaboration—through structuring the project 
appropriately and building strong relationships with participants—is key to establishing a successful cost-
shared R&D project. For lessons learned and recommendations particularly relevant to the benefits and 
challenges of collaboration, see Topics 1, 3, 4, 7, and 13.  
 
Address entire technology development process 
Companies and technologies must progress through many steps from conception to commercialization, 
and each step presents challenges. Building a substantial base of fundamental knowledge about a 
technology through long-term applied research is vital to accelerating progress and preventing product 
failures, but it requires patience and consistent support. The transition to first-time manufacturing is one of 
the most difficult steps, and a number of PV companies have failed or been delayed for years trying to 
make the transition. After commercial manufacturing has begun, problems such as module reliability 
issues can plague product introduction. Even success has its drawbacks: Successful companies tend to 
favor low-risk replication of existing processes over adoption of new, unproven approaches, which slows 
the overall pace of technology advancement. 
 
To facilitate the success of PV technology, a cost-shared R&D project should commit adequate resources 
to each step in the technology-development process. An important part of this is evaluating prospective 
participants to determine where they are in the process. Are they performing initial research on a 
promising idea? Are they in pilot production? Have they spent adequate time iteratively identifying 
problems, making improvements, and testing in pilot production to be ready for full-scale production? This 
analysis helps ensure that the right amount of funding is awarded to the right companies for the right type 
of work, e.g., large-scale manufacturing subcontracts should be awarded to companies with large-scale 

 3



 

manufacturing capabilities, and applied R&D subcontracts should be awarded to emerging companies 
performing applied research. 
 
Understanding the technology-development process helps project managers know when to be patient 
and continue support as companies take risks and tackle challenging steps. It also helps managers know 
when success should be expected and when failure should result in discontinuing support. For lessons 
learned and recommendations particularly relevant to addressing the entire technology-development 
process, see Topics 6, 8, 10, 11, and 12. 
 
 
Project Descriptions 
 
Photovoltaic Manufacturing Technology/PV Manufacturing R&D Project 
In 1991, in response to the prospect of a vanishing domestic PV industry, DOE and NREL initiated a new 
project focused on improving PV manufacturing technology. The Photovoltaic Manufacturing Technology 
(PVMaT) project was initially envisioned as a 5-year, industry-government, cost-shared project with the 
goal of enhancing the U.S. PV industry’s leadership in manufacturing and commercializing PV 
components and systems; the project’s emphasis on process engineering and industrial engineering R&D 
was a significant departure from NREL’s traditional focus on materials R&D. The project was extended 
beyond this initial plan, and eventually it was transformed into the PV Manufacturing R&D (PVMR&D) 
project.  
 
The PVMaT/PVMR&D project has focused on four key areas (Witt et al. 1998, 1): 
• Improving manufacturing processes and equipment 
• Accelerating manufacturing cost reductions for PV modules, balance-of-systems components, and 

integrated systems 
• Improving commercial product performance and reliability 
• Laying the groundwork for substantial scale-up of U.S.-based PV manufacturing plant capacities.  
 
Table 2 shows PVMaT/PVMR&D solicitations since 1991. Total project funding through FY2005 was 
$151.4 million in DOE funding and $137.5 million in industry funding.1

 
Table 2: PVMaT/PVMR&D Funding and Cost-Share, 1991-2005 

Phase 
(Year) Focus of Work DOE  

Funds ($K) 
Private 
Funds 
($K) 

Private 
Cost-
Share 

Phase 1 
(1991) Problem Identification 1,053 0 0.0% 

Phase 2A 
(1992) Process Specific Manufacturing 30,738 21,316 40.9% 

Phase 2B 
(1993) Process Specific Manufacturing 13,384 14,557 52.1% 

Phase 3A 
(1993) Generic/Teamed Research 2,220 752 25.3% 

Phase 4A1 
(1994) Product-Driven Systems & Components 5,343 1,812 25.3% 

                                                 
1 Industry cost-sharing in the PVMaT/PVMR&D project is measured in person-hours (design and testing) and materials; it does not 
include capital equipment purchases. 
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Phase 4A2 
(1994) Product-Driven Module Manufacturing 14,349 10,167 41.5% 

Phase 5A1 
(1998) Product-Driven Systems & Components 4,261 4,700 52.5% 

Phase 5A2 
(1998) Product-Driven Module Manufacturing 26,451 20,689 43.9% 

IDIP - BOS 
(2001) 

In-Line Diagnostic and Intelligent Processing - 
Balance of Systems 3,553 3,708 51.1% 

IDIP - MOD 
(2001) 

In-Line Diagnostic and Intelligent Processing - 
Module Manufacturing 23,352 30,426 56.6% 

YDR - BOS 
(2004) 

Module and Component Yield, Durability, and 
Reliability - Balance of Systems 2,996 5,326 64.0% 

YDR - MOD 
(2004) 

Module and Component Yield, Durability, and 
Reliability - Module Manufacturing * 23,677 23,998 50.3% 

 Total 151,377 137,451 47.6% 
*Funding estimated from amounts negotiated for completion. 
 
The PVMaT/PVMR&D project played an important role in helping U.S. PV manufacturers reduce costs, 
expand production, and remain competitive in a rapidly growing global PV market during the 1990s and 
into the new century. For example, as shown in Figure 1, the 14 PVMaT/PVMR&D participants with active 
production lines in 2005 realized significant cost reductions during the 1990s and into the new century. 
Their weighted-average cost for manufacturing PV modules (in 2005 dollars) declined by 54%, from 
roughly $6 per Wp in 1992, to $2.75 per Wp in 2005. In addition, their manufacturing capacity increased 
by more than a factor of 17, from 14 MW in 1992 to 250 MW in 2005. As shown in Figure 1, the most 
rapid cost reductions occurred between 1992 and 1997. During this period, participating companies were 
able to take advantage of low-hanging fruit with respect to manufacturing R&D. 
 
The PVMaT/PVMR&D project has also enabled a number of PV companies to make technological 
advances that helped them attract private capital. For example, AstroPower received a series of 
PVMaT/PVMR&D subcontracts during the 1990s that advanced its Silicon-Film PV technology to the 
point where it was first able to attract venture capital funds and then able to launch a successful IPO in 
1998.2 Another example of successfully attracting private capital is Evergreen Solar, a PVMaT/PVMR&D 
partner with four projects since 1994 to advance its String RibbonTM manufacturing process. Thanks, in 
part, to the PVMaT/PVMR&D subcontracts accelerating the advancement of its manufacturing processes, 
Evergreen announced in March 2006 that, in the previous 4 months, it had secured contracts and orders 
totaling $380 million over the next 4 years (Evergreen Solar 2006).  
 
The PVMaT/PVMR&D project has been considered, within DOE and by members of the U.S. PV industry, 
one of DOE’s most successful collaborative R&D projects (Brown et al. 2005; Herwig 1996; NREL 1999). 
Of the 61 projects to date, approximately three quarters have resulted in success in the form of cost 
reductions, increased output, improved efficiencies, etc. 
 
Additional information on the PVMaT/PVMR&D project is available on the project Web site 
www.nrel.gov/ncpv/pv_manufacturing. 

                                                 
2 AstroPower was unable to move its Silicon-Film PV technology into production before it declared bankruptcy in 2003. GE Energy, 
however, bought AstroPower in early 2004 and is still pursuing the Silicon-Film technology (under a new PVMR&D contract). 
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Figure 1: PVMaT/PVMR&D Cost-Capacity Data (1992-2005) 
 
 
Thin-Film PV Partnership Project 
The Thin-Film PV Partnership project was initiated between 1992 and 1994 as an expansion of previous 
thin-film PV work conducted by the Solar Energy Research Institute/NREL since 1978. The goal of this 
cost-shared project is to facilitate the widespread market penetration of a range of thin-film technologies, 
including amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium diselenide (CIS).  
 
The project encourages collaboration among industry, national laboratories, and universities through its 
national teams (Table 3). Teams—typically made up of 5-10 NREL researchers, 15-25 university 
scientists, and 10-20 industry scientists and technologists—meet regularly (about every 9 months) to 
organize collaborative research activities. Typically, industry team members lead the process, with NREL 
functioning primarily in a monitoring role for immediate issues and adding mid- and long-term perspective 
for others. 
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Table 3: Thin-Film PV Partnership Project National Team Tasks 
National Team Major Tasks 
CIS Improved junctions, non-CdS junctions, molybdenum issues, transients, 

thinner layers 
a-Si Improved efficiencies, improved stability, low-band-gap alternative 

alloys, higher deposition rates 
CdTe Contacts, thin CdS (improved efficiencies), understanding degradation 

mechanisms, thinner layers, higher voltage cells 
Environment, Safety, 
and Health 

Module recycling, in-plant use and disposal of materials, obtaining EPA 
toxicity characteristic leaching procedure certification for CdTe and CIS 
modules 

Module Reliability Water vapor ingress, edge sealing, tin oxide peeling, glass breakage, 
barrier layers, accelerated testing, testing outdoors in extreme climates 

Source: Zweibel (1997); NREL (2000). 
 
The Thin-Film PV Partnership project’s budget between 1994 and 1999 was $102 million in DOE funding 
($20 million annually) and $30 million in industry funding ($6 million annually). Between 2000 and 2006, 
the budget decreased to $75 million in DOE funding ($12.5 million annually) and $25 million in industry 
funding ($4.2 million annually). Funding has been directed to cost-shared subcontracts with “technology 
partners”—companies working to bring thin-film technologies from the prototype to pilot production phase 
of development and then to successful first-time manufacturing. Funding has also been directed to cost-
shared subcontracts with “R&D partners," which include NREL, universities, and companies solving more 
fundamental and mid-term (3-10 years) problems that would not be tackled by companies working on 
immediate scale-up issues (e.g., materials stability issues, innovative device designs, and new film 
formation processes). Funding R&D partners also allows start-up companies, which might not yet be 
poised for actual manufacturing, to enter the field. 
 
The Thin-Film PV Partnership project has contributed to increases in the efficiencies of laboratory cells 
and large-area modules and has helped a number of companies move new PV technologies from the 
laboratory into pilot production and then first-time, commercially successful manufacturing. Several thin-
film companies have shared R&D 100 Awards with the Thin-Film PV Partnership. Two technology 
partners, Uni-Solar (a-Si) and First Solar (CdTe), are now considered world leaders in their technologies 
in terms of conversion efficiencies and production. These companies have experienced rapid production 
growth in the past several years (Figure 2) and, with their sister companies in CIS, provide a solid basis 
for the rapid growth of thin-film technologies in the future. 
 

 
 

Figure 2: Historical Sales of Thin-Film PV Modules Made in the United States 
 
More information on the Thin-Film PV Partnership project is available on the project Web site 
www.nrel.gov/ncpv/thin_film.  
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Lessons Learned 
 
1. Public-Private Cost Sharing
 
Context 
Developing innovative technologies such as PV involves taking financial and technological risks. To help 
share the risk of R&D between the public and private sectors, a critically important shift took place during 
the 1980s, from cost-plus contracting to cost-shared contracting. With the approval of the Technology 
Innovation Act of 1980 (also known as the Stevenson-Wydler Act) and the Patent and Trademark 
Amendments Act of 1980 (also known as the Bayh-Dole Act), the foundation for cost-sharing was laid. 
During the past 20 years, the use of cost-sharing, when engaging the private sector in R&D, has become 
fairly standard practice. 
 
Lessons Learned 
The following lessons about public-private cost-sharing have come out of the PVMaT/PVMR&D project: 
 
• Large companies that cannot afford to cost-share 50% or more for large-dollar-value manufacturing 

R&D subcontracts do not have the resources to sustain expansion in capacity and competitiveness.3 
• Smaller, less-mature companies may not be able to cost-share as much—a 30% cost-share for a 

smaller-dollar-value subcontract is reasonable for proven technologies. As these companies mature, 
it is reasonable to expect them to cost-share 50% for smaller-dollar-value subcontracts.  

• Many companies are reluctant to implement new manufacturing processes, but an industry-
government partnership can help make implementing new technologies a priority. For example, 
Solarex (now BP Solar) was reluctant to implement wire saws during the early 1990s, until it signed a 
PVMaT/PVMR&D subcontract—and key personnel argue that it might still be using the old technology 
were it not for involvement in the project. Today, this improvement saves BP Solar millions of dollars 
per year, and wire-saw use has spread broadly to other PV companies and other parts of the 
semiconductor industry. 

 
The following lessons about public-private cost-sharing have come out of the Thin-Film PV Partnership 
project: 
 
• Larger, private companies have a greater ability to cost-share, although their willingness to cost-share 

depends on the level of risk. For technology partnerships—aimed at bringing technologies from the 
prototype to pilot production phase and then to first-time manufacturing—cost-sharing at 40% is 
reasonable. For higher-risk R&D partnerships—aimed at solving more fundamental and mid-term (3-
10 years) problems that would not be tackled by companies working on immediate scale-up issues 
(e.g., materials stability, innovative device designs)—cost-sharing at 20% is reasonable. (Because 
these technologies are still on the emerging-technology improvement curve, they involve higher risks 
than technologies in the PVMaT/PVMR&D project; therefore, it is reasonable for the government to 
pay a larger share of the total cost.) 

• Smaller, private companies may not be able to cost-share as much. For technology partnerships, 
cost-sharing at 20% is reasonable, and, for R&D partnerships, 10% is reasonable. 

• Universities present unique partnership opportunities, allowing companies to build long-term 
relationships and undertake riskier projects. If a university is involved in the R&D, cost-sharing can be 
waived for that portion of the contract (up to 10% of the total). 

• Setting aside 20% of each project’s budget for collaborative work allows for shared research and 
lessons learned on top-priority items that the entire industry faces, while preserving the majority of the 
funds for work on proprietary research. This collaborative work builds a common awareness: 
university and laboratory researchers understand what industry needs, and industry understands 

                                                 
3 For the purposes of DOE R&D subcontracting, “large” companies are defined as those having more than 500 employees and 
“small” companies as having 500 or fewer employees. However, this cost-sharing guidance is tied more to the financial and 
organizational capacity of the companies than to their size under these official definitions. 
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what these researchers can do for them. One recent example of this approach being used 
successfully is the development of thinner copper indium diselenide (CIS) thin-film layers. For years, 
CIS layers have been made 3-μm thick, even though it is known that thinner layers would be 
effective; companies continued to use the 3-μm thickness due to inertia in changing processes. 
Recent skyrocketing indium prices make thinner layers desirable. The Thin-Film PV Partnership’s 
National CIS Team—seven companies, 10 universities, and NREL—explored thinner cell 
technologies and helped companies transition to the use of thinner CIS layers. After 1 year of 
collaborative research, CIS layer thickness has been reduced to 1-1.5 μm, resulting in large material 
and processing savings for CIS PV companies such as Shell Solar Industries, Energy Photovoltaics, 
Global Solar Energy, and International Solar Electric Technology. The next step is reducing thickness 
to 0.3 μm. 

 
Recommendations 
A. Institute a multi-tiered cost-share program. The program should account for size of the company, 

type of institution, type of technology, and work performed. It makes sense for the government to pay 
a larger share for higher-risk activities. 

B. Include universities. Universities should be included in partnerships when possible. To encourage 
engagement of universities by industry, the cost-sharing requirement for the portion of a project’s 
budget directed to universities should be reduced or waived. 

C. Include national laboratories. Expand this structure to include national labs in R&D collaboration. 
D. Include a specific budget set-aside for team partnerships. This allows lessons learned to be 

shared and increases industry-wide benefits. 
 
 
2. Project Proposal Evaluation Panel Composition 
 
Context 
Evaluating project proposals and making awards requires establishing some sort of selection panel. The 
effectiveness of this process is related to the perceived or actual independence, objectivity, and expertise 
of the panel members. The composition of the panel has implications for the effectiveness and credibility 
of the selection process.  
 
Lessons Learned 
The following lessons have proven important to maintaining credibility of the industry-government-
university collaborations through the PVMaT/PVMR&D project: 
 
• From the beginning, project proposals were evaluated using independent panels with experts from 

the public and private sectors. To ensure there were no conflicts of interest, no evaluation panel 
experts were chosen who had current ties to the PV industry. Although day-to-day project 
management was carried out by a team of R&D specialists at DOE headquarters, NREL, and Sandia 
National Laboratories, the panels had real control over the allocation of project resources. 

• Typically, the evaluation panels included one person from NREL and one person from Sandia on a 
panel of 12 or more individuals. These panels were designed to have a heavy industry representation 
to ensure their credibility with industry. The limited number of government managers on the panels 
has been challenging at times because the project managers must be willing to risk losing some 
control over the process. 

• Participants had a broad mix of expertise (e.g., manufacturing, utility, and investment banking) in the 
semiconductor and (formerly) PV industries to provide a broad view of the market. Although broad 
representation on the panels has worked well, it has been a challenge to maintain a good mix of 
people because of the limited pool of potential participants (i.e. people with relevant PV knowledge 
who are not currently tied to the PV industry). 

 
The following lessons about project proposal evaluation have come out of the Thin-Film PV Partnership 
project: 
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• The partnership emphasized up-to-date knowledge on emerging PV technologies in choosing its 
selection panels. This in-depth expertise was necessary to fully understand the intricacies of an 
emerging technology such as thin-films. Also, panel members immersed in emerging technologies 
were less likely to favor well-established technology options, thus opening up a wider variety of 
emerging technologies for consideration.  

• Project selection comprised two stages. First, projects were evaluated for their technical merit, 
independent of technology type; this allowed various technologies to advance to the next stage. A 
typical technical evaluation panel consisted of approximately 85% NREL personnel and 15% 
representatives from outside organizations such as the Electric Power Research Institute and the 
U.S. Department of Commerce. Second, projects were evaluated for their value to the program; 
different technologies were compared and prioritized with respect to how well they met project goals. 
A typical programmatic evaluation panel consisted of approximately 50% NREL personnel, 33% DOE 
personnel, and 17% representatives from outside organizations. 

 
Recommendations 
A. Understand the trade-offs in choosing a selection panel. Panels chosen for objectivity, 

independence, and avoiding potential conflicts of interest add credibility and enhance broad 
stakeholder buy-in; but they could lack current, in-depth technological expertise or favor more mature 
technologies. Panels chosen for expertise enable deep technological evaluations and open the field 
to emerging technologies but could result in a narrow perspective or increased subjectivity.  

B. Consider the project type. Independent panels representing a wide spectrum of industry 
(knowledgeable about, but not directly tied, to the PV industry) might be appropriate for projects 
focusing on more mature technologies. Highly expert panels immersed in the technologies in question 
might be appropriate for projects focusing on emerging technologies. 

C. Use your judgment. There is no simple formula for choosing a selection panel. The panel should 
represent a range of views without losing sight of the goals of the project. 

 
 
3. Intellectual Property and Collaboration 
 
Context 
Intellectual property is vital to PV companies and is a central issue in cost-shared R&D projects. 
Companies want to protect their IP from all other companies—and even from universities and the 
government—which has a major effect on the steps necessary for placing cost-shared subcontracts and 
on the collaborative R&D relationships that PV companies are willing to enter.  
 
Lessons Learned 
The following lessons about IP and collaboration have come out of the PVMaT/PVMR&D and Thin-Film 
PV Partnership projects: 
 
• Private companies can be reluctant to engage in “deep” collaborations/sharing arrangements—which 

could potentially expose their IP—with other companies. For example, in 1993, the PVMaT/PVMR&D 
project issued the solicitation “Problem Solving: Teamed Research on Generic Problems.” The goal 
was to create industry teams to address shared manufacturing problems. However, a true teamed 
approach, with companies collaborating together, never materialized. Ultimately, Spire Corporation 
developed automated solar cell assembly equipment and processes, and Springborn Laboratories 
developed encapsulant technologies. Collaboration was limited to these products and processes 
being tested in the factories of PV manufacturers.  

• More open collaboration among large companies is possible when the large companies agree to work 
together on a small problem and share information only about that problem. 

• Subcontracts increasingly have become focused on IP issues. In the beginning of the 
PVMaT/PVMR&D project, smaller companies, with small production and profits, were less concerned 
about IP. Virtually same-day turnaround for signing subcontracts or letter subcontracts was possible. 
Today, because of IP concerns, subcontracts can take up to 5 months to sign in extreme cases. PV 
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companies have become larger and more sophisticated and have teams of lawyers to isolate them 
from other companies and the government.  

• Companies are very reluctant to sign over or disclose proprietary information to 
government/laboratory personnel. For example, one PVMaT/PVMR&D subcontractor would not 
disclose adequate information about its IP to NREL’s patent counsel to have the IP protected in the 
subcontract. The process dragged on until the subcontractor eventually disclosed the information, 
greatly extending the subcontract process. 

• Companies can be reluctant to share information with national laboratories for several reasons: 
Employees can leave the laboratory to join a private PV company; IP from one subcontract could 
accidentally become mixed with other IP in Cooperative Research and Development Agreements 
(CRADAs) and Work for Others (WFOs) agreements; and national laboratories have a mandate to 
seek private investment for spin-offs and licenses. 

• Companies can be reluctant to share information with universities because they see university 
personnel as potential employees for start-up PV companies (i.e. competitors), and they see 
universities as wanting to spin-off start-up companies themselves. 

 
Recommendations 
A.  Make it worthwhile. To interest companies in partnership with the government, make them feel the 

support is in their best interest. Retaining IP rights is vital to PV companies.  
B. Address individual concerns. Find out what issues related to collaboration and sharing are most 

important to each individual company and address these issues on an individual basis. 
C. Reduce the need for competitors to share. One way to reduce the need to share and minimize IP 

issues is to establish a vertically integrated structure supporting the needs of a single PV 
manufacturer with lower-tier subcontracts—with the PV manufacturer in charge. For another 
approach to sharing, see Recommendation 1D. 

 
 
4. Contracting Delays 
 
Context 
Changes in the PV industry happen quickly. When a manufacturing problem is identified, it must be 
addressed rapidly. However, slow subcontracting processes result in lengthy delays—sometimes years—
between when a problem is identified and when it is addressed with the help of government support. 
 
Lessons Learned 
The following lessons about contracting delays have come out of the PVMaT/PVMR&D project: 
 
• Fifteen years ago, subcontract procurement, evaluation, negotiation, and signing could be completed 

within 6 months. The subcontracting process has become increasingly complicated over the years. 
Additional DOE requirements have resulted in additional subcontracting steps, such as the pre-board 
review and audit review. This complexity has added time to the subcontracting process, which can 
now take up to 2 years in a few extreme cases. 

• Time required to place a subcontract is related to the value, and the resulting complexity, of the 
subcontract: A $2 million subcontract takes much longer to place than a $100,000 subcontract. More 
people are involved, more reviews are required, and lawyers scrutinize IP issues more closely—all of 
these cause delays. 

• Addressing IP issues early in the subcontracting process can save time. For example, when a 
company identifies at the outset that it will be using IP developed at its own expense during the 
subcontract, NREL’s legal department can undertake the necessary procedures to have that IP 
protected simultaneously with the rest of the subcontracting process, adding no time to the process. If 
the company does not identify its IP until the end of the subcontracting process, the legal procedures 
extend the process. Also, when companies do not read (or do not have their lawyers read) the entire 
subcontract and appendices at the outset, the subcontracting process can be extended when, at the 
time of signing the subcontract, the companies discover provisions they had not been aware of. 
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• In the past, a process called “letter subcontracts” was often used to expedite project work. A letter 
subcontract included a draft statement of work and award amount and allowed the subcontractor to 
begin working before the official, “definitized” contract was signed. This decreased the time between 
when a problem was identified and when work to solve it began. Use of letter subcontracts has fallen 
out of favor in recent years, resulting in delayed start of work. 

 
Recommendations 
A. Place subcontracts quickly. The longer work takes to begin, the less valuable it is. DOE should aim 

to complete source selection within 6 months, and then complete subcontracting within 4 months after 
sources are selected. This way, work to solve a problem begins 10 months after the problem is 
identified. 

B. Streamline processes. To meet the timeframe above, streamline source selection and 
subcontracting processes. One important strategy is to address IP issues up front, instead of allowing 
them to become obstacles at the end of the subcontracting process. 

 
 
5. Scale of Contracts 
 
Context 
As with R&D groups at companies, a critical mass is necessary to keep government-funded PV R&D 
productive. Too much money can result in funds being wasted on projects that are lower on the priority 
list just because more important ones are not yet up to speed. Too little money can result in only some 
related tasks making progress, resulting in a lack of input to other critical tasks when it is needed (i.e. 
progress is not optimized). 
 
Lessons Learned 
The following lessons about scale of contracts have come out of the PVMaT/PVMR&D and Thin-Film PV 
Partnership projects: 
 
• The PVMaT/PVMR&D project had six large solicitations from 1992-2004. In 1992 and 1993, large 

subcontracts received approximately $4 million of government funds over 3 years. Large subcontracts 
received approximately $3 million of government funding over 3 years in 1994 and again in 1998, 
2001, and 2004. These amounts are in nominal dollars. As a result, companies with increasingly large 
and expensive-to-solve problems have been asked to address these problems with less funding over 
time in real terms. 

• From the PVMaT/PVMR&D experience, it is more beneficial to distribute larger awards to a smaller 
number of capable subcontractors than to distribute smaller awards to a larger number of 
subcontractors that includes less capable companies. Typically, for the PVMaT/PVMR&D project, the 
bottom 60% of proposals received are not worth investing in, the top 40% are good ideas, and it is 
best to fund the top third. Funding less-capable companies increases the chances of those 
companies—and, thus, the subcontracted R&D—failing to fully capitalize on the investment. Entech 
and Photovoltaics International (PVI) are examples of small companies that successfully completed 
their subcontracts but failed to capitalize on their success. Entech, a small concentrator company, cut 
its production cost in half, increased its production capacity 100-fold (by outsourcing component 
manufacturing), and increased efficiency. However, its sales of terrestrial PV never took off, and 
much of its business transitioned to space-based PV. PVI manufactured concentrator modules from 
extruded plastic components. It implemented a several-megawatt production line before being 
purchased by an energy company, which eventually decided to focus on wind power and dropped its 
PV program—PVI subsequently disappeared. 

• It is important to develop less-mature PV companies and emerging technologies but not by funding 
them to perform tasks for which they are not yet capable.  

• From the Thin-Film PV Partnership experience, the risk calculation is different for emerging vs. more 
mature companies/technologies. Because each emerging company/technology has a higher 
individual chance of failing than a more mature company/technology, an emerging technology R&D 
project’s overall risk can be reduced by funding a larger number of companies and technologies, i.e. 
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“not putting all your eggs in one basket.” Some companies and technologies will fail, but the project 
will succeed on the strength of the innovative companies and technologies that succeed. Moreover, 
some PV companies might be doing well with a less capable technology, whereas other companies 
with excellent technologies might not yet be succeeding; thus, it is important to support companies 
not only for what they are, but also for what they can become.  

 
Recommendations 
A. Select the best proposals every time. From the PVMaT/PVMR&D experience, select only the 

highest-ranked proposals for each subcontract. Completely re-compete subcontracts each time they 
are up for renewal. Objectively compare the merits of proposals from past subcontractors and 
emerging companies. 

B. Make awards based on risk/reward profiles. For more mature companies/technologies, make 
awards to a small number of capable companies, so risk of a company failing is low and funds are 
sufficient for companies to accomplish their goals. For emerging companies/technologies, spread 
funding around to decrease overall project risk and increase the potential for innovation. As emerging 
companies/technologies transition to become more mature companies/technologies and expectations 
of success increase, funding strategies can change correspondingly from more companies funded at 
a smaller dollar amount and lower cost-share to fewer companies funded at a higher dollar amount 
and higher cost share. 

C. Make appropriate awards. Too much money leads to waste, and too little money leads to 
substandard results. Focus on determining the amount of money each company needs to accomplish 
its mission and ensuring the resulting award is adequate. From the PVMaT/PVMR&D experience, the 
best way to determine appropriate funding is via consensus of the project selection panel; it is better 
to rely on expert judgment than on formulas. 

 
 
6. Company Maturity, Stage of Development, and Iterative Processes 
 
Context 
Choosing the right company for the right job is essential to a successful subcontracted R&D project. PV 
companies vary greatly in their level of maturity and the stage of development of their products and 
manufacturing processes. To be successful, products and processes must progress through an iterative 
cycle of improvements before attaining full-scale production. When making award decisions, it is essential 
to identify where potential companies and their technologies are on the spectrum of maturity.  
 
Lessons Learned 
The following lessons about company maturity, stage of development, and iterative processes have come 
out of the PVMaT/PVMR&D and Thin-Film Partnership projects: 
 
• Just because a PV company has a good idea for a product does not mean production can be scaled-

up immediately. Problems in the manufacturing process are identified during pilot production. These 
problems lead to improvements in the process, which create other problems, necessitating additional 
improvements, etc., in an iterative process. There are no shortcuts—every company must go through 
these iterations before achieving large-scale manufacturing. Moreover, achieving pilot production 
does not ensure a company will ever achieve full-scale production. 

• Companies in large-scale production understand their products. Companies performing applied 
research on their products or processes without experience in pilot-scale production, e.g., trying to 
understand the underlying mechanism of their solar cells, are typically not ready for full-scale 
production. Applied research is another part of the iterative manufacturing process. A company 
performs applied research, starts a small pilot manufacturing line, discovers problems, and starts 
more applied research. Skipping the necessary steps results in sub-par products being put on the 
market too quickly, potentially giving the entire PV industry a black eye. 

• First-time manufacturing plants can take as much as three times as long to reach their rated 
production capacity as plants built as duplicates or expansions of existing technologies. If products 
and processes are well established, replication and expansion are relatively easy, and plants reach 
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full production quickly; for example, a company with 100-MW production has a relatively easy time 
expanding to 200 MW. Making a larger jump, e.g., from 10 to 100 MW, typically results in plants with 
numerous makeshift solutions and a longer time to full production. However, once all manufacturing 
issues are fully ironed out, replication/expansion at the new scale is much easier. 

• Emerging companies and companies with emerging or immature technologies are often overly 
optimistic, e.g., regarding future costs and manufacturing capacities. An overabundance of optimism 
often means the company does not fully understand its problems yet. More mature companies 
understand their problems better and, thus, tend to be more realistic in their self-assessments.  

 
Recommendations 
A. Set reasonable targets. When awarding a subcontract involving significant scale-up, select 

companies that already have adequate production to enable the scale-up. Do not expect a company 
with a product in pilot production to scale-up from 1 to 500 MW in 3 years. This magnitude of scale-up 
is more realistic in three 3-year phases, for example: 1) from 1 to 10 MW, 2) from 10 to 100 MW, and 
3) from 100 to 500 MW. 

B. Understand the maturity of companies and products. Award subcontracts based on the maturity 
of the company and product: award large-scale manufacturing subcontracts to companies with large-
scale manufacturing capabilities; award applied R&D subcontracts to emerging companies 
performing applied research; but do not confuse the two. Market share and production volume are the 
best measures of company maturity. For example, Specialized Technology Resources (STR) is a 
relatively small company in terms of employees and factory size, but it produces about 80% of the 
EVA used in PV modules—the market has decided that STR is “mature.” For PV module 
manufacturers, production capacity (MW) is the best measure of maturity. 

C. View highly optimistic claims with healthy skepticism. Although optimism is good—without it, 
companies would not start their ventures in the first place—subcontract selection should place higher 
value on proven experience.  

D. Evaluate past performance of previous awardees. It is important to include a review of 
performance on previous subcontracts when evaluating new proposals from previous awardees. 

 
 
7. Addressing Common Problems across Companies 
 
Context 
There are problems that affect the entire PV industry, the solution to which benefits the entire industry. 
The recent silicon feedstock issue is an example of such a generic problem. The feedstock issue is not 
only about supply, but also about cost. One approach companies are taking to be competitive is to make 
silicon wafers thinner and larger, requiring a new generation of equipment capable of handling these 
fragile wafers at an ever-increasing throughput. Another approach is for silicon suppliers to make purified, 
low-cost silicon specifically for solar applications. The challenge is how to effectively employ government 
support to solve generic problems such as this. 
 
Lessons Learned 
The following lessons about addressing common problems across companies have come out of the 
PVMaT/PVMR&D and Thin-Film PV Partnership projects: 
 
• It is difficult, but important, to find ways to support solutions to generic PV industry problems. If a 

problem is solved for only one company, IP issues arise that limit the benefit to the industry as a 
whole. 

• One way to mitigate effects of IP issues is to fund manufacturing equipment manufacturers to solve 
common industry problems, e.g., a manufacturer produces equipment for handling large, thin wafers, 
and then sells the equipment to multiple PV manufacturers. However, PV manufacturers are always 
seeking a competitive advantage, giving them an incentive to develop proprietary equipment. The key 
is to keep equipment manufacturers tied in with the PV manufacturers so that when the equipment is 
produced, the PV manufacturers buy it. One example of a PVMaT/PVMR&D project resulting in a 
product used by multiple PV manufacturers is an in-line diagnostics subcontract awarded to Sinton 
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Consulting in 2001. Sinton developed an instrument that measures silicon at an early stage in the PV 
manufacturing process, providing information that helps companies ensure quality, reduce waste, and 
monitor solar cell costs. The instrument entered the market in 2005 and received an R&D 100 Award 
that year; today, it and similar Sinton instruments that incorporate advances made under the 
subcontract are used by 30 cell manufacturers and 44 universities and national laboratories. 

• From the Thin-Film PV Partnership experience, another approach is to involve organizations such as 
universities, national laboratories, and small companies in studying a generic problem via small, 
applied research contracts. The result could be a technology that is licensed to industry or, more 
often, a “proof of concept” that encourages others to work independently toward a proven goal; for 
example, if a university were able to prove the effectiveness of a 0.3-μm-thick CIS cell, companies—, 
knowing this goal is achievable—would devise their own ways to implement it. 

 
Recommendations 
A. Address generic problems. Solving generic PV problems boosts much of the industry.  
B. Develop new strategies. It is difficult to address generic problems in a meaningful way without 

running into problems of relevance (PV manufacturers do not buy the generic solution) or IP (PV 
manufacturers opt for proprietary solutions to their problems and do not want to share). New 
strategies should be developed to make generic solutions acceptable to industry, based on the 
specific concerns of and relationships among key industry players. 

 
 
8. Link between Applied R&D and Technology Development 
 
Context 
Developing very-low-cost thin-film PV requires achieving module costs similar to those of expensive 
carpets (about $50/m2) but with semiconductor technologies made at high performance in areas of many 
square miles per year. Thin-films, which appear to have this potential, are outside the mainstream of 
semiconductor knowledge. Unlike crystalline silicon, for which an enormous amount of knowledge has 
been accumulated (e.g., models, process experience, and degradation mechanisms), thin-film materials 
have not been used in other electronic devices and thus, until now, a substantial thin-film “knowledge 
base” has not accumulated. As a result, working with thin-films is less predictable and riskier. The 
success of thin-film PV depends on the parallel development of a solid knowledge base synchronized 
with rapid technological advances. Without such parallel progress, success is likely to be very risky owing 
to possible failure at key transitions (e.g., manufacturing scale-up or initial outdoor reliability).  
 
Lessons Learned 
The following lessons about the link between applied R&D and technology development have come out of 
the Thin-Film PV Partnership project: 
 
• Each PV technology has a different set of challenges and possible approaches to success. Among 

the thin-films, three technologies have stood the test of time: amorphous silicon (a-Si), cadmium 
telluride (CdTe), and copper indium diselenide (CIS). Of these, a-Si had the best knowledge base; the 
others lacked such a base almost entirely. Thus, it was extremely difficult to develop CdTe and CIS 
except in an empirical manner, i.e. based on educated trial and error. Although progress has been 
rapid at the device level (to reach cell efficiencies greater than 15%), the greatest problem with the 
lack of a knowledge base has been replicating and scaling-up these lab-based successes, in 
particular during the transition to first-time manufacturing and then in terms of initial outdoor reliability. 
Not knowing the key parameters of a device (doping, impurities, defects, grain boundary effects, 
thermal sensitivities, etc.) makes it difficult to identify processing zones and to tune processes to 
simultaneously achieve high efficiency, high yields, and high reliability. Thus, without fundamental 
understanding of the underlying science, one often encounters unexplained processing variations. 

• Scale-up is challenging because it means taking devices and processes that were successful at 1 
cm2 size, making large prototype modules (a 104-fold size increase), and then manufacturing them in 
adequate volume to test yield and throughput issues (another 105-fold size increase per year to reach 
10 MWp). Accomplishing this kind of scale-up without an adequate knowledge base would be almost 
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miraculous. From a practical standpoint, it is high risk and prone to failure because corporate 
resources are usually stretched thin during this transition.  

• Introducing new thin-film module designs into the marketplace is challenging in terms of electrical and 
physical performance. Modules are meant to last 30 years. Yet, accelerated tests for proving 30-year 
durability are inherently difficult, if not impossible, to develop. Instead, prototype modules must be 
tested as early as possible outdoors and in controlled indoor tests. The lack of a sufficient knowledge 
base means that potential device-level degradation mechanisms are not well understood, their 
evolution with time outdoors cannot be predicted, and tests cannot be tailored to diagnose them. 
While having a solid knowledge base does not eliminate these problems completely, it can help to 
minimize their effects. 

• Parallel efforts in applied research and technology development reduce the risk of failures in module 
manufacturing scale-up and initial outdoor reliability. 

• Building a knowledge base (e.g., through research on fundamental material properties) is a long—
and, at times, tedious—process that offers little immediate reward. To support this type of effort, 
funding agencies and researchers must recognize its importance and have the patience to follow 
through in the long term.  

 
Recommendations 
A. Support parallel applied R&D and technology development efforts. Technological progress is 

possible without an adequate knowledge base, but in key transitions such as first-time manufacturing 
and initial product introduction, a lack of knowledge can destroy a company or even a technology. To 
avoid this, it is important to fund R&D on the materials and devices underlying each emerging 
technology in parallel to funding module development. 

B. Commit to building a knowledge base for the long term. Recognize the importance of acquiring 
fundamental knowledge and make this effort a priority. Provide patient, consistent support to 
universities (which have graduate students well suited to this type of work) and national laboratories 
in performing the research. 

 
 
9. Limitations of Cost and Performance Projections 
 
Context 
Project managers are continually updating their understanding of PV module cost and performance 
assessments and are often asked to make judgments based on such assessments, which impact funding 
priorities.  
 
Lessons Learned 
The following lessons about the limitations of cost and performance projections have come out of the 
Thin-Film PV Partnership and PVMaT/PVMR&D projects: 
 
• The success of PV depends in large part on the efficiency, cost, and reliability of candidate module 

technologies. Yet understanding how these attributes will change in the future is difficult, in particular 
because it depends on the success of ongoing and future R&D. The range of inputs and projections 
can be very large; for example, a recently developed Thin-Film PV Partnership cost model contains 
approximately 80 inputs. In this model, the input with the most impact on end-use electricity cost is 
module efficiency, followed by encapsulation cost, processing cost, and semiconductor material cost. 
However, there is too much uncertainty in factors such as these to project future costs with precision; 
thus, the inputs and, ultimately, the outputs are inherently influenced by the biases of the parties 
making the assessments. For example, past assessments by various bodies found that some 
technologies that are considered viable today (e.g., CdTe and CIS) were unworthy of funding. 
Embedded biases can easily overcome facts or perspectives when so much of the assessment 
process is based on opinion (e.g., opinions about doubling efficiencies or reducing costs by a factor of 
5). Even if an objective approach can be assumed, the range of possible outcomes is wide, 
depending on whether R&D is fully successful and what device and process compromises must be 
made to achieve successful, high-yield manufacturing.  
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• Bias in assessments can be mitigated by the composition of the selection panel and by what actions 
are taken based on the recommendations of the panel (see Lesson 2). From the PVMaT/PVMR&D 
experience, picking too few reviewers results in bias, and picking too many results in inability to reach 
consensus. PVMaT/PVMR&D panels had about 12 members who were instructed to be technology 
neutral, focusing only on goals such as increased capacity, decreased cost, and improved reliability. 
These panelists—who were chosen for their technical capabilities as well as their objectivity—were 
entrusted with determining the validity of cost and performance assessments and how to act on them. 
From the Thin-Film PV Partnership experience, a panel with members representing each technology 
has difficulty reaching decisions, whereas a panel with a dominant viewpoint or set of personalities 
creates the risk of bias resulting in potential errors. In this case, the effects of potential bias can be 
mitigated by the actions taken based on the recommendations; as noted in Lesson 5, funding a 
variety of technologies and companies reduces the overall risk of an emerging technology project. 
Technology evolution is a creative process, and, regardless of assessment results, no one can 
predict with certainty what technology will succeed in the future.  

• Cost estimates can be used successfully for program guidance. An example is the move toward 
thinner layers in CIS and CdTe to reduce semiconductor materials costs, processing time/costs, 
maintenance costs, and energy costs (if efficiencies and yields can be maintained). Showing the 
community these potential savings motivated them to pursue this opportunity, and important progress 
has been made toward thinner layers (about a 50% reduction, with more progress ongoing; see 
Lesson 1). 

• It is useful to understand PV module costs, and it can be easy to create ranges for such costs. 
However, closing those ranges to actual product attributes is the work of R&D and manufacturing—
nothing else can do it—and that takes time and money. 

• From the Thin-Film PV Partnership experience, the results of cost estimates can be used to establish 
funding priorities but must not be overused. Biased assessments must be avoided, or key 
opportunities could be lost. New technologies can be assessed to see whether they have the 
potential to compete with existing ones, using optimistic assumptions to avoid losing opportunities. 
The greatest value of cost assessments is in refining questions for research planning, not in making 
go/no-go decisions about funding. For that, a more intuitive approach using both cost estimates and 
insights into risks and pathways is more appropriate. 

 
Recommendations 
A. Use cost assessments appropriately. Perform cost assessments for module technologies and 

relate them to system cost to understand efficiency/cost tradeoffs. However, be careful in such 
assessments and do not overuse them. They are useful for refining questions about research 
directions within each technology, but there are potential pitfalls with using them for inter-technology 
comparisons. This recommendation is particularly applicable to emerging technologies such as thin-
films, for which the uncertainty in assessments is larger. From the PVMaT/PVMR&D experience, 
assessments of more mature technologies (e.g., some crystalline silicon PV) involve less uncertainty 
because of these technologies’ extensive track record of manufacturing and use. 

B. Mitigate bias through selection panel choices and actions taken based on recommendations. 
The composition of the selection panel is important for mitigating bias in cost and performance 
assessments, as are the actions taken based on panel recommendations. A panel chosen for 
objectivity can be entrusted with interpreting the results of assessments. Because some bias in 
assessments is unavoidable, mitigate the effects of such bias by directing funds in such a way that a 
variety of technologies and companies are supported (in an emerging technology project). 

 
 
10. The Difficulty of First-Time Manufacturing 
 
Context 
Along the path to success, after excellent cells and prototype modules have been made, the critical 
transition to first-time manufacturing often takes much more time than expected. In some cases, delays 
can extend up to 5 years, there can be multiple attempts and failures, and companies and technologies 
can falter or even disappear.  
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Lessons Learned 
The following lessons about the difficulty of first-time manufacturing have come out of the Thin-Film PV 
Partnership project: 
 
• Taking a new, unproven, often unique PV technology to successful commercial manufacturing is 

probably more challenging than any other aspect of PV module development and entails great 
technical and financial risk. The following are examples of setbacks: BP Solar in a-Si and CdTe 
(ended 2003), Golden Photon in CdTe (2001), First Solar in CdTe (major setback in 2001, overcome 
by 2004, now a great success), Boeing CIS (mid-1990s), Ametek CdTe (mid-1990s), and Glasstech 
Solar a-Si (mid-1990s). In addition, several CIS companies have remained in pilot production for 
more than 5 years or have not even made it to that point.  

• Several times during periods of budget fluctuations, the Thin-Film PV Partnership considered major 
reductions in support of a-Si module development. These were based on assessments of the 
technologies’ adequacy at the time—relatively high module costs and low efficiency. Yet a-Si recently 
experienced a great success in module development for flat, commercial rooftop applications using 
flexible modules (Uni-Solar). This is a major and rapidly growing market segment. The a-Si modules 
are attractive because they do not require expensive racks and they replace traditional roofs. 
Atypically high module costs and low module efficiencies (the primary evaluation metrics) for this 
technology had caused them to be misleadingly undervalued. Similarly, the slow progress of CIS into 
manufacturing has caused some to question the funding of this technology, despite the fact that it has 
the highest efficiency of any thin-film option, almost 20% at the cell level. Yet, recently, about 25 small 
companies have entered the CIS field worldwide, taking on this same transitional risk. Both of these 
examples represent opportunities that could be lost if program managers are too narrow in their 
willingness to see opportunities.  

• Under the stress of tight funding situations, program managers might feel pressure to make simplistic 
decisions to relieve the stress quickly. For example, the Thin-Film PV Partnership has experienced 
pressure to cut funding for small companies that were not yet able to manufacture modules in favor of 
supporting companies with better short-term prospects. The partnership decided to not cut funding for 
these small companies, and now the companies are receiving venture capital and contributing to PV 
production. 

• While success may take longer than originally anticipated, if successful at a reasonable scale, firms 
can build on this success and scale-up production rapidly. For example, two U.S. companies—First 
Solar in CdTe and Uni-Solar in a-Si—have achieved successful first-time manufacturing and are 
rapidly expanding production. 

• Thin-Film PV Partnership management was originally unaware of the full spectrum of risks of 
transitioning to first-time manufacturing and underestimated the cost to overcome these risks and the 
delays implicit in them. 

 
Recommendations 
The following are ways to reduce the risk for PV companies making the transition to first-time 
manufacturing: 
A. Be adequately patient. Patience with setbacks and continued support are justified if the technology 

is promising. However, the financial climate for PV today is different than in the past, which has 
implications for maintaining or discontinuing support of struggling companies. Private-sector funding 
of thin-film PV, virtually zero in the past, has grown considerably during the past few years. The 
availability of private funding enables DOE to leverage investments from the private sector, and 
increases the likelihood that DOE supported successes will successfully transition into full-scale 
production.  However, it also reduces the need for DOE to be as patient with failure because 
government funding is no longer the only lifeline available for emerging companies. Other situations 
that might justify discontinuing support include projects that extend DOE’s investment beyond a 
desirable timeframe, or the discovery of a flaw in a technology that shows the technology cannot 
meet program goals. 

B. Support risk-taking companies. Recognize the risk companies are taking by making the transition 
to first-time manufacturing and support this leap. 
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C. Support work that aids the transition. Parallel R&D at national labs and universities can help PV 
companies make the transition to first-time manufacturing. 

 
 
11. Module Reliability Problems during Introduction of Innovative Technologies
 
Context 
Several thin-film companies—after making the difficult transition to full production capacity—failed during 
introduction of their module technologies, at least partially owing to serious reliability issues.  
 
Lessons Learned 
The following lessons about module reliability problems during introduction of innovative technologies 
have come out of the Thin-Film PV Partnership project: 
 
• Device-level and module design- and packaging-level issues can exist with new technologies. For 

example, BP Solar’s a-Si glass modules had high breakage rates that caused fires, and its pre-
commercial CdTe modules had serious voltage degradation. Golden Photon experienced degradation 
of its CdTe modules. 

• There is no simple way to ensure that all device- and module-level issues are overcome before 
product introduction. 

• Cautious companies that emphasize reliability can succeed. 
• The earliest possible recognition of device and module degradation mechanisms is essential for 

success. 
• Although there is no certain way to determine all failure mechanisms in advance, aggressive indoor 

and outdoor testing can help to uncover such problems and, thus, minimize risk. First Solar 
experienced module failures initially but overcame them with a product delay, replacement of all failed 
modules, and progress in module stress testing to identify failure mechanisms. 

• A variety of accelerated aging tests are used for PV (Table 4). There are also various needs for 
improving accelerated aging testing. The following are needs—identified in a recent 
industry/university/government/laboratory workshop—that apply to PV devices, modules, and 
systems: 

⎯ Developing reliable, predictable correlations between highly accelerated lifetime tests (HALT) 
and real-world performance in the field 

⎯ Managing the sensitivity about information on equipment failure, HALT testing, and 
proprietary information related to materials and methods 

⎯ Understanding the true mechanisms and sources of failures and degradation and their 
relationship to what HALT measures 

⎯ Providing deeper understanding beyond pass/fail modes of testing 
⎯ Using real-world deployments to investigate PV successes and failures 
⎯ Developing capabilities to test for multiple variable impacts, conditions more extreme than 

standard test conditions, and components as they exist in a system or subsystem 
 

 
Table 4: Current Status—PV Module Accelerated Aging Tests 

Thermal cycle with current flow, 200+ cycles, -40°C to +90°C 
Damp heat exposure, 1,000+ hours, +85°C, 85% RH 
Humidity-freeze cycling, 10-50+ cycles, -40°C to +85°C, 85% RH 
Hail impact, 1" diameter, 23 m/s 
Qualification test sequence (IEC 61215 or 61646) 
Surface cut, 45° cut (UL-1703) evaluation by wet hi-pot 
ASTM: G154 70°C, >1,000 hours; B117 5% salt solution, 35°C, 96-hour cycle 48-hour 
wet, 48-hour dry (salt/fog); D903 180° peel strength; D1002 shear test single-lap-joint 
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Dynamic and static mechanical loading: Static load, 50-90 lb/ft2, 1-hour application to 
each side, 2 cycles 
Unique tests for flexible modules to capture coiling, flexing, and forming characteristics 
Rigid Modules: vibration tests for shipping, dynamic load testing, static load testing, 
non-uniform wind loading, dynamic testing in wind tunnels, exterior temperature 
testing, current based TC50 and HF10, voltage bias 
Flexible Modules: heat/humidity/sunlight/high voltage, delamination test TCOD 15, 
solder bond failure (initial and 5-hour @ 165°C) 

 
Recommendations 
A. Test early. Incorporate device and module testing as early as possible, and even in parallel with the 

development of new module technologies. Use existing accelerated aging tests and support 
improvement of testing methods and correlation of testing with real-world performance of PV devices, 
modules, and systems. 

B. Expect problems. Expect and plan for early reliability problems. 
C. Be patient. Exercise patience while reliability issues are overcome.  
 
 
12. Reluctance of Successful Companies to Adopt Innovative Approaches 
 
Context 
The difficulty of establishing the manufacturing approach for a new technology—and the high payoff of 
replicating manufacturing rather than redesigning and re-proving it—make successful manufacturers slow 
to adopt new device designs and processing approaches. This can keep industry from reaping the 
rewards of new technology and slow the pace of PV module and system price reductions.  
 
Lessons Learned 
The following lesson about the reluctance of successful companies to adopt innovative approaches has 
come out of the Thin-Film PV Partnership project: 
 
• Although it is essential to support companies through the transition to manufacturing and beyond, in 

terms of incremental process and device optimization, more substantial progress (at higher risk) can 
come from new companies that adopt more aggressive processes and device alterations. In addition 
to accelerating the progress of innovation, new companies add pressure to existing ones, forcing 
them out of their financial comfort zone. This can lead to a faster, widespread reduction in module 
and system prices (e.g., the reaction of crystalline silicon PV companies and system integrators to the 
advent of commercial thin-films). 

 
Recommendations 
A. Support aggressive companies. Continue to seed and support aggressive PV companies, 

especially those that adopt innovative new technologies (if these are judged likely to succeed). These 
types of companies are most readily differentiated from incremental-change-type companies by their 
stage of product development—they typically have a new product in a pre-manufacturing/pre-
commercial stage, whereas incremental-change companies are typically cloning existing commercial 
products and processes with only minor changes.  

B. Set aggressive goals. Another way to encourage aggressive technology development, even in more 
mature companies, is to set aggressive performance and cost targets. If the targets represent a major 
leap beyond a company’s current product, the company will have to do more than rely on incremental 
change to achieve them. 
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13. Budget Adequacy 
 
Context 
Developing a new PV technology takes a long time, and progress to first-time production is unpredictable. 
Annual federal budget cycles and major program redirections can seriously impact success. Several 
times during the development of thin-films, budgets changed by more than 20% in 1 year, leading to 
cancellation and reduction of many research activities.  
 
Lessons Learned 
The following lessons about budget adequacy have come out of the Thin-Film PV Partnership project: 
 
• Technology development in thin-films is very challenging, arguably below critical mass in terms of 

funding, and vulnerable to budget fluctuations. 
• For a technology such as thin-films to be commercialized successfully, a combination of several 

technological aspects—including materials, device designs, processes, and module design and 
packaging—must be developed. To do this, each individual aspect within the combination must be 
funded adequately. If even one aspect is underfunded—and, thus, underdeveloped, the product is not 
prepared for manufacturing or reliable deployment.  

• Consistent programmatic support within a complex management system like the DOE/NREL/Sandia 
system is nearly impossible, no matter how well intentioned the management is. 

• At times of federal budget stresses, decisions that are made based on organizational rather than 
programmatic priorities can have serious impacts on technology progress. 

• The progress of thin-films in the United States has been affected negatively by budget problems of 
three kinds: lack of funds, rapid reductions in funds, and premature phase-out of funds. In the past 5 
years, the Thin-Film PV Partnership project has twice been subject to 20% budget cuts. In response, 
the project made the following adjustments: 

⎯ An entire technological approach, single-junction thin-film silicon, was cut. This was felt to be 
a longer-term technology with no obvious advantage and was sacrificed to preserve other 
technologies that were more promising and likely to come to fruition in the nearer term. 

⎯ Activities that were building the thin-film “knowledge base” (see Lesson 8) were cut in favor of 
keeping leading technology partners at nearly full funding. These partners were about to 
become successful, and stopping funds at this stage could have been catastrophic. First 
Solar and Uni-Solar were supported and subsequently did achieve success. 

 
Recommendations 
A. Minimize budget impacts. Develop clear priorities for programmatic decisions and search for ways 

to minimize annual or sudden budget changes.  
B. Allow for planning. When budgets are radically altered, develop the best possible perspective about 

choices so that adequate planning can occur. 
C. Forward fund when possible. If a subcontract starts in the middle of the fiscal year, obtain funding 

for a full 12 months, using the carryover to fund the subcontract into the next fiscal year. This 
provides time to obtain additional funding in the next fiscal year before the already-secured funds run 
out. Although DOE and Congress frown on carryover, it can protect a program. 

D. Stretch underfunded subcontracts. If, for example, 10 months of funding are received for 12 
months of work, extend the subcontract into the next fiscal year and reduce the monthly level of 
research effort/funding burn rate. Assuming funds are secured in the new fiscal year, this allows the 
project to be completed (although it takes longer) instead of losing any of its facets. 

E. Fund all aspects of a technology. Support of a company must be sustained as the company 
develops each aspect of its technology. Failure to fund even one aspect of the technology (e.g., 
materials R&D or device design) can result in failure of the product. 
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