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AN EXAMPLE OF THE APPLICATION OF THE CUEX METHODOLOGY-

THE CALCULATED EXPOSURE RESULTING FROM ROUTINE STACK 

RELEASES FROM THE HADDAM NECK NUCLEAR POWER PLANT 

Fred H. Sweeton 

ABSTRACT 

The CUEX (Cumulative Exposure Index^) relates the concentrations 

of various nuclides in the environment to assigned annual dose limits. 

A computer code has been written to calculate this index for stack 

releases of radioactivity. This report is written to illustrate how 

the code in its present form can be applied to a particular reactor. 

The data used here are from the Haddam Neck (Connecticut Yankee) 

Nuclear Power Plant, a relatively large plant that has been in 

operation for 6 years. The results show that the highest exposure 

expected from the actual releases of gaseous Kr, Xe, I, and 
3 
H is about 0.2% of the "as low as practicable" limits set by the 

133 
Nuclear Regulatory Commission. Of the nuclides considered, Xe 

is by far the most important; the chief mode of exposure to this 

131 
nuclide is submersion in air. In the case of I the main exposure 

route Is external irradiation from the activity on the ground except 

for the special case of the thyroid for which about 70% of the exposure 

arises from ingestion. 



2 

INTRODUCTION 

The CUEX concept has been described by Kaye et_ al_. This Index, 

which can be expressed In terms of the average air concentration of a 

particular radionuclide, is the time-integrated concentration that 

corresponds to a person's receiving an allowable annual dose from the 

nuclide via all modes of exposure. The modes Involving Inhalation and 

direct Irradiation from air depend directly on the air concentration. 

The other modes are proportional for any particular case, but the actual 

ratios must be calculated for this case. The Index can be related to 

particular organs of the body as well as to the whole body. In prin

ciple the CUEX concept could also be applied to liquid releases. A 

computer program utilizing the CUEX approach has been written for 

application to a plant releasing radionuclides to the atmosphere. In 

this program the CUEX Is calculated for the hypothetical person In the 

vicinity of the plant who Is expected to receive the greatest dose. 

In addition the calculation Indicates the detailed mechanisms contri

buting to the dose. 

This report is written to Illustrate how this CUEX code can be 

applied to a real situation and to show the detailed results it gives. 

The Haddam Neck (Connecticut Yankee) Nuclear Power Reactor is used. 

This reactor is one of the pressurized-water type. It is relatively 

large and has been In operation a relatively long time. Its release 

of radioactive materials has been measured recently by the Environmental 
2 

Protection Agency. 



3 

THE CUEX CODE 

The CUEX code in its present form has been written largely by R. E. 

Moore. Part of the detailed program is documented in the description 
3 

of R. E. Moore's AIRDOS code, which calculates atmospheric dispersion 

and the resulting doses expected in squares of an assigned grid centered 

on the source. 

The first part of the CUEX program calculates how radionuclides 

released from a point source become distributed over the surrounding 

countryside. For each radionuclide being considered, it is necessary 

to know the release rate and the mechanism of transport -whether as a 

gas, as an adsorbate on dust, or as a solute in rain drops. The meteoro

logy of the area needs to be characterized in terms of the probabilities 

of various wind speeds and air stabilities in each of 16 directions. 

From this information the program estimates the average concentration 

of each radionuclide in the air at ground level at the center of each of 

400 squares in a 20 x 20 grid. A similar calculation is made for the 

rate at which each radionuclide Is being deposited on the ground in the 

same grid. The unit width of the squares can be set to any length of 

interest. 

In the second part of the calculation, the square having the 

highest average air concentration of the first nuclide is determined. 

Then the calculated air concentration and ground deposition rates of 

this square are used to calculate the expected annual dose by all 

exposure modes for a person living in this square. These modes are 

intake from air to the lungs (inhalation); intake to the gastrointestinal 

tract (ingestion); and direct radiation from the nuclides in the air 
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(Immersion in air). In water (Immersion In water), or on the ground 

(surface exposure). The calculation of exposure by the Ingestion 

mode is based on the assumptions (1) that vegetables, beef, and milk 

produced in each square of the grid are contaminated according to the 

calculated air concentrations and ground deposition rates of that 

square; (2) that If enough of these foods are not produced within the 

grid, they are augmented by uncontamlnated foods from outside; and 

(3) that the foods within the grid are comnlngled so that everyone 

in the grid Ingests the same amount of radioactive material.* The 

program then calculates the expected dose, relates It to a given dose 

limit, and indicates the fraction of this exposure coming via each of 

the five exposure modes. This Is done for several organs of the body 

when the appropriate dose conversion factors are available. 

The program repeats this calculation for each of the radionuclides 

and then calculates the total dose for each organ from all the nuclides 

and shows the relative contribution of each. 

DATA USED 

The Haddam Neck (Connecticut Yankee) Nuclear Power Reactor Is a 

pressurlzed-water plant located on the Connecticut River In an area 

having a relatively high population density. It started operation In 

•Exposures for "'H calculated by this code are likely to be high because 
3 H , unlike the other nuclides, becomes directly tied to the water being 
cycled. Since the calculated "̂ H dose shown later is relatively small, 
the ^H dose will not be recalculated by other methods, as It could be 
if needed. 
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1968 and has a rating of 1825 megawatts thermal and 646 megawatts 

e lect r ica l . 
4 

The stack is 53 meters high, 1.8 meters in diameter, and has a 
3 

discharge rate of 1000 m /min. 

Of the nearly 20 radionuclides whose release rates have been 

measured by the Environmental Protection Agency four were chosen for 

this calculation. They are l is ted below along with their measured re

lease rates: 

Krypton-85 —- 0.539 x 10'̂  pCi/sec 

Xenon-133 — 0.634 x 10^ pCi/sec 

Iodine-131 — 0.444 x 10^ pCi/sec 

Hydrogen-3 —- 0.507 x 10^ pCi/sec 

The Kr and Xe nuclides were included because they contribute the 

131 3 

greatest fraction of the total act iv i ty being released; I and H 

were chosen because of their special chemical and physical properties. 

The four nuclides are suff ic ient to i l lus t ra te how the CUEX program 

operates; additional nuclides could be included to give a complete 

picture. 

The meteorological data were taken from the final environmental 
4 

statement for this reactor, and are averages of readings taken at the 
plant site from a 100-foot tower over a period of a year. In processing 

these data for use In the program, the periods of "Unstable" conditions 

were divided equally between the Pasqulll "A," "B," and "C" stability 

categories, and the periods of "^ery Stable" conditions were divided 

equally between the "F" and "G" categories. In calculating the fractiona 
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time the wind blows at various directions and speeds, the times of calm 

were Ignored and the other times were Increased proportionally to total 

100%. This procedure has the effect of womewhat increasing the calculated 

radiation level at a distance from the stack at the expense of that near 

the stack. The hight of the lid was taken to be 600 meters, the average 

of winter and summer averages for this location. 

The deposition parameters used for the radionuclides are shown 

below: 

Gravitational Deposition Scavenging 
Fall Velocity Velocity Coefficient 

Nuclide (m-sec"^) (m-sec~^) (sec"') 

^^Kr 0.0 0.00 0.0 

"̂̂ X̂e 0.0 0.00 0.0 

^^h 0.0 0.01 0.275 X 10'^ 

^H 0.0 0.00 0.275 x lO"^ 

The gravitational fall velocities were all set to zero, because none 

of the nuclides was expected to be associated with particles large 

enough to speed its descent to the ground. The deposition velocities 

131 131 
of all nuclides except I were set to zero, since only the I was 

expected to be adsorbed by the ground. The scavenging coefficients 
DC 1 oo 

for Kr and Xe were set to zero because these gases are relatively 

insoluble in rain. 

Table 1 and Table 2 give the data needed to calculate the dose 

from the calculated concentrations of the radionuclides in the air and 

from their calculated ground deposition rates. Table 1 has those 
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Table 1. Input Values for Radionuclide-Independent Variables 

NUMBER OF NUCLIDES CUNSIOEREC 

INHALATION RATE OF MAN (CUBIC CENTIMETERS/HRt 

DILUTION FACTOR FOR WATER FOR SHIMMING ICMI 

FRACTION OF TIME SPENT SHIMMING 

SOIL SURFACE AREA REQUIRED TC FURNISH FCCO CROPS FUR ONE MAN (SQUARE METERS! 

PASTURE AREA PER COH (SQUARE METERSI 

DRY WEIGHT AREAL DENSITY OF PANS ABOVE-SURFACE FOOD (KGS PER SQUARE METER! 

D R Y - H E I : H T AREAL GRASS DENSITY (KGS PER SQUARE METERI 

DEPTH OF PLOH LAYER ICMI 

DIETARY CORRECTION FACTOR FUR ABOVE-SURFACE FOOD 

DIETARY CORRECTION FACTOR FOU UPTAKE FRCM SOIL 

DIETARY CORRECTION FACTOR FOR BEEF 

DIETARY CORRECTION FACTOR FOR MILK 

RATE OF INCREASE OF STEER MUSCLE MASS I KG PER DAY! 

MUSCLE MASS OF STEER AT SLAUGHTER (KG! 

SOIL DENSITY (CRAMS PER CUBIC CENTIMETER! 

FALLOUT CORRECTION FACTOR FOR ABOVE-SURFACE FOOD 

FALLOUT CORRECTION FACTOR FOR SOIL SURFACE BELOH FOOD 

FALLOUT CORRECTION FACTOR FOR PASTURE 

FRACTION OF BEEF HERO SLAUGHTERED PER CAY 

TRANSFER RATE OF MILK FROM UOOER (PER CAYI 

BEEF CONSUMPTION OF MAN IKG/CAYI 

MILK CONSUMPTION OF MAN (LITERS/DAY! 

TRANSFER RATE—ABOVE-SURFACE FOOD TO SOIL SURFACE (PER OAYI 

TRANSFER RATE—PASTURE GRASS TO PASTURE SOIL (PER DAY I 

TRANSFER RATE—SOIL POOL TO SOIL SINK (PER DAY! 

TRANSFER RATE—PASTURE SCU TO SOIL SINK (PER 0«VI 

TRANSFER RATE'-PASTURE SOIL TO PASTURE GRASS (PER DAY) 

TRANSFER RATE—SOIL SURFACE TO SOIL PCCL (PER OAYI 

MILK CAPACITY OF THE UOOER (LITERS! 

ABOVE-SURFACE FOOD CONSUPPTICN OF PAK (KG/OAYI 

GRASS CONSUMPTION OF COH IKG/OAYI 

MILK PRODUCTION OF COW (LITERS/DAY! 

MAXIMUM TOTAL PERCENT CONTRIBUTED TC BE LISTED IN ORGAN TOTALS 

O.BiiOE 06 

O.liiM 03 

O.lOOUE-01 

O.IOOOE 04 

O.IOOOE OS 

O.IOOOE 00 

O.ISOOE 00 

0.2000E 02 

O.iiOOt 00 

O.IOOOE 01 

O.IOOOE 01 

O.IOOOE 01 

0 .4000E 00 

0..2000E 03 

0.1400E 0 1 

O.IOOOE 00 

0.9000E 00 

O.IOOOE 01 

O.itiOt-Oi 

0.2000E 01 

0.3000E 00 

O.iOOOE 0 1 

U.4«SOE-01 

0 .4950E-01 

U.1096E-03 

U.1046E-03 

a .^740E-04 

0 .6931E-03 

0.5500E 0 1 

O.ISOOE 00 

O.IOOOE 02 

U.llOOE 02 

100.00 

ANNUAL ORGAN DOSE L I M I T S — 

ORGAN 

TOT.BODY 
GI TRACT 
BONE 
THYROID 
LUNGS 
MUSCLE 
KIDNEYS 
LIVER 
SPLEEN 
TESTES 
OVARIES 

OOSE LIMIT 
(HEMS) 

0 .00 S 
0 .005 
O.OOS 
O.OIS 
0 .005 
0 .005 
0 .00 5 
0 .005 
0 . 0 0 5 
0 .005 
0 .00 5 



Table 2. Input Values for Radionuclide-Dependent Variables 

1-131 h-3 

CONCENTRATION IN AIR CALCULATE! FOR REFERENCE SQUARE FROM SOURCE TERM (NICROCURIE-HR/CUB IC CM) 0.1725E-12 0.2116E-08 

CONCENTRATION OF THE ELEMENT I N MAN tPPM) 0 .0 0 .0 

CONCENTRATIOM OF THE ELEMENT I N HEAT (PPNI 0.5200E 00 0.5200E 00 

CONCENTRATION OF THE ELEMENT I N FORAGE (PPM) O.IOOOE 00 O.IOOOE 00 

CONCENTRATION OF THE ELEMENT I N SOIL (PPHI 0.5000E 01 0.5000E 01 

RADIOACTIVE DECAY CONSTANT IPcR DAY) 0.8570E-01 0.8180E 00 

ENVIR3NNENTAL DECAY CONSTANT—SURFACE I PER OAYI 0.4950E-01 0.4950E-01 

ENVIR3NNB4TAL DECAY CONSTANT—MATER (PER DAY) 0 .0 0*0 

TURNOVER RATE OF THE STABLE ISOTOPE I N MAN (PER DAY) 0.1330E-01 0.1330E-01 

FRACTION OF ISOTOPE INGESTED BY A COW AND SECRETED (DAYS/LITER) 0.7000E-02 0.7000E-02 

EOUILIBRIUH MASS OF STABLE ELEMENT I N SOIL FRCM SURFACE TO DEPTH OF PLOW LAYER (GRAHSI 0.3000E-01 0.3000E-01 

EXCRETION RATE OF STABLE ISOTOPE FROM MUSCLE OF STEER (PER DAY) 0 .0 0 .0 

EOUILIBRIUH GROUND CONCENTRATION AT MAN (HICROCURIE-HR/SOUARE CHI 0.9132E-06 0.9312E-04 

EOUILIBRIUH AIR CONCENTRATION AT MAN (HI CROCURI E-HB/CUBIC CHI 0 .1348E-11 0 .1558E-07 

EOUILIBRIUH C3NCENTRATI0N AT WATER SURFACE (MICRCCURIE-HR/SOUARE CM) 0.9132E-06 0 .9312E-0* 

EQUILIBRIUM GROUND CONCENTRATION AT FOOD CROPS (MICPOCURIE-HR/SOUARE CM) 0.2904E-08 0.9527E-06 

EQUILIBRIUM G*OUNO CONCENTRATION AT PASTURE (HICROCURIE-HR/SQUARE CM) 0.5584E-07 0.7500E-05 

EQUILIBRIUM AIR CONCENTRATION AT TESTING SITE tMICROCURIE-HR/CUBIC CM) 0.1725E-12 0.2116E-08 

(X> 
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constants which do not change according to the radionuclide being 

considered. It Includes the annual dose limits for the different 

organs. In general the limits used were the same as the "as low as 

practicable" limits set by the Nuclear Regulatory Commission. The 

exceptions were the iodine dose limits for total body, G. I. tract, 

and lungs; for these, 5 mrem was used Instead of 15. All the limits 

used are much more stringent than those set by the International 
o 

Commission on Radiological Protection. Table 2 gives the constants 

which depend on the radionuclide being considered.* 
The dose conversion factors used in the calculation are shown 

in Table 3. These were obtained from the INREM and EXREM codes that 

9 10 have been described elsewhere. ' 

Figure 1 shows the grid overlaid on a map of Connecticut; its 

centerpoint is at the reactor on Haddam Neck. The 20 x 20 grid is 

made up of squares 2 kilometers on a side. For each of these squares 

the program requires the number of beef cattle, the number of milk 

cows, whether or not there is major production of vegetable crops, 

and the number of resident people. Data for these quantities were 

available on a county basis. Each square was assigned to a county, 
2 

and the average county figures for 4 km were assigned. These numbers 

are shown In Table 4. Since such a small part of the land in these 

counties is used for vegetable crops, only one square was designated 

as being devoted to these crops (since the code In its present state 

considers that either all or none of a square is used for food crops). 

*These constants are not included for the two noble gases because the 
calculated dose Is Independent of these constants when all of the cor 
responding deposition parameters are set at zero. 



Table 3. Dose Conversion Factors Used in the Calculations 

Nuclide 

^hr 

''he 
131j 

3H 

Organ 

Total body 

Total body 

Total body 

Thyroid 

G . I . t r a c t 

Lungs 

Total body 

G. I . t r a c t 

Inhalat ion 

/rem\ 

0 

0 

2.63 X 10"^ 

1.44 

1.07 X 10"^ 

2.07 X 10"^ 

1.08 X 10"^ 

1.08 X 10"^ 

Dose Con 

Ingestion 

/rem\ 

a 

a 

3.50 X 10"-^ 

1.88 

1.94 X 10"^ 

0 

6.16 X 10"^ 

6.16 X 10"^ 

version Factors 

Submersion 
in a i r 

/ rem-cm'\ 
\^yC1-hr ) 

2.09 

4.5 X 10^ 

3.8 X 10^ 

3.8 X 10^ 

3.8 X 10^ 

3.8 X 10^ 

0^ 

0 

Surface 
Exposure 
/rem-cm^\ 
^uCi-hry 

a 

a 

6.8 X 10'^ 

6.8 X 10"^ 

6.8 X 10"^ 

6.8 X 10"^ 

0 

0 

Submersion 
In water 
/rem-cm^\ 
l yC i -hr i 

a 

a 

8.1 X 10"^ 

8.1 X 10"^ 

8.1 X 10"^ 

8.1 X 10'^ 

0^ 

0 

^Not used when all the deposition constants are set at zero. 

These factors are for direct Irradiation from outside the body. In the case of H as 
HpO, absorption through the skin can occur. That from the vapor has been taken into 
account by increasing the Inhalation dose conversion factor by 75%; that from absorbing 
liquid water when swimming, has been calculated to be negligible relative to that from 
Inhalation. 
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II 

STATI£^^KHT__1J 

\/ 
-.>i- /. IfJJ \ 

^ "Wo 

••,•' 
irr i i I 

\ 
te 

E Sit/fl R d o k R QO i 

^ 

\%L-^1 -D . V M 5 

l< 
' Column 

iSr 
10 \ ' 

—^WMT. 

Ftg. 1. Grid Used for Calculation 



Table 4. Average Figures per Square (4 km ) 

County 

Hartford Middlesex New Haven New London Tolland 

Number of beef cattle 16 10 14 24 23 

Number of milk cows 14 9 13 21 22 

Fraction area In food crops 0.0016 0.00018 0.002 0.0002 0.0003 

Population 1706 477 1904 534 384 

« 
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RESULTS 

85 
Table 5 Indicates the average relative air concentration of Kr 

calculated for the center of each square. Each square has been assigned 

to one of the 16 compass directions for which there is wind velocity 

data. The concentrations have been normalized to a reading of 100,000 

for the maximum square. The actual reading for this maximum square 

(pCI/cm ) Is shown In the heading at the top of the table. The readings 

in the table are presented in a geographical layout, the upper left 

figure applying to the northwest corner of the grid. The maximum 

calculated air concentration was In the square just to the southeast of 

the reactor. The square which represents Middletown, the largest city 

In this grid, is In the thirteenth row and the fourth column. The 

85 
average Kr concentration In air calculated for this square Is 0.24 x 

-G 3 

10" pC1/cm , which is approximately 15% of that in square with the 

maximum concentration. Table 6 lists the concentrations of the four 

radionuclides at Middletown and a few other cities or towns In the grid. 
131 

The calculated ground deposition rates for I in the different 

squares of the grid are shown In Table 7. These readings have been 

normalized to the maximum, just as was done with the air concentrations 

in Table 5. 

The method of calculating the atmospheric dispersion of radionuc

lides has been checked against field measuranents made by the Environ

mental Protection Agency at the Haddam Neck reactor. Robert E. Moore, 

using this same atmospheric dispersion code In his AIRDOS program, 
3 

calculated a1r concentrations at sampling points near the reactor and 



Table 5. Estimated Relative Air Concentration of ^̂ Kr 

Maximum (100,000) = 0.189 x 10'^ pC1/cm^ 

KOH CULUMN 

9 10 11 12 13 14 15 16 17 18 19 

2 0 

1 9 

1 8 

1 7 

16 

15 

1 4 

1 3 

1 2 

1 1 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

4 9 8 6 

522S 

5 4 8 0 

5 7 3 5 

1 0 2 3 0 

1 0 6 2 2 

1 0 9 7 5 

1 1 2 6 7 

6 8 3 0 

6 8 9 6 

6 8 9 6 

6 8 3 0 

2 9 5 9 

2 8 7 9 

2 7 8 3 

2 6 7 6 

1129 

1077 

1026 

9 7 7 

5 2 2 8 

5 5 1 4 

5 8 1 6 

6 1 2 9 

1 0 9 7 5 

1 1 4 7 6 

1 1 9 3 7 

1 2 3 2 6 

7 5 0 9 

7 5 9 9 

7 5 9 9 

7 5 0 9 

3 2 4 9 

3 1 4 2 

3 0 1 6 

2 8 79 

1 2 0 9 

1 1 4 5 

1084 

1 0 2 6 

5 4 8 0 

5 8 1 6 

6 1 7 9 

6 5 6 5 

6 9 6 7 

1 2 4 6 6 

1 3 0 8 1 

1 3 6 1 5 

1 4 0 1 4 

8 4 7 8 

8 4 7 8 

3 7 1 2 

3603 

3 4 5 6 

3 2 8 7 

1 3 9 0 

1 2 9 8 

1 2 1 9 

1 1 4 5 

1 0 7 7 

5 7 3 5 

6 1 2 9 

6 5 6 5 

7042 

75 55 

8 0 8 8 

1 4 4 5 5 

1 5 2 1 1 

15 7 9 6 

9 6 0 9 

9 6 0 9 

4 2 0 5 

4 0 4 3 

3 8 3 4 

1 6 1 0 

1 5 0 0 

1 3 9 5 

1 2 9 8 

1 2 0 9 

1 1 2 9 

2 8 3 8 

3 0 5 9 

6 9 6 7 

7 5 5 5 

8 2 1 0 

8 9 2 4 

1 6 1 1 7 

1 7 2 2 9 

1 8 1 3 0 

1 1 1 2 4 

1 1 1 2 4 

4 8 5 3 

4 6 0 3 

4 2 9 4 

17 82 

1035 

1 5 0 0 

1 3 8 0 

994 

9 2 6 
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Table 6- Calculated Average Air Concentrations of Radionuclides 
at Points Near the Haddam Neck Nuclear Power Reactor 

Row 

Column 

^^Kr (pCi/cm^) 

^^^Xe (pCi/cm^) 

''h (pCi/cm^) 

•̂H (pClW) 

Maximum 

10 

11 

1.9 X 10"^ 

22.3 X 10'^ 

0.15 X 10"^ 

1.78 X 10"^ 

Middletown 

14 

4 

0.27 X 10"^ 

3.2 X 10"^ 

0.014 X 10"^ 

0.25 X 10"^ 

Square 

Rocky Hill 

20 

4 

0.11 X 10"^ 

1.3 X 10"^ 

0.0042 X 10"^ 

0.10 X 10"^ 

Deep River 

5 

13 

0.14 X 10"^ 

1.6 X 10"^ 

0.008 X 10"^ 

0.13 X 10"^ 

Colchester 

15 

17 

0.07 X 10"^ 

0.8 X 10"^ 

0.0040 X 10"^ 

0.067 X 10"^ 



Table 7. Estimated Relative Ground Deposition Rate of ' ' ' l 

Maximum (100,000) = 0.163 x 10'^ pC1 cm'^ sec*^ 

'low CULUHN 

9 10 11 12 13 14 15 16 17 18 19 20 

2 0 

19 

I S 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

2102 

2 3 1 5 

2 5 4 1 

2 7 7 6 

4904 

5 2 8 1 

5625 

5 9 1 3 

3 4 6 1 

3 5 2 5 

2 3 1 5 

2 5 7 2 

2 8 5 1 

3 1 4 5 

5 6 2 5 

6 1 2 3 

6 5 8 4 

6 9 7 8 

4 0 79 

4 1 7 1 

2 5 4 1 

2 851 

3193 

3 5 6 3 

3 9 5 5 

7 1 2 1 

7 754 

8307 

8 7 2 5 

5 0 7 4 

2 7 7 6 1 6 5 3 

3 1 4 5 1 8 6 9 

3 5 6 3 3 9 5 5 

4 0 2 9 4 5 3 9 

4 5 3 9 5 1 5 6 

5032 5 8 8 5 

9 1 8 8 1 0 8 7 7 

9 9 1 1 1 2 0 6 4 

1 0 5 3 1 1 3 0 4 1 

6 2 6 6 7 8 9 6 

3525 4 1 7 1 5 0 7 4 6 2 6 6 7 8 9 6 

3 4 6 1 4 0 7 9 2 0 2 8 2 5 1 9 3 1 8 5 

1315 1 5 8 2 1 9 2 1 2 3 5 7 2 9 2 6 

1 2 4 4 1 4 8 3 1 7 7 9 2 1 4 8 2 6 1 0 

1180 1 3 6 8 1 6 1 9 8 5 0 1 0 1 1 

1087 1 2 4 4 6 5 1 7 5 0 8 7 3 

4 3 9 5 0 5 5 8 0 6 6 5 7 5 0 

398 4 5 2 513 5 8 0 6 5 1 

359 4 0 3 4 5 2 5 0 5 4 1 4 

322 3 5 9 398 4 3 9 3 5 4 

1766 

2017 

2314 

5032 

5885 

68 77 

7988 

1 4 3 9 1 

1 6 3 8 0 

1 0 0 9 0 

1 0 0 4 0 

4 1 0 1 

3684 

1418 

12 J2 

1011 

8>0 

531 

4 4 6 

385 

1 8 6 4 

2 1 5 5 

25C2 

2 4 2 8 

3 4 3 9 

7988 

9 5 8 5 

1 1 2 9 8 

20o2 1 

1 3 0 9 7 

1 3 0 9 7 

5 3 7 7 

2 0 8 3 

1 7 3 4 

1 4 1 8 

ba5 

7 0 9 

5 8 5 

4 8 5 

4 1 4 

1955 

2 2 7 2 

2 6 6 7 

3 1 6 6 

3 7 9 5 

4 6 4 0 

1 1 2 9 8 

1 3 9 9 8 

2 6 3 5 1 

1 7 7 0 2 

1910 

2 2 2 4 

2 7 9 0 

3 3 3 6 

4085 

5103 

6 5 4 8 

8 6 6 8 

2 2 9 5 3 

4 1 6 7 6 

1940 

2 2 6 7 

2 6 8 6 

3 2 2 9 

3 9 8 7 

50 79 

6 8 0 a 

9 7 6 6 

1 5 6 5 0 

45231 

17 702 1 2 8 5 3 8 5 0 6 

7 2 4 0 4 5 8 3 3 7 8 5 

2 6 4 5 2 2 9 4 6 1 5 7 

2 0 8 3 1 7 5 1 4 3 1 5 

1226 1 3 6 1 3 1 8 7 

9 7 1 1058 2 4 2 4 

7 7 9 834 1 8 8 1 

6 3 2 6 6 8 1 4 9 4 

5 1 8 1 1 7 8 1 2 0 7 

4 3 8 983 1 0 0 3 

1 9 4 0 1 9 1 0 1 3 1 0 1 2 5 2 1183 

2 2 6 7 2 2 2 4 1 5 2 4 1 4 4 5 1352 

2 6 8 6 1 8 6 0 1 7 9 0 1 6 7 9 1 5 5 2 

3 2 2 9 2 2 3 6 2 1 1 2 1 9 5 2 2 6 3 3 

3 9 8 7 2 7 4 0 2 5 4 5 <!306 3 0 2 4 

5079 3420 3113 3975 3484 

6 8 0 6 4 3 7 3 5 4 o 4 4 6 8 7 3 9 7 5 

9 7 6 6 5 7 7 2 6 6 7 6 5 4 6 4 3 6 4 8 

1 0 5 1 4 1 0 5 2 4 6 3 2 5 4 9 6 1 3 9 7 9 

2 2 1 4 3 1 0 2 9 5 1 5 7 2 0 1 1 8 9 5 9 4 0 4 

9 9 9 9 9 7 2 4 4 4 1 5 7 2 0 1 1 8 9 5 9 4 0 4 

1 8 4 3 6 6 7 4 0 1 4 2 9 2 2 3 3 0 6 5 2 6 1 3 2 

6 1 5 7 1 1 2 5 7 4 4 1 5 0 3 6 2 9 9 2 3 8 5 5 

4 3 1 5 8 6 6 8 3 6 2 9 9 3 1 1 6 8 2 6 2 3 4 

3 1 8 7 6 7 9 4 6 1 5 0 2 6 2 3 4 2 2 8 8 1 

1107 1542 1427 131* 1210 

1252 1721 1579 1443 .1316 

2107 1921 1744 1579 1427 

2382 2142 1921 1721 1542 

2691 2382 2107 1570 1403 

3 0 2 9 2 6 3 3 1912 1685 1 4 9 1 

2 7 6 4 2 3 7 6 2 0 5 5 1790 1 5 7 0 

3 0 3 3 2 5 5 4 2179 1 8 7 9 1 6 3 6 

3 2 4 9 2 6 9 2 2 2 7 2 4 5 3 5 J 9 S * 

7 6 6 2 6 3 4 8 5 3 6 9 4 6 1 2 . 4 0 1 1 

7 6 o 2 6 3 4 8 5 3 6 9 4 * 1 2 .4011 

2 1 1 0 9 1 7 4 3 7 1 4 o 2 3 4 5 3 5 3 9 5 * 

1 4 * 6 5 1 * 5 1 1 1 3 9 9 8 1 2 0 0 0 i O S W 

1 7 9 5 2 1 5 3 1 4 13168 1 1 4 0 5 9 9 4 7 

1 9 7 * 0 1 7 0 5 4 1 2 2 1 6 1 0 7 0 5 9 4 2 0 

2 4 2 4 5 3 5 4 4 9 3 9 4 4 3 0 1 9 7 6 0 1 7 4 4 9 1 5 3 4 0 1 3 4 * 7 9 9 4 7 U 4 0 

1 8 8 1 4 2 8 3 4 0 2 1 3 7 1 3 1 7 0 5 4 1 5 3 4 0 1 3 7 0 7 12204 1 0 8 4 6 9 * 4 0 

1 4 9 4 3 5 1 8 3 3 4 3 3 1 1 2 2 8 4 8 1 3 4 * 7 1 2 2 0 4 11002 9 8 8 7 M T O 

1 2 0 7 1 1 7 8 2 7 8 8 2 6 2 5 2 4 3 4 2 2 2 9 1 0 8 4 * 5 8 8 7 8 9 7 1 8 1 2 3 

1 0 0 3 9 8 3 2 3 4 8 2 2 2 9 2 0 8 8 1 9 3 4 9 * 4 0 8 8 7 0 8 1 2 3 1414 
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found his values ranged from 56 to 156% of the values for Kr and Xe 

measured by the EPA. 

For each nuclide being considered, the code then calculates the 

CUEX for each organ. If the appropriate dose conversion factor is not 

available, the code substitutes the total body value, and indicates 

this substitution on the printout. In addition, the code will calculate 

the CUEX in terms of the air concentration in any square when the 

corresponding concentration in the maximum square gives the allowable 

dose. In Table 8, which Is for total body dose, the CUEX's listed 

are the ones appropriate for the maximum square. They show that, of 
131 

these four nuclides, I can be least tolerated. However, when these 

CUEX's are compared to the actual average air concentrations calculated 

133 
for this reactor, Xe proves to give the most dosage (see fourth 

column) although still much less than the chosen dose limit. The last 

five columns show the relative contributions of each mode of exposure 

to the dose from each nuclide. 

Table 9 shows how the CUEX program can differentiate the doses 

received by the various organs. The fourth column shows that the thyroid 

131 
is the organ receiving the greatest I dose relative to the dose limit, 

even though the dose limit for the thyroid has been set higher than for 

the other organs. The table shows that for total body, G. I. tract, 

and lungs, the greatest dose comes from surface exposure; but for the 

thyroid, the major mode Is ingestion. 

The calculation also shows the relative contribution of each 

nuclide to the dose received by each organ. Given below are such results 

for total body (which is treated in parallel with the Individual organs): 



Table 8. Calculated Total Body Doses for the Different Nuclides 

Nuclide 

^hr 

"he 
131j 

'H 

Dose l im i t 
(rems/year) 

0.005 

0.005 

0.005 

0.005 

CUEX at 
max. square 
7pCi hr\ 
ycm^ y r i 

2400 

110 

0.062 

47 

Fraction of 
dose l im i t 

0.000007 

0.0018 

0.000022 

0.00033 

Inhalation 

0 

0 

2.7 

84.0 

Percent 

Ingesti 

0 

0 

6.6 

16.0 

of dose accordi 

on Submersion 
in a i r 

100 

100 

0.5 

0 

ng to mode 

Surface 
exposure 

0 

0 

90.2 

0 

Submersion 
in water 

0 

0 

0.1 

0 



Table 9. Calculated Results for Various Organs with Iodine-131 

Organ 

Total body 

G. I . t r a c t 

Thyroid 

Lungs 

Dose l i m i t 
(rem/year) 

0.005 

0.005 

0.015 

0.005 

CUEX at 
max. square 

/pCI hr \ 
\̂ cm'' yry 

0.062 

0.065 

0.0036 

0.055 

Fraction of 
dose l i m i t 

0.000022 

0.000021 

0.00037 

0.000024 

Inhalat ion 

2.7 

1.1 

29.1 

19.0 

Percent 

Ingestion 

6.6 

3.8 

69.2 

0.0 

of exposure 

Submersion 
in a i r 

0.5 

0.5 

0.0 

0.4 

by mode 

Surface 
exposure 

90.2 

94.5 

1.8 

80.5 

Submersion 
in water 

0.1 

0.1 

0.0 

0.1 
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Nuclide 

133,^ 

3H 

131, 

^hr 

Percent of 
dose 

83.0 

15.6 

1.0 

0.3 

The program calculates the total dose of each organ from all the nuclides 

and then compares this to the dose limit. The highest ratio found was 

0.2%. This indicates that the release of these four radionuclides 

from the Haddam Neck reactor would result in overall dose rates that 

are only a small fraction of the dose limits which have been used. 

In summary, the CUEX code has been applied to the routine stack 

releases from an operating nuclear power reactor. The amount of data 

required to define the system is large, but once these data are assembled 

the code easily calculates the maximum annual dose to Jse expected, and, 

in addition, breaks down the various contributions to the total dose 

in a manner to show what steps would be most productive in reducing the 

dose. The format of the code is such that it can be applied just as 

easily to radioactivity releases from mining and milling operations, 

fuel fabrication, and fuel reprocessing. 
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