GEOTHERMAL WELL STIMULATION

D. A. Campbell & C. W. Morris Republic Geothermal, Inc. A. R. Sinclair Maurer Engineering Inc.

R. J. Hanold Los Alamos National Laboratory O. J. Vetter Vetter Research

The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600°F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

Stimulation treatments may be conducted in formations which produce either hot water or steam from both matrix permeability and from natural fracture systems. The following targets of opportunity are of common interest in geothermal fields today:

- Wells that did not intersect nearby major fracture systems;
- Wells that can benefit from the establishment of high conductivity linear flow channels to improve flow capacity from surrounding localized regions of low permeability formation;

 Wells that suffered man-made damage during drilling, completion, or workover operations, including mud or cement invasion; and

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Wells that require periodic remedial treatment as a result of fluid production related damage.

, in

2

15

If stimulation can reduce or eliminate the need for new wells or redrills in these situations, then the potential for improving geothermal development economics and extending the resource base is substantial.

Recognition of the potential benefits of developing a successful geothermal well stimulation capability led the Department of Energy/Division of Geothermal Energy to sponsor the Geothermal Reservoir Well Stimulation Program (GRWSP) beginning in 1979. The principal purpose of this discussion is to review the accomplishments to date and the current status of the program.

The GRWSP is organized into two phases. Phase I consists of literature and theoretical studies, laboratory investigations, and numerical work. The main purpose of this work is to establish the technological bases for geothermal well stimulation design.

A significant portion of the Phase I laboratory investigation effort has been directed at finding suitable proppants for hydraulic fracture stimulation use. Although sand is generally used as a proppant today in the oil and gas industry, it has not proven to be strong enough to withstand the conditions in most geothermal Sand permeabilities were shown to decline to unacceptably wells. low levels when tested in hot water or brine under stress. The strongest proppant tested to date is resin-coated bauxite. It shows no temperature sensitivity or permeability decrease under load. Resin-coated sand is also not temperature or load sensitive, but does have a slightly lower permeability at any closure stress due to variability in particle size. Such resin-coated materials are cohesive; therefore, once emplaced in the fracture, flowback

is reduced during production. Although slightly crushable, plain sintered bauxite is also much stronger than sand and effectively inert in hot brines.

Many fluids and fluid systems have been tested under Phase I for geothermal applications. Water soluble polymers are the main viscosifiers available for hydraulic fracturing. Above 250°F almost all polymer systems show a decline in viscosity. The rapid decline in viscosity of some polymers at temperature could result in poor proppant placement in a high temperature geothermal stimlulation treatment. The type and amount of polymer determines the speed and extent of degradation. A series of static aging, flow, and HPLC tests have been performed to try to understand the degradation of frac polymers and its relationship to viscosity, plugging, and exposure time. These tests are useful not only for a fundamental understanding of frac fluid behavior, but help to select or reject fluids for specific applications.

Two stimulation experiments were performed at the Raft River, Idaho, known geothermal resource area (KGRA) in late 1979. This is a naturally fractured, hard rock reservoir with a relatively low geothermal resource temperature (300°F+). A conventional planar hydraulic fracture job was performed in Well RRGP-5 and a "Kiel" dendritic, or reverse flow, technique was utilized in Well RRGP-4.

- 5

In mid-1980, two stimulation experiments were performed at the East Mesa, California, KGRA. The stimulation of Well 58-30 provided the first geothermal well fracturing experience in a moderate temperature $(350^{\circ}F+)$, reservoir with matrix-type rock properties. The two treatments consisted of a conventional hydraulic fracture of a deep, low-permeability zone and a minifrac "Kiel" treatment of a shallow, high permeability zone in the same well.

Most recently, Well Ottoboni 22 in The Geysers, California dry steam field, was acid fractured. The stimulation technique 3

was an acid etching treatment (Halliburton Services' MY-T-ACID) utilizing 20,000 gal of 10% HF - 5% HCL solution behind a pre-pad of very viscous polymer. The 1,000-foot isolated treatment interval was non-productive prior to stimulation. A post-stimulation production test has not been performed to date. This experiment was cost-shared with Union Oil Company.

The stimulation experiment results to date were evaluated using short-term production tests, conventional pressure transient analysis, interference pressure data, chemical and radioactive tracers, borehole acoustic televiewer surveys and numerical models. This combination of evaluation techniques yielded an interpretation of fracture geometry and productivity enhancement. In all the field experiments, artificial fractures were created, and well productivity was increased in at least three of the five experiments.

> . برين

Table 1

Major Tasks Phase I

Technology Review

Technology Transfer Equipment Review - Surface Equipment Review - Downhole

Stimulation Materials Evaluation

Fracture Fluid Evaluation Fracture Proppant Evaluation Recent Stimulation Technology Development Analysis Chemical Stimulation Analysis

Numerical Simulation

Numerical Model Development Numerical Analysis

Table 2

Major Tasks - Phase II

Planning Field Experiments

Reservoir Identification, Evaluation and Qualification Well Identification, Evaluation and Qualification Prepare Specific Well Experiment Environmental and Permitting Field Experiment Administration Planning Specifications and Subcontracting

Field Experiment and Analysis

Design and Provide Surface Production Facilities Field Experiment and Production Testing Monitoring and Data Collection Data Analysis and Interpretation Radioactive Tracers

Project Reporting and Management

Geothermal Well Stimulation Symposium

Table 3

RRGP-4 4-Stage Kiel Frac 8/20/79

Frac Fluid:	7900 bbl 10 lb H.P. Guar/1000 gal 2 lb XC Polymer/1000 gal
Sand:	50,400 lb 100 mesh 58,000 lb 20/40 mesh proppant
Rate:	50 bpm
Interval:	4705'-4900' (195')
Frac Height:	195'

7

Table 4

RRGP-5 Conventional (Planar) Frac 11/12/79

Frac Fluid:	7600 bbl 30 lb H.P. Guar/1000 gal
Sand:	84,000 lb 100 mesh 347,000 lb 20/40 mesh proppant
Rate:	50 bpm
Interval:	4587'-4803' (216')
Frac Height:	135'

Table 5

East Mesa 58-30 (Deep Zone) Conventional (Planar) Frac 7/3/79

Frac Fluid: 2800 bbl Crosslinked polymer gel 20 lb calcium carbonate/1000 gal (fluid loss additive in prepad and pad)

Sand:

44,500 lb 100 mesh 59,200 lb 20/40 mesh 60,000 lb 20/40 mesh "Supersand"

Rate: 40 bpm

Interval: 6587'-6834' (247')

Formation: 350°F-15 md

Table 6

East Mesa 58-30 (Shallow Zone) 5-Stage Kiel Frac 7/6/80

gal

Frac	Fluid:	10,300 bbl
		10 1b H.P. Guar/1000 gal
		2 lb XC Polymer/1000 gal
		20 lb calcium carbonate/1000
		(fluid loss additive)

Sand: 44,000 lb 100 mesh Rate: 48 bpm

Interval: 4952'-5256' (304')

Formation: 325°F-50 md

21-

FRAC TREATMENT

:

APPENDIX I

TABLE 1. SUMMARY OF INSTALLED GEOTHERMAL POWER PLANTS

COUN	TRY	No. of UNITS	TOTAL CA	PACITY, MW
1.	United States	17	929.2	(38.0%)
2.	Philippines	10	443.0	(18.1%)
3.	Italy	37	420.6	(17.2%)
4.	New Zealand	14	202.6	(_8.3%)
5.	Japan	7	166.0	(6.8%)
6.	Mexico	4	150.0	(6.1%)
7.	El Salvador	3	95.0	(3.9%)
8.	Iceland	3	32.0	(1.3%)
9.	U.S.S.R.	1	5.0	(0.2%)
10.	Indonesia	2	2.25	(0.09%)
11.	China	7	1.936	(0.08%)
12.	Turkey	1	0.5	(0.02%)
	TOTALS	106	2448.086	MW

TABLE 2. CHINA

PLANT	YEAR	TYPE	RATING, MW
Fengshun Unit 1 Unit 2 Unit 3	1970 1971 1981(?)	1-Flash Binary: i-C ₄ H ₁₀ 1-Flash	0.086 0.200 0.250
Huailai	1971	Binary: C ₂ H ₅ C1; n-C ₄ H ₁₀	0.200
Wentang	1971	Binary: C ₂ H ₅ Cl	0.050
Huitang	1975	1-Flash	0.300
Yingkou	1977	Binary: Freon; n-C ₄ H ₁₀	0.100
Yangbajing Unit 1 Unit 2 Unit 3	1977 1981(?) 1982(?)	1-Flash 1-Flash 2-Flash	1.000 1.500 3.500
		TOTAL - INSTALLED AND PLANNED:	7.186 MW

	TABLE 3.	EL SALVADOR	
PLANT	YEAR	TYPE	RATING, MW
Ahuachapán Unit 1 Unit 2 Unit 3	1975 1976 1980	l-Flash l-Flash 2-Flash	30.0 30.0 35.0
Berlin	1985	2-Flash	50.0
Chinameca	Future	Flash	100 (est.)
Chipilapa	Future	Flash	50 (est.)
San Vicente	Future	Flash	100 (est.)

TOTAL - INSTALLED AND PLANNED: 145 MW

~

TABLE 4. ICELAND

PLANT	YEAR	TYPE	RATING, MW
Námafjall	1969	1-Flash	3*
Krafla Unit 1 Unit 2	1978 Future	2-Flash 2-Flash	30 30
Svartsengi Unit 1 Unit 2	1978 1978	1-Flash 1-Flash	1

TOTAL-INSTALLED:

32 MW

4

40

*Dismantled after earthquake damage.

TABLE 5. ITALY

_ _ _

PLANT*	YEAR	RATING, MW
Lardarello Unit 2 Unit 3	c.1946 1969	69.0 120.0
Gabbro	1960	15.0
Castelnuovo	n.a.	50.0
Serrazzano	n.a.	47.0
Lago 2	n.a.	33.5
Sasso Pisano	n.a.	15.7
Monterotondo	n.a.	12.5
Travale	1973	15.0
Piancastagnaio	1969	15.0
Others (8 units)	.	27.9
	TOTAL - INSTAL	LLED: 420.6 MW

*All plants use dry steam; turbines are either condensing or noncondensing.

TABLE 6. JAPAN

PLANT	YEAR	TYPE	RATING, MW
Matsukawa	1966	Dry Steam	20
Otake	1967	1-Flash	10
Onuma	1973	1-Flash	10
Onikobe	1975	1-Flash	25
Hatchobaru	1977	2-Flash	50
Kakkonda	1978	1-Flash	50
Otake Pilot*	1978	Binary: i-C ₄ H ₁₀	1
Nigorikawa Pilot*	1978	Binary: R-114	. 1
Suginoi (Hotel)	1980	1-Flash	1 .
Mori	1981(?)	1-Flash	50
Kuzeneda	Future	Flash	50 (est.)
Kumamoto	Future	2-Flash	55 (est.)

TOTAL - INSTALLED AND PLANNED:

216 MW

*Tests complete; plants dismantled.

TABLE 7. MEXICO

PLANT	YEAR	TYPE	RATING, MW
Cerro Prieto I			
Unit 1	1973	1-Flash	37.5
Unit 2	1973	l-Flash	37.5
Unit 3	1979	1-Flash	37.5
Unit 4	1979	1-Flash	37.5
Unit 5	1982	2-Flash	30.0
Cerro Prieto II			• · · · · · · · · · · · · · · · · · · ·
Unit l	1983	2-Flash	220
Unit 2	1983	2-Flash	220
			<u></u>

TOTAL - INSTALLED AND PLANNED: 620

MW

TABLE 8. NEW ZEALAND

PLANT	YEAR	TYPE	RATING, MW
Wairakei Station A Station B	1958-62 1962-63	Multiflash 2-Flash	102.6 90.0
Kawerau	1961	1-Flash	10.0
Ohaki Unit 1 Unit 2 Unit 3	1985 1986 Future	2-Flash 2-Flash 2-Flash	50.0 50.0 50.0

TOTAL - INSTALLED AND PLANNED: 302.6 MW

TABLE 9. PHILIPPINES

PLANT	YEAR	TYPE	RATING, MW
Tiwi			
Unit 1	1978	2-Flash	55.0
Unit 2	1979	2-Flash	55.0
Unit 3	1979	2-Flash	55.0
Unit 4	1980	2-Flash	55.0
Unit 5	1982	2-Flash	55.0
Unit 6	1982	2-Flash	55.0
Mak-ban (Makilin	ng-Banahaw)		
Unit 1	1979	2-Flash	55.0
Unit 2	1979	2-Flash	55.0
Unit 3	1980	2-Flash	55.0
Unit 4	1980	2-Flash	55.0
Palimpinon (pilo	ot)		
Unit 1	1980	1-Flash	1.5
Unit 2	1980	1-Flash	1.5
Palimpinon			
Unit 1	1982	2-Flash	37.5
Unit 2	1983	2-Flash	37.5
Unit 3	1983	2-Flash	37.5
Tongonan			
Unit 1	1982	2-Flash	37.5
Unit 2	1982	2-Flash	37.5
Unit 3	1982	2-Flash	37.5
			•

(

TOTAL - INSTALLED AND PLANNED: 778 MW

TABLE 10. UNITED STATES - CALIFORNIA ONLY

1.14

PLANT	YEAR	TYPE	RATING, MW
The Geysers			
PG&E 1-12,15	1960-79	Dry Steam	663.0
PG&E 13,14	1980	Dry Steam	245.0
PG&E 16-21	1982-1984	Dry Steam	660.0
NCPA 1	1983	Dry Steam	66.0
NCPA 2	1981	Dry Steam	110.0
SMUD GEO 1	1984	Dry Steam	55.0
Bottle Rock	1984	Dry Steam	55.0
South Geysers	1984	Dry Steam	55.0
East Mesa			
Magmamax	1980	Dual Binary:	11.2
		i-C ₄ H ₁₀ ; C ₃ H ₈	
Republic	1000	1 11-1	10.0
Unit 1	1982	1-Flash	10.0 66.0*
Unit 2	1984	2-Flash	00.0"
Brawley			
Unit 1	1980	1-Flash	10.0
Salton Sea			
SCE	1982	1-Flash	10.0
SDG&E 1	1982-83	2-Flash	26.0
SDGGE 2	Future	2-Flash	56.0
Republic	1984	1-Flash	49.0
Republic	1001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Heber	1007		50.0
SCE	1983	2-Flash	50.0
SDG&E	1984-86	Binary	65.0
South Brawley			
DWR	1985	1-Flash	55.0
Westmorland			
MAPCO/Republic	Future	2-Flash	57.0
-			
Susanville	1004	TT 1 * 1	
GeoProducts 1	1984	Hybrid:	55.0
		Wood waste/geofluid	

TOTAL - INSTALLED AND PLANNED: 2363.2 MW

*Includes 10 MW Unit 1.

.

TABLE 11. UNITED STATES - EXCEPT CALIFORNIA

PLANT	YEAR	TYPE	RATING, MW
Puna, HI	1980	l-Flash	3.0
Raft River, ID	1981	Double Binary: i-C ₄ H ₁₀	5.0
Baca No. 1, NM	1982(?)	1-Flash	50.0
Roosevelt H.S., UT UP&L 1	1983	l-Flash	20.0
UP&L 2 UP&L 3	Future Future	2-Flash 2-Flash	50.0 50.0
Northern Nevada	1983	Binary	10.0
White Mts., NH	Future	Hot Dry Rock	65.0
	TOTAL	- INSTALLED AND PLANNED:	88.0 MW

TABLE 12. OTHER COUNTRIES

COUNTRY	PLANT	YEAR	RATING, MW
Chile	El Tatio	Future	15
Costa Rica	Miravalles 1 Miravalles 2	1985 1987	55 (est.) 55 (est.)
Guatemala	Amatitlán	Future	50 (est.)
Honduras	Pavana	Future	50 (est.)
Indonesia	Kamojang Kamojang Dieng	1978 Future 1980	0.25 100 (est.) 2
Kenya	Olkaria Olkaria	1982 Future	15 30 (est.)
Nicaragua	Momotombo	Future	30 (est.)
Panama	Cerro Pando	Future	30 (est.)
Portugal (Azores)	São Miguel	1981	3.0
Turkey	Kızıldere	Future	14 (est.)
USSR	Pauzhetka Other sites	1967 Future	5 78 (est.)

APPENDIX J

×

.

-

ł

INTRODUCTION

13550

17. 1917,

BACA GEOTHERMAL DEMONSTRATION PROJECT OBJECTIVES

The Objectives of the Project, in Support of the Overall Goal to Stimulate Development of Geothermal Energy, are as follows:

- Demonstrate Reservoir Performance Characteristics of a Specific Liquid-Dominated Hydrothermal Reservoir.
- Demonstrate the Validity of Reservoir Engineering Estimates of Reservoir Productivity (Capability and Longevity).
- Demonstrate a Conversion System Technology at Commercial Scale.
- Initiate Development of a Resource of Large Potential.
- Act as a "Pathfinder" for the Regulatory Process and Other Legal and Institutional Aspects of Geothermal Development.
- Provide a Basis for the Financial Community to Estimate the Risks and Benefits Associated With Geothermal Investments.
- Demonstrate Social and Economic Acceptability and the Readiness of State-of-the-Art Technology for Producing Electric Power From a Liquid-Dominated Hydrothermal Resource.

PRINCIPAL GEOTHERMAL FEATURES OF THE BACA LOCATION

- Large Areas of Hydrothermally Altered Rock
- Occurrence of Several Hot Springs, Fumaroles, and Gas Seeps

. . . .

 Abnormally High, Near-Surface Temperature Gradients Distributed Over About 50 Square Miles in Western Half of Caldera

PLANT SITE INFORMATION

NUMBER & UNIT SIZE — One (1), 50,000 kW SITE LOCATION — Redondo Creek Area TERRAIN — Moderately Rugged ELEVATION — 8,730 Ft. Above Sea Level CLIMATE — Hot Dry Summers and Cool Snowy Winters TRAVEL — Via New Mexico Highway 4 and Approximately 3 Miles of Dirt Roads INCLEMENT WEATHER — December, January, and February

BACA GEOTHERMAL SCHEDULE

-		ран уладар — ал айран — Айран — -	
	INITIAL	REVISED	¥, ⁴
PROJECT START	11/78		
START CONSTRUCTION	3/80	4/81	
TURBINE ROLL	1/82	10/82	
COMMERCIAL OPERATION	3/82	11/82	

BACA GEOTHERMAL SCHEDULE

C

MILESTONES		197					19									80				Τ					981				<u> </u>					198			-	
	J	A S	ЭМС) J	FN	I A I	мJ	J	٩S	N	J	IF	M	٩М	1	J	A S	0	N	D 1	F	м	A	ΓN	J	A	s	oli	ND	J	FN	A A	М	J	A L	s	0	ND
DOE/PNM/Union Cooperative Agreement								*																		ŀ												
A/E Contract Awarded					* *																																	
Transmission Route Selected																ļ		ŀ			ļ																	
Construction Permit Awarded											M	K																										
EIS Processing Complete														*	$\left \right $																							
Plant Construction Starts																										ł												
CCN Permit Awarded																					1																	
Transmission Construction Complete																																			.			
Commercial Operation																																				Ĩ	4	
Demonstration Period Complete 0 1984																																						*
MAJOR ACTIVITIES											T																											
LICENSING	-	A4 91977 5			e de la composition de la composit				173 A- 40	Sar ca		2 2 2 9		ann								17.0																
ENVIRONMENTAL				1.1 94	50.00		15 + M 17			-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2																								
RIGHT OF WAY	1244			2 - 10		10 MA (17) 31	2 a ji	4022403	2											×																		
PLANT ENGINEERING				ज्यक	-	new cr	12 12 5		2			- NC S		n car	-113	a ora	e ssr	-32-11	995-3	a or	17					ORT.		in a	a 137	202								8
MAJOR PROCUREMENT Turbine Generator Main Condenser							11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	- L 11		2. 18		C 204				10 T	11. (9) 61 - 12		1775 P			4	787															
PLANT CONSTRUCTION									1052	23 14				223					us u			a:r		- 					5 7 32	nerts					~			4
TRANSMISSION																	area ma										~~~~											

C

BACA UNIT 1 NMPSC ACTION

LICENSING SCHEDULE OF EVENTS

EVENT	INITIAL	ACTUAL
 Petition NMPSC 	6/79	2/80
 File Testimony NMPSC 	6/79	5/80
Interim Relief Filing	N/A	5/80
 Interim Relief Hearing 	N/A	7/80
 Main Hearing Before NMPSC 	10/79	8/80
 Main Hearing Concluded 	10/79	11/80
 Order Issued (Anticipated) 	4/80	3/81

BACA PROJECT-DOE DELAYS

C

æ

C

EVENT	INITIAL	ACTUAL
 Proposal Submitted to DOE 	1/31/78	1/31/78
 PNM-Union Selection Announced 	3/78	7/6/78
Issue of Draft EIS	4/6/79	7/9/79
 Conduct Hearings on EIS 	Not Scheduled	8/30/79
 Public Comment Period Ends (EPA and DOI Comments Received One Week Late) 	6/21/79	9/7/79 9/14/79
 Release of Final EIS 	7/8/79	10/22/79
 Mandatory 30-Day Waiting Period 	8/6/79	
 Record of Decision (Under New CEQ Guidelines) 		5/5/80

43 × 34

Fr. 16

GENERAL ARRANGEMENT

POWER BUILDING

TURBINE LAYDOWN AREA

 \bigcirc

2

ž.,

GEOTHERMAL STEAM DATA

max st percent

ALC: NO.

e uis rester condition residency : uighted, biger

	CONCEPTUAL DESIGN	PRELIMINARY DESIGN
 TURBINE ENTRY PRESSURE/ TEMPERATURE POINT OF MEASUREMENT 	Downstream of Throttle Valve (103 psia/330°F)	Inlet of Wye Strainers (113 psia/337°F)
 TURBINE EXHAUST BACKPRESSURE 	4 Inches HG AB	4 Inches HG AB
 CHEMICAL ANALYSIS OF STEAM 	35 MG/L	7-15 MG/L
 NON-CONDENSIBLE GASES (H₂S)* 	204 PPM	300 PPM

DETAIL DESIGN PERFORMANCE

à

Turbine Generator Output at Generator Loads	50,000 kW
Auxiliary Power	2,069
H = Net Power to High Voltage Line	47,931
Geothermal Steam Consumption/NKW = 925,100 lbs/h* = 19	9.30 lbs/ NKWH
TURBINE GENERATOR PERFORMANCE Turbine entry pressure (psia) Turbine entry temperature (F) Steam flow (Ibs/hr) Expansion efficiency (percent) Mechanical losses (percent)	113 337 849,800 75.7 1.9
Generator efficiency (percent)	98.7
Turbine back pressure (inches Hg absolute)	4
CONDENSER PERFORMANCE Condenser pressure (inches Hg absolute) Condensate flow (lbs/hr) Extracted gases (includes water vapor (lbs/hr)) Cooling water flow (lbs/hr) COOLING TOWER PERFORMANCE Range (F) Approach (F) Design wet bulb temperature (F) Design dry bulb temperature (F)	4 894,230 25,476 32,000,000 26 14 56 70
Circulating water pumps flow (Ibs/hr)	70 35,879 ,370
MASS FLOW BALANCE Geothermal Steam Consumption (Ibs/hr) Cooling Tower Water Consumption (Ibs/hr) Noncondensables (Ibs/hr) Condensate Reinjection (Ibs/hr) H ₂ S Abatement Steam Consumption (Ibs/hr)	925,100 773,330 27,738 120,910 500

*Includes 74,800 lbs/hr ejector steam.

.

a setting a set at a set of the set of the set

.

SUPPORTING FACILITIES

TURBINE

Ĉ

• CONDENSER AND EJECTOR CONDENSERS

11. 1

1

- EJECTORS
- ELECTRICAL EQUIPMENT
- COMPRESSED AIR SYSTEM
- SERVICE WATER
- FIRE WATER

OPERATIONS AND MAINTENANCE FACILITIES

1 - 1

- CONTROL ROOM
- CHEMISTRY LAB
- STOREROOM AND WAREHOUSE

MECHANICAL/ELECTRICAL SUPERINTENDENT OFFICE

Pro 1

Sec. Sec. 3

- STATION OFFICES
- INSTRUMENT SERVICE SHOP
- BRIDGE CRANE
- MAINTENANCE SHOP

C

MAJOR TRADE-OFF STUDIES

١

	STUDY	RECOMMENDED SELECTION	COST ADVANTAGE (PRESENT WORTH)
Đ	CROSS FLOW/COUNTER FLOW COOLING TOWER	COUNTER FLOW	\$1,400,000
•	COOLING WATER TEMPERATURE (70°, 80° & 90°F) 70 ⁰ F	APPROX. \$160,000 - \$1,800,000
•	SINGLE/DOUBLE AIR FLOW COOLING TOWER	DOUBLE	\$1,429,000
•	COOLING TOWER SUBSTATION INDOORS/OUTDOORS	INDOORS	\$68,000
•	SITE LAYOUT STUDY (8 SCHEMES)	SCHEME H	APPROX. \$30,000 to \$300,000*
•	CIRCULATING WATER PUMP ARRANGEMENT VE	RTICAL PUMP IND	DOORS \$180,000
•	SOLID STATE/ELECTRO MECHANICAL RELAYS	SOLID STATE	STAND-OFF
•	STAINLESS STEEL/FIBERGLASS REINFORCED PIPE	E (FRP) FRP	\$200,000*
•	GAS REMOVAL (2 STGE VAC. PPS/STEAM EJECTOR	RS) STEAM EJECTO	DRS P.W. FUEL COST FAVORED VACUUM PUMPS FIRST COST & RELIABILITY HEAVILY FAVORED EJECTORS

* FIRST COST DOLLARS

e e e a a a

FACTORS AFFECTING PARTITIONING

- CO₂ CONTENT
- NH3 CONTENT
- CONDENSER DESIGN

• GAS/CONDENSATE CONTACT TIME

COMPARATIVE H2S PARTITIONING

	PG&E	
	UNIT 15	BACA
• CO ₂ , PPM	1652	29,500
• NH ₃ , PPM	145	•
• H ₂ S, PPM	188	215
• RATIO, CO2/H2S	8.8	137
• RATIO, NH ₃ /H ₂ S	0.77	0
• PARTITIONING, %	67/33	EXPECTED 90/10

i,

H2S FLOW DIAGRAM

 $\langle \rangle$

CLEAN ROOM

• ATMOSPHERIC CONTAMINATION

- \bullet MATERIALS SUSCEPTIBLE TO $\mathrm{H}_{2}\mathrm{S}$ Attack
- METHODS OF CORROSION PREVENTION
- CLEAN ROOM DESIGN
- EQUIPMENT LOCATED IN CLEAN ROOM

5 × 3 ±

USE OF FRP PIPE AND TANKS

- PIPING SYSTEMS CONSTRUCTED OF FRP
 - CIRCULATING WATER/COOLING WATER
 - NONCONDENSIBLE GAS DISCHARGE
 - CONDENSATE
 - BELOW GRADE DRAIN AND SEWER LINES
 - BURIED FIRE WATER LINES
 - BURIED AND EXTERIOR EXPOSED SERVICE WATER PIPING

6

• FRP TANKS

- SERVICE WATER STORAGE TANK
- DIESEL OIL STORAGE TANK
- COST COMPARISON VS. CONVENTIONAL MATERIALS
- OTHER ADVANTAGES

TURBINE BLOW-OFF PIPING

111

1

• PURPOSE

TO SAFELY ROUTE STEAM DISCHARGE FROM TURBINE CASING, SHEAR DIAPHRAGMS TO OUTSIDE OF THE BUILDING.

• CONDITION CAUSING RUPTURE OF DIAPHRAGMS

OVER PRESSURE OF TURBINE CASING DUE TO POSSIBLE INABILITY OF FULL CLOSURE OF TURBINE STOP AND CONTROL VALVES.

- RESULTING PROTECTION
 - PERSONNEL SAFETY

- STEAM DAMAGE TO PLANT ELECTRICAL EQUIPMENT

11

POWER PLANT PERFORMANCE

'an

608

656

582

223

TURBINE GENERATOR OUTPUT

50,000 KW

2,069

AUXILIARY POWER

٠.

COOLING TOWER

CIRCULATING WATER PUMPS

MISCELLANEOUS AUXILIARIES

TRANSFORMER LOSSES

NET POWER OUTPUT 47,931

GEOTHERMAL STEAM CONSUMPTION - 19.3 LBS/KWH

BACA GEOTHERMAL DEMONSTRATION PROJECT COST SUMMARY

	Init	ial DOE Contr July 14, 1978 (\$ x 1000)	ract	
WBS	UNION	PNM	DOE	TOTAL
1.1 1.2	42,000	26,000	32,000 24,500	74,000 50,500
TOTAL	42,000	26,000	56,500	124,500
Current Cost Estimate December 17, 1980 (\$ x 1000)				
		ecember 17, 1		
WBS		ecember 17, 1		TOTAL
WBS 1.1 1.2	D	ecember 17, 1 (\$ x 1000)	980	TOTAL 93,000 56,500

C

MAJOR CONTRACTS AND PURCHASE ORDERS

• SITE PREPARATION	\$ 252,000
• TURBINE GENERATOR	4,423,000
• CONDENSER AND GAS REMOVAL EQUIPMENT	1,075,000
GENERAL PLANT CONSTRUCTION	9,316,000
• H ₂ S ABATEMENT	2,883,000
• COOLING TOWER	2,431,000
• OTHER EQUIPMENT, MATERIAL AND FACILITIES	5,059,000
• EPCM SERVICES	4,335,000
	\$29,774,000

Costs shown do not include Construction Shutdown, Schedule Delays and Contingency and Escalation.

POWER PLANT ESTIMATE SUMMARY

AS OF 9/1/80

(\$1,000's)

Description	Preliminary Estimate	3/1/80 Estimate	9/1/80 Forecast	
Plant Material and Equipment	\$10,608	\$10,361	\$10,335	
Building Fire Protection	47	144	144	
Building HVAC	24	150	150	·
Freeze Protection	100	100	100	
Cooling Tower	1,312	2,431	2,496	*/¥.
H ₂ S Abatement System	2,792	2,738	2,983	
Site Preparation .	234	252	252	
Construction	6,873	9,316	13,212	400 19 00
SUBTOTAL	\$21,990	\$25,492	\$29,672	ч. с.
Contingency and Escalation	5,669	2,301	2,464	
SUBTOTAL	\$27,659	\$27 , 793 ⁻	\$32,136	
Bechtel Contract (EPCM)	4,288	4,335	5,205	
TOTAL	\$31,947	\$32,128	\$37,341	

. MAJOR COST INCREASE IMPACTS

3/1/80 ESTIMATE - 9/1/80 FORECAST

(\$1,000's)

PLANT MATERIAL AND EQUIPMENT

÷

 MAJOR EQUIPMENT PRICING DESIGN IMPROVEMENTS CONSTRUCTION SHUTDOWN/DELAY COSTS 	(419) 101 292
COOLING TOWER	
• CONSTRUCTION SHUTDOWN/DELAY COSTS	65
H2S ABATEMENT SYSTEM	
 PEABODY CONTRACT PRICE CONSTRUCTION SHUTDOWN/DELAY COSTS 	145 100
CONSTRUCTION	
 QUANTITY UPDATE DESIGN IMPROVEMENTS LATE CONSTRUCTION AWARD GC-1 STANDBY COSTS CONSTRUCTION SHUTDOWN/DELAY COSTS 	141 30 308 420 2,997
CONTINGENCY AND ESCALATION	
CONSTRUCTION SHUTDOWN/DELAY COSTS	163
BECHTEL CONTRACT	1
 DESIGN IMPROVEMENTS LATE CONSTRUCTION AWARD CONSTRUCTION SHUTDOWN/DELAY COSTS 	62 115 <u>693</u>
TOTAL	\$5,213

APPENDIX K

. .

s,

. ...

HEBER BINARY PROJECT

45 MEGAWATT DEMONSTRATION PLANT

PROJECT OVERVIEW

- 65 Mw (Gross), 45 Mw (Net) BINARY CYCLE DEMONSTRATION PLANT
- HEBER RESERVOIR, IMPERIAL VALLEY, CALIFORNIA
- OPERATION MID-1985 (Two-YEAR DEMONSTRATION)
- PARTICIPANTS:
 - DEPARTMENT OF ENERGY
 - ELECTRIC POWER RESEARCH INSTITUTE
 - SAN DIEGO GAS & ELECTRIC (PROJECT MANAGER)
 - IMPERIAL IRRIGATION DISTRICT
 - SOUTHERN CALIFORNIA EDISON COMPANY
 - CALIFORNIA DEPARTMENT OF WATER RESOURCES
- HEAT SUPPLY CHEVRON RESOURCES COMPANY (UNIT OPERATOR)
 - UNIT OWNERS:

Chevron Resources Company

UNION OIL COMPANY

NEW ALBION RESOURCES COMPANY

• GOAL - ULTIMATE COMMERCIAL OPERATION

PROJECT FUNDING

E

PARTICIPANT

	Funding
 Department of Energy* 	50.0%
 San Diego Gas & Electric 	32.8%
 ELECTRIC POWER RESEARCH INSTITUTE 	10.0%
 IMPERIAL IRRIGATION DISTRICT 	4.0%
 Southern California Edison Company 	2.0%
 Department of Water Resources 	1.2%

*Does not include activities funded 100% by DOE.

JUSTIFICATION FOR THE PROJECT

• GOALS

- ESTABLISH TECHNICAL AND ECONOMIC VIABILITY OF THE BINARY CYCLE

- DEMONSTRATE ENVIRONMENTAL ACCEPTABILITY
- TRANSFER DATA TO INDUSTRY

• INCENTIVES

- DEVELOP ALTERNATE ENERGY RESOURCE
- EXTENSIVE LOW-TO-MODERATE TEMPERATURE RESOURCES
- MORE EFFICIENT RESOURCE UTILIZATION
- FEWER ENVIRONMENTAL IMPACTS
- ENCOURAGE RESERVOIR EXPLORATION AND DEVELOPMENT
- BROAD UTILITY INTEREST

HISTORY OF PROJECT

- 1975 EPRI-SPONSORED HOLT/PROCON STUDY
- 1976 DISCUSSIONS WITH ERDA FOR SOLE SOURCE FUNDING
- 1977 ERDA DECIDES AGAINST SOLE SOURCE FUNDING
- 1978 SDG&E FIRST PROPOSAL SUBMITTED
 - DOE SELECTS FLASH PROJECT
 - HEBER PROJECT SHELVED
- 1979 Congress requests DOE to fund binary
 - MEETINGS BETWEEN SDG&E AND DOE
 - SDG&E SECOND PROPOSAL SUBMITTED
- 1980 DOE SELECTED HEBER SITE
 - EPRI FUNDING APPROVED
 - COOPERATIVE AGREEMENT WITH DOE
 - Other Project Agreements
- 1981 Engineering Started

PROJECT LOCATION HEBER GEOTHERMAL DEMONSTRATION PLANT

C

WORK ACCOMPLISHED

- CONCEPTUAL DESIGN
 - REVIEW AND ASSESSMENT OF EPRI HEBER STUDY REPORTS
 - DIRECT FLASH VS. BINARY
 - Two phase vs. single phase brine supply
 - WORKING FLUID SELECTION
 - TURBINE EXHAUST PIPING
 - WET VS, WET/DRY COOLING
 - Hydrocarbon pumping configurations
 - PLOT PLAN DEVELOPMENT
 - HEAT TRANSFER MATERIALS SELECTIONS
 - MAKE-UP WATER SILT REMOVAL
 - TWO HALF-CAPACITY TURBINES VS. ONE FULL-CAPACITY TURBINE

2/15/81

- CONDITIONAL USE PERMIT
- COOLING WATER SUPPLIES
- ENVIRONMENTAL IMPACT REPORT/ENVIRONMENTAL ASSESSMENT
- GEOTECHNICAL UPDATE AND SOILS STUDIES

POWER PLANT LAYOUT

GA 289

.

C

POWER CYCLE SCHEMATIC-START OF RUN

÷.

.

CURRENT ACTIVITIES

- Commenced Engineering (January, 1981)
 - Design Guide
 - Schedule/cash flow
 - CONCEPTUAL DESIGN REVIEW
 - OPTIMIZATION STUDIES
- ENVIRONMENTAL
 - SUBSIDENCE NETWORK/BASELINE MEASUREMENTS
 - BASELINE METEOROLOGICAL MEASUREMENTS
 - NEW RIVER DATA
- OTHER CONSULTANTS
 - AVAILABILITY ENHANCEMENT
 - DATA MANAGEMENT
- OTHER ACTIVITIES
 - INJECTION PIPELINE RIGHT-OF-WAY
 - CALIFORNIA ASSEMBLY BILL 51
 - FEDERAL FUNDING FOR FY 1982

PROJECT SCHEDULE

٠

.

January 1981	Commence Engineering
April 1981	Conceptual Design Review
July 1981	Turbine Generator Purchase Order
April 1982	DEFINITIVE COST ESTIMATE
April 1982	FINAL POWER CYCLE REVIEW
June 1982	PHASE I COMPLETION
October 1982	COMMENCE CONSTRUCTION
December 1982	FINAL DESIGN REVIEW
November 1984	Commence System/Equipment Start-Up
June 1985	Commence Demonstration
June 1987	COMPLETE DEMONSTRATION

.

,

•

C

C

ARTIST'S RENDERING

APPENDIX L

			ţ			بىن ە.						
								-				
			5 M	W(e) STA	RT UP AND	TESTING S	JMMARY SC	HEDULE			· ·	
DESCRIPTION												
Ļ	007	NOV	DEC	JAN	FEB	MAR	APR	ΜΑΥ	JUN	JUL	AUG	SEP
A 1 180 CONSTRUCTION	Compi. i	Construction Punch Li	ets {Mech., Elect., i	nets.)O								Critical Pari Sec. Critical
											· ,	
4A1172 SPARE PARTS		·			Remaining Spare Parts		Cooling Water		-0			
64A1176 5MW(e) STING AND OPERATION	********		ant And Water Treatme		lect., inst.)		Freatment Sys.					
+	Remove / Nodity	5MW(e) Support	rt Water Treatment Te Ciean Relief Valves Test	Inspect/Press Propane Tanks	Propane Stora	And Ignite	i ,					
·	Contro	a Ture Kan	Euro Brot St	Electric B	Flare C.C. & S.O	Tests Flare Isobutane Sys. C.C. St A Press. Test Jk	-0 			isobu – Fill S	tane System 0. & Clean Up X Inte	igrated Plant Test
	• •	ch Out CC Tests	S.O. Test	0		Isobutane Fill	- <u>7</u> 7				Facility Tran	
	Hot Flush Geo. S	iystem		Hydro., Flush & C.C Test T.G. L.O	T.G. Lube Oli 5.O. &	•			J	0	T.G. Controls Dynamic S.O.	
ľ	T.G. Flecinic Static 5 0						Electricity Generation					
	Observe Contr. D.A.S. D.A.S. System 5.0 Controls Accept.Tast A Software Verf.							S. & Controls grated Test(s)				
-					Pi	anned Mainteance, Re	pair Program & Site	Support		··· ·····		LP. Teel Re
F		Compl. Operator Qualif	cations Classroom Exa	n s	Op=rato	On The Job Training	Practical Factors	Operator Qual. Ex	Final arms		I.P. T Follow A	¥
A1130 SUPPORT ENGR.					Support - Pre Start Up		inual Report				O And An	And Analy Semi-A
8441180 RESERVOIR			yze Geothermal Well I				۵	·····	alyze Geothermal Well	Data & Well Chemistr		
-	Collect	E & Analyze Monitor V	Velt Data		a Analyze Monilor We	e/Alr Quality Data Co	۵	And Analyze Monitor	Well Data	Δ	Monitor Well Data	Prepare Final
6441120	• •		Pump Chi	inge Quis Isl.	2nd, 3rd And 4th					Install Pear Line Shat Pumpe 14	15.0. Supply Ge	• Report
PERATIONAL SUPPORT				Prepare Well I	Field, S&I System & Wel 5MW(e) Testing And Sti	Pumpa To		المحاف والمنتجر والمنطقة وال	Sål System Ta Suppo		OLELLO T	
6806		Upgrade Master Equip.	. & Spara Parts List/Ass		AW(e) Operating Manual/		sifications/Assist In P					
. –	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP

~

, i

RAFT RIVER PUMP HISTORY

INST. NO.	WELL	MER.	SET DEPTH (FT)	HP	RUN TIME _(HOURS)	_COMMENTS
1	1	REDA	620	320	112	DNF TOO LARGE FOR DEPTH
2	3	REDA	773	320	1,359	CABLE SHORT
3	2	PEERLESS	802	250	1,060	DNF-WORN TAILSHAFT BEARING
4	5	REDA	1.000	320	568	DNF-BAD BEARINGS & CABLE
5	1	CENTRILIFT	2,021	650	114	SEAL MATERIAL FAILURE
6	2	CENTRILIFT	1.860	500	0	CABLE HEAD LEAK
7	3	CENTRILIFT	1,110	250	0	DNF-REMOVED FOR FACTORY MODS
8	5	REDA	1,098	320	85	MOTORS & PUMP FAILED: SAND
9	1	CENTRILIFT	2,021	650	8.5	CABLE FAILURE
10	3	CENTRILIFT	1.042	250	815	ROTOR BEARING FAILURE
11	2	CENTRILIFT	1,884	500	11 min	EXCESS EPOXY-STATOR BURN
12	2	CENTRILIFT	1,884	500	14 min	FAILED ROTOR BEARING & SEAL LEAK
13	1	REDA	2,020	600	541.5	ACCIDENTAL ELECTRICAL MALFUNCTION
. 14	5	REDA	1,098	320	0	WATER IN MOTOR
15	1	REDA	1,978 2-	-340 HP EA	4.25	WATER IN MOTOR
16	5	REDA	1,098	320 *	19.5	DNF - STILL IN WELL

PUMP STATUS AND PLANS

	CURRENT	PROCUREMENT					
	STATUS	PEERLESS	REDA	CENTRILIFT			
WELL 1	No Pump	JULY 1981	LASL PUMP BEING Repaired due May, 1981	(2)			
WELL 2	NO PUMP	JULY 1981	May 1981 ⁽¹⁾	(2)			
WELL 3	PEERLESS In Place (20.5 hrs)		May 1981 ⁽¹⁾	(2)			
WELL 5	Reda Oil Field (19.5 hrs)	-					

(1) CONTINUOUSLY SLIPPED SINCE LAST SPRING, DOUBTFUL DATE.

(2) TO BE ESTABLISHED. - would like a pump for well NO.1 for 1-7401 /-

C

APPENDIX M

P.F. Ellis Radian Corporation P. O. Box 9948 Austin, Texas 78766 (512) 454-4797

J.F

Production and Two-Phase System

- Casing and surface equipment should meet standards for "sour service" to avoid sulfide stress cracking (SSC).
- Two-phase fluid causes severe erosion of valves and elbows.
 - Valves require stellite hardfacings, or alternately sacrificial valves can be used, as is the practice at Ahuachapan.

- Blind tees successfully replace elbows (Salton Sea, Cerro Prieto).

Steam Transmission System

- Condensate in steam lines contains corrosive ions and dissolved gases.
 - Elimination of cold spots reduces condensate and subsequent corrosion (Larderello).
 - Traps and final demister protect pipeline and turbine (Cerro Prieto, Wairakei).
 - Rapid shut-down and venting prevent pooling of corrosive areated condensate (Wairakei).
- Corrosion resistant valves are required.
 - Carbon steel body, 300 series internal trim with stellite hardfacing, non-austenitic stainless steel stem give 10,000-80,000 hours service (Larderello).

Turbines

- Most turbines are bladed with 12 Cr stainless steel heat treated to HRC < 22 to avoid SSC (Cerro Prieto, The Geysers, Otake, Hatchobaru, Wairakei, Matsukawa, Ahuachapan).
 - Corrosion fatigue in geothermal steam is 2 to 2.5 times more severe than in boiler quality steam (Otake, The Geysers). Also severe at other plants.
 - Thicker, heavier blades and lower tip speeds are required.
 - Blade failure is more prevalent in turbines supplied with superheated steam (Larderello, The Geysers) than in turbines fed saturated steam (Ahuachapan, Cerro Prieto, Wairakei, Otake).
 - Arsenic levels of > 200 ppm have been encountered in turbines at The Geysers. The effect, if any, of this hydrogen embrittlement agent is not defined.

Heat Rejection System

- Most existing and proposed plants use steam condensate for cooling water make-up.
- Aeration and concentration of the condensate cause serious corrosion problem in the cooling systems of all operating plants.
- Carbon steel and aluminum alloys are unsatisfactory (Cerro Prieto, Otake, Hatchobaru, Larderello, The Geysers, Wairakei).
- In many cases, Type 304 will be unsatisfactory.
 - It will pit at typical cooling system temperatures and chloride levels (low ppm).
 - Stress corrosion cracking risk occurs above 122°F.
- Austenitic grades containing more than 20% chromium and 4 percent molybdenum; ferritic grades such as XM 27 and 26 Cr-3 Mo; Inconel 625; or titanium will be required in many cases.

Heat Rejection System (Continued)

- Microbial action converts hydrogen sulfide to sulfuric acid, increasing corrosivity (Cerro Prieto, Ahuachapan).
- Bio-fouling will cause pitting of many alloys.
- Copper ions from copper-treated cooling tower wood will increase corrosiveness. Control by:
 - continuous addition of copper inhibitor, or
 - avoidance of copper-treated wood.
- Condensate is aggressive to cements and concrete.
 - use sulfate resistant cement, or
 - lïne with coal-tar epoxy or PVC, or
 - line with polymer concrete.

Facility Impacts

- Atmospheric hydrogen sulfide rapidly destroys copper and silver contacts, and zinc coatings.
 - All electrical contacts must be gold, tin, cadmium, chromium, or platinum plated.
 - Rubber covered copper wire is unsatisfactory.
 - Maintenance of sulfide-free clean rooms is not practical (Wairakei, The Geysers).
 - Instrument air supply must be filtered to remove hydrogen sulfide to protect copper instrument components.
 - Galvanizing is unsatisfactory for structures, fences.
- The plant atmosphere is very harsh for conventional painting practices. Italians have developed a painting practice with a 5 year life.

Materials Concerns in Geothermal Binary Plants:

Production System and Heat Exchanger

- Casing, downhole, and surface equipment should meet "sour service" standards to avoid sulfide stress cracking.
- Downhole pumps will be required in most systems.
 - Suitable bearing materials not identified
 - Suitable high temperature seals not identified
- Surface contact HX material should:
 - be resistant to oxygen intrusion,
 - be resistant to SCC and SSC, and
 - be resistant to pitting
- Insufficient DCHX experience to identify materials requirements.

Materials Concerns for Geothermal Binary Plants:

Secondary (Binary) Loop and Turbine

- Binary working fluid will contain corrosive geothermal species.
 - Carry-over of moisture and solids is inevitable in DCHX systems (LBL-500, APL).
 - Brine inleakage "fact of life" in surface contact systems (Magma).
- Two binary turbine failures investigated:
 - one due to inadequate design,
 - one due to foreign body ingestion or corrosive process.
- Binary components should be resistant to catastrophic failure modes in geothermal fluid.

Materials Concerns for Geothermal Binary Plants:

Heat Rejection System

- Many binary plants will be forced to use cooled geothermal water for cooling tower make-up.
- Concentration, by evaporation, and aeration make this water extremely corrosive.
- Corrosion inhibition for carbon steel has been shown to be extremely costly (Raft River).
- Alternate materials are currently under investigation.
- Hydrogen sulfide emissions will cause Facility Impacts similar to Flashed Steam Plant.

Geothermal Corrosion Engineering

- Component Failure Analysis
 - Failure analysis of failed geothermal components
 - Materials performance analysis of non-failed components
 - DOE funded with DOE consent
- Geothermal Materials Assessment
 - Site or project-specific review of geothermal chemistry, operating parameters, preliminary design, and material selection
 - Utilization of Radian's Geothermal Corrosion Data Base to assure the suitability of materials and design decisions from a corrosion engineering aspect

RADIAN CORPORATION

HANDBOOK AND NEWSLETTER

- Geothermal Materials Review
 - Quarterly geothermal materials newsletter
 - Distributed free to subscribers
 - For subscription contact William Robnett, Radian Corporation
- <u>Materials Selection Guidelines For Geothermal Energy Utilization</u> Systems (January 1981)
 - Chemistry, corrosion experience from 46 resources in eight countries
 - Power generation and direct utilization
 - More than 100 geothermal environments
 - More than 250 materials (metals and non-metals)
 - Will be automatically sent to current Newsletter subscribers
 - Will be available from NTIS as DOE/RA/27026-1