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Abstract—A realistic superconducting RF cavity has its shape 

deformed comparing to its designed shape due to the loose 
tolerance in the fabrication process and the frequency tuning for 
its accelerating mode. A PDE-constrained optimization problem 
is proposed to determine the deformation of the cavity. A reduce 
space method is used to solve the PDE-constrained optimization 
problem where design sensitivities were computed using a 
continuous adjoint approach.  A proof-of-concept example is 
given in which the deformation parameters of a single cavity-cell  
with two different types of deformation were computed.      
 

Index Terms—Deformation, Inverse problem, 
Superconducting RF cavities. 
 

I. INTRODUCTION 
HE International Linear Collider is a proposed new 
electron-position collider with efforts of hundreds of 

accelerator scientists and particle physicists in North America, 
Europe and Asia [10]. The nature of the ILC's electron-
positron collisions would give it the capability to answer 
compelling questions such as the identity of dark matter and 
the existence of extra dimensions. The heart of the ILC is the 
superconducting Radio Frequency (RF) Linac which is about 
30% of the total cost of the ILC. The Linac consists of 20,000 
superconducting RF cavities. Due to prohibitively high cost, 
the production tolerance in fabricating cavities is very high. 
The tuning procedure which makes the accelerating frequency 
correct also changes the shape of the cavity. For example, as 
described in [11] for making TESLA cavities, the production 
starts from niobium sheets to make half cells without 
accurately testing and correcting mechanical length. One 
assembled dumb-bells from two half cells by welding them at 
the iris together with stiffening ring and trim the dumb-bells at 
the equator to adjust the accelerating frequency.  The next step 
is assembling eight dumb-bells with end cups and beam pipes 
to make a complete a 9-cell TESLA cavity. In the final step, 
one tunes different parts of the 9-cell cavity to get the correct 
resonance frequency and flat field of the accelerating mode. 
Both production procedure and tuning procedure change the 
shapes of the designed cavity which leads to significantly 
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change in HOM frequency and field distribution and the HOM 
damping effect.  Therefore, it is of extreme importance to 
know the true dimensions of the realistic cavities in order for 
reliable prediction of the HOM damping.  
 

 
Figure 1. The measured frequencies and external Q’s from 
TTF module 3 [12] versus the computed counterparts from 

the ideal cavity. 
 

II. METHODS 

A. PDE-Constrained Optimization 
Let n denote the number of eigen-frequencies (f) and m 

denote the number of independent deformation parameters (d), 
the shape determination problem is to minimize the following 
objective F: 
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subject to the PDE constraints in the domain Ω(d), electric 
boundary ΓE and  magnetic boundary ΓM : 

         (2)  

 
where fi is the computed eigen-frequency of the ith mode and 
fi* is the corresponding measured eigen-frequency. Hi is the 
magnetic field for the ith eigen-mode. ε is the permittivity and 
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µ is the permeability.  Note that eigenvalue 
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where c is the speed of light. 

To solve the above PDE constrained optimization problem, 
we use reduced space method [1].  We compute the design 
sensitivities using a continuous adjoint approach [2][3].  Given 
the cavity shape, we solve the forward problem (i.e., the above 
PDE problem) [2] and adjoint problems. We compute the 
reduced gradient through integral equations evaluated at the 
boundary of the cavity. All of these have been implemented in 
our parallel finite element based code Omega3P []. We will 
discuss in details how we solve the forward problem, the 
adjoint problem and how we evaluate the reduced gradient. 

B. The Forward Problem 
There have been extensive studies on how to numerically 

solve the harmonic Maxwell’s equations (2). The use of 
Nedelec edge elements [] guarantees that solutions of the 
discretized problem from (2) with nonzero λ are divergence-
free and physical [4][5]. In our simulations, we used a set of 
higher-order Nedelec type elements [6] to discretize (2) in 
Omega3P.  If we expand the magnetic field H with the basis 

function set { i

!

N } as follows: 

                                   (3) 

 
We will get the following eigenvalue problem from the 

finite element procedure: 
 

                 (4) 

 
Note that matrix K and M are symmetric while M is also 

positive definite.  In the end-to-end accelerator cavity system 
simulations, these matrices can each be of size corresponding 
to 100’s million of degrees of freedom. An parallel shift-and-
invert Lanczos method is implemented in Omega3P to solve 
(4) in the parallel computers [8][9]. 

C. The Adjoint Problem  
Let us consider only one frequency and the Lagrangian 

functional is   

             (5) 

where T, ξ, ΛM and ΛE are the adjoint variables.  To obtain 
the adjoint system, we take the variation of the Lagrangian 
with respect to state variable H and require that the result 
vanish. We will get the following adjoint problem: 

 

                (6) 

We use the same set of the basis function set { i

!

N } to 
expand the adjoint variable T: 

                                            (7) 

And we get the following algebraic equation: 
 

                          (8) 

where (λ, c) is the eigenpair. By multiplying ct on the both 
size of the first equation and comparing to the state eigenvalue 
problem in (4), it immediately gives us that ξ is equal to zero. 
Along with the second equation, we get that  

 
                               (9) 

 
Note that we did not explicitly enforce the divergence-free 

condition of H field in the Lagrangian. This is because we use 
the Nedelec elements which guarantee that the corresponding 
H is divergence free for a nonzero eigenvalue. This is also true 
for the adjoint variable T. This point can be seen by taking 
divergence of the first equation in (5).  

For the case that there are multiple frequencies involved in 
the objective function (1), we will multiple adjoint systems 
with each adjoint system corresponding to one eigenpair. 

D. Reduced Gradient Computation 
According to [3], we can write out the reduce gradient to be 

the following: 
 

 (10) 

 
where Vi is the so-called design velocity, namely, the 
derivative of the boundary coordinate with respect to a 
deformation parameter. ∇⋅n is the mean curvature and the 
normal derivative n⋅∇ operates on the term in square brackets. 
In the simulations,  the second term in (10) often vanish either 
because there is no symmetry in the simulated cavity or 
because (Vi⋅n) is zero.   

E. Parallel Implementation 
In determinating the deformed shape of an ideal cavity, we 

first create the CAD model of the ideal cavity. From the CAD 
model, we generate tetrahedral mesh in the domain using 
mesh generation tool cubit [13] and save the mesh in NetCDF 
[14] format.  We used CFSQP [15] as the optimization engine 
which only requires a function to evaluate the objective 
function and a function to compute the gradient. In order to 
evaluate the objective function (1), we solve the forward 
eigenvalue problem in parallel due to large problem size. In 
computing the gradients, we get the adjoint variables using (9) 
and evaluate the gradient (10) using Gaussian ineetrals. We 
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replicate the optimization engine is in each MPI process due to 
a relatively small number of deformation parameters. In 
evaluating (10), we compute design velocity analytically. 
Once we get a new set of deformation parameters, we move 
the mesh analytically for the next step of the optimization. 
 

III. EXPERIMENTS 
In this experiment, we has a single cell from TDR cavity of 
International Linear Collider[] as shown in Figure 2. We 
consider two types of deformations. One is so-called XY-
deformation to make the xy cut-plane of the cell from circular 
shape to an elliptical shape. It controlling parameter is denoted 
as d1. The other type is Z-deformation and it introduce 
different cell length for the left cup of the cell. Its controlling 
parameter is denoted as d2. Figure 3 and 4 illustrates the two 
types of the deformation, respectively. 

 
Figure 2. The ideal shape of a single cell from TDR cavity 

and its mesh. 

 
Figure 3. The elliptical shape of the xy cut-plane of a 

deformed cell. 

 
Figure 4. The z-cut plane of the deformed cell. 

 
In this example, we used 23K tetrahedral mesh and linear 

element and wanted the first pair of the dipole modes to be 
1.823896082168882 GHz and 1.824157787219089 GHz. Note 
that the above frequencies correspond to the first dipole pair of 
the deformed cell with the both XY-deformation parameter 
and Z-deformation parameter being 100 micron. We assigned 
the initial guess of d1 and d2 to be 10 micron. The two dipole 
modes have frequency of 1.824730649724285 GHz and 
1.824863516314319 GHz, respectively. After 13 optimization 
iterations, we got that the frequencies of the dipole modes 
being 1.823896071983175 GHz and 1.824157795319187 
GHz, respectively while d1 is 100.005 micron and d2 is 
100.000 micron. Note that the frequencies at the optimal point 
are very close to the targeted values.  

This proof-of-concept example gives us the confidence that 
we have a correct approach to tackle the shape uncertainty in 
ILC cavity and further study of the whole ILC cavity with 
different patterns of deformations will lead to great insight to 
actual beam kick due to HOM in the operation. 

IV. SUMMARY 
A realistic superconducting RF cavity has its shape 

deformed comparing to its designed shape due to the loose 
tolerance in the fabrication process and the frequency tuning 
for its accelerating mode. A PDE-constrained optimization 
problem is proposed to determine the deformation of the 
cavity. A reduce space method is used to solve the PDE-
constrained optimization problem where design sensitivities 
were computed using a continuous adjoint approach.  A proof-
of-concept example is demonstrated in which the deformation 
parameters of a single cavity-cell with two different types of 
deformation were computed. 
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