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Abstract: Two paradigms for the origin of electroweak superconductivity are a weakly cou-

pled scalar condensate, and a strongly coupled fermion condensate. The former suffers from

a finetuning problem unless there are cancelations to radiative corrections, while the latter

presents potential discrepancies with precision electroweak physics. Here we present a frame-

work for electroweak symmetry breaking which interpolates between these two paradigms, and

mitigates their faults. As in Little Higgs theories, the Higgs is a pseudo-Nambu Goldstone

boson, potentially composite. The cutoff sensitivity of the one loop top quark contribution to

the effective potential is canceled by contributions from additional vector-like quarks, and the

cutoff can naturally be higher than in the minimal Standard Model. Unlike the Little Higgs

models, the cutoff sensitivity from one loop gauge contributions is not canceled. However,

such gauge contributions are naturally small as long as the cutoff is below 6 TeV. Precision

electroweak corrections are suppressed relative to those of Technicolor or generic Little Higgs

theories. In some versions of the intermediate scenario, the Higgs mass is computable in terms

of the masses of these additional fermions and the Nambu-Goldstone Boson decay constant.

In addition to the Higgs, new scalar and pseudoscalar particles are typically present at the

weak scale.
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1. Introduction

The origin of electroweak superconductivity is the central issue in high energy particle physics.

The minimal Standard Model accounts well for this phenomena, and is in agreement with

current particle physics experiments. However, because scalar masses are quadratically sen-

sitive to short distance physics, the required value of the Higgs expectation value is produced

by finetuning the mass squared parameter in the Higgs potential to a precision of order

(1 TeV/Λ)2, where Λ is the scale of new physics. Here a TeV is the “’t Hooft scale” [1] at

which new physics must come in if finetuning is to be avoided. The “little hierarchy problem”

is that the success of the Standard Model in predicting the value of precision electroweak ob-

servables is only guaranteed if Λ is at least several TeV. Thus either finetuning of physical

parameters is acceptable in nature, or we must seek some clever sort of new physics which

reduces the sensitivity of the Higgs potential to short distance physics but does not produce

large precision electroweak corrections. The canonical example of such a clever theory is the

Minimal Supersymmetric Standard Model (MSSM). Since there is no unambiguous evidence

for supersymmetry, and since weak scale supersymmetry entails many new puzzles, it is worth

searching for alternatives.

In this paper we address the little hierarchy problem in a non-supersymmetric model

which has minimal impact on precision electroweak measurements. We model the Higgs as a

pseudo-Nambu-Goldstone boson (PNGB), as in Composite Higgs (CH) [2–5] and Little Higgs

(LH) models [6–13]. CH models interpolate between strongly coupled and weakly coupled

electroweak symmetry breaking theories, and resemble the minimal Standard Model in a

decoupling limit where the PNGB decay constant f is large compared with the Higgs vev v.

In the limit where f ≈ v, the symmetry breaking sector is strongly coupled at the weak scale,

as in technicolor [14,16,17]. The innovation of the LH models is a natural mechanism for v2

to be less than f2 by a loop factor of order 1/(4π)2. The LH mechanism requires new gauge

bosons, scalars and fermions at or below the scale f , which cancel one loop quadratically

divergent corrections to the Higgs mass squared. These new particles can give tree level

corrections to precision electroweak observables, which are of about the same size as one

loop corrections in the minimal Standard Model, and which produce potential experimental

discrepancies. The largest such corrections come from the new bosons [18–28], although there

are natural mechanisms for suppressing these corrections [26,29–31].

In LH models, the motivation for the new bosons is much less compelling than the mo-

tivation for the new fermions, and the price paid for their introduction is rather high. The

new bosons have couplings to the Higgs which naturally cancel the one loop quadratic di-

vergences from the gauge sector. However, the largest radiative contributions to the Higgs

potential arise not from the gauge bosons but from the top quark, due to both its large

Yukawa coupling and the multiplicity of states. Numerically, the top contribution dominates

the gauge contribution to the quadratic sensitivity by a factor of about 10. With the top

contribution uncanceled, the cutoff of the theory would have to be about 2 TeV to maintain

naturalness. Canceling the top contribution allows the cutoff to be raised to about 6 TeV,
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which is high enough to suppress precision electroweak corrections from cutoff scale physics

to experimentally acceptable levels1. Furthermore, the constraints from precision electroweak

corrections on new bosons are much more severe than the constraints on new fermions, due

to the fact that new bosons can give tree level contributions to many electroweak observables.

Thus eliminating the new gauge bosons eliminates a potentially dominant source of precision

electroweak corrections. In addition, model building for a UV completion is much simpler

without an extended electroweak gauge symmetry. We therefore propose an “intermediate”

Higgs (IH) model, where the one loop cutoff sensitivity from the top quark contribution to the

potential is canceled by heavy quark states, but the gauge contribution is left uncanceled. In

the IH model, the decay constant f can be as large as 5 times v without finetuning. One then

has an effective theory with a cutoff below 6 TeV, which is not finely tuned, as long as new

quark states are lighter than 2 TeV. Relative to technicolor-like models, precision electroweak

corrections are suppressed by a factor of order (v/f)2. Since the precision electroweak cor-

rections in technicolor theories are typically only too big by a factor of a few [32–36], such a

suppression factor is sufficient2.

We work out some of the details of a few simple IH models. An economical model, with

only one additional weak scale boson, has the symmetry breaking pattern SU(4)/Sp(4). In

this model there is a new pseudoscalar with a mass of order the weak scale, which nontrivially

impacts Higgs search strategies. Another interesting model has symmetry breaking pattern

SU(5)/SO(5). This model contains 10 additional scalar states at the weak scale, which are

electroweak triplets and singlets. A softly broken custodial SU(2)c symmetry constrains the

potential and protects the T (or ρ) parameter against large corrections. Only the Higgs

doublet gets a vev, and the Higgs mass is calculable in terms of the masses of new quark

states. We also feature a two Higgs doublet model based on the coset space SU(6)/Sp(6), in

which the T parameter is similarly protected. In addition to the new Higgs doublets, there

are additional charged and neutral scalar states.

This paper is organized as follows. In section 2, we discuss the blueprint for constructing

this class of models. Our three examples are presented in section 3. We devote section 4 to

mention some implications of the models on various collider signatures. Section 5 reviews the

relevant experimental constraints from, e.g., precision electroweak measurements and flavor

changing neutral currents. Section 6 discusses ways to UV complete these types of models.

A summary is offered in section 7.

2. The Intermediate Higgs

2.1 The Blueprint

We want to realize the Higgs as a pseudo-Nambu Goldstone boson whose low energy interac-

1With a cutoff as low as 6 TeV, it is still necessary to assume that cutoff scale physics does not induce large

flavor, CP or custodial SU(2)c violation.
2In certain extended technicolor theories with very large flavor symmetries and numerous PNGBs, the

precision electroweak corrections are much larger.
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tions are described by an effective chiral lagrangian. We begin by embedding the electroweak

gauge group SU(2)L⊗U(1)Y into an approximate global symmetry group G, which is sponta-

neously broken to H. H is required to contain the diagonal, approximate “custodial” SU(2)c.

The space of nearly degenerate candidate vacua is given by the coset G/H. The various small

terms which explicitly break the symmetries will determine the “vacuum alignment,” that is,

which of the candidate vacua is the exact minimum of the potential. Electroweak supercon-

ductivity is thus an issue of vacuum alignment. When H aligns so that the SU(2)L ⊗ U(1)Y
gauge group is not Higgsed, the PNGBs which parameterize the coset space G/H should

contain at least one field with the electroweak quantum numbers of the Standard Model

Higgs doublet. The vev of this doublet parameterizes the orientation of the ground state with

respect to SU(2)L ⊗ U(1)Y . In the limit where this vev is small compared with the PNGB

decay constant f , the weak scale physics is weakly coupled and similar to a minimal extension

of the Standard Model with an extended scalar sector.

A key requirement is that a remnant approximate custodial symmetry SU(2)c, which is

the diagonal subgroup of SU(2)L ⊗ SU(2)R, is not broken by the vacuum alignment. The

custodial SU(2)c suppresses corrections to the experimentally verified relation mz = mw cos θ.

The Standard Model violates custodial symmetry by Yukawa couplings and the hypercharge

coupling. Non-standard one loop radiative corrections to the ρ = 1 relation are tolerable

if suppressed by the product of a loop factor and (v/f)2, or if suppressed by a loop factor

containing a sufficiently small coupling. Models in which corrections to ρ = 1 occur at tree

level and are suppressed only by O(v/f)2 corrections are unacceptable in IH models, since

IH models are finely tuned unless v/f >∼ 0.2.

The Higgs transforms nonlinearly under G, and so its potential arises entirely from small

terms which break G explicitly, such as the SU(2)L × U(1)Y electroweak gauge interactions,

and the Yukawa interactions. Symmetry breaking interactions which are important at short

distance are called “hard”, and renormalization of the quantum corrections proportional to

these couplings will require the introduction of new, incalculable parameters. The small

symmetry breaking terms, such as the Yukawa couplings of the light quarks and leptons and

the weak gauge couplings, are “hard”. The associated new parameters are not calculable

within the effective theory, but being proportional to small couplings, they are naturally

small.

Collective symmetry breaking [6, 37] is a mechanism for “soft” (only important at low

energy) breaking of a nonlinearly realized symmetry. The basic idea of the LH application of

collective symmetry breaking is that two or more couplings are required to be nonzero in order

to break all the symmetry which protects the Higgs mass against radiative corrections [6, 8].

Then quadratically divergent contributions to the Higgs mass require contributions from more

than one coupling, and are not present at one loop. To apply the collective symmetry breaking

mechanism to the top mass, we couple vector-like charge 2/3 quarks to the Higgs in a manner

which respects a symmetry under which the Higgs transforms nonlinearly. The top Yukawa

coupling arises from additional terms which mix the top with these additional fermions3.
3This mass generation mechanism is similar to Frogatt-Nielson models of flavor [38] and the top see-saw
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The associated symmetry breaking induces calculable corrections to the effective potential

for the PNGBs which are independent of short distance dynamics. The main experimental

consequence is the presence of at least one new charge 2/3 quark with vector-like electroweak

quantum numbers. Corrections to the quadratic term in the Higgs potential are proportional

to the mass squared of this quark, and so in a natural theory at least one new quark should

be lighter than about 2 TeV.

3. Sample Intermediate Higgs Models

We give here several examples of intermediate Higgs models, which illustrate distinct pos-

sibilities for the spectrum of weak scale scalars. The common features include new charge

2/3 quarks, new scalars, and custodial SU(2)c constraints on the scalar potential. Custodial

SU(2)c, and constraints from the ρ parameter play a significant role in determining an accept-

able model. In particular, our second and third examples demonstrates why it is not sufficient

to identify an approximate SU(2)R symmetry. Even if the global symmetry G contains an ap-

proximate SU(2)R symmetry, it is necessary that a diagonal SU(2)c subgroup of the SU(2)R
and the electroweak SU(2)L is unbroken in the ground state. In the simplest model, where

the PNGBs parameterize the coset space SU(4)/SP (4), the preservation of SU(2)c is auto-

matic. In models with additional electroweak doublets and/or triplets, generally there exist

alignments which preserve the electromagnetic U(1) while breaking the SU(2)c. Since SU(2)c
is always explicitly broken by the sector which generates the top Yukawa coupling, and since

vacuum alignment is affected by the Yukawa sector contribution, models with additional weak

scale doublets or triplets are very constrained. Our second example, based on SU(5)/SO(5),

illustrates how a model with additional weak scale triplets can avoid tree level corrections

to the ρ parameter. Our final example, based on SU(6)/SP (6), contains two Higgs dou-

blets. Such IH models generically preserve SU(2)c only for a particular ratio of the two vevs.

However our SU(6)/SP (6) model actually embeds weak hypercharge into an approximate

(SU(2)R)2 subgroup of SU(6), ensuring that any ratio of the two Higgs vevs preserves a

remnant SU(2)c, and there are no tree level corrections to ρ.

3.1 The SU(4)/Sp(4) model

We describe in this section a simple model based on coset space G/H = SU(4)/Sp(4). Under

SU(2)L ⊗ SU(2)R, the five PNGBs transform as

(1, 1) ⊕ (2, 2) (3.1)

U(1)Y is a subgroup of SU(2)R. Under SU(2)L ⊗ U(1)Y , the PNGBs transform as

10 ⊕ 2±1/2 (3.2)

giving a real electroweak singlet and a standard Higgs doublet. The vev of this doublet

preserves the custodial SU(2)c symmetry – the diagonal subgroup of SU(2)L ⊗SU(2)R. This

mechanism [39]
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guarantees that ρ = 1 at tree level. We may use a nonlinear sigma model to describe the

low energy effective theory. We can describe the vacuum orientation via an antisymmetric

unitary matrix Σ, which transforms under SU(4) as

Σ → V ΣV T (3.3)

where V is an SU(4) matrix. It is convenient to specify a background field Σ0,

Σ0 =

(

iσ2

iσ2

)

. (3.4)

which is invariant under the SP (4) subgroup containing SU(2)L ⊗ SU(2)R. In this back-

ground, the unbroken SP (4) generators T satisfy

TΣ0 + Σ0T
T = 0 (3.5)

and the broken generators X satisfy

XΣ0 − Σ0X
T = 0. (3.6)

The Nambu-Goldstone bosons are fluctuations about this background in the direction of the

broken generators, Π ≡ πaXa. They are parameterized as

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/f Σ0. (3.7)

This non-linear sigma model contains momentum dependent interactions suppressed by the

decay constant f . The cutoff, Λ, may be as as high as 4πf , where the model becomes strongly

coupled. The weak gauge group SU(2)L × U(1)Y ⊂ SU(4) is generated by

Qa =

(

σa/2
)

, Y = diag(0, 0, 1,−1)/2. (3.8)

The overall global custodial symmetry is generated by

Ra =

(

σa/2

)

. (3.9)

These generators remain unbroken in the reference vacuum Σ = Σ0. The PNGB matrix may

be written as

Π =
1

2
√

2

(

A H

H† −A

)

. (3.10)

Here A and H are two by two matrices, with

A =

(

a

a

)

H =

(

h0 + ih3 ih1 + h2

ih1 − h2 h0 − ih3

)

. (3.11)
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Here a is the electroweak singlet and the matrix H must satisfy

σ2H − H∗σ2 = 0 , (3.12)

and the fields hi are real.

Using the gauged SU(2)L to eliminate the unphysical NGB’s h1,2,3, vacuum misalignment

with respect to the weak gauge interactions can be parameterized by an angle θ = 〈h0〉 /
√

2f .

When a = 0, the sigma field is

Σ =











0 c 0 is

−c 0 −is 0

0 is 0 c

−is 0 −c 0











, (3.13)

where c = cos θ and s = sin θ. Note that this is invariant under the custodial SU(2)c generated

by Ra + Qa.

3.1.1 Gauge Interactions

The gauge couplings explicitly break the SU(4) global symmetry . The unique two derivative

term for the non-linear sigma model is

f2

4
tr|DµΣ|2 (3.14)

where the covariant derivative of Σ is given by

DΣ = ∂Σ −
{

igW a(QaΣ + ΣQaT ) + ig′(Y Σ + ΣY T )
}

(3.15)

and g, g′ are the couplings of SU(2)L and U(1)Y , respectively. Misalignment of the vacuum

will give tree level gauge boson masses

m2
w =

g2

2
f2s2 m2

z =
g2 + g′2

2
f2s2 . (3.16)

The gauge interactions will lead to a quadratically divergent one loop correction to the poten-

tial for Σ. This divergence may be absorbed into a counterterm for the following interactions

−cg2f4
∑

a

tr [(QaΣ)(QaΣ)∗] − cg′
2
f4 tr [(Y Σ)(Y Σ)∗] . (3.17)

Here c is a UV sensitive constant which parameterizes the leading gauge contribution to the

effective potential for the PNGBs. Dimensional analysis gives c of order 1, while a technicolor-

like UV completion of the model suggests c is positive, that is, the gauge contribution to

vacuum alignment prefers vanishing gauge boson masses4.

4The analogous term in the effective low energy description of QCD gives the (positive) mass squared

splitting between the π+ and π0, see also [15].
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3.1.2 Yukawa Interactions

We construct the Yukawa sector in a manner conducive to building a UV completion, following

reference [40]. The interactions are

Lt = −iλ1fΨΣΨ + λ2f q3Q + λ3f T t3 + h.c. (3.18)

where we have defined

Ψ ≡
(

Q B T
)

, Ψ ≡







Q

T

B






, (3.19)

to be SU(4) quartets and we use a notation where all fermions are left handed Weyl fields.

Here, Q is a doublet under SU(2)L. T and B are SU(2)L singlets. In addition to Ψ,Ψ we also

have all the usual three generations of quark and lepton fields, which we take to be SU(4)

singlets. The left handed top quark will be a mixture of the charge 2/3 fields in Ψ and the

quark doublet

q3 ≡
(

qt qb

)

(3.20)

while the left handed anti-top will be a linear combination of charge -2/3 fields in Ψ and the

singlet

t̄3. (3.21)

Other interactions5 can be included to generate the light quark and lepton Yukawa couplings.

A spurion analysis reveals the collective symmetry breaking mechanism of this sector.

In the absence of the gauge couplings and couplings λ1,2,3, the global symmetry is actually

SU(4)3, with the fields Ψ,Ψ, and Σ transforming under different SU(4)’s. The λ1 coupling

breaks the SU(4)3 to a diagonal SU(4). The coupling λ2 partially breaks the SU(4) under

which Ψ transforms and λ3 partially breaks the SU(4) under which Ψ transforms. Only

the collective application of all three couplings completely breaks the global symmetries and

allows the top Yukawa to be nonzero. The quark fields have the following quantum numbers

SU(3)c SU(2)L U(1)Y U(1)a
q3 3 2 1/6 -1

t3 3̄ 1 -2/3 -1

Q 3 2 1/6 -1

B 3 1 -1/3 1

T 3 1 2/3 1

where U(1)a is the subgroup of SU(4) under which the electroweak singlet transforms as a

Goldstone boson. The charge 2/3 quark mass matrix

5One modification, for example, requires adding an additional coupling, e.g. λ4fb̄B, to generate the bot-

tom Yukawa coupling with the seesaw mechanism. The top-bottom quark mass difference can be explained

through a small value for λ4. Such a setup may generate non-trivial consequences for the precision electroweak

observables, Rb and ALR, and b-factory physics.
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Qt T t3

Qt iλ1f cos θ −λ1f sin θ 0

T −λ1f sin θ iλ1f cos θ λ3f

q3 λ2f 0 0

depend on the Higgs’ vacuum expectation value

θ = 〈h〉/(
√

2f). (3.22)

In the small θ limit, the effective theory contains the usual top Yukawa coupling to the Higgs

doublet. To find this Yukawa coupling, we expand equation 3.18 to first order in the Higgs

Lt ⊃ −if(−λ1Qt + λ2q3)Qt − ifT (−λ1T + λ3t3) (3.23)

− 1√
2
λ1QthT − 1√

2
λ1ThQt.

Here Qt marries the linear combination (−λ1Qt + λ2qt)/(λ
2
1 + λ2

2)
1/2. T marries (−λ1T +

λ3t3)/(λ
2
1 + λ2

3)
1/2 to become massive. These heavy quarks are integrated out. In the limit

v/f ≪ 1, the light combinations

tL ≡ λ2Qt + λ1qt
√

λ2
1 + λ2

2

tR ≡ λ3T + λ1t3
√

λ2
1 + λ2

3

(3.24)

have the mass term
λt√
2
〈h〉tLtR (3.25)

and the top Yukawa coupling is6

λt =
λ1λ2λ3

√

λ2
1 + λ2

2

√

λ2
1 + λ2

3

. (3.26)

In the intermediate limit, this treatment of the top Yukawa is not adequate, but the require-

ment of all three couplings to generate a mass for the top quark holds for any value of θ, as

can be seen by noting that if any one of λi vanishes so does the determinant of the charge

2/3 quark mass matrix.

3.2 A Potential for the Singlet

The Yukawa and gauge interactions, equations 3.15 and 3.18, preserve a global U(1)a, under

which the electroweak singlet a transforms as a Nambu-Goldstone boson. If massless, this

singlet would be ruled out by searches for K → π + a. This symmetry is broken by the QCD

anomaly, but this will not give a a sufficiently large mass. To increase the mass of a we add

a symmetry breaking term

Lm = −f3 tr[M †Σ] + h.c. (3.27)

6Note that the factor of
√

2 in equation 3.25 comes from the different conventions used to normalize real

and complex scalar fields.
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where

M ≡ mΣ0 . (3.28)

This term provides a potential for both a and h. We assume this term is sufficiently large

to avoid experimental constraints on a and sufficiently small so that electroweak symmetry

breaking can occur without fine tuning.

We will take m to be real and positive7. If m is large enough, the Higgs will dominantly

decay into a pairs. This non-trivial decay rate has profound consequences for collider sig-

natures, and could affect the bounds from the Large Electron Positron Collider (LEP) on

the Higgs mass. To this order, the scalar potential is nearly invariant under a → −a. The

interactions 3.18 give the a boson an axion-like coupling to quarks and gluons, and a will

decay to two quarks or two gluons. Whether of not a significant fraction of these decays will

be into b quarks is a model dependent question [41]. Depending on the a mass, the a particle

will predominantly manifest as either one jet or two jets. We discuss some consequences in

section 4.

3.3 Vacuum Alignment, the Higgs Mass, and Fine Tuning

In the subsections above, we detailed the interactions interactions needed to break SU(4)

global symmetry and select a preferred alignment for the new vacuum. In this section, we

consider the Higgs effective potential at one loop. The radiative corrections from the top

sector dominate, being enhanced by color, fermion and symmetry multiplicities as well as an

order one top Yukawa coupling.

In general, the one loop radiative corrections to the potential may be divided into quadrat-

ically divergent, logarithmically divergent, and soft contributions. The divergent contribu-

tions from the fermion sector are respectively

−3Λ2

8π2
tr M †M, (3.29)

− 3

16π2
tr(M †M)2 ln(M †M/Λ2), (3.30)

where M is the fermion mass matrix. Note that since the Yukawa interaction does not break

U(1)a, the Yukawa contribution to the effective potential is independent of a. Note also that

∂

∂θ
TrM †M = 0

∂

∂θ
Tr(M †M)2 = 0 (3.31)

This ensures that except for a constant term, the one loop contribution to the potential from

this sector is insensitive to the cutoff, and is given by the expression

−
∑

i

3|m2
i |2

16π2
log |m2

i | (3.32)

7Note that a more general choice of the matrix M will not affect our conclusions, as long as the spurion is

gauge invariant. Phases in M can simply be absorbed by redefining Σ. Allowing the eigenvalues to be unequal

is possible, but does not significantly change the low energy phenomenology, so we use equal eigenvalues for

simplicity.
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where |m2
i | are the eigenvalues of the matrix m2/3m

†
2/3 .

Besides the top sector, there are other radiatively generated corrections to the Higgs’s

potential. These contributions are parametrically not as large as top contributions and are

UV sensitive. We can analyze the vacuum alignment by minimizing all of the contributions

to the potential

V ∼ f4
(

G(g2, c, θ) + F (λ1, λ2, λ3, θ) + E(m/f, θ, a/f)
)

(3.33)

where G, F and E are respectively the leading contributions from the gauge interactions,

Yukawa interactions, and the spurion of eq. 3.27. The most important gauge contributions to

the vacuum alignment are eq. 3.17. The UV sensitivity of the one-loop correction is absorbed

by the unknown parameter c, which is expected to be positive and of order 1. Similarily, the

spurion sector contains a small explicit symmetry breaking parameter m which will play a

role in determining the Higgs’ mass and in determining the nature of the fine-tuning in this

theory. Note that the contributions G and F are independent of a, and E, and therefore V ,

is clearly minimized for a = 0. We thus set 〈a〉 = 0 for the remainder of the analysis.

This model contains a physical Higgs boson, whose couplings to the gauge bosons ap-

proach those of the Standard Model Higgs in the θ → 0 limit. The traditional Higgs search,

e.g. at LEP, which assumes Higgs production via the Higgs−Z−Z coupling should therefore

place constraints on this model. The mass of the physical Higgs boson depends on f , the

λi parameters, and m. The top mass and the heavy quark masses are a function of f , and

the λi parameters. We find that the Higgs mass in this model is typically below 120 GeV.

To compute the Higgs mass to leading order, we choose f , and fix θ so that the W and Z

masses come out to their observed values. We then fix the ratios λ2/λ1 and λ3/λ1 to some

typical values of order one, numerically find the eigenvalues of the charge 2/3 mass matrix,

and determine λ1 so that the lightest eigenvalue is at 180 GeV. We then choose some values

for m and compute c so that the potential is indeed minimized at the necessary value of

θ. We then compute the Higgs mass by numerically computing the second derivative of the

Higgs potential with respect to θ at the minimum. To check for finetuning, we compute the

sensitivity of sin θ to the values of the free parameters c and m, holding all other parameters

fixed. If small changes in c or m, lead to large changes in the minimum of the potential we

then have to finely tune these parameters to achieve the observed weak boson masses. We

thus evaluate numerically “sensitivity parameters” Sc and Sm [42]

Sc ≡
∂ log sin 〈θ〉

∂ log c
(3.34)

and

Sm ≡ ∂ log sin 〈θ〉
∂ log m

. (3.35)

The amount by which the parameters c and m have to be finely tuned in order to produce

the observed W mass is of order 1/Sc,m. Values of Sc,m which are greater than 10 will be

regarded as indicative of unacceptable fine tuning. In principle we should also check for
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Figure 1: Contour Plot of the Higgs mass in SU(4)/SP(4) model, with the top mass fixed at 180

GeV, and λ1/λ3 and λ1/λ2 fixed to 1, for various values of sin θ ≡ v/
√

2f and the symmetry breaking

spurion m. The black regions either have negative values for the parameter c or require more than

10% finetuning of the parameters c or m.

sensitivity with respect to all the parameters, however when the minimum of potential is not

excessively sensitive to m, c we do not expect it to be excessively sensitive to other parameters

such as the λi either. Note that c and m are renormalized parameters.

Since a primary goal of the IH is to eliminate sensitivity to short distance physics, and

since the weak scale has order one sensitivity to the parameter c, we also should check the

sensitivity of the renormalized parameter c to short distance physics. To check the sensitivity

of c to short distance physics would require knowledge of the UV physics8. One model

would be to eliminate such sensitivity by including additional gauge bosons, as in [6], and

check for sensitivity to the additional gauge boson masses. The results suggest that such

sensitivity is less than 10 provided the new gauge boson masses are less than 6 TeV. This

suggests that avoiding finetuning implies additional physics at a scale below 6 TeV. In any

case, the nonrenormalizable nature of our effective theory implies new physics below a scale

of approximately 4πf . We list some ideas for such a UV completion in section 6. Similar

8As a crude check, one could simply use a naive cutoff as a toy model of short distance physics, as was done

in ref. [43], and check for sensitivity to the value of the cutoff.
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Figure 2: Masses (GeV) of heavy charge 2/3 quarks in the SU(4)/SP(4) model, as a function of

sin θ ≡ v/
√

2f , with λ1/λ3 and λ1/λ2 fixed to 1.

statements apply to the other parameters on which the weak scale depends, such as λi.

We find that when m is small, for any values of sin θ other than 0 or 1, the sensitivity

parameter Sc is greater than 10, while Sm is negligibly small. Since the parameter c is then

calculable in terms of θ, the Higgs mass is predicted in this limit in terms of θ and the ratios

λ2/λ1 and λ3/λ1 . We find that in this limit the Higgs mass is mostly sensitive only to the

mass of the next lightest charge 2/3 quark, the T ′, and is lighter than 114 GeV unless the

next lightest quark is heavier than about 9 TeV. When the Higgs is heavier than 114 GeV,

Sc is always above 260. The reason for the light Higgs and 0.4% finetuning is that the θ

dependence of the functions G and F is very similar, unless the logarithms in F are large.

For small θ both G and the largest terms in F are proportional to sin2 θ. We conclude that

if we are to avoid finetuning, we must assume that m is large enough to have an effect on the

alignment which is comparable to the effects of the gauge and Yukawa couplings. When m is

moderately large, the function E, which is proportional to cos θ, plays a role in determining

the alignment. For a range of values of m, intermediate θ is easy to obtain without fine

tuning. For non-finely tuned values of the parameters, the Higgs mass is between 90 and 130

GeV.

In figure 1 we give a contour plot of the Higgs mass as a function of m and sin θ, in the

region where the the sensitivity parameters Sc,m are less than 10 and c is positive, with the

top mass fixed at 180 GeV, and λ1/λ3 and λ1/λ2 fixed to 1. For the same ratios of λ1/λ3

and λ1/λ2, in figure 2 we show the masses of the new charge 2/3 quarks, as a function of

sin θ. We see that when the λ’s are equal, intermediate values of θ allow for a Higgs mass

in the 100-120 GeV range without finetuning. We have checked that these results are robust
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against order one variations in the ratios of λ1,2,3, with the Higgs mass always below 130 GeV

in non-finetuned regions of parameter space.

3.4 The SU(5)/SO(5) Model

This model has 14 PNGBs, transforming under SU(2)L ⊗ SU(2)R as

(2, 2) + (3, 3) + (1, 1) (3.36)

and SU(2)L ⊗ U(1)Y as

10 ⊕ 2±1/2 ⊕ 30 ⊕ 3±1 . (3.37)

The presence of doubly charged scalar bosons at the weak scale is an interesting feature of this

model, which could be an important clue into the composite nature of the Higgs. The PNGBs

may be described by a symmetric unitary 5 × 5 matrix valued field Σ, which transforms as

Σ → V ΣV T under SU(5) transformations V .

3.4.1 Gauge Interactions

The SU(2)L electroweak generators are embedded into SU(5) as

Qa =

(

σa/2

−σa∗/2

)

, (3.38)

while the generators of the U(1)Y are given by

Y = diag(1, 1, 0,−1,−1)/2 . (3.39)

The generators of the approximate SU(2)R are

R1 =







−iσ2/2

0

iσ2/2






R2 =







−σ2/2

0

−σ2/2






R3 = Y (3.40)

3.5 Effective Sigma Model

The SU(2)L ⊗ U(1)Y preserving vacuum Σ0 is

Σ0 =







11

1

11






. (3.41)

The Nambu-Goldstone bosons are fluctuations about this background in the direction of the

broken generators, Π ≡ πaXa. They are parameterized as

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/f Σ0. (3.42)
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In this basis, the PNGB matrix may be written

Π =









η√
40

1 +
~φ·~σ√

8
hT

2
φ̃√
2

h∗

2 − 2η√
10

h̃
2

φ̃†
√

2
h̃†

2
η√
40

1 +
~φ·~σ∗
√

8









(3.43)

where φ̃ is a complex symmetric two by two matrix describing an electroweak triplet with

hypercharge one,

φ̃ =





φ̃++ φ̃+√
2

φ̃+√
2

φ̃0



 (3.44)

and ~φ describes a real electroweak triplet with hypercharge 0. Note that the 6 components of

φ̃ and 3 components of ~φ together transform as a (3,3) under SU(2)R⊗SU(2)L. The remnant

custodial SU(2)c generated by Ra +Qa will be preserved in a vacuum where the only PNGB’s

with vevs are h0, η, and 〈φ3〉 =
〈

φ̃0

〉

. Note that small spurions which do not arise from any

gauge interactions will be required to provide a potential for the η, which does not get a mass

from the gauge interactions9. Assuming preservation of the SU(2)c generated by Ra + Qa,

the alignment of the vacuum SU(2)L ⊗U(1)Y preserving direction may be parameterized by

three angles θ, η̂, and φ̂, and sigma field

Σ =



















0 0 0 e2i(φ̂+η̂) 0

0 1
2e−6iφ̂+2iη̂(−e8iφ̂ + cos 2θ) i√

2
e−3i(φ̂+η̂) sin 2θ 0 1

2e−6iφ̂+2iη̂(e8iφ̂ + cos 2θ)

0 i√
2
e−3i(φ̂+η̂) sin 2θ e−8iη̂ cos(2θ) 0 i√

2
e−3i(φ̂+η̂) sin 2θ

e2i(φ̂+η̂) 0 0 0 0

0 1
2e−6iφ̂+2iη̂(e8iφ̂ + cos 2θ) i√

2
e−3i(φ̂+η̂) sin 2θ 0 1

2e−6iφ̂+2iη̂(−e8iφ̂ + cos 2θ)



















.

(3.45)

As in the SU(4)/SP (4) model, in the small angle limit, θ = 〈h〉 /(
√

2f). To leading order

in the weak couplings, the masses of the W and Z bosons are

m2
W =

g2

4
f2(1 − cos 8φ̂ cos 2θ), m2

Z =
g2 + g′2

4
f2(1 − cos 8φ̂ cos 2θ) . (3.46)

Note that in this model SU(2)L ⊗ U(1)Y could be broken by triplet vevs while retaining the

tree level relationship mW = cos θwmZ , due to the fact that proper alignment of the triplet

vevs can still preserve a remnant custodial SU(2)c. However, lowest energy vacuum alignment

will have 〈φ3〉 =
〈

φ̃0

〉

= 0.

The gauge interactions break SU(5) explicitly. One loop renormalization of this model

requires the introduction of spurions

−cg2f4TrQΣQΣ† + h.c. (3.47)
9In the “Littlest” Higgs model [7] this SU(2)L ⊗ U(1)Y was gauged and the associated NGBs were eaten.

However such a new gauge symmetry provides an explicit source of SU(2)R breaking and can lead to difficulties

with precision electroweak corrections.
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and

−cg′2f4TrY ΣY Σ† + h.c. (3.48)

These spurions induce terms in the potential involving θ and φ̃ which are minimized in an

SU(2)L ⊗ U(1)Y preserving direction.

3.5.1 Additional Potential Term

In order to provide mass for the electroweak singlet, we introduce a custodial SU(2)c pre-

serving spurion

ξ1Tr(ΣM) + h.c. (3.49)

with

M =







m211

m1

m211






. (3.50)

In a UV complete model where Σ is a low energy effective description of a fermion condensate,

the term 3.49 could arise from fermion mass terms.

Note that 3.47, 3.48 and 3.49 all give contributions to the potential whose θ dependence

is proportional to cos 2θ = 2 sin2 θ − 1. Such a potential can only stabilize θ at 0 or π/2,

mod π. Motivated by the assumption of a technicolor-like UV completion, we assume that

signs of the parameters are such that these contributions to the potential are minimized at

θ = φ̃ = ~φ = 0.

3.5.2 Yukawa Interactions

As In the SU(4)/SP (4) model, we will rely on UV insensitive radiative corrections from the

top sector to align the vacuum in an SU(2)L ⊗ U(1)Y breaking direction. No finetuning

will be required to obtain an intermediate value of θ, with approximate custodial SU(2)c
preservation and a sufficiently heavy Higgs.

In ref. [7], only a single additional quark is introduced in order to generate the top quark

mass. However this mechanism produced hard breaking of the custodial SU(2)c, and required

an additional custodial SU(2)c breaking spurion in the Higgs potential. The presence of the

light triplets makes breaking of custodial SU(2)c quite dangerous, as the resulting potential

could produce custodial SU(2)c violating triplet vevs, and change the ρ parameter at tree

level. We therefore follow ref. [40], with additional quarks in complete SU(5) multiplets, in

order to generate the top quark Yukawa coupling. That is, we add quarks χ ∼ (Q,T, P ) and

χ̄ ∼ (P̄ , T̄ , Q̄) in complete SU(5) multiplets, which get mass from the Σ field. In a fermion

condensate model of the Σ, such quarks might be composites of the new fermions. The new

quarks have the following gauge quantum numbers.

SU(3)c SU(2)L U(1)Y
Q 3 2 1/6

T 3 1 2/3

P 3 2 7/6
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Figure 3: Plot of the Higgs mass in SU(5)/SO(5) model, with the top mass fixed at 180 GeV, and

various values of λ3/λ1 and λ2/λ1, as a function of sin θ ≡ v/
√

2f .

The top mass arises from the collective effects of three terms:

λ1fχ̄Σχ + λ2f t̄3T + λ3fQ̄q3 + h.c. (3.51)

The charge 2/3 quark mass matrix is

m2/3 = λ1f













1
2e−6iφ̂+2iη̂(−e8iφ̂ + cos 2θ) i√

2
e−3i(φ̂+η̂) sin 2θ 1

2e−6iφ̂+2iη̂(e8iφ̂ + cos 2θ) 0
i√
2
e−3i(φ̂+η̂) sin 2θ e−8iη̂ cos(2θ) i√

2
e−3i(φ̂+η̂) sin 2θ 0

1
2e−6iφ̂+2iη̂(e8iφ̂ + cos 2θ) i√

2
e−3i(φ̂+η̂) sin 2θ 1

2e−6iφ̂+2iη̂(−e8iφ̂ + cos 2θ) λ3/λ1

0 λ2/λ1 0 0













(3.52)

One eigenvalue of this matrix always has absolute value λ1f . In the small θ limit, the other

masses are
√

λ2
1 + λ2

2f ,
√

λ2
1 + λ2

3f , and λ1λ2λ3/(
√

λ2
1 + λ2

2

√

λ2
1 + λ2

3)(θf).

3.5.3 Vacuum Alignment

As in the SU(4)/Sp(4) model, Trm2/3m
†
2/3 and Tr(m2/3m

†
2/3)

2 are both independent of the

vacuum alignment and so the one loop correction to the scalar potential from this sector is

UV insensitive. Furthermore, note that the eigenvalues of the matrix m2/3m
†
2/3 depend only

on θ. The corrections to the effective potential from the top sector favor a nonvanishing θ,

but are insensitive to φ̂ and η̂. One could see this by rescaling χ by Σ†, followed by phase

rotations on t̄3,T̄ , and T , for instance. Since the gauge interactions and spurion terms favor

zero for all the PNGB vevs, only θ is nonvanishing in the ground state. To find the mass of

the physical Higgs boson, we use the same procedure as in section 3.3. We do not obtain the

same results, because, beyond quadratic order in θ, the dependence of the gauge boson masses
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Figure 4: Masses in GeV of the heavy charge 2/3 quarks in the SU(5)/SO(5) model, as a function

of sin θ ≡ v/
√

2f , for several values of λ3/λ1,λ2/λ1.

and charge 2/3 quark masses on θ is not the same in the SU(5)/SO(5) model as they are in

the SU(4)/SP (4) model. Also, because the gauge and mass spurion terms are proportional to

the same function of θ, there is only one free parameter in the determination of the alignment,

other than the λ1,2,3 parameters. A linear combination of c and m, which we call c′, is fixed

by the value of θ. Thus the Higgs mass is calculable as a function of f = v/(
√

2 sin θ) and

the heavy quark masses. We find that no finetuning is required to obtain a minimum of

the potential at an intermediate value of θ with a sufficiently heavy Higgs. The sensitivity

parameter S is defined to be

S ≡ ∂ log mw

∂ log c′
. (3.53)

In Figures 3-5 we plot the Higgs mass, the heavy charge 2/3 quark masses, and S, as a

function of sin θ, for several different values of the ratios λ2,3/λ1, with the top mass fixed to

180 GeV. The masses of the ~φ, n, and φ̃ scalars are not predicted, as these depend on the

eq. 3.49 parameters, and not just on the combination c′. Note that the leading terms in the

resulting potential are even under the Z2 transformations ~φ → −~φ, η → −η, and φ̃ → −φ̃.

These symmetries are broken, however, by the couplings to the quarks, and so all the new

scalars are unstable, with the lightest decaying dominantly into hadrons.

3.6 The SU(6)/Sp(6) Model

This model allows for two Higgs doublets, while preserving the Standard Model prediction

for the ρ parameter at tree level. The nonlinearly realized global symmetry is SU(6), with

an SP (6) preserved by the vacuum. In analyzing the preservation of SU(2)c by the vacuum

alignment it is convenient to focus on an SU(2)L⊗SU(2)R1⊗SU(2)R2 subgroup of the SU(6),

where SU(2)L is the electroweak gauge group, and the custodial symmetry SU(2)c is the
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Figure 5: Sensitivity of electroweak symmetry breaking to the c′ parameter in

the SU(5)/SO(5) model, as a function of sin θ ≡ v/
√

2f , for (λ2/λ1, λ3/λ1) =

(0.7, 0.7), (0.7, 1), (1, 1), (1, 1.4), (0.7, 1.4), (1.4, 1.4). Note that the amount of sensitivity mainly

depends on the value of sin θ, and that for f <∼ 1.2 TeV the required finetuning of the c′ parameter is

no worse than 12%.

diagonal subgroup of SU(2)L ⊗ SU(2)R1 ⊗ SU(2)R2. In a reference vacuum with SU(2)L ⊗
SU(2)R1 ⊗ SU(2)R2 preserved, this model has 14 PNGBs transforming under SU(2)L ⊗
SU(2)R1 ⊗ SU(2)R2 as

(2, 2, 1) ⊕ (2, 1, 2) ⊕ (1, 2, 2) + (1, 1, 1) + (1, 1, 1) (3.54)

To recover the Standard Model hypercharge assignments, we gauge the T3 generator within

each custodial SU(2)c yielding the following PNGB charge assignments under SU(2)L ⊗
U(1)Y :

2±1/2 ⊕ 2±1/2 ⊕ 11 ⊕ 1−1 ⊕ 10 ⊕ 10 ⊕ 10 ⊕ 10 . (3.55)

These goldstone bosons are described by a sigma field transforming as Σ → V ΣV T under

SU(6) transformations, V . The reference sigma field Σ0 is

Σ0 =







σ2

σ2

σ2






. (3.56)

It is well known that models with two light Higgs doublets typically have large flavor

changing neutral currents from Higgs exchange, unless restrictions are placed on the couplings

to the quarks and leptons. One simple way to avoid excessive FCNC is to have only one

doublet couple to fermions of each electric charge. This can be guaranteed by a discrete or a

continuous symmetry, which can either be unbroken or broken softly.
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3.6.1 Gauge Interactions

We embed the electroweak group as

Qa =
1

2







σa






Y = diag(0, 0, 1,−1, 1,−1)/2 (3.57)

The two SU(2)R generators are

Ra
1 =

1

2






σa






Ra

2 =
1

2







σa






(3.58)

The relations between the broken and unbroken generators are the same as in the

SU(4)/Sp(4) model, equations 3.5 and 3.6. The PNGB matrix is

Π =









2√
3
a · 11 H1 H2

H†
1 (− 1√

3
a +

√
2b) · 11 G

H†
2 G† (− 1√

3
a −

√
2b) · 11









(3.59)

where H1,2 are electroweak doublets. The fields G are electroweak singlets which transform

as a bi-doublet under SU(2)R1 ⊗ SU(2)R2. Note that

σ2 A − A∗ σ2 = 0 where A ≡ (Hi, G) . (3.60)

The components of these fields are parameterized by

Hi =

(

hi
0 + ihi

3 ih1 + hi
2

ihi
1 − hi

2 hi
0 − ihi

3

)

G =

(

g0 + ig3 ig1 + g2

ig1 − g2 g0 − ig3

)

. (3.61)

These goldstone bosons transform as

H1 → V H1 U †
1 (3.62)

H2 → V H2 U †
2 (3.63)

G → U1 GU †
2 (3.64)

where V and Ui are the SU(2)L and custodial SU(2)Ri representations, respectively. Note

that as long as only the neutral component of the Higgs fields H1,2 get a vacuum expectation

value, and 〈G〉 = 0, the three SU(2)s are broken to a diagonal SU(2)c for any ratio of the

two vevs, and the relationship, mw = mz cos θw is preserved for any values of 〈H1,2〉.
Defining θ =

〈

h1
0

〉

/
√

2f and φ =
〈

h2
0

〉

/
√

2f , the sigma matrix becomes

Σ =



















0 −ic 0 −c′s 0 −s′s

ic 0 −c′ s 0 −s′s 0

0 c′ s 0 −i(s′2 + c′2c) 0 −ic′s′(1 − c)

c′s 0 i(s′2 + c′2c) 0 −ic′s′(1 − c) 0

0 s′s 0 ic′s′(1 − c) 0 −i(c′2 + s′2c)

s′s 0 −ic′s′(1 − c) 0 i(c′2 + s′2c) 0



















(3.65)
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Here s = sin (2
√

θ2 + φ2), c = cos (2
√

θ2 + φ2), c′ = θ/
√

θ2 + φ2, and s′ = φ/
√

θ2 + φ2. The

tree level gauge boson masses are

m2
w =

g2

2
f2s2 m2

z =
g2 + g′2

2
f2s2 . (3.66)

As in the other models, one-loop renormalization forces the introduction of the spurions

−cg2f4TrQΣQΣ† − cg′2f4TrY ΣY Σ† + h.c. (3.67)

which, assuming positive c, are minimized when all electroweak gauge bosons are massless.

3.6.2 Yukawa Interactions

As in the previous sections, we will induce the top mass by mixing the left and right handed

components of the top with new charge 2/3 quarks. The new quarks are members of multiplets

Ψ, Ψ couple to the PNGBs in an SU(6) preserving manner. We take Ψ, Ψ to be sextets under

SU(6).

Ψ ≡
(

Q B1 T1 B2 T2

)

, Ψ ≡















Q

T 1

B1

T 2

B2















, (3.68)

The new quarks have the gauge quantum numbers

SU(3)c SU(2)L U(1)Y U(1)Q

Q 3 2 1/6

(

−1/3

2/3

)

T1,2 3 1 2/3 2/3

B1,2 3 1 -1/3 -1/3

The Yukawa interaction of the top quark to the Higgs doublets arises from

Lt = λ1fΨΣΨ + λ2f q3Q + λ3f T1t3 + λ4f T2t3 + h.c. (3.69)

A large top mass requires λ1,2 and either λ3 or λ4 to be of order 1. The top coupling to H1,2

requires nonvanishing λ3,4 respectively.

3.6.3 Additional terms

As in the previous models, not all of the PNGBs receive mass from the gauge and Yukawa

interactions. A small term in the effective theory proportional to

TrMΣ + h.c. (3.70)

where M is some spurion matrix, can give mass to these bosons. In a UV completion where

Σ arises from a fermion condensate, this interaction could arise from a fermion mass term.
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3.6.4 Vacuum alignment

Vacuum alignment in this model is complicated by the presence of two Higgs doublets. In

a version where either λ3 or λ4 = 0, and with the additional term M of 3.70 chosen to be

proportional to Σ0, only one doublet will get a vev. In this simple case the alignment analysis

is nearly identical to that of the SU(4)/SP (4) model. More generally the alignment and the

angle s′ depend on all the λi’s and all parameters in the matrix M . We will not attempt to

explore this rather large parameter space.

4. Implications for Collider Signatures

In the intermediate Higgs scenario there are new vector-like quarks below a few TeV and

additional spinless particles at the weak scale. In the simple examples considered here the

new scalars transform as electroweak singlets, doublets, and triplets. The leading terms in the

potential for these scalars is generally computable in terms of a small number of symmetry

breaking spurions, gauge interactions, and Yukawa couplings. In most models there is a boson

whose couplings to the W and Z are nearly those of the Higgs of the Minimal Standard Model.

Furthermore, in some models the Higgs mass may be computed in terms of the new fermion

masses. Higgs search strategies are complicated by the new scalars, as the Higgs will generally

have a substantial branching fraction for decay into the new scalars, which then decay into

quarks.

It is thus possible that the Higgs typically decays into four jets. Furthermore, in some

models the dominant mechanism for scalar-quark interactions comes from mixing in the charge

2/3 sector, and so the dominant decays are into jets containing charge 2/3 quarks. Such decays

impact Higgs search strategies [41, 44–46]. They also potentially weaken the bound on the

Higgs mass through Higgstrahlung processes off the Z as seen by LEP. This is especially true

in regions of parameter space where the final decays of Higgs results into four well separated

jets, which together with the Z decay into 2 quarks is a six jet event. These topologies have

not been fully studied thus far, and may be consistent with a Higgs mass below 114 GeV.

Note, to date, the most stringent analysis10 on the impact of non-trivial decay modes on the

Higgs’ mass was done by the OPAL collaboration [47]. In the scenarios considered in this

paper, the Higgs has a non-trivial decay fraction into a CP-even, neutral scalar. With order

one couplings between the two particle species and a small decay width, the lower bound on

Higgs’ mass is 83.7 GeV.

We have also seen that our choice of IH models, with a top Yukawa sector that breaks

custodial SU(2)c only softly, favors a three spurion structure for the top Yukawa sector.

Generically, this sector features additional charged 2/3 quarks. After going to the mass

eigenstate basis, a linear combination of the charge 2/3 quarks becomes the top quark. In

all the cases considered, there are at least four new quarks. Soft breaking of the custodial

10We thank David E. Kaplan for discussion on this point.
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SU(2)c will generally require four or more additional quarks11. In the case of SU(5)/SO(5),

we have three new charge 2/3 quarks, a new charge -1/3 quarks, and a new charge 5/3 quark.

The masses of all five new quarks as well as the mass of the top quark are determined by

the four independent parameters λ1,2,3 and f . In SU(4)/SP (4), we have two new charge 2/3

quarks and two charge -1/3 quarks, and again all four masses and the mass of the top are

determined by the four parameters λ1,2,3 and f . The case of SU(6)/SP (6) involves six new

quarks, three with charge 2/3 and three with charge -1/3. All six masses, together with the

top mass, are determined in terms of λ1,2,3,4, f and the ratio of the two Higgs vevs. Thus,

in principle, measurement of new quark masses allows verification of the symmetries and the

structure of collective symmetry breaking without recourse to extracting Yukawa couplings

from cross-sections as in ref. [48]. As an illustration, in the limit of v ≪ f , for SU(5)/SO(5)

this relation is simply

λ2
t =

m2
1(m

2
2 − m2

1)(m
2
3 − m2

1)

f2m2
2m

2
3

(4.1)

where m1,2,3 are the masses of the three heavy charge 2/3 quarks, with m1 being the lightest.

The value of f may be determined, e.g. from precise measurement of the mass splittings of

quarks which are electroweak doublets in the large f limit.

For SU(4)/SP (4), eq. 4.1 also holds in the v ≪ f limit, with m1 being the mass of the

lighter of the new charge -1/3 quarks, and m2,3 being the masses of the two new charge 2/3

quarks. The ratio v/f can be determined in principle from the splitting between the mass of

the heavier of the charge -1/3 quarks and its electroweak partner charge 2/3 quark.

5. Experimental Constraints

5.1 Precision Electroweak Constraints

Our low energy effective theory is relatively economical in its new particle content and so

has few possible sources of precision electroweak corrections. The low energy effective theory

possesses an approximate custodial SU(2)c symmetry, broken mainly by the hypercharge and

top Yukawa couplings, which eliminates large tree level corrections to the T parameter. There

will be one loop corrections to the T parameter from the top sector, which are altered relative

to the one loop corrections of the Standard Model by a factor of order m2
t /m

2
T ′ , where mT ′ is

the mass scale of the new heavy quarks. Similarly, the one loop corrections to the coupling

of the left handed b quark to the Z boson can be altered by a factor of this order. Details of

these corrections are the same as those of any theory with new quarks, as discussed, e.g., in

refs. [51–56]. In addition, there is the familiar operator contributing to the S parameter in

technicolor theories, 1/(4π)2 tr(WµνΣBµνΣ†), but as mentioned, this is suppressed by (v/f)2.

A rough estimate on the bounds on v/f may be obtained by noting that technicolor theories

11To see this, note that the new quarks must be in a vector-like representations of the electroweak group,

must be in a complete multiplet of custodial SU(2)c, and must contain members with electroweak quantum

numbers allowing mixing with the left and right handed top in the limit of unHiggsed SU(2)L.
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typically have corrections to S and T which are estimated to be too large by a factor of

three or four, so v/f . 1/2 should be roughly sufficient to ensure agreement with low energy

experiment.

5.2 Flavor Changing Neutral Currents

The cutoff scale of these models is low enough that Flavor Changing Neutral Currents (FCNC)

will severely constrain the UV completion, as in essentially all models of physics beyond

the Standard Model. Acceptable UV completions for FCNC include high scale (50 TeV)

supersymmetry [40], a warped extra dimension [61, 62], or, equivalently a strongly coupled

nearly conformal theory. Within the low energy effective theory, the additional vector-like

quarks can mix with the light quarks and give new sources of FCNC. In ref. [57] it was shown

that a natural expectation is that the heavy charge 2/3 states will mix slightly with the light

charge 2/3 quarks and produce FCNC in the charge 2/3 sector which are much larger than

those of the minimal Standard Model, although well below the experimental bounds. For

instance, the decay t → cZ is expected to have a branching fraction which is much larger

than in the Standard Model, although probably too small to be observed at the LHC. A more

general study of the contribution of the heavy quarks to b and c physics in these models would

be very interesting.

6. UV completions of the Intermediate Higgs

In all these models the Higgs and its fellow PNGBs become strongly coupled at energies above

4πf . We take the cutoff of the effective theory to be at or below this scale. The symmetry

breaking pattern G/H could be produced by the dynamics of a new strong interaction, in a

manner analogous to the breaking of chiral symmetry by QCD. Like the QCD pions, the Higgs

boson would then be a composite particle. SU(n) is a typical approximate symmetry when-

ever there are n fields in the same representation of some strong gauge group. The breaking

pattern SU(n)/SO(n) results from the symmetric condensate of a real representation while

SU(n)/SP (n) is produced by the antisymmetric condensate of a pseudoreal representation12.

A mechanism to produce the Higgs Yukawa couplings, involving composite T ′’s as well

as a composite Higgs, has been discussed in ref. [40]. In that work, heavy scalars stabilized

by high scale supersymmetry produced certain required four fermion couplings. It is also

possible that, as discussed in ref. [40, 59], if the UV theory is strongly coupled and nearly

conformal, the necessary four fermion couplings might acquire a large anomalous dimension

and be nearly marginal. While low energy precision physics in such a picture is problem-

atic for technicolor theories, in composite intermediate or little Higgs scenarios the precision

electroweak corrections are reduced by (v/f)2 and could be acceptable.

12Note that Thaler [58] has shown how to spontaneously break a global SU(N) symmetry to various sub-

groups H using two new gauge groups—one with strong QCD-like dynamics and another which is moderately

weak.
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Alternatively, our low energy effective theory could arise from a Randall-Sundrum type

model [60] with a warped 5th dimension with gauge group G in the bulk broken to H by

the boundary conditions on an IR brane, as in refs. [61, 62]. Such a model presumably has

a dual description in terms of a four dimensional theory with a new strongly coupled nearly

conformal gauge group [63–65].

7. Summary and conclusions

In the next decade, colliders will explore the multi TeV range, where we hope that new par-

ticles to be discovered which will elucidate the origin of electroweak superconductivity. In

this paper we propose a new approach to modeling the Higgs as a pseudo Nambu-Goldstone

boson. We restrict ourselves to an effective field theory with a range of validity up to about

6 TeV. With such a low cutoff, the finetuning problem of the Standard Model arises only

from the one loop UV sensitivity of the Higgs potential from the top Yukawa coupling. We

therefore consider models in which the top mass arises from the collective symmetry break-

ing mechanism. We explore several minimal models. These all have distinctive low energy

phenomenology, with additional scalars at the electroweak scale, and new vector-like quarks.

The new quarks may be searched for in hadron colliders, and have interesting implications

for low energy flavor physics. The nonminimal Higgs sector will impact the strategy for Higgs

searches.
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