Initial State Radiation Studies at the Upsilon(4S)

J. McKenna for the BaBar Collaboration

Presented at 11th Lomonosov Conference on Elementary Particle Physics, 08/21/2003--8/27/2003, Moscow, Russia

Initial State Radiation studies at Y(4S)

Lomonosov Conference August 2003

Janis McKenna *University of British Columbia*Representing the BaBar Collaboration

Outline

Initial State Radiation at an e⁺e⁻ collider

•Why we are investigating initial state radiation at PEP-II with BABAR

BABAR Initial State Radiation Analyses

•e⁺ e⁻ $\rightarrow \mu^+ \mu^- \gamma$ J/ ψ production via ISR

•Many other ISR channels in progress: $e^+e^- \rightarrow hadrons \ \gamma$ including:

$$K^+ K^- \gamma$$
 $\pi^+ \pi^- \gamma$ $p p \gamma$

Summary & Conclusions

Initial State Radiation

- •Radiative processes effectively give us a variable E_{CM} energy e⁺e⁻ collider without actually varying beam energies.
 - \rightarrow $e^+e^- \rightarrow f \bar{f} \gamma$ with ISR in order to study $e^+e^- \rightarrow f \bar{f}$ at lower effective E_{CM}
- •Hard photon must be detected and well measured.

Acceptance & efficiency for hard ISR photon is typically ~10%

Physics Motivations

•Low mass particle spectroscopy

Improve on branching ratio, mass and width measurements of low mass hadrons

B Factory luminosity → competitive with or better than PDG world averages

•Contribute to critical tests of the Standard Model

Fundamental quantities critical to test the Standard Model:

- muon anomalous magnetic moment, g_{μ} -2
- $\alpha(m_Z^2)$, QED running constant evaluated at Z pole (necessary for precise determination of Higgs mass)

In both these cases, we need to "measure" the photon propagator (hadronic vacuum polarization)

Physics Motivations

Both g_{μ} -2 and $\alpha(m_Z^2)$ have dominant theoretical uncertainties arising from hadronic vacuum polarization which can't be calculated precisely at low energies.

When the fermions f are charged leptons, we can calculate this to high order in QED

When the fermions are quarks, can't calculate virtual photon perturbatively → measure it.

ISR studies - Tests of SM

We can use experimental data to measure these hadronic corrections by studying IS R decays either individually and summing all contributions, or inclusively by measuring R(s')

$$R(s') = \frac{\sigma_{e^+e^- \to hadrons}(s')}{\sigma_{e^+e^- \to \mu^+\mu^-}(s')}$$

Inclusive method has larger uncertainty on effective E_{CM} resulting from photon energy resolution

s': nominal/effective CMS energy

Need Improved R Measurement

$$R = \frac{\sigma (e^+e^- \to hadrons)}{\sigma (e^+e^- \to \mu^+\mu^-)}$$

- •for critical test of SM (g-2)
- •Higgs mass limits (LEP)

Using ISR lets us measure R over wide range of energies, with only one experiment \rightarrow no normalization uncertainties introduced, as when combining several experiments Particularly low statistics in 1.4-3.4 GeV E_{CM} region

Muon Anomalous Magnetic Moment

• Precision measurement of **muon's** $a_{\mu} = \frac{g_{\mu} - 2}{2}$ provides critical test of Standard Model. Muon more sensitive to new physics in electroweak loops \rightarrow sensitivity $\sim (m_{\mu}/m_{e})^{2}$ $a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (10.3 \pm 10.7) \times 10^{-10} (e^{+}e^{-} {\rm and} \tau {\rm decay data})$

Currently:

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (10.3 \pm 10.7) \times 10^{-10} (\text{e}^{+}\text{e}^{-}\text{and}\tau \text{ decay data})$$

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (35.5 \pm 11.7) \times 10^{-10} (e^{+}e^{-} \text{ data only})$$

- •Recently, muon anomalous magnetic moment a_{μ} measured to .7 ppm and gave hints at deviations from Standard Model
- •Largest contribution to uncertainty in theoretical prediction in a_{μ} is from hadronic contribution to vacuum polarization corrections.

Measuring ISR cross-sections gives us correction for this hadronic vacuum polarization:

 \rightarrow we urgently need to measure hadronic cross-sections **ENGINEERING NUMBERS'** for critical test of SM in g-2

Improved Prediction of Higgs Mass

Precise knowledge of hadronic contributions (these same vacuum polarization corrections) to running α_{EM} is dominant contribution to the indirect determination of the SM Higgs mass. To predict Higgs mass precisely, we need $\alpha_{EM}(m_Z)$

Goal: predict m_{HIGGS} indirectly, just as we did for the top quark mass using LEP precision electroweak data

Measuring ISR cross-sections gives us correction for this hadronic vacuum polarization:

→ we urgently need to measure hadronic cross-sections "ENGINEERING NUMBERS" for SM Higgs mass

Initial State Radiation

GREAT TOOL!

Most low energy e⁺ e⁻ collider data is from the VEPP machines at BINP (very high statistics up to 1.4 GeV CMS energies)

ightarrow BABAR can contribute significantly to a large number of exclusive cross-sections and eventually an inclusive R measurement at and just above these energies, in particular, in the 1.4 - 3.4 GeV E_{CMS} region

BABAR 2 prong $+ \gamma$ ISR Analysis

88-90 fb⁻¹ of BABAR data used in all analyses

- continuum and $\Upsilon(4S)$ running

EVENT SELECTION:

- $\bullet E_{\gamma CM} > 3 \text{ GeV}$, photon in well measured detector region
- •2 'good' oppositely charged tracks (well measured, from IP, p_t >.1GeV/c)
- •No electrons in final state (no radiative bhabhas: r > 5 GoV/r = 60.4 GoV)
 - $p > .5 \text{ GeV/c}, E_{EMC} < 0.4 \text{ GeV}$)
- •Large angular separation between γ + charged track ($\cos\theta^*_{\gamma\text{-trk}} < 0.5$) (reduces FSR events)
- •Cut on angle between photon and dimuon recoil "missing" momentum

MC simulation of data includes ISR, FSR, structure fcns

$e^+e^- \rightarrow 2 prong + \gamma$

$e^+ e^- \rightarrow \pi^+ \pi^- \gamma$

Examine e $N_{\pi\pi}$ using 1C-fit with π^+ π^- hypothesis

Compare BABAR statistics with Results from

VEPP and **DCI**

PROMISING! Lumi, radcorr, efficiencies cancel in ratio

VERY IMPORTANT FOR g-2 hadronic contributions

August, 2003

Lomonosov 2003, Moscow State U

Janis McKenna

13

$e^+e^- \rightarrow K^+K^-\gamma$

use same technique as for $\pi^+\pi^-$

but require:

- 2 ID'd K's, opposite charge
- 1C-fit with K⁺ K ⁻ hypothesis

Compare BABAR statistics with

Results from

VEPP and **DCI**

Center of mass energy, GeV

Could use more data above 1.4 GeV,

→ BABAR will help here

August, 2003

Lomonosov 2003, Moscow State U

Janis McKenna

14

Effective Luminosity determination

Use $e^+e^-\rightarrow \mu^+\mu^-\gamma$ events to determine ISR "effective luminosity" to normalize hadronic cross section measurements.

$$\sigma_{e^{+}e^{-}\rightarrow ff}(s') = \frac{dN_{ff\gamma} \cdot \varepsilon_{\mu\mu} \cdot (1 + \delta_{rad}^{\mu\mu})}{dN_{\mu\mu\gamma} \cdot \varepsilon_{ff} \cdot (1 + \delta_{rad}^{ff})} \cdot \sigma_{e^{+}e^{-}\rightarrow \mu^{+}\mu^{-}}(s')$$

where s' = s(1-x) (effective E_{CM} , i.e. after ISR photon gone), $\varepsilon_{\mu\mu}$ and ε_{ff} are detection efficiencies, and $1 + \delta_{rad}^{\mu\mu}$ and $1 + \delta_{rad}^{ff}$ are final state photon radiation corrections. The Born cross-section is used for $\sigma_{e^+e^- \to u^+u^-}(s')$

Advantage of ratio: radiative corrections to the initial state & acceptance for ISR photon and some systematic errors cancel

$e^+\,e^-\!\!\to\mu^+\,\mu^-\,\gamma$

Luminosity from dimuon events:

- •Cross-check: correct for efficiencies, lumi agrees with BaBar lumi to 2% (subtract $\pi^+\pi^-$ and K^+K^- backgrounds)
- •Can calculate equivalent e⁺e⁻ lumi for given E_{CM}

Dimuon mass

1 μ ID'd 2 μ's ID'd

⇐ Babar's 90 fb⁻¹ is equivalent to e⁺e⁻ lumi:

~700 nb⁻¹/.1GeV at 1 GeV ~ 2 pb ⁻¹/.1GeV at 2.5 GeV ~ 4 pb ⁻¹/.1GeV at 4 GeV

August, 2003 Lomonosov 2003

Lomonosov 2003, Moscow State U

Janis McKenna

$e^+\,e^-\!\!\to\mu^+\,\mu^-\,\gamma$

J/ψ serves to study mass resolution in other ISR studies

- •1-C fit: recoil against $\mu^+\mu^-$ has zero mass
 - ~70,000 dimuon pairs,
 - $\sim 7800 \text{ J/}\psi \text{ events in peak}$

mass resolution 8 MeV

Generic ISR Cross Section

The first order ISR cross-section to particular final state is related to the e^+e^- collision cross-section σ_f by:

$$\frac{d\sigma_{ISR}(s,x)}{dx} = W(s,x) \cdot \sigma_f(s(1-x)) \qquad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

- • σ_f is Born cross-section for final state f
- • E_{γ} is photon energy in the CM
- W(s,x) is the energy spectrum of the radiated ISR photon and takes into account vertex and self energy corrections. $W(s,x) = \frac{2\alpha}{\pi x} \cdot \left(2 \ln \frac{\sqrt{s}}{m} 1\right) \cdot \left(1 x + \frac{x^2}{2}\right)$

The Born cross-section for $e^+e^- \rightarrow J/\psi \rightarrow \mu^+ \mu^-$ production can

be written as a Breit-Wigner:
$$\sigma_f(s) = \frac{12\pi B_{ee} B_{\mu\mu}}{m^2} \cdot \frac{m^2 \Gamma^2}{\left(s - m^2\right)^2 + m^2 \Gamma^2}$$

where
$$B_{ee} = B(J/\psi \rightarrow e^+e^-)$$
 $B_{\mu\mu} = B(J/\psi \rightarrow \mu^+\mu^-)$

For narrow $J/\psi \rightarrow \mu^+\mu^-$ production via ISR, pop Born cross-section into ISR differential:

$$\frac{d\sigma_{ISR}(s,x)}{dx} = W(s,x) \cdot \sigma_f(s(1-x)) \qquad x = \frac{2E_{\gamma}}{\sqrt{s}}$$
integrate to get:
$$\sigma_{J/\psi ISR}(s) = \frac{12\pi^2 \Gamma_{ee} B_{\mu\mu}}{m \cdot s} \cdot W(s,x_0) \qquad x_0 = 1 - \frac{m^2}{s}$$

Only unknown in Born approximation is product $\Gamma_{ee}B_{\mu\mu}$

Count events in J/ψ peak to get this product

$$e^+e^- \rightarrow \mu^+\mu^-\gamma$$

But real life is a little more complicated: ISR is not whole story. Must include FSR, resonance and interference.

ISR + J/ψ production

Calculated dimuon distribution with (solid) without (dashed) resonant J/ψ - QED interference (detector resolution included)

Used to estimate sensitivity to shape assumptions

J/ψ production in $e^+e^- \rightarrow \mu^+\mu^-\gamma$

Backgrounds: ISR events with 2 body hadronic final states - only background that peaked under the J/ ψ is $\pi^+\pi^-\gamma$ final state. Backgrounds from higher multiplicity ISR final states estimated using MC

Systematic Errors

statistical error of K factor	0.9%
systematic error of K factor	1.3%
background uncertainty	0.5%
simulation of J/ψ line shape	1.4%
interference effect	0.3%
total	2.2%

Fit and obtain $\Gamma(J/\psi \to e^+e^-) \cdot B(J/\psi \to \mu^+\mu^-) = 0.3301 \pm 0.0077 \pm 0.0073 \text{keV}$ Use world average for $B(J/\psi \to e^+e^-)$ and $B(J/\psi \to \mu^+\mu^-)$ to deduce electronic and total width:

$$\Gamma_{ee}$$
=5.61 ± 0.20 keV and $\Gamma_{J/\psi}$ =94.7 ± 4.4 keV

Babar agrees with and improves on PDG world values:

$$\Gamma_{\rm ee}$$
=5.27 ± 0.37 keV and $\Gamma_{\rm J/\psi}$ =87 ± 5 keV

Many ISR analyses underway

 $e^+e^- \rightarrow p p \gamma$ use same technique as for $\mu^+\mu^-$ but require:

- 2 ID'd p's, opposite charge
- 1C-fit with p p hypothesis

 $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \gamma$ use same technique as for $\pi^+\pi^-$ but require:

- 2 photons (forming π^0)
- 3C-fit with $\pi^+ \pi^- \pi^0$ hypothesis

Data and MC agree well, backgrounds under investigation

($K^+ K^- \pi^0$, $\pi^+ \pi^- \gamma$, $\pi^+ \pi^- \pi^0 \pi^0$, τ pairs, other hadron combinations)

22

e⁺e⁻→ 4 charged hadrons γ

require:

- 4 charged tracks, charge sum zero
- hard photon: $E_{\gamma CM} > 3 \text{ GeV}$
- 1C-fit with $(\pi^+\pi^-\pi^+\pi^-)$ final state hypothesis

 $(\pi^+\pi^- \mathbf{K}^+ \mathbf{K}^-)$ if one or two K's ID'd

(K+K-K+K-) if three or four K's ID'd

High statistics:

BABAR will have significant improvement on PDG world average branching ratios for these three $J/\psi \rightarrow 4$ hadron final states

Summary and Conclusions

A B- Factory is good for more than just B's

ISR luminosity high & efficiencies reasonably understood at BABAR

Initial state radiation great tool for examining low energy hadronic cross-sections - variable energy machine (essential for g-2 hadronic corrections, m_{Higgs} indirect limits)

New results in hadron spectroscopy

Best yet determination of electronic and total J/ψ widths

Many more channels possible

Extras

Lepton Anomalous Magnetic Moment, g-2

Dirac theory: gyromagnetic ratio of a lepton is exactly 2.

Deviations from 2. are caused by radiative corrections to the lepton-photon vertex due to quantum field fluctuations.

$$\vec{\mu} = g\left(\frac{e}{2m}\right) \vec{s}$$
 anomaly: $a = \frac{g-2}{2}$

Precision measurements of **electron's** anomalous magnetic moment (and hyperfine structure and Lamb shift) drove development of QED. Now a_e measured to **4 parts per billion!** 3rd order corrections shown,

→ calculated to 4th order