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Abstract

The following paper contains details concerning the motivation for,

implementation and performance of a Java-based fast Monte Carlo

simulation for a detector designed to be used in the International Lin-

ear Collider. This simulation, presently included in the SLAC ILC

group’s org.lcsim package, reads in standard model or SUSY events in

STDHEP file format, stochastically simulates the blurring in physics

measurements caused by intrinsic detector error, and writes out an

LCIO format file containing a set of final particles statistically simi-

lar to those that would have found by a full Monte Carlo simulation.

In addition to the reconstructed particles themselves, descriptions of

the calorimeter hit clusters and tracks that these particles would have

produced are also included in the LCIO output. These output files

can then be put through various analysis codes in order to character-

ize the effectiveness of a hypothetical detector at extracting relevant

physical information about an event. Such a tool is extremely useful

in preliminary detector research and development, as full simulations

are extremely cumbersome and taxing on processor resources; a fast,

efficient Monte Carlo can facilitate and even make possible detector

physics studies that would be very impractical with the full simulation



by sacrificing what is in many cases inappropriate attention to detail

for valuable gains in time required for results.
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1 Background

The International Linear Collider collaboration was officially formed in 1998

following a meeting of the group’s inaugural committee at ICHEP in Vancou-

ver and has persisted ever since at the forefront of the worldwide effort toward

the eventual construction of a TeV range e+e− linear collider. This group

is secondarily split along continental lines into three main semi-autonomous

collaborations. In Europe and centered at Hamburg (part of the DESY

group) is the ECFA collaboration, which did a great deal of work early on in

designing a mid-size, B = 4T detector; their main design report [1] continues

to be a good source of ballpark figures and parameterizations for detector

performance. In Asia and centered in Japan at KEK is the ACFA collabora-

tion, which mainly works on a lower B-field, larger tracker detector design.

Finally, strongly represented at SLAC and with groups scattered over most

of North America is the ALCPG group, with whom this project has been

conducted.

Clearly, most of the attention given to plans for this future accelerator

falls on the design of the detector itself, which is natural given its propor-

tionately higher cost and complexity. Since the energy ranges in which this

collider will be operating demand a linear design, this reduces the number

of possible detector sites to one (compare, say, CERN with four different

detectors), which in turn forces a number of compromises to be drawn. The

detector that is finally built must have good position and energy resolution

in all of its component parts (rather than, say, using different detectors for

different types of measurements) and be nearly hermetically sealed in order

to ensure an accurate characterization of collision events. This all must be

done while optimizing cost: a task which demands high-quality, easily acces-

sible knowledge of what an arbitrary detector design is capable of. It is the

pursuit of this sort of performance data that drives almost all the computer

simulation efforts for the ILC here at SLAC.
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2 Motivation

The task of fully simulating the response of a particle detector to a high en-

ergy physics event is, without a doubt, computationally daunting; so much

so in fact that it must be handled as a set of separate problems. The entire

task is quite naturally broken down into three phases, each with an indepen-

dent goal and different file type, allowing for analysis code to be conveniently

run at points in the middle of the full process. The first of these phases is

event generation, whereby a physicist can produce a file containing poten-

tially millions of different instances of a particular high-energy event. Event

generation programs offer varying degrees of control over the type and realis-

ticness of events produced, allowing a user to condition the output according

to his needs. This flexibility is extremely important in producing meaningful

statistical studies of detector behavior, and we exploit it fully in conducting

the studies in the subsequent sections on performance. The particular event

generation program used here is called Whizard, which uses Monte Carlo

methods to simulate many details of particle events, including decay chains,

bremsstrahlung, and gluon radiation. Whizard will typically take electrons

and positrons and produce a specific type of event, which it then naturally

simulates on through decays down to particles stable enough to interact with

a normal particle detector; this list of particles includes photons, electrons,

muons, neutrinos, pions, K0
long-s, protons and neutrons. All of this event

information (particle types, momenta, energies, parentage information, etc.)

is written to an output file in STDHEP format, which is the input file for

the next stage.

The next step is to take the final state particles and simulate the minute

details of their interaction with the detector. The program we typically use

for this is a variant of the widely-known Geant4 program made at CERN for

their simulation studies; its installation at SLAC is called SLIC. SLIC will

take an STDHEP file and detector description (usually formatted as Java

code) as input, producing raw detector hits as information in the output file.
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These hits are really just singlets or doublets of data, being either only an

id flag identifying which part of the detector was activated (tracker elements

produce such hits) or and id flag and a value (such as a calorimeter cell

would produce). In order to produce such a file, Geant4 takes the final state

particles and swims them through the simulated detector, allowing photons to

randomly pair-produce as they pass detector components, allowing neutrons

to produce showers of hits in the calorimeter, among other things, all in a

very realistic and exhaustive way, particle by particle.

The final step in a full simulation is reconstruction; this section is differ-

ent than the other two in that the algorithms implemented are also used in

reconstructing events that produced actual detector data. The goal of the re-

construction programming is to take the raw data in the LCIO file produced

by SLIC and reproduce the STDHEP events as closely as possible, thus giv-

ing a good measure of how well detector and code are working together to

extract physics from data. To be most accurate, the reconstruction code is

really part of the detector itself, as weak points in the algorithms are mani-

festly indistinguishable from errors intrinsic to the detector—it is therefore of

utmost importance to have the best possible reconstruction code with little

regard for speed. Currently, the ILC group at SLAC is still fine-tuning the

calorimeter cluster reconstruction portions of their code, which gives a sense

of the seriousness of this step.

Clearly, this is a long and complicated process (a flowchart of the data

path can be found in the appendix) where accuracy is absolutely the first

priority, a fact which meets many needs very well. But there is also a large

and important set of information concerning general detector properties and

dependances of physics data quality on said properties that elicits a much

different priority ordering. When trying to get a good range for the solenoidal

field needed in the detector or when trying to estimate what the best size is

for a tracking chamber in a detector looking for certain Higgs events, a tool

like the full SLIC + reconstruction is far from ideal. It is this type of data
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and the need for it that is best addressed by a fast Monte Carlo simulation,

one that statistically matches the full Monte Carlo as closely as possible in

important areas without getting into the details of raw data. A good Monte

Carlo simulator will be readily reconfigured to simulate different detector

descriptions, all while remaining fast and satisfactorily faithful to the full

simulation. Bringing to fruition such a simulator and optimizing it has been

the primary task of this project.

3 Implementation

The group at the spearhead of SLAC’s ILC-related simulation efforts is cur-

rently developing a Java-based reconstruction and analysis package called

org.lcsim, which can be run either stand-alone or plugged into the Java Anal-

ysis Studio (JAS) 3 framework. From JAS3, one can load and run analyses

on almost any section of the full org.lcsim package of classes and generate

histograms and fitted curves for any set of data. The fast Monte Carlo simu-

lator will be a part of this package, and itself can be run either stand-alone or

inside of JAS3. Also presently included in the org.lcsim package is a snippet

of analysis code written to evaluate the performance of the fast MC. This

code divides the detector into thrust hemispheres using the plane normal

to the thrust axis calculated for particles created in the detector and then

generates histograms for the jet energy resolution by calling all the particles

in each thrust hemisphere members of a jet. Histograms generated by this

code for two-jet e+e− → uū events can be found in the performance section

of the paper.

The fast MC itself, being an alternative to SLIC + reconstruction, needs

to take the type of input SLIC works with and generate files similar to those

the reconstruction algorithm generates. Hence, the fast MC will read in

STDHEP files, then directly smear each final state particle and create a

detector object appropriate for the particle type and charge, along with a
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reconstructed particle object for all particles except neutrinos. This means

that different sets of smearing algorithms are needed depending on the part

of the detector a specific particle interacts with, the different detector com-

ponent behaviors being governed by independent sets of parameters. A good

initial source for developing effective methods has again been provided by

the DESY group’s TESLA design report[1]. This report provides some ex-

cellent information as to the dependences of detector component resolutions

on event variables as well as the dependences of these resolutions on con-

struction variables, which while not directly accessible in the fast MC do

provide realistic limits on the MC parameter ranges. Another good source

of implementation examples is an older fast MC program written in FOR-

TRAN called SIMDET[2]; we borrow lightly from this program and actually

have used its performance characteristics as a baseline goal which we hoped

to surpass. All of the different methods we implemented are outlined in the

sections below, which break down the mathematical core of the program by

detector components.

3.1 Calorimeter Methods

For all of the dynamical variables measurable from a cluster of calorimeter

hits associated with a particle (energy, momentum direction and particle

species, to a degree), we take the STDHEP particle’s properties and smear

them according to various stochastic formulae:

• Energy Smearing:

Erecon = E + Rg ·
{
E

(
a√
E

+ b

)}
(1)

Where Rg is a gaussian random number with a standard deviation

of one and a mean of zero, and E is the energy of the STDHEP file
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particle for which we’re generating a cluster. There are separate

parameters a and b for both the electromagnetic calorimeter and

the hadronic calorimeter.

• Position (Momentum) Smearing:

~rrecon = rdet(θ, φ)·




a

√
a2 + b2R2

g

r̂ +
bRg√

a2 + b2R2
g

(sin(Rφ)v̂1 + cos(Rφ)v̂2)






(2)

Where again Rg is a gaussian random number, plain R is a ran-

dom number flatly distributed between zero and one, r̂ is a unit

vector pointing from the interaction point to the STDHEP parti-

cle’s actual position at the face of the calorimeter, θ is the angle

r̂ makes with the beampipe, φ is the azimuthal angle of r̂, v̂1,2 are

any unit vectors that along with r̂ comprise an orthonormal set,

and finally where the function rdet(θ, φ) describes the shape of the

inside of the calorimeter.

• Efficiency:

P (E) = 1 − 1

1 + eb·(E−a)
(3)

This equation gives the probability of a particle of energy E to

be observed in a calorimeter. The parameters a and b are called,

respectively, the onset and the sharpness. It may be immediately

clear, but a is the energy at which a particle will be observed half

of the time, and the parameter b is 2 · dP
dE

|E=a.
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This function may be made arbitrarily close to step-like as the

user wants simply by increasing b to a very high value, normally

10,000. A picture of the function can be found below, in Figure 1:

Energy (GeV)

Efficiency Fraction
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Calorimeter Efficiency Function
  Onset : 0.40000 
  Sharp : 10.000 

Calorimeter Efficiency Function

Figure 1: The basic efficiency function used in the org.lcsim fast MC; this function is incidentally

called the Woods-Saxon potential and is used to model the strong-force binding potential nucleons feel

inside heavy nuclei.

This concludes the list of methods that are easily associated with a single

formula. The following sections concern smearing methods that are more

programmatic; incidentally, these phenomena affect the physical results the

detector can deliver to a much lesser degree than those described above.

• Particle Identfification:

The ability of the detector to correctly identify particles is modeled

according to the following prescription. All stable, charged tracks
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are at first assumed to be pions (this is, statistically, an excellent

assumption), but if the particle actually is not a pion the pro-

gram will throw a flatly distributed random number to determine

whether or not the particle is correctly identified, with separate

efficiencies for protons, electrons, and muons. If the random num-

ber is below the efficiency for the particle specified, the fast MC

identifies the non-pion particle correctly in the output file. Simi-

larly, all neutral clusters are assumed to be associated with K0
long

impacts, but there is an efficiency for correct neutron identifica-

tion. Photons leave such a distinctive burst in the electromagnetic

calorimeter that they are assumed to be correctly identified 100%

of the time, which is again an excellent assumption. Currently, all

identification efficiencies are constant throughout the energy range

of the detector, due to the fact that the actual efficiencies and de-

pendances we are trying to mimic are completely dependent on

the quality of the reconstruction algorithms which, as mentioned

previously, are still being developed. As soon as we can assess the

function that best matches the identification quality’s dependence,

it can be easily included in the program.

• Cluster Overlap Compensation

While the effects of having clusters overlap are quite small (by

design) in the current ILC detector, the method is so mathemat-

ically interesting that it has been included anyway. There are,

fundamentally, two separate phenomena that can occur as a re-

sult of clusters landing on top of each other. The more severe of

these two processes is complete cluster confusion, in which two

clusters of hits are in such close proximity and so entangled with

each other that a reconstruction program will more than likely

confuse them as one large cluster. This effect is simple to model,

with the probability for any two clusters i and j being confused
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given by:

Pij =
∫∫

Cal
d2r



 1
√

2πb2
i

e
(~ri−~r)2

4b2
i



 ·


 1
√

2πb2
j

e

(~rj−~r)2

4b2
j



 (4)

Where the integral is over the surface of the calorimeter face, and

the parameter bi could potentially depend on particle i’s energy

and type. In a current version (still in testing), all bi are constant,

and set to the same value as the b mentioned parameter in the mo-

mentum smearing section. Since the gaussians are symmetrical,

the probability of confusion only depends on the separation of the

centroids; the formula resulting from evaluating the integral above

is how the dependence is actually implemented in the program:

Pij = e−
‖~ri−~rj‖

2

8b2 (5)

To actually simulate confusing clusters and make use of the prob-

ability formula stated above, the program makes a list of inte-

gers with as many elements as there are clusters, and then runs

through all possible combinations of clusters. If a flat random

number compared with Pij as calculated above indicates that a

certain combination ij should be confused, the program will put

the value of the lower of the two indices i and j into the slot in the

list corresponding to the higher index, then proceed to the next

combination; proceeding in this manner causes trees of confused

hits to branch outward toward higher numbers, with the base

node of the tree having the lowest index of all the cluseters it con-

tains. After this process is complete, the program runs backwards

over the list containing the confusion information conveniently en-

abling the program to run over any trees of hits it has created from

branch to root, since a lower-numbered node will be closer to the
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root of a given tree. While scanning, if bin i contains a value j

different from -1, the program reassigns the position of cluster j as

an energy-weighted average of i’s position and j?s position, dumps

i?s energy into cluster j, and then removes cluster i from the list.

The list containing the confusion data is then dumped, and the

remaining list of clusters represents the list of clusters that the

reconstruction program actually has a chance of generating.

The other aspect of cluster confusion is the difficulty in dividing

energy up between clusters that lie in close proximity. In order

to simulate this effect accurately, we will remind ourselves of the

fact that if a group of clusters is reasonably isolated, one can very

accurately know the total energy of the cluster while still making

significant errors in assigning partial energies to the individual

clusters in the group. We can take such a group of isolated clus-

ters and let it include the entire calorimeter, and then we arrive at

the fact that the total energy deposited in the calorimeter should

be an invariant quantity under any reasonable cluster confusion

simulation. When we look (quite suggestively) at cluster confu-

sions as transformations acting on the configuration of hits in the

detector that must preserve a certain kind of sum, we see that

energy partitioning errors for n calorimeter clusters can be very

well modeled by transformations belonging to the group SO(n).

This is done by introducing a stochastic SO(n) smearing operator

which acts on an energy vector defined as having elements
√

Ei,

where Ei is the energy of the ith cluster; hence ~√Ei · ~√Ei =
∑

i Ei

is preserved. Since we demand that the smearing operator be part

of SO(n), we know it will have the following form:

O = ecijgij (6)
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where gij are the n(n+1)
2

generators of SO(n) and the coefficients cij

are free for us to define as we choose. Since cij represents the angle

through which we want to rotate or smear the energy between

clusters i and j, we will want to restrict cij to be on the interval[
−π

2
, π

2

]
, since the functions cos2 θ and sin2 θ are bijective on

[
0, π

2

]

and we want to allow the vector to smear symmetrically in both

directions without double counting any particular configuration.

Hence, we choose our angle to be:

cij = PijRg −
π

2
·
⌊
PijRg

π/2

⌋
(7)

Where the mean Pij of the gaussian portion is calculated in exactly

the same way as the probability for completely confusing clusters

(see Equation 4), except the standard deviations of the gaussians

(bij) may be different in this case. Using such a definition for cij

causes the probability of smearing to an angle θ to be given by:

P (θ) =
1

√
2πP 2

ij

∞∑

n=0

e
−

(θ+n π
4

)2

2P2
ij =

e
− θ2

2P2
ij

√
2πP 2

ij

∞∑

n=0

e
− n2π2

36P2
ij (8)

The second infinite series on the line is certainly convergent (by the

integral test, if you like), and can be readily calculated exploiting

the fact that P (θ) is normalized over
[
−π

2
, π

2

]
, which is itself easily

demonstrated by exploiting the linearity of integrals:

∞∑

n=0

e−
n2π2

36P 2
ij

= erf


 π/2
√

2P 2
ij




−1

(9)

which yields an expression for P (θ) that has no series in it:
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P (θ) =
1

√
2πP 2

ij

· erf


 π/2
√

2P 2
ij




−1

e
− θ2

2P2
ij (10)

This concludes our exhaustive treatment of the important feature

of cluster confusion; an implementation of the methods described

here might be made available in a future version of org.lcsim when

the opportunity for tailoring the parameters to match the finished

reconstruction algorithm exists.

3.2 Tracker Methods

The simulation of tracker error is much more modular and direct than the

simulation of calorimeter error; indeed, there is one process performed on

each track which simultaneously and interdependantly smears all the phys-

ical variables we are concerned with. The procedure requires a track to be

parameterized as a five element vector, acted upon by a stochastic operator

called the covariant error matrix. Complete details of these methods and a

simple variation on them are included below.

• Conversion to DOCA Parameters

The acronym DOCA is an abbreviation for “distance of closest

approach”, and the DOCA parameters are a set of five variables

that specify a helical trajectory winding around the detector’s

magnetic field by describing it at the point of closest approach to

the beam axis. The DOCA parameters xi are defined as follows

(references to a cartesian system assume that the z axis is along

the detector axis):

x0 = d0 is the helix’s distance of closest approach to the z-axis.

–– x1 = φ0 is the angle the projection of the track in the x-y

plane makes with the x-axis at the point of closest approach
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to the z axis.

– x2 = Ω is the signed curvature of the track, and is directly

proportional to the momentum of the track in the x-y plane,

which is itelf often called the transverse momentum.

– x3 = z0 is the z coordinate of the track at the point of closest

approach.

– x4 = tanλ where λ is the angle the track makes with the x-y

plane at the point of closest approach.

These five variables are exactly enough to specify the position and

momentum of the particle track, since the fact that these are de-

fined to specify the closest approach position on the track implies

the constraint ~pt · ~r = 0, thus eliminating one of the coordinates

from the ~x, ~p set for the particle. The DOCA parameters are es-

pecially convenient for calculating the large set of error matrices

discussed in the following section, and the DOCA variables are

the ones we’ll be working in unless otherwise noted.

• Covariant Track Smearing

The DOCA variables are quite natural for the detector, but they

are interdependent; a small error in the curvature will certainly

result in an erroneous measurement of, say, tanλ, so it?s necessary

to treat this aspect of the problem in a valid statistical fashion.

The correct formalism is found by calculating a real, symmetric

error matrix (which is also known as the covariance matrix) for

the detector which describes how errors couple between variables.

Given an error matrix, we can get the statistically independent

variables by finding the eigenvectors ~vi (which correspond to these

independent combinations), whose distributions will be governed

by eigenvalues σi. We then smear the track according to the ma-

trix by using the following procedure:
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~Xrecon = ~X +




| | · · · |
~v1 ~v2 · · · ~v5

| | · · · |







Rg1 · σ1

Rg2 · σ2

...

Rg5 · σ5




(11)

Where the set Rgi is a group of 5 independently drawn gaussian

random numbers and recall that the set σi are the square roots

of the eigenvalues. Hence, the components of momentum and

position are all simultaneously taken care of. The main drawback

of this method, complete and elegant as it is, is the difficulty

of calculating the covariance matrices and implementing them.

Since the tracker itself is made up of a set of concentric cylinders,

the error matrices describing the tracker will change depending

on if the track passes through the endcaps or the barrels of the

set. Also, there is an energy dependence on the resolution of the

tracker for the various physical variables, and since the detector

is not spherically symmetric there will also be a dependence in

the matrix on the tan λ variable. These dependences are taken

into account not by constructing an appropriate matrix-valued

function, but rather by calculating constant matrices on a discrete

lattice of points (E, λ) and linearly interpolating matrices as they

are needed. Again, we are faced with the problem that changing

the description of the detector is quite difficult, and in order for the

fast MC to be an effective tool for the types of physics studies it

was designed to this cumbersomeness can be a serious drawback.

Answering this shortcoming is a method for quickly modifying

the distributions the matrices produce without changing the way

the errors propagate between variables, the details of which are

described in the following section.

• Modified Covariant Track Smearing
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Often, the object of a certain physics study of a detector is to de-

termine the dependence of, say, the average mass resolution for a

particle on an intrinsic detector resolution. With the present fast

MC this is very easy to do with calorimeter resolutions since the

user has direct access to these resolutions, but what about stud-

ies involving dependences on tracker resolutions? This is much

more difficult to do since the matrix smears all the variables si-

multaneously. However, it should be mathematically possible to

modify the matrices in such a way as to impose a resolution on

a certain variable while leaving the error mixing properties un-

affected. This is indeed true, though figuring out the method is

somewhat involved. First of all, we must analyze and interpret

the covariance matrix itself: how does the probability of adding

a small error DOCA vector δ ~X to the original DOCA parameter

vector ~X depend on the covariance matrix Ĉ? In order to answer

this question, we must take another look at the method described

in the previous section. Firstly, we can rewrite Equation 11 in the

following way:

~Xrecon = ~X +
5∑

k=1

Rgkσk~vk (12)

Upon inspection we see first of all that the set of vectors ~vk form an

orthonormal basis, being the eigenvectors of a hermitian matrix;

as such they differ from the standard Cartesian set only by a

transformation belonging to SO(5). Also, we see that the standard

deviation of the distribution describing the probability of drawing

a certain component in the direction ~vk is exactly σk. We can

assimilate this information in a single statement by writing down

the probability of drawing a correction vector δ ~X:
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P (δ ~X) =
5∏

k=1

1√
2πσk

· e
−
∑5

k=1

(δ ~X·~vk)2

2σ2
k (13)

Clearly, we now have a statement that tells us how correcting ~X

in a certain way depends on both the covariance matrix Ĉ and

the DOCA vector δ ~X, thus meeting our immediate goal. The

most illustrative way to proceed is to geometrically characterize

our probability distribution. If we take an isoprobable surface, we

will obtain a five-dimensional ellipsoid whose principal axes are

oriented along the vectors ~vk, which are themselves, recall, mix-

tures of various DOCA variables. But what if we want to know

the distribution a certain matrix will give for a pure DOCA vari-

able, or some other general non-eigenmixture of variables? This

is pretty simple if we force δ ~X to be of the form ξ~u, where ~u is a

vector in the direction of the combination whose distribution we’re

interested in. Permitting this substitution into Equation 13 and

factoring out −ξ2, we obtain by inspection the following effective

distribution for a combination represented by ~u:

σ~u =

(
5∑

k=1

(~vk · ~u)2

σ2
k

)− 1
2

(14)

Now that we can say with certainty how a certain matrix is effec-

tively smearing some variable, say Ω, we can begin to figure out

how to change this distribution without affecting the desirable

mixing properties of the covariance matrix. First of all, an object

describing the error mixing properties of the covariance matrix

must be identified so that we may ensure its invariance. This is

done by decomposing a covariance matrix Ĉ = Cij in the following

way:
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Cij =
√

Cii

√
CjjΥij (15)

The matrix Υij = Υ̂ is the one describing the mixing, and as

such we may not touch it; hence we only are allowed to change

the elements under the radicals. Since we are mainly going to be

worried about forcing distributions on pure DOCA variables, we

are further constrained to modify only the specific element under

the radical corresponding to the variable of interest. For instance,

if we’re looking to impose a resolution on tanλ, we only are al-

lowed to modify C44. So how does changing a single element in

the decomposition in Equation 15 affect the effective distribution

calculated in Equation 14? Attacking this final, central question

analytically is unnatural and cumbersome, and the simple answer

can be much more easily obtained by thinking about the problem

geometrically. In order to do this, we can rewrite the decompo-

sition in Eq. 15 in matrix form, allowing the matrix ∆̂ to have

diagonal elements
√

Cii and off-diagonal elements zero:

Ĉ → ∆̂Υ̂∆̂ (16)

We now allow ourselves to modify the jth element of ∆̂ by letting

a certain ∆jj →
√

a∆jj. This can be represented again as a set of

matrix operations by introducing a new diagonal matrix Â whose

single nonunity diagonal element is a, at the intersection of the jth

row and column. This leads to the identification of the modified

covariance matrix Ĉ
′
with the decomposition:

Ĉ
′ → Â∆̂Υ̂∆̂Â (17)

Beginning our geometric analysis, we realize first that there is a
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certain probability P̃ whose corresponding isoproabable surface

is an ellipsoid with axes whose lengths are themselves the stan-

dard deviations for the distribution, σi; in analogy with the one-

dimensional distribution this probability P̃ is shown to be 1/
√

e

times the normalization constant for the function. Hence, calcu-

lating distributions of variables is effectively nothing more than

measuring “radii” of a certain five-dimensional ellipsoid in var-

ious directions. The next necessary realization is that physical

equations describing isoprobable surfaces can be obtained by con-

tracting the covariance matrix itself with δ ~X enough times and

setting that contraction equal to some appropriate constant:

(δ ~X)T Ĉδ ~X = c (18)

By plugging in our decompositions of Ĉ and Ĉ
′

into the above

equation we obtain:

(δ ~X)T ∆̂Υ̂∆̂δ ~X = c

(δ ~X)T Â∆̂Υ̂∆̂Âδ ~X = c

(19)

We can allow the matrices Â in the second equation above to act

on the vectors δ ~X rather than on the matrices, calling the result-

ing vectors δ ~X
′
. These can be interpreted as vectors belonging to

a new coordinate system whose jth component has been dilated.

It takes little convincing to see that the width of an ellipse along

a coordinate δXi which has been stretched by a factor
√

a will

likewise be stretched by a factor
√

a; furthermore, since the devi-

ations of the full distribution correspond exactly to the widths of

a particular isoprobable surface, we can say that letting Ĉ → Ĉ
′
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as above will cause σ~u → σ
′

~u =
√

aσ~u. The problem is therefore

solved, with the needed multiplier a given by:

a =
σ2

desired

σ2
original

(20)

where the deviations are both for the variable of interest. Using

this method, we accomplish what we set out to do: we can give

the user of the program the same kind of direct access to tracker

resolutions as he has to calorimeter resolutions all while preserving

the covariance of the tracker smearing method (even though it

takes a lot of work to do and a lot of paper to explain).

4 Performance

Before releasing any program as a tool intended for general use, thorough

testing and characterization must be carried out. In order to test the fast

Monte Carlo simulator, a somewhat physically artificial stdhep file was writ-

ten in order to perform debugging and characterization studies; in it an

electron-positron pair annihilates to produce an up quark and an anti-up

quark, each at exactly 250 GeV. Included in the characterization below per-

formed using this file is an exhaustive group of figures with commentary

included demonstrating the capabilities of the simulator at firstly simulating

high energy physics events and secondly at extracting meaningful information

on how physical results depend on basic detector performance characteristics.

In brief, we first show raw particle-by-particle smearing histograms for the

set of standard detector parameters, then we show that changing these pa-

rameter changes the smearing statistics as advertised in the implementation

section. Second we show the results of a simple thrust analysis on the simu-

lated 250 GeV uū events, followed by a study on how changing the detector

parameters changes these physical results. Finally, in the last section of the
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paper, we perform a simulated measurement of the mass of the Z0 boson,

lightly touching on the dependence of the resolution of this measurement on

the detector parameters.

4.1 Raw Smearing Results

The standard sdjan03 detector for the SLAC ILC group currently uses the

following fast Monte Carlo parameters:

Electromagnetic Calorimeter Onset: .1 GeV

EM Cal. Sharpness: 10.0 %/GeV

EM Cal. Minimum: θ: cos−1 .95

EM Cal. Energy Resolution Parameter a: .18

EM Cal. Energy Resolution Parameter b: 0.0

EM Cal. Position Resolution Parameter a: .10

EM Cal. Position Resolution Parameter b: 0.0

Hadronic Calorimeter Onset: .2 GeV

H Cal. Sharpness: 10.0 %/GeV

H Cal. Minimum θ: cos−1 .95

H Cal. Energy Resolution Parameter a: .50

H Cal. Energy Resolution Parameter b: .08

H Cal. Position Resolution Parameter a: .10

H Cal. Position Resolution Parameter b: 0.0

Tracker Minimum Transverse Momentum: .2 GeV/c

Normal Tracker Covariance Matrices Used

1

Shown below, in Figures 2 and 3, is a set of histograms showing the

raw particle-by-particle smearing of the final-state particles in the stdhep file

(henceforth called history particles) to the reconstructed particle content in

the output slcio file using the unmodified sdjan03 detector.

1For definitions and implementation of the above variables, see the previous section.
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Hadron Smearing Plot: standard
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Photon Smearing Plot: standard

Figure 2: The above plots are histograms of the quantity (Erecon − Ehist)/
√

Erecon binned for each

photon (left) and hadron (right) occurring in a sample of 10,000 e+e− → uū events.
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Track Smearing Plot: standard

Figure 3: The above left histogram is the quantity (Ptrecon−Pthist)/P t2
hist

where Pt is the transverse

momentum binned for each charged particle, and the above right histogram is Erecon − Ehist for each

particle of any type that the detector finds.

Upon examining these histograms, the program certainly appears to be

smearing as described in the implementation section, though there are a few

discrepant features of interest in the figures. Clearly the photon distribution

and the hadron distributions above have non-negligible mean values; in the

hadronic plot this is due mostly to the fact that the offsetting b parameter for
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the hadronic calorimeter is nonzero, but both have another significant error

contribution. The source of this contribution lies in the fact that the program

smears the energies of the particles in a gaussian fashion, for which there is

a non-zero probability of smearing the particle’s energy below its own mass.

When this happens, the program simply draws another gaussian random

number, effectively cutting off the distribution’s tail below the particle mass,

consequently modifying the error function for the distribution. Hence, for a

particle of mass m, the error function is modified in the following way:

erf∗(E) =





erf(E/
√

2σ)−erf(m/
√

2σ)
1−erf(m/

√
2σ)

E > m

0 E ≤ m
(21)

where the error function we’re using is for a normalized distribution cen-

tered on Ehist, having domain (0, 1) and erf(Ehist) = 1
2
. These details are

complicated by the fact that in our particular choice of event, many more

sensitive, low energy photons are created than high energy ones, compound-

ing the effect. Having spoken to this issue, we shall explore the effects of

changing the electromagnetic calorimeter parameter a on the shapes of the

smearing histograms, just to ensure that the program is actually smearing

energies to model our detector input. Setting a = .09 and letting the rest of

the parameters remain as standard produces the histograms found in Figure

4.

Notice in Figure 4 that the hadronic distribution is identical to that found

in Figure 2, as expected. Also note that the non-zero mean discussed above is

decreased by about an order of magnitude, which is in line with the interpre-

tation of this mean’s non-zero divergence given in the comments following

Figure 2. Next, in Figures 5 and 6, are the histograms that follow from

setting first a = .27 then lastly a = .36.

Again, the most notable features in Figures 5 and 6 are the small non-

zero means in the photon smearing plots; notice that the deviation from zero

varies approximately exponentially as a is changed, achieving ten percent of
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Hadron Smearing Plot: em09
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Photon Smearing Plot: em09

Figure 4: The above plots are histograms of ∆E/
√

E for each photon (left) and hadron (right) in the

standard detector, but with electromagnetic calorimeter parameter a set to .09.
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Hadron Smearing Plot: em27
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Photon Smearing Plot: em27

Figure 5: The above plots are histograms of ∆E/
√

E for each photon (left) and hadron (right) in the

standard detector, but with electromagnetic calorimeter parameter a set to .27.

the deviation in the final histogram where a = .36. Reassuringly we have a

very clean, straightforward dependence for the electromagnetic calorimeter

deviation on the supplied parameter a; in short, we can safely conclude that

this aspect of the program is working properly.

Now, let us turn our attention to the hadronic resolution smearing param-

eter, which, recall, is implemented in an identical fashion to the correspond-
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Hadron Smearing Plot: em36
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Photon Smearing Plot: em36

Figure 6: The above plots are histograms of ∆E/
√

E for each photon (left) and hadron (right) in the

standard detector, but with electromagnetic calorimeter parameter a set to .36.

ing electromagnetic calorimeter parameter. The main difference between how

these two types particles are smeared lies in the error-function correction ef-

fect mentioned above2, to which the hadrons are more sensitive due to their

significant masses. Nevertheless, the effect of changing the resolution param-

eter is very similar to that seen in the photonic distributions by changing

the corresponding electromagnetic calorimeter parameter; this can be seen

in the following histograms, for the first of which a = .30 in Figure 7.

The salient features here are again the mean and the standard deviation,

now of the hadronic distribution on the right. Contrast the mean of the stan-

dard detector hadronic distribution (∼ .05, found in Figure 2) with Figure

7?s mean value of about .02. This decrease in mean divergence is isomorphic

to that which occurs in the photonic distribution when the electromagnetic

calorimeter a is dropped from .18 to .09. The hadronic mean, in keeping with

the behavior of the photonic plot, diverges significantly as the resolution is

made worse; this effect can be seen in Figure 8, for which a = .70.

Clearly, as seen in Figure 8, the mean offset issue is much more significant

for massive particles (as compared to photons) when the energy resolution is

2see page XX.
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Hadron Smearing Plot: had30
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Photon Smearing Plot: had30

Figure 7: The above plots are histograms of ∆E/
√

E for each photon (left) and hadron (right) in the

standard detector, but with hadronic calorimeter parameter a set to .30.
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Hadron Smearing Plot: had70
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Photon Smearing Plot: had70

Figure 8: The above plots are histograms of ∆E/
√

E for photons (left) and hadrons (right) in the

standard detector with the hadronic calorimeter parameter a set to .70.

made very bad, indicating the sensitivity of the function erf∗(E) to changes

in the resolution when erf(m) is significantly large.

Finally, let us turn to the performance of the modified tracking param-

eterization; it is especially important to check the implementation of this

feature as its derivation was quite complicated and because it is the only

practical way we can directly modify the way the tracker is modeled. A very

27



useful choice of tracker parameterization (we will want to use our modified

tracker smearing method to force the curvature parameter in order to change

the energy resolution, of course) is the following:

∆Ω ∝

√√√√(a)2 +

(
b

P t · cos θ

)2

(22)

where the constant of proportionality is composed of factors of Ω and ptrack

inserted to correct the units. A nice feature about programming in the mod-

ified tracker control is that it gives us great flexibility in not only our choice

of specific parameters, but also in our choice of parameterization function

itself. Using the above equation for ∆Ω, a choice for the tracker parameters

giving very reasonable distributions is a = 2.1×10−5 and b = 1.0×10−4; this

is the ?simple-standard? distribution, and the histograms generated using

these choices of parameter appear below, in Figure 9.

Direct Difference

Particle Count

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

x10
5   Entries : 699400 

  Mean : −1.1630E−3 
  Rms : 0.62039 
  OutOfRange : 807 

Particle Energy Differences: simplestandard

Difference Fraction

Particle Count

−0.0003 −0.0002 −0.0001 0.0000 0.0001 0.0002 0.0003
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

  Entries : 50189 
  Mean : 7.6204E−7 
  Rms : 6.7234E−5 
  OutOfRange : 43 

Track Smearing Plot: simplestandard

Figure 9: The plots above were generated by forcing ∆Ω as described above, in Eq. 22, with a =

2.1 × 10−5 and b = 1.0 × 10−4. The histograms are of the quantity (Ptrecon − Pthist)/P t2
hist

, again

track-by-track over the first 10,000 events in the uū stdhep file where Pt is the transverse momentum of

the track.
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It is not immediately apparent in Figure 9, but the tracker smearing

plot on the left is (as the parameterization of the curvature resolution in-

troduced above might suggest) a collapsed image of a bivariate distribution

that depends both on energy and on the angle θ of the tracks; as such it will

exhibit some very interesting properties as we vary a and b in Equation 22.

The distribution itself is only approximately gaussian at the core; the large

tails on the distribution betray that it would be more accurately fitted to

e−
√

a2(E−b)2+c2 (an exponentiated hyperbola). A quick comparison with the

standard detector tracker distribution in Figure 3 justifies our decision to call

these values of a and b the standard set, as the difference of the deviations

of the two distributions is only 1.3× 10−6. Let us now vary the a parameter

and observe the changes incurred in the distribution for tracking momentum.

Below are histograms constructed by letting a = 1.0× 10−5, 4.0× 10−5, and

8.0 × 10−5, contained in Figures 10–12.
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Track Smearing Plot: ta1

Figure 10: The above left histogram is the quantity ∆Pt/P t2 (where Pt is the transverse momentum)

generated with tracker parameter a (see Eq. 22) set to 1.0× 10−5 and b left at its simple-standard value.

In Figures 10–12, the previous comment on the tracker histogram being a

collapsed projection of a bivariate distribution gains a great deal of meaning,

with manifestly concrete consequences. First of all, we see in the histogram
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Particle Energy Differences: ta4
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Track Smearing Plot: ta4

Figure 11: The above left histogram is the quantity ∆Pt/P t2 (where Pt is the transverse momentum)

generated with tracker parameter a (see Eq. 22) set to 4.0× 10−5 and b left at its simple-standard value.
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Track Smearing Plot: ta8

Figure 12: The above left histogram is the quantity ∆Pt/P t2 (where Pt is the transverse momentum)

generated with tracker parameter a (see Eq. 22) set to 8.0× 10−5 and b left at its simple-standard value.

for which a = 1.0 × 10−5 (Figure 10) that the core of the histogram is much

more sharply peaked than in Figure 9; If the distribution were in fact gaussian

we’d expect a situation where the derivative of the distribution smoothly
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crosses zero at the mean, but instead we get a situation where the resulting

histogram is quite “pointy”, elucidating the fact that we’re only allowed to

glimpse a shadow of what is really happening. Looking at the other end of the

resolution spectrum in Figures 11 and 12, we see that the opposite happens.

The core of the distribution gets much blurrier, with the top smoothing out

and gaining statistical fuzziness; generally the hits are less localized around

a clear mean as a increases. These are all very good signs that the smearing

procedure is working as designed, and certainly we can, if we wish, arbitrarily

let a change until we get a distribution that looks appropriate for whatever

purpose. Now let us turn our attention to the b parameter, whose smearing

term depends on cos θ. Again, we must bear in mind the multivariate nature

of these distributions, and as we will see, the phenotype for changing the

b parameter is much different than that for changing a. To illustrate this,

below are histograms constructed by letting b = 0.5 × 10−3, 2.0 × 10−3, and

finally 4.0 × 10−3, contained in Figures 13–15.
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Track Smearing Plot: tb05

Figure 13: The above left histogram is the quantity ∆Pt/P t2 (where Pt is the transverse momentum)

generated with tracker parameter b (see Eq. 22) set to 0.5× 10−3 and a left at its simple-standard value.

As claimed, changing the parameter b in Eq. 22, put bluntly, looks very

different than does changing the parameter a. The parameter b too physically
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Figure 14: The above left histogram is the quantity ∆Pt/P t2 (where Pt is the transverse momentum)

generated with tracker parameter b (see Eq. 22) set to 2.0× 10−3 and a left at its simple-standard value.
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Figure 15: The above left histogram is the quantity ∆Pt/P t2 (where Pt is the transverse momentum)

generated with tracker parameter b (see Eq. 22) set to 4.0× 10−3 and a left at its simple-standard value.

Note the vertical scale.

has a different role from that of a, describing how the accuracy in measuring

the curvature is reduced as the track becomes more and more in line with

the beam pipe. This is certainly a realistic dependence to expect, since as
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the angle θ decreases, so does the fraction of the total momentum that we’re

able to measure. This of course has the effect of amplifying the error in

the measurement of the total momentum, which is the quantity of greatest

interest here. We can see in the histograms for varied b that increasing

this parameter tremendously increases the significance of, primarily, the tail

of the distribution, producing histograms that are decidedly non-gaussian.

Nonetheless, we do achieve the expected overall effect, with the net resolution

plummeting as b is increased.

4.2 uū Events at 500 GeV: Thrust Analysis

Our next task, having shown that the program is performing properly, is

to assess how changing the detector parameters affects measurable physical

quantities in a realistic event analysis. Since the stdhep file we?re using

has each quark at 250 GeV, the event should be boosted enough to keep

each quark jet relegated to one thrust hemisphere, just by conservation of

momentum. By calculating the thrust axis ~T for each event, we should be

able to divide up all the particles in the detector as belonging to one quark

or the other by determining the sign of ~T · ~precon for each reconstructed

particle, where ~precon is the full 4-momentum. After performing the above

analysis on both the set of reconstructed particles and the set of history

particles, we can bin the differences between the energies summed up in

each thrust hemisphere for each type of particle in order to get a histogram

of the jet energy resolution for the detector. Since the measured jet energy

contains measurements from the tracker and both calorimeters, the jet energy

resolution is going to be a highly composite plot; thus it will have some

very interesting behavior as the properties of the various components of the

detector are changed. Determining this behavior is exactly the goal of the fast

Monte Carlo; with our present experience we can already see how sensitively

this is going to depend on the types of particles produced in the events we’re

studying, among other things.
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First of all, let us examine the results of such a thrust analysis performed

on an slcio file generated using the standard detector description. Below,

in Figures 16-18, are histograms of the measured jet energies for both the

reconstructed particles and history particles, the total jet energy resolution,

the photonic and hadronic jet energy resolutions, the charged jet energy

resolution, and finally a plot showing measured photon energies.
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Figure 16: The above right histogram shows simply the measured jet energies for both the history

particles and the reconstructed particles, whereas the left histogram shows the jet energy resolution, and

is a binning of the quantity (Erecon −Ehist)/
√

Ehist As the jet energy resolution for the detector, this is

going to be the figure of primary interest.

In Figure 16 we see our first jet energy resolution plot, which is the quan-

tity which will be of greatest interest to us in the remainder of the paper.

Again, it’s a highly composite distribution, with an only approximately gaus-

sian shape. The fit that has been applied was calculated using a QR factor-

ization, and for each jet energy resolution the fit will be calculated using only

the core of the distribution, a decision justified firstly on the non-gaussian

nature of the distribution and secondly on the fact that when looking for par-

ticle masses with this program, only the core of a mass peak is important.

On the right we see the raw jet energy measurements; of greatest interest

here are the losses that occur in the detector during the simulation process.
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This is the first indication we see of the efficiency function mentioned in the

implementation section. We will look further into this loss by hermetically

sealing the detector in the next group of histograms we analyze.
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Figure 17: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

In Figure 17 we see the isolated photonic and hadronic components of

the jet energy. These histograms will naturally be of direct interest when

we start varying the parameters for the different calorimeters again in order

to see what effect changing the resolution has on the total jet energy plot.

Here too, albeit in a very muted way, we can see the non-hermeticity of

the detector. This effect shows up as a tiny asymmetry in the tails of the

photonic distribution; clearly a few more reconstructed jets are coming in at

lower energy with respect to the history jets than at higher energy. Were

our statistics higher, we could also observe this tail asymmetry effect in the

hadronic energy resolution plot. Again, we can investigate this effect further

by making the detector hermetic.

Finally, in Figure 18 we have a plot of the tracker energy resolution as

well as a photon spectrum for the uū event. The tremendous negative tail

on the tracker energy resolution makes fitting gaussians to this distribution

especially problematic, but again we will see that this tail is completely due to
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Figure 18: The above figure contains on the left a plot of the charged component of the jet energy

resolution, whereas on the right appears a spectrum of the total jet energy contained in the photon

radiation from the event.

particle escape or efficiency losses, and that this effect completely disappears

when we make the detector hermetically sealed. On the right we see a plot of

the photon spectrum, and notably, the total photon energy is more likely to

be at the low-energy end of the spectrum. The total tracker spectrum (not

shown) is much like the photon spectrum, only it is weighted more toward

the high-energy end of the spectrum.

Now, after finally being able to observe effects due to particle loss, let

us take a look at what occurs when we try to prevent this by making the

detector perfectly efficient and removing all beam-pipe losses. We call such

a detector configuration “hermetically sealed”, which is almost true since we

shall still let neutrinos escape. Below are the same histograms as appear in

Figures 16–18, only now we will force different values for a few the parameters

found in the table on page 22:
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Electromagnetic Calorimeter Onset: .1 GeV → 0.0 GeV

EM Cal. Sharpness: 10.0 %/GeV → 10,000 %/GeV

EM Cal. Minimum: θ: cos−1 .95 → cos−1 1.00

Hadronic Calorimeter Onset: .2 GeV → 0.0 GeV

H Cal. Sharpness: 10.0 %/GeV → 10,000 %/GeV

H Cal. Minimum θ: cos−1 .95 → cos−1 1.00

Tracker Minimum Transverse Momentum: .2 GeV/c → 0.0 GeV/c

The resulting histograms can be found below, in Figures 19-21.
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Figure 19: The above figure contains a plot of the total jet energy resolution and the raw history and

reconstructed jet energies as generated by the hermetically sealed detector; this detector is described by

the table on page 22 with the changes included in the table above.

The left plot in Figure 19 contains the total jet energy resolution after

sealing the detector; upon comparison with the standard jet energy resolu-

tion in Figure 16 we see a marked improvement. (The fitted resolutions are

15.177% as compared to 12.963%). Also, we see that the peak difference

between the history particles and the reconstructed particles in the raw jet

energy plot has appreciably disappeared.

Figure 20 contains the photonic and hadronic energy resolutions. Recall

that the photonic energy resolution had a small negative tail in Figure 17;
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Figure 20: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

by sealing up the detector completely we were able to make this effect cease

to appreciably exist. Also, notably, the resolution is not much improved at

all: the standard detector is able to deliver a resolution of 18.665%, while

the sealed calorimeter delivers 18.385%.
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Figure 21: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

Finally, looking at Figure 21, we see a huge change in the appearance
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of the tracker energy resolution plot: the daunting negative tail found in

the standard detector plot (Figure 18) has completely disappeared. From

the changes we’ve observed in this set of data, we can confidently conclude

that the offset from zero in the standard detector energy resolution is almost

entirely due to loss/efficiency effects, and that among these the most signif-

icant contributor is the loss of particles in the tracker due to the transverse

momentum minimum parameter.

Having established this important causal point on detector performance,

let us now proceed with observing the dependence of the physics performance

on the most important variables; the resolution parameters. This is the

primary task this program will be used to complete, only our particular

choice of event is probably the simplest type of event analysis possible to

conduct while still achieving some level of realism. Below, in Figures 22–27,

we can find a group of two pertinent thrust analysis figures for each of three

different values of the electromagnetic resolution parameter a, followed by

commentary. The values a assumes are a = .09, .27, and .36.
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Figure 22: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

The histograms contained in Figures 22–27 themselves contain a great

deal of important physics results. Since photons are a major component of
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Figure 23: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 24: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

the u quark jets we observe, we see that varying the electromagnetic calorime-

ter resolution has a significant effect on the total jet energy resolution. How-

ever, we can also see that the blurriness of the jet energy resolution does

have a maximum limiting value (with respect to changes in the electromag-

netic parameter a), as evidenced by the fact that the change in jet energy

resolution between the standard value for a and a = .27 is greater than the
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Figure 25: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

Energy (GeV)

Jet Count

180 200 220 240 260 280 300 320
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000 re

he

he
  Entries : 14703 
  Mean : 249.90 
  Rms : 13.100 
  OutOfRange : 87 

re
  Entries : 14670 
  Mean : 248.79 
  Rms : 14.064 
  OutOfRange : 120 

History & Reconstructed Jet Energies − EMC Res = .36

Difference Fraction

Jet Count

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

250

300

350

400

450

500

550

600

650 Jet Res. Fit

Total Jet Energy Resolution

Total Jet Energy Resolution
  Entries : 14636 
  Mean : −0.048271 
  Rms : 0.37660 
  OutOfRange : 154 

Jet Res. Fit
  Amplitude : 574.95 
  Mean : −0.032939 
  StdDev : 0.22427 

Total Jet Energy Resolution − EMC Res = .36

Figure 26: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

change observed between a = .27 and a = .36. This is a consequence of the

important multicomponent nature of the total resolution; as the electromag-

netic calorimeter gets blurrier, the sharpness of the peak depends more and

more heavily on the other components of the detector, finally being carried

completely by the tracker, which is the most accurate component. The effect

of changing a at high a does still show itself, but now also as an increase
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Figure 27: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

in the bulk of the “haunches” of the distribution, outside the core but not

properly called part of the tail. Again, notice the effects of particle loss in

the distributions. The most prominent Landau-esque non-hermeticity tail

can be observed in the photon jet resolution plot for which a = .09;3 this

is a clear feature in this case mostly because the statistics are the best for

this plot. However, we must be mindful that this effect is occurring in all

histograms, and that this effect is responsible for the nonzero and negative

means of the various distributions.

Now, let us turn our attention to the behavior of the resolution results as

we change the hadronic calorimeter resolution. The plots below, namely Fig-

ures 28?33, contain again the total energy resolution, hadronic and photonic

resolution, and raw energy peak for each parameter value we choose; values

for the hadronic a parameter in these figures include a = .30 and a = .70.

The effects of changing the hadronic resolution parameter a, though im-

plemented almost identically in the program, come in sharp contrast to the

behavior observed as we varied the electromagnetic parameter in Figures

22–27. Most prominently, the total jet energy resolution reaches a limiting

3see Figure 23

42



Energy (GeV)

Jet Count

180 200 220 240 260 280 300 320
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000 re

he

he
  Entries : 14699 
  Mean : 249.90 
  Rms : 13.102 
  OutOfRange : 87 

re
  Entries : 14674 
  Mean : 248.48 
  Rms : 13.508 
  OutOfRange : 112 

History & Reconstructed Jet Energies − HC Res = .30

Difference Fraction

Jet Count

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

100

200

300

400

500

600

700

800

900

1,000 Jet Res. Fit

Total Jet Energy Resolution

Total Jet Energy Resolution
  Entries : 14649 
  Mean : −0.068148 
  Rms : 0.28428 
  OutOfRange : 137 

Jet Res. Fit
  Amplitude : 946.20 
  Mean : −0.047226 
  StdDev : 0.13569 

Total Jet Energy Resolution − HC Res = .30

Figure 28: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 29: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

value much more rapidly than in the electromagnetic case, actually reversing

direction by the time a = .70: the sequence of total jet resolutions as a is

varied is, shockingly 13.569%, 15.177%, and 15.033%! The reversal of the

trend requires the illumination of several points in order to become satisfac-

torily clear, the first of these points is the particle content in the particular

events we’ve chosen to simulate. Roughly speaking, in 10,000 uū events, only
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Figure 30: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 31: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

5.3% of the particles produced are neutral hadrons, with the remainder about

equally split between the charged particles and the photons. Consequently,

we can reasonably expect that changing the hadronic calorimeter resolution

will not affect the total jet resolution very much when compared with the

effects of changing other components. However, an interesting thing occurs

as we make the hadronic resolution very bad; The component of the total jet
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resolution due to hadrons becomes so spread out and consequently of such

low amplitude that the core of the distribution to a good approximation

is dominated by the photonic and charged components of the jets. Oddly,

then, making the hadronic resolution very bad has the counterintuitive effect

of actually improving the total jet resolution by effectively removing itself

from the region of the distribution whose shape defines the resolution. As

we would expect from the behavior we observed when the electromagnetic

resolution was pushed up to .36, the “haunches” and tail region of the jet

resolution histogram gain a great deal of bulk as the hadronic a is set to .70.4

Let us lastly again turn our attention to effects incurred as a result of

changing the tracker resolution parameters. Using again the parameteriza-

tion set out in Equation 22, we generate Figures 32–39 found below by letting

the parameters assume their “simple-standard” values5, but with the a pa-

rameter varying between the values 1.0 × 10−5, 2.1 × 10−5, 4.0 × 10−5, and

8.0 × 10−5.
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Figure 32: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

4see Figures 26 and 27.
5these are defined on page XX.
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Figure 33: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

Right away, in the plots of the charged component of the jet resolution

we can see that we are going to be severely handicapped by the tails that

particle loss and inefficiency effects cause; this is especially true with respect

to defining fits for the tracker resolution histograms. Also in Figure 32 we

see the familiar “pointiness” at the mean of the jet resolution distribution

that is the hallmark of a multivariate distribution that has a very sharply

defined component. This feature will actually persist as we vary the tracker

parameters, since the range of a values we go through doesn’t make the

tracker less precise than the calorimeters.

After this first round of tracker examination histograms, we see that the

effect of changing the tracker is, as expected, quite different from that of

changing either of the calorimeters. Considering that we have two variables

working synchronously to shape a single component of the complicated mul-

tivariate jet energy resolution, we should certainly be prepared to see some

nontrivial dependences on the parameters that appear strange at first glance,

requiring further explanation; thankfully, though, the behavior we observe
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Figure 34: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 35: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

can be understood in the context of effects we have observed before (espe-

cially dependences seen on the hadronic calorimeter parameter). The jet

energy resolutions we observe are, in order of increasing tracker a: 13.745%,
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Figure 36: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 37: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

13.858%, 13.716%, and 15.014%. Clearly this is a strange dependence, and

we cannot just sweep it under the rug by calling it statistics since we have

more than thirteen thousand jets going into each of these measurements.
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Figure 38: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 39: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

The key to this dependence is related to the sudden improvement observed

in the jet energy resolution as the hadronic calorimeter parameter a reached

its upper limit: a situation in which we were looking at a distribution with
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several added components naturally falling into groups with quite different

deviations. Whenever one examines a one dimensional distribution that is

some kind of collapsing or projection of a distribution of two variables in

which the deviation of thin, one dimensional cuts on the collapsed variable

depends heavily on the actual position of the cut along the collapsed axis,

the width of the core of the fully collapsed distribution will depend, to an

excellent approximation, only on the parts of the original two dimensional

distribution where the collapsed variable cuts had tight deviations, provided

the dependence on the collapsed variable isn’t so great as to make this sharp

region negligibly small. We can put this important general statement into

context by looking at the charged component of the jet energy resolution in

this way; the distribution for the charged jet energy resolution is, as Equa-

tion 22 suggests, a distribution in two variables: the energy E and the angle

theta. The degree to which the distribution depends on theta is given by

tracker parameter b, so in light of the above statement, if we have a large b,

the resulting charged jet energy resolution should have a core that is really

only a picture of the regions in theta where the jet energy resolution is good.

However, if we make a (not b!) large enough that we can say a � b, then the

well-defined θ dependence on which the selection phenomenon depends will

be swamped out. Also, we expect that if we make b very large we can cause a

similar effect, only this time the resulting distribution will have such a small

region in theta for which the resolution is good that a projection onto the

energy axis will not have a well-defined core. So, as we change parameters,

we expect four distinct regimes: if the resolution is just plain good enough,

the core will be very tight; as the resolution gets worse but not too bad, the

variations along the collapsed axis serve to smear this resolution around fur-

ther, without “selecting” a particular region to define a core; as we make the

resolution yet worse the selection phenomenon occurs, causing a sharpening

of the core, as observed when the hadronic calorimeter parameter a reached

its highest value; finally we expect as the resolution gets yet worse, the selec-
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tion will be on such a small region that the collapsed distribution’s core will

lose out to the enormous, encroaching haunches that the heavy dependence

causes. We can see an example of the selection phenomenon occurring in Fig-

ures 33, 35, 37, and 39 in the rightmost histogram. However, since our total

jet energy resolution is a composite distribution of a few one dimensional

distributions (the calorimeters) anda collapsed two dimensional distribution

(the tracker) we expect end behavior in the extreme fourth regime where

the tracker resolution gets so bad that the total jet energy resolution’s core

becomes almost totally photonic. All of this, to complicate things even more,

occurs in the presence of a debilitating Landau-type particle loss tail in the

tracker that skews everything, weakening any quantitative arguments based

on gaussian fits. Having finally dealt fully with the complex statistical con-

cepts necessary for understanding these collapsed distributions, we can turn

our attention to b-parameter dependence, Figures 40–45.
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Figure 40: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

Note that in the sequence of Figures 40–45 the Simple Standard Figures

34 and 35, for which b = 1 × 10−3, should come between Figures 41 and 42
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Figure 41: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 42: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

in order to complete the sequence. Just as in the histograms where the a

parameter was varied, we see the “selection?? process occurring in the total

jet energy resolution plots (the left histogram in the even numbered figures).
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Figure 43: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.
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Figure 44: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

Interestingly though, in this set of histograms we don?t see the selection

phenomenon losing out to poor resolution for high values of b, something we

must account for. By looking at Equation 22, we see that near θ = 0, Pt will
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Figure 45: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

be maximized for a particle of some arbitrary energy, thus minimizing the

contribution from the b parameter over a range of angles centered around

θ = 0. Parameter a, being isolated as a constant term, exhibits no such

behavior; making a large will after a certain point affect all particles equally.

The fact that we have particles selecting to minimize their errors if they

come in at small angles and reasonably high energies will cause the selection

phenomenon to persist over a much greater range of b values than a values.

This is in agreement with the statistical exposition above; we cite a and b as

affecting the total distribution in different ways, and even though the final

effects are similar we shouldn’t expect the different regimes to partition the

a and b continuums identically. That being said, if we increased b enough,

we should see the resolution trend inverting and getting worse, then finally

settling on whatever value the photonic calorimeter and hadronic calorimeter

can support. A final note, we can see that there are less and less counts in the

core of the total jet energy distribution by looking at the peak values at the

centers of the plots, supporting our ideas behind the cause of the selection
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phenomenon.

5 Physics Analysis

Finally, after having put the program through extensive analysis and testing,

we will use it to perform a somewhat more realistic analysis; in this section

we present plots and results from analyzing a T-channel process in which an

electron positron pair produce a pair of Z0 bosons. The lowest-order Feyn-

man diagram for this process appears below, in Figure 46. Our particular

simulated event takes place at 500 GeV center-of-mass energy, making the

results appropriate for a thrust analysis as the jets from the Z0 particles will

have good separation at this energy. In order to “measure” the masses of the

Z0 bosons generated, we simply use the thrust axis of the event to divide the

detector up into thrust hemispheres, then sum up the measured four-vectors

of the final-state jet particles over each hemisphere. The end result will, of

course, be two composite four vectors for each jet; we simply call the mea-

sured masses of these composite vectors the measured mass of the Z0 particle

which creates the jet. Below, we present histograms of these measured Z0

masses generated at various detector parameters (we use the same set from

the previous section), along with a rudimentary analysis of the results we

have obtained.

In this section of the paper, we shall choose not to undergo the exhaustive

and laborious analysis of each detector component undertaken in the sections

dealing with the uū-type events. Instead, we will simply note the similarities

in statistical changes for the histograms as we vary a detector parameter,

letting the exhaustiveness of the former treatment argue that the causes must

be the same, as these two-jet events are quite similar from the detector?s

point of view. If anything, the fact that the pair of Z0 bosons has a much

higher mass than the uū pair will only slightly affect the validity of our choice

to treat these events with a thrust analysis. Again, the purpose of this section
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Figure 46: The above diagram depicts the T-channel e+e− → Z0Z0 process simulated to create the

figures in this section.

of the paper is just to show that the program can similarly handle a slightly

more sophisticated event.
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Figure 47: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

With the purpose of simple exposition in mind, we present firstly in Figure

47 two histograms summarizing the results of the e+e− → Z0Z0 event simu-

lated with standard detector parameters. Comparing this diagram with its
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uū analogue, Figure 16, proves especially useful. Both simulations, using the

standard detector parameters, are subject to particle loss in the beampipe,

the calorimeter because of minimum energy requirements, and the tracker

because of minimum transverse momentum requirements; these losses man-

ifest themselves in the negative shift of the reconstructed jet mass peak as

compared with the history jet mass peak. Our standard detector reports

a Z0 boson mass of 89.739 GeV, as compared with the modern measured

value of 91.2 GeV. This does not seem spectacular, but the reader will notice

that the center of the Gaussian fit in Figure 47 is certainly a bit below the

center of the reconstructed mass peak, pushing our actual measured value a

bit up and hence into a bit better agreement. This discrepancy is entirely

due to the definition of the core of the peak, which is arbitrarily chosen to

be all the distribution that falls above half the maximum height. This type

of definition for the core is, unfortunately, necessarily somewhat blunt with

the simple QR decomposition we’ve chosen to use. However, considering the

complexity of the peak to which we must fit and the simplicity of the QR

fitter, a disagreement of 1.6% should really be interpreted as very reassuring.

The next figure we present, Figure 48, summarizes a simulation for which

the detector was hermetically sealed. Again, we can compare to the corre-

sponding uū histograms, found in Figure 19 for some useful conclusions. As

compared with their standard detector counterparts, both of these histograms

exhibit much better agreement between the reconstructed mass/energy peaks

and the history mass/energy peaks. We conclude, then, that in the simulation

of the two Z0 jets, the somewhat anemic mass measured with the standard

detector parameters is due to particle loss. Confirming this hypothesis is

the measured Z0 boson mass, reported in the hermetically sealed detector at

90.5 GeV. Again the reader can visually determine that the fit is again just

a tiny bit shy of the position of the actual peak. Note here in comparison

with Figure 47 that the peak for the hermetic detector is just a bit tighter

than that for the standard detector; this is another trend that carries over
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Figure 48: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

from the uū simulations.
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Figure 49: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

For the final point in the paper, we shall simply present a series of three
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Figure 50: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

Energy (GeV)

Jet Count

20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320
Recon Jet Mass

Recon. Jet Mass Fit

History Jet Mass

History Jet Mass
  Entries : 2862 
  Mean : 84.815 
  Rms : 19.473 
  OutOfRange : 764 

Recon. Jet Mass Fit
  Amplitude : 179.56 
  Mean : 90.472 
  StdDev : 3.4568 

Recon Jet Mass
  Entries : 2805 
  Mean : 81.292 
  Rms : 21.064 
  OutOfRange : 794 

Total History & Reconstructed Jet Mass − Z Boson Mass (a = 8E−5)

Difference Fraction

Jet Count

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

120

140

160

180

200

220

240 Jet Mass Res. Fit

Total Jet Mass Resolution

Total Jet Mass Resolution
  Entries : 3005 
  Mean : −0.18297 
  Rms : 0.33945 
  OutOfRange : 221 

Jet Mass Res. Fit
  Amplitude : 173.62 
  Mean : −0.067057 
  StdDev : 0.15426 

Total Jet Mass Resolution − Z Boson Mass (a = 8E−5)

Figure 51: The above figure contains a plot of the photonic and the hadronic jet energy resolutions

for the standard detector parameterization.

histograms generated over a range for a single detector parameter. The final

histograms, found in Figures 49-51, are generated using the alternative simple

tracker parameterization, with the tracker parameter a as given in Equation
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22 acquiring the values 1 × 10−5, 4 × 10−5 and 8 × 10−5, respectively. Re-

calling the complex discussion about core selection in multivariate statistical

distributions given previously in the paper, we should ostensibly be looking

for the same features occurring as we vary a parameter in this simulation.

However, upon inspection of the histograms, it is immediately apparent that

our tails due to particle loss are much too large and our distributions are

hence much too non-Gaussian to make any arguments that could be called

compelling. Still, we should look for something familiar happening under-

neath the noise. Firstly, consider the left side Figure 40. This histogram

was created by binning jet-by-jet the difference between the reconstructed

and the history masses and then scaling appropriately; this is exactly the

quantity binned in generating the jet energy resolutions in the uū sections

of the paper. First of all, we see a very sharp peak that is clearly centered

at 0.0 or somewhere very close to this value. Then, a third of the way down

the peak, we see a large mass on the low energy side that is reminiscent of

the tail/haunches incurred due to particle losses in the left side of Figure 33.

In both of these histograms (each generated using the simple tracker param-

eterization with a = 1 × 10−5) we have a sharply defined core due to the

accuracy of the tracker along with the particle losses, and on top of this we

have some selection occurring that sharpens the distribution if θ is close to 0.

A difference here is that we see the total jet mass resolution in a e+e− → Z0Z0

event resembling the charged momentum resolution in a e+e− → uū event;

this fact suggests to us that we have a much greater charged component in

the e+e− → Z0Z0 type jets as compared to the e+e− → uū type jets, which

of course means that we are really going to be disabled in our analysis by the

heavy particle losses in the tracker. Just as expected, for the histograms with

the higher values for the a parameter, we see the resolutions worsening. The

main manifestation of this is in the core of the total jet mass resolution; as

a is increased, we see the core spike widening and dropping–by a = 4× 10−5

we already see the core at about the same height as the particle loss tail, but
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then as we move to double this value at a = 8 × 10−5, there isn?t a huge

difference in the look of the mass resolution plot. This signals us just as in

the uū events that we have hit a transitional point where the accuracy of the

other components of the detector are beginning to hold up the accuracy of

the measurements to a greater degree.

This concludes the motivation, theory, implementation, exposition, and anal-

ysis of the Fast Monte Carlo simulation for the Linear Collider Detector,

written by Daniel Furse during the summer of 2005 on the Department of

Energy SULI summer internship at the Stanford Linear Accelerator Center.

For any additional questions or comments, please contact Daniel Furse via

email at:

<gtg251g@mail.gatech.edu>
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