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This article calculates the energy gain of a single relativistic electron 
interacting with a single gaussian beam that is terminated by a metallic 
reflector at normal incidence by two different methods: the electric field 
integral along the path of the electron, and the overlap integral of the 
transition radiation pattern from the conductive foil with the laser beam.  It 
is shown that for this instance the two calculation methods yield the same 
expression for the expected energy change of the electron.  

 
I. INTRODUCTION 

A recent proof-of-principle experiment for laser-driven particle acceleration [1] 
employed a single linearly polarized laser beam interacting with a 30 MeV relativistic 
electron beam in a semi-infinite vacuum terminated by a thin metallic boundary. The high 
reflective surface prevents the laser beam from interacting with the electron beam in the 
space downstream of the boundary. Figure 1 illustrates the accelerator setup used in the 
proof-of-principle experiment, which is similar to the arrangement originally proposed by 
Edinghofer and Pantell [2]. 
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FIG 1: The laser beam, electron beam and boundary configuration. 
 
E is the electric field of the laser and is the field component parallel to the electron 
beam trajectory. For this simple setup the energy gain for the electron beam is most 
conveniently calculated by integrating the electric field component of laser beam that is 
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parallel to the electron beam ( ) along its trajectory over the interaction length with the 
laser. As shown in Figure 1 this corresponds to the semi-infinite space upstream of the 
boundary. Assuming that the external field causes no significant change in the particle’s 
trajectory the energy gain caused by the external laser field is 

zE
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a
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The energy gain observed in the proof-of-principle experiment was in good agreement 
with the energy gain expected by employing Equation 1. It was observed to scale linearly 
with the amplitude of the laser electric field, showed the expected laser polarization 
dependence and occurred only in the presence of the field-terminating boundary. 
 
Many other laser-driven particle acceleration schemes employ Equation 1 to calculate the 
energy gain. Examples include crossed gaussian laser beams [3], Hermite-gaussian laser 
beams [4], and other arbitrary laser beam or light diffraction electric field profiles [5]. In 
addition to semi-open free space laser accelerators other schemes like Inverse-Cerenkov 
accelerators [6] and guided-wave accelerators [7] (optical or RF) also employ the path 
integral method of Equation 1 to estimate the electron beam energy gain.  
 
Equation 1 results from integrating the Lorentz force acting on the electron over its path 
where it interacts with the external field. However, Poynting’s Theorem offers an 
alternative method for calculating the energy change of the electron.  Poynting’s 
Theorem [8] states that inside a given volume V 
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where is the mechanical work on the electric charges in the volume V, is the 
change of the electromagnetic energy stored in the volume V, and the last term is the 
energy flux leaving the volume V through its boundary S. 

U∆ EMW∆

totalE
r

and  are the total 
electric and magnetic fields at the boundary S.  

totalB
r

 
It has been shown that for the case of an electron interacting with an external 
electromagnetic field (like a laser) Equation 2 can be rewritten to express the energy 
change of the electron as the overlap integral of the wake field of the electron in the 
presence of the structure or medium with the laser field [9,10].  
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where  now represents the energy gain of the charged particle. The quantities 

and are the laser and electron fields in the presence of the structure [10]. 
U∆
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wakeE
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Figure 2 illustrates a generalized situation of an electron interacting with a structure or 
medium in combination with an external laser field.  
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FIG 2: schematic of overlap integral of laser and wake field radiation 
 
The overlap integral Equation expresses laser acceleration as an inverse-radiation 
process. However, several important assumptions are made in Equation 3 and are 
important to keep in mind when making generalizations: 
 

• The wake field amplitude is much smaller than the external driving amplitude, 
that is laserwake EE

rr
<< . Thus one can neglect the wake field radiation contribution 

from the accelerator structure or medium. This can be Cerenkov, aperture, 
transition radiation or even undulator radiation in a wiggler, or any combination 
of these depending on the specific structure. 

• The orbit of the electron suffers no appreciable change in the presence of the 
driving field. For relativistic electrons this is usually a valid approximation. 

• There is no change in the stored electromagnetic energy in the volume where the 
acceleration is calculated, thus 0=∆ EMW .   

• There is no ohmic loss in the accelerator structure or medium, such that the 
energy flux of the laser into the volume is equal to the energy flux of the laser 
exiting the volume, and furthermore the only contribution to U∆ comes from the 
energy gain of the electron beam and not from currents in the medium. 

• Other possible non-radiative scattering losses are neglected 
 
These assumptions are realistic for most laser-acceleration experiments, such as the laser-
acceleration proof-of-principle LEAP experiment, and hence it is of interest to calculate 
the energy change of the electron beam by the inverse-radiation picture described in 
Equation 3 and compare it to the familiar path-integral energy gain calculation method. 
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II. THE PATH INTEGRAL ENERGY GAIN METHOD 

A linearly polarized TEM00 gaussian laser beam is assumed to interact with a relativistic 
electron beam in free space over a finite distance. The expression for the gaussian beam 
electric field magnitude is derived by the assumption that the laser beam profile variation 
in the transverse dimension is much smaller than the variation due to the optical phase in 
the longitudinal dimension. With these assumptions, and derived as a scalar, the 
amplitude of the transverse electric field component is [11]  
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The coordinates (  are aligned to the laser beam, where )zyx ′′′ ,, ( )yx ′′,  are the transverse 
coordinates while is the direction of propagation of the laser beam.  is the peak 
electric field amplitude of the laser beam, 

z′ 0E
ϕ  is a phase offset angle and ω  is the 

frequency of the laser.  is the Raleigh range given by 0z λπ 2
00 wz = ( )zw ′ , where  is 

the beam waist and 
0w

λ  is the wavelength. ( ) ( ) ( )( )2
0

2
0 1 wzwzw πλ ′+=′  is the beam size 

located at , z′ ( ) ( )22
01 zzzzR ′+=′  is the radius of curvature at , and z′

( ) ( 0
1tan zzz ′=′ −η )  is the Guoy phase shift for a TEM00 gaussian laser beam at z′ . The 

focus of the beam in Equation 1 occurs at 0=′z . As shown in Figure 3 the 
coordinates (  are rotated by an angle α about the y-axis with respect to a 
coordinate system  aligned with the electron beam. 

)
)

zyx ′′′ ,,
( zyx ,,

 

α

transverseE

( )z,0,0

laser beam

electron

boundary

ẑ
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FIG 3: Schematic diagram of the laser beam and the 
electron beam incident on a thin boundary 
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Figure 3 illustrates a linearly polarized laser beam oriented at an angle α  with respect to 
the electron beam and at a polarization angle ρ . The electron travels along the 
coordinates  where ( )( tz,0,0 ) ( ) tctz β= . To calculate the energy gain of the particle the 
field component  has to be evaluated and integrated along the z-axis. ( )( ttzEz ,,0,0 )

)
 
Since is a scalar quantity the orientation of this field in the coordinates 
has to be added by hand. Allowing for the polarization angle 

transverseE ( zyx ,,
ρ  the orientation vector for 

the transverse electric field is 
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Thus the expression for the TEM00 gaussian laser beam in the ( )zyx ,,  coordinates is 
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With this expression for the laser electric field one can perform the path integral energy 
estimate in the spirit as shown in Equation 1. The electric field component parallel to the 
direction of propagation of the electron beam and along the electron beam axis is 
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where the (  coordinates correspond to )zyx ′′′ ,, αα cos0   ,sin zz,  yzx =′=′=′ . With 
these coordinate substitutions Equation 7 simplifies to 
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The energy change of the electron is most easily obtained by numerical integration of the 
electric field in Equation 10.  For the experimental parameters in the LEAP experiment 
the laser beam waist size λ>>0w  and hence the beam divergence 1<<dθ . Furthermore 
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the laser crossing angle is small ( 1<<α ).  Figure 4 shows the longitudinal electric field 
for a laser beam not terminated at the boundary. Notice that the region of interest where 
the laser field has a significant contribution is much smaller than the Rayleigh range 

0zz << . Furthermore notice that the amplitude of oscillation of the electric field has a 
gaussian-like envelope, which is mostly due to the finite transverse extent of the gaussian 
beam.  
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FIG 4: The longitudinal electric field for a single gaussian laser beam at a 
shallow angle to the electron beam 

 
One can proceed and numerically integrate ( )zEz  to obtain the energy gain, however for 
the purpose of deriving an analytical expression assume that adjacent electric field 
oscillations nearly cancel except for the very last field oscillation in front or the 
terminating boundary. 
 
To simplify Equation 8 assume the laser crossing angle 1<<α . Thus 
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Introducing the definitions of dθ , , ,0z 0w ( )zη  and ( )zR . The phase term of Equation 9 
can be rewritten as  
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since we assume that 1ˆ <<z  the inverse-tangent in Equation 10 can be approximated by 

( )21 1~tan xxx +−  and hence the optical phase term simplifies further to 
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The time variable can be eliminated by assuming the electron travels at a constant 
velocity, , or vtz = βczvzt == . With this in mind the optical phase term in Equation 
11 becomes 
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With the previously stated assumptions that λω >>0  and thus 1<<dθ  the phase angle 
slips by π  in a distance much smaller that the Rayleigh range . In this region where 0z

1ˆ <<z  the phase term can be approximated by 
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Notice that the optical phase term for crossed laser beams derived by Sprangle, Esarey 
and Krall contains  instead of . This difference is due to the inclusion of the 
intrinsic longitudinal electric field of a gaussian beam in their derivation that is neglected 
in this discussion, which is valid for the present situation where 

22 dθ 2
dθ

λω >>0 . 
 
Since we are analyzing the limit where the gaussian beam is a near-plane wave 

. Hence this difference of  has no significance. The electric field in 
Equation 8 becomes 

22 αθ <<d
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With the assumption that the laser is a near-plane wave and that all except for the very 
last half electric field oscillation cancel the integral expression of Equation 1 becomes 
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The slippage distance is given by the condition where the optical phase advances by π. 
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Thus 
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Since we are assuming that the amplitude factor has no appreciable change over , 

that is 
slippageZ

( ) 1ˆexp 222 ≈dz θα  in the region of interest, the energy gain is approximately 
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Thus the energy change for an electron estimated by the path integral method is 
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From Equation 19 we can see that the energy change depends on the optical phase ϕ , 
that it scales linearly with the electric field amplitude of the laser , that it follows a 
cosine dependence with the polarization angle 

0E
ρ , and that it scales linearly with the laser 

wavelength λ . Furthermore it shows a dependence with the laser crossing angle that 
scales as ( ) ( )221 αγαα +∝f  that has an optimum angle of γα 1max = .  Figure 5 shows 
that for the LEAP experiment laser and electron beam parameters the analytical 
approximation of Equation 19 is in good agreement with the numerical path integral of 
the longitudinal electric field of the laser beam. 
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FIG 5: comparison between analytical approximation and numerical 
integral of the longitudinal electric field 
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III. THE INVERSE TRANSITION RADIATION PICTURE 
 
We proceed to calculate the electric retarded field of an electron approaching an infinite 
conductive boundary at normal incidence, and model it as a superposition of a charge and 
an image charge approaching each other at uniform velocity and stopping abruptly at the 
boundary.  Figure 6 illustrates the situation, where the electric field at the observation 
point O with coordinates ( )φθ ,,R  is to be calculated.  
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FIG 6: transition radiation calculation by the method of images 
 
 
Starting from the retarded scalar and vector potentials for a point charge  
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The retarded electric field of an accelerating charge can be found to be 
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In the frequency spectrum this corresponds to 
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so that in the time domain 
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Assume the collision time is infinitely short, hence the term ( )cRtie +′− ω  is nearly constant 
over the integration time where β changes value. Hence the total field caused by the 
charge plus the image charge is 
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Note that the field is radially polarized 
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Hence in polar coordinates the transition radiation field is 
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The compact expression of the electric field in radial coordinates implies that the overlap 
integral calculation between the laser field laserE

r
 and the transition radiation field 

 is most conveniently carried out in the ( ωφθ ′,,trE
r

) ( )ωφθ ,,,∞→R  coordinate system. 

Thus needs to be expressed as a superposition of plane waves in (laserE
r
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Written in phasor notation the scalar part of the laser field is 
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Using the Fourier transformation pair that has the form 
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Thus the spectrum of the (monochromatic) laser electric field is 
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At the amplitude factor of the electric field is 0=z
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Assuming that the crossing angle α  is small at the boundary  the radius of 
curvature and Guoy phase shift terms can be neglected. Furthermore the laser spot size is 

. With these assumptions for 
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( ) 0~ wzw ′ ( )0,,~ yxA  the plane wave spectrum ( vuA , )~  for the 

amplitude becomes ( 0,, )~ yxA  is (See appendix) 
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Using the coordinate transformations in the small angle approximation xxx ~cosα=′ , 

 yy =' , αα xxz −−= ~sin' , and evaluating the integral in equation 31     
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To simplify the expression in the exponential term the definition of 0wd πλθ = was used. 
Note that since 1<<dθ  the exponential dies quickly. Assuming that the transition 
radiation field distribution has a negligible change over this the angular range the 
gaussian factor in Equation 32 can be approximated by a delta function 
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This is the equivalent assumption made in the path-integral calculation that the laser 
beam is a near-plane wave. Thus equation 32 simplifies further to 
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Note that the far-field paraxial angles ( )vu,  form a rectangular coordinate system that 
expressed in the radial angle coordinates is φθ cossin=u , φθ sinsin=v . Hence 
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The factor θsin1  is a result of the coordinate system transformation. Adding the laser 
polarization vector for each of the two plane waves in Equation 35 
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This is the expression of the laser field traveling away from the focus in the far field and 
in the absence of a reflective screen. There is another term in ( )φθ , coordinates for the 
incoming laser beam traveling into the focus. This incident field is located at the 
coordinates ( )πφαπθ =−= , . Note that the vectors are written in Cartesian coordinates. 
Since the orientation of the vector of the incident laser beam is the same as the exiting 
beam the expression the x-component picks up a negative sign when the radial 
coordinates undergo the transformation ( )πφφαπθαθ =→=−=→= 0,  
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In the presence of the boundary there are two more terms, one transmission term that is 

equal to ( )o

tlaserE φθ ,
r

−  and that makes the total field behind the boundary zero, and a 

reflection term at coordinates ( )0, =−= φαπθ . 
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Thus the total laser field in the presence of the boundary is 
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where 
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A diagram of the field components is shown in Figure 7 
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FIG 7: The laser field in the presence of the reflective boundary 
 

 
Assuming no electromagnetic energy is stored in the volume of interaction and no ohmic 
losses Poyntings’ Theorem predicts an energy change for the electron  
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where it is assumed that nBE ˆ, ⊥

rv
 and BE

rv
⊥ . This expression can be expanded to  
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Based on the assumption that boundary is a lossless high reflector  
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Furthermore following the assumption that the laser field magnitude is much larger than 
the transition radiation field magnitude we can neglect the transition radiation energy loss 
term  and are left with ( ) ( )tEtE trtr

rr
⋅
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This is valid for real fields. For fields written as phasors the product of the fields in 
Equation 58 becomes the product of the real part of the phasors [12] 
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Changing the time dependent expression into a frequency dependent expression the time 
integral of Equation 46 becomes 
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which simplifies to 
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Using the definitions of in Equation 22 and of  in equation 29 the second integral 
in Equation 48 is zero and therefore  

trE laserE
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Inserting the expression for ( )ωlaserE

r
 and ( )ωtrE

r
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The term ( )ϕie−RE  is simply ϕcos . Integrating the delta function expressions and using 
the definitions of , and  the energy gain expression in Equation 50 simplifies to 1̂n 2n̂ trn̂
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Assuming 1<<α and 1~β  
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One can conclude that for a laser beam terminated by a conductive boundary at normal 
incidence to the electron beam the energy gain expected from the path integral (Equation 
19) is the same as the energy gain calculated by the inverse-radiation overlap integral 
method. 
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APPENDIX 
 
Define the plane wave decomposition of a field distribution ( )yxf ,  as 
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where  are angular coordinates and C is an arbitrary constant to be determined by 
conservation of total energy flux. The total energy flux of 

( vu, )
( )yxf ,  has the form 
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The constant C is chosen such that 
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Thus from Equation A1  
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Thus λ1=C . Hence the plane wave decomposition is 
 

 ( ) ( ) dxdyeeyxfvu ikyvikxu∫ ∫
∞

∞−

∞

∞−

−−=Ψ ,1,
λ

     A6

16 



T. Plettner                                                   Analysis of laser acceleration in a semi-infinite  
                                                                    space as inverse transition  radiation 

 
REFERENCES 

 
1. T. Plettner et al, to appear in Phys. Rev. Lett.  (2005) 
2. R.H. Pantell, M.A. Piestrup, “Free-electron momentum modulation by means of 

limited interaction length with light”, Applied Physics Letters, 32, no. 11, p 781-
783 (1978) 

3. E. Esarey, P. Sprangle, J. Krall, “Laser Acceleration of Electrons in Vacuum”, 
Physical Review E, 52, p 5443-5453 (1995) 

4. E.J. Bochove, G.T. Moore, M.O. Scully, “Acceleration of particles by an 
asymmetric Hermite-Gaussian laser beam”, Physical Review A, Vol. 46 No. 10 p. 
6640-6653 (1992) 

5. J.A. Edinghofer, R.H. Pantell, “Energy exchange between free electrons and light 
in vacuum”, Journal of Applied Physics, 50, p 6120-6122 (1979) 

6. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. 
Kusche, R. C. Fernow, X. Wang, Y. Liu, “Laser Acceleration of Relativistic 
Electrons Using the Inverse Cherenkov Effect”, Phys. Rev. Lett. 74, 546-549 
(1995)    

7. X.E. Lin, “Photonic band gap fiber accelerator”, Phys. Rev. ST Accel. Beams 4, 
051301 (2001)    

8. See for example Jackson, Classical Electrodynamics, 2nd edition, chapter 6, p 236 
9. M. Xie, Proceedings of the 2003 Particle Accelerator Conference (2003) 
10. Z. Huang, G. Stupakov and M. Zolotorev , “Calculation and Optimization of 

Laser Acceleration in Vacuum”, Phys. Rev. Special Topics - Accelerators and 
Beams,Vol. 7,  011302 (2004) 

11. A. Yariv, Optical Electronics, 4th edition, Saunders College Publishing, p. 48 
12. D.K. Cheng, Field and Wave Electromagnetics, 2nd edition, Addison-Wesley 

Publishing Company, p. 383 
 
 
 
 
 
 

17 


