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Analysis of laser acceleration in a semi-infinite space as inverse
transition radiation

T. Plettner
Sanford Linear Accelerator Center, Sanford, CA 94025

This article calculates the energy gain of a single relativistic electron
interacting with a single gaussian beam that is terminated by a metallic
reflector at normal incidence by two different methods: the electric field
integral along the path of the electron, and the overlap integral of the
transition radiation pattern from the conductive foil with the laser beam. It
is shown that for this instance the two calculation methods yield the same
expression for the expected energy change of the electron.

I. INTRODUCTION

A recent proof-of-principle experiment for laser-driven particle acceleration [1]
employed a single linearly polarized laser beam interacting with a 30 MeV relativistic
electron beam in a semi-infinite vacuum terminated by a thin metallic boundary. The high
reflective surface prevents the laser beam from interacting with the electron beam in the
space downstream of the boundary. Figure 1 illustrates the accelerator setup used in the

proof-of-principle experiment, which is similar to the arrangement originally proposed by
Edinghofer and Pantell [2].

incident laser beam

boundary

" reflected laser beam

FIG 1: The laser beam, electron beam and boundary configuration.

E is the electric field of the laser and E, is the field component parallel to the electron

beam trajectory. For this simple setup the energy gain for the electron beam is most
conveniently calculated by integrating the electric field component of laser beam that is
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parallel to the electron beam (E,) along its trajectory over the interaction length with the

laser. As shown in Figure 1 this corresponds to the semi-infinite space upstream of the
boundary. Assuming that the external field causes no significant change in the particle’s
trajectory the energy gain caused by the external laser field is

b
AU = [qE(F,t)dr 1

a

The energy gain observed in the proof-of-principle experiment was in good agreement
with the energy gain expected by employing Equation 1. It was observed to scale linearly
with the amplitude of the laser electric field, showed the expected laser polarization
dependence and occurred only in the presence of the field-terminating boundary.

Many other laser-driven particle acceleration schemes employ Equation 1 to calculate the
energy gain. Examples include crossed gaussian laser beams [3], Hermite-gaussian laser
beams [4], and other arbitrary laser beam or light diffraction electric field profiles [5]. In
addition to semi-open free space laser accelerators other schemes like Inverse-Cerenkov
accelerators [6] and guided-wave accelerators [7] (optical or RF) also employ the path
integral method of Equation 1 to estimate the electron beam energy gain.

Equation 1 results from integrating the Lorentz force acting on the electron over its path
where it interacts with the external field. However, Poynting’s Theorem offers an
alternative method for calculating the energy change of the electron. Poynting’s
Theorem [8] states that inside a given volume V

0

AU = _AWEM - _[ §L(Etotal X B>total ) Adsdt 2

S ;uo

where AU is the mechanical work on the electric charges in the volume V, AW, is the
change of the electromagnetic energy stored in the volume V, and the last term is the
energy flux leaving the volume V through its boundary S. E_ and B, are the total
electric and magnetic fields at the boundary S.

total total

It has been shown that for the case of an electron interacting with an external
electromagnetic field (like a laser) Equation 2 can be rewritten to express the energy
change of the electron as the overlap integral of the wake field of the electron in the
presence of the structure or medium with the laser field [9,10].

AU = —T §£(EIaser + B,y st 3

where AU now represents the energy gain of the charged particle. The quantities
E..and E_,are the laser and electron fields in the presence of the structure [10].

laser wake
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Figure 2 illustrates a generalized situation of an electron interacting with a structure or
medium in combination with an external laser field.
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FIG 2: schematic of overlap integral of laser and wake field radiation
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The overlap integral Equation expresses laser acceleration as an inverse-radiation
process. However, several important assumptions are made in Equation 3 and are
important to keep in mind when making generalizations:

e The wake field amplitude is much smaller than the external driving amplitude,
that is |E, ... . Thus one can neglect the wake field radiation contribution

from the accelerator structure or medium. This can be Cerenkov, aperture,
transition radiation or even undulator radiation in a wiggler, or any combination
of these depending on the specific structure.

e The orbit of the electron suffers no appreciable change in the presence of the
driving field. For relativistic electrons this is usually a valid approximation.

e There is no change in the stored electromagnetic energy in the volume where the
acceleration is calculated, thus AW, =0.

e There is no ohmic loss in the accelerator structure or medium, such that the
energy flux of the laser into the volume is equal to the energy flux of the laser
exiting the volume, and furthermore the only contribution to AU comes from the
energy gain of the electron beam and not from currents in the medium.

e Other possible non-radiative scattering losses are neglected

<<‘E

laser

These assumptions are realistic for most laser-acceleration experiments, such as the laser-
acceleration proof-of-principle LEAP experiment, and hence it is of interest to calculate
the energy change of the electron beam by the inverse-radiation picture described in
Equation 3 and compare it to the familiar path-integral energy gain calculation method.
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Il. THE PATH INTEGRAL ENERGY GAIN METHOD

A linearly polarized TEMqo gaussian laser beam is assumed to interact with a relativistic
electron beam in free space over a finite distance. The expression for the gaussian beam
electric field magnitude is derived by the assumption that the laser beam profile variation
in the transverse dimension is much smaller than the variation due to the optical phase in
the longitudinal dimension. With these assumptions, and derived as a scalar, the
amplitude of the transverse electric field component is [11]

2 2

Xy
E.e w(z')’ leZ
E ransverse (X’1 y', Z’,t) = O—COS(O)t —kz' - 77(2’)— —— ¢j 4
t 1+12?/z) 2R(2')

The coordinates (x',y’,z') are aligned to the laser beam, where (x',y’) are the transverse
coordinates while z'is the direction of propagation of the laser beam. E, is the peak
electric field amplitude of the laser beam, ¢ is a phase offset angle and @ is the
frequency of the laser. z, is the Raleigh range given by z, = 2w, /2 w(z'), where w, is

the beam waist and A is the wavelength. w(z')=w, (1+(/12')2/(7zw0 )2) is the beam size

!

located at z', R(z’):z(l+zoz/z’2) is the radius of curvature at z’, and

n(z')=tan™*(z'/z,) is the Guoy phase shift for a TEMgo gaussian laser beam at z'. The

focus of the beam in Equation 1 occurs at z'=0. As shown in Figure 3 the
coordinates(x', y',z’) are rotated by an angle o about the y-axis with respect to a

coordinate system (x, Y, z) aligned with the electron beam.

boundary
S/ \—transverse (X, y’O)

laser beam

- m

4 electron (0,0, Z)

FIG 3: Schematic diagram of the laser beam and the
electron beam incident on a thin boundary
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Figure 3 illustrates a linearly polarized laser beam oriented at an angle « with respect to
the electron beam and at a polarization angle p. The electron travels along the

coordinates (0,0,z(t)) where z(t)=c/t. To calculate the energy gain of the particle the
field component E,(0,0,z(t),t) has to be evaluated and integrated along the z-axis.

Since E,,.. iS @ scalar quantity the orientation of this field in the (x,y,z)coordinates
has to be added by hand. Allowing for the polarization angle o the orientation vector for
the transverse electric field is

COS COS p
nIaser = Sin P 5
sin ¢ cos p

Thus the expression for the TEMgo gaussian laser beam in the (x, Y, z) coordinates is

g COSa COS p
E(x,y,z,t)= Eoe—cos(a)t —ki'-n(z') -5 -] sinp 6
1+ 2’2/202 sina cos p

With this expression for the laser electric field one can perform the path integral energy
estimate in the spirit as shown in Equation 1. The electric field component parallel to the
direction of propagation of the electron beam and along the electron beam axis is

X12+yr2

- w(z')?
Eoe—cos(a)t —kz'+n(z')+
1+2?/z)?

12

E,(0,0,z,t)= )

jsin a COS p 7

where the (x’, y’,z’) coordinates correspond to x'=zsina, y' =0, zZ'=zcosa . With
these coordinate substitutions Equation 7 simplifies to

E, =E°SLSOS’OZG( e Jcosy/t
(1+ 2cos’af 8
2 ain?
v, = wt_kzcosa+ﬂ(2003“)+%_

The energy change of the electron is most easily obtained by numerical integration of the
electric field in Equation 10. For the experimental parameters in the LEAP experiment

the laser beam waist size w, >> 4 and hence the beam divergence |¢9d| <<1. Furthermore
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the laser crossing angle is small (a <<1). Figure 4 shows the longitudinal electric field
for a laser beam not terminated at the boundary. Notice that the region of interest where
the laser field has a significant contribution is much smaller than the Rayleigh range

|z| << z,. Furthermore notice that the amplitude of oscillation of the electric field has a

gaussian-like envelope, which is mostly due to the finite transverse extent of the gaussian
beam.
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FIG 4: The longitudinal electric field for a single gaussian laser beam at a
shallow angle to the electron beam

One can proceed and numerically integrate E,(z) to obtain the energy gain, however for

the purpose of deriving an analytical expression assume that adjacent electric field
oscillations nearly cancel except for the very last field oscillation in front or the
terminating boundary.

To simplify Equation 8 assume the laser crossing angle o <<1. Thus

kz%a? B 9
2R@) 7

v, ~ ot —ke(l— )+ n(z)+

Introducing the definitions of 6, ,z,,w,,7(z) and R(z). The phase term of Equation 9
can be rewritten as

2 2
a - ~ ~
~wt—kz+——7+tant7+ 73— 10
l//t Hdz Hdzil—i- 2‘2i ¢

since we assume that |2| <<1 the inverse-tangent in Equation 10 can be approximated by
tan~' x ~ x/(1+ xz) and hence the optical phase term simplifies further to
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1//~a)t—kz+a—22+
t 0" 1+2* 901+

2 « )23—¢ 11

The time variable can be eliminated by assuming the electron travels at a constant
velocity, z=vt, or t=z/v=z/cf. With this in mind the optical phase term in Equation
11 becomes

A 1 a2 2 2
~I ——=+—|1+6," + — 12
Vi (7/29(12 edz[ d 1+22j} @

With the previously stated assumptions that @, >> A4 and thus |¢9d| <<1 the phase angle

slips by ~ in a distance much smaller that the Rayleigh range z,. In this region where
|2| <<1 the phase term can be approximated by

A

Z 1 2
wt~¥(7+a2+9d j—@ 13
Notice that the optical phase term for crossed laser beams derived by Sprangle, Esarey
and Krall contains 26,” instead of 6,”. This difference is due to the inclusion of the

intrinsic longitudinal electric field of a gaussian beam in their derivation that is neglected
in this discussion, which is valid for the present situation where @, >> 1.

Since we are analyzing the limit where the gaussian beam is a near-plane wave
6,> <<a®. Hence this difference of 6,° has no significance. The electric field in
Equation 8 becomes

a .

HJ CoSy, 14

04

E,~E,x-cosp- e[

With the assumption that the laser is a near-plane wave and that all except for the very
last half electric field oscillation cancel the integral expression of Equation 1 becomes

z+ZS”ppage/2
AU = [qE(F,t)dF 15

The slippage distance is given by the condition where the optical phase advances by .

Z .
slippage (i-i-az _I_Hdzj 16

l//t (Zslippage)= T = Zo<9d2 7/2
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Thus

A A
Zslippage = - 17
1 2, 52
—+a”+0 —+ta
2 d 2
Y Y

Since we are assuming that the amplitude factor has no appreciable change over Z;, ..,

that is exp(aziz/edz)zl in the region of interest, the energy gain is approximately

+ Zslippage /2

AU ~qE,e7cosp- o j COS[H%Z - gojdz 18
slippage

0

Thus the energy change for an electron estimated by the path integral method is

~ ﬂqEO—cos,o-cosw 19
T 2

7""@

Y
From Equation 19 we can see that the energy change depends on the optical phase ¢,

that it scales linearly with the electric field amplitude of the laser E,, that it follows a
cosine dependence with the polarization angle p, and that it scales linearly with the laser
wavelength 4. Furthermore it shows a dependence with the laser crossing angle that
scales as f(a)oc a/(]/yz +a2) that has an optimum angle of o, =1/y . Figure 5 shows

that for the LEAP experiment laser and electron beam parameters the analytical
approximation of Equation 19 is in good agreement with the numerical path integral of
the longitudinal electric field of the laser beam.

AU

15
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0

0 16 26 3‘0 46 5‘0 66 76 8‘0 96 100
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FIG 5: comparison between analytical approximation and numerical
integral of the longitudinal electric field
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I11. THE INVERSE TRANSITION RADIATION PICTURE

We proceed to calculate the electric retarded field of an electron approaching an infinite
conductive boundary at normal incidence, and model it as a superposition of a charge and
an image charge approaching each other at uniform velocity and stopping abruptly at the
boundary. Figure 6 illustrates the situation, where the electric field at the observation
point O with coordinates (R,8,¢) is to be calculated.

boundary

q -q
charge image
charge

FIG 6: transition radiation calculation by the method of images

Starting from the retarded scalar and vector potentials for a point charge

40 YOt Ric),
4z R(xGY)

® ()_(. t): q 5(t'—t+R/C) ,
T Az, R(XGt)

Aa(%.t)
20

The retarded electric field of an accelerating charge can be found to be

E - qZ, d nx(nx,B) 21
47KR dt’ K

In the frequency spectrum this corresponds to

E(x, )= 2% | ix 43D leciotcmeigy >0
4R v K

—00

22

my

(X,0)=0, ©<0

so that in the time domain
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T

E(t)= 21 RE[_zE(w)ei”’tda)J 23

Assume the collision time is infinitely short, hence the term g ielt+Rle) g nearly constant

over the integration time where fchanges value. Hence the total field caused by the
charge plus the image charge is

. =0 . =0 o (A =
£ (o)~ qZOﬁX[nxﬂ| Ax J~qZOnx(E\x:B) y
47R K|, K, 2R1-(p gf
Note that the field is radially polarized
cos&cos ¢
ﬁx(ﬁxﬁ): cos@sin ¢ 25
—sind

Hence in polar coordinates the transition radiation field is

. i 9 cosdcos¢
Etr(R,e,qﬁ,a)):gﬂ&l f;:oszﬁ cos@sin g 26
—-sind

The compact expression of the electric field in radial coordinates implies that the overlap
integral calculation between the laser field E and the transition radiation field

laser

E,(0,4,0') is most conveniently carried out in the (R — 0,8,4,®) coordinate system.

Thus E,aser needs to be expressed as a superposition of plane waves in (6,¢,a)) space.
Written in phasor notation the scalar part of the laser field is

. X2y , N kx'?
Eoe ip e_ e el[a)ot—kz -n(z )_ZR(Z')J

1277

Using the Fourier transformation pair that has the form

A(F e 27

10
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E(F,0)= [E(r. e dt

B 28
E(r,t)=2L j E(r, ok do
Thus the spectrum of the (monochromatic) laser electric field is
E(F,0)=275(w — w, )A(F) 29
At z =0the amplitude factor of the electric field is
- 7x’2+'y2’2 —i| p+kz'+n(z' )+ kx,zy
A(x,y,0)=Ee " e [ R )J 30

z=0

Assuming that the crossing angle « is small at the boundary z=0 the radius of
curvature and Guoy phase shift terms can be neglected. Furthermore the laser spot size is

w(z')~ w, . With these assumptions for A(x, y,0) the plane wave spectrum A(u,v) for the
amplitude becomes A(x, y,0) is (See appendix)

2,2
o o X“+y

R(u,v):%'[ IEOe_ Mo" griugiyvg-ilo )y gy 31

—00 —00

Using the coordinate transformations in the small angle approximation x' = xcosa ~ X,
y'=y, z'=—xsina ~ —Xa , and evaluating the integral in equation 31

gl? 32

To simplify the expression in the exponential term the definition of 6, = 1/zw, was used.
Note that since &, <<1 the exponential dies quickly. Assuming that the transition

radiation field distribution has a negligible change over this the angular range the
gaussian factor in Equation 32 can be approximated by a delta function

(u—a)? +v?

e % ~70°5Uu-av) 33

This is the equivalent assumption made in the path-integral calculation that the laser
beam is a near-plane wave. Thus equation 32 simplifies further to

11
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(u-a)?+v?

Auv)=Eze % e5(u-a,v) 34

Note that the far-field paraxial angles (u,v) form a rectangular coordinate system that
expressed in the radial angle coordinates is u =sin@cos¢, v =sindsin¢ . Hence

_(u—oz)2 +v?

K(u,v):jrolee % e 5(6a, ) 35

The factor 1/sin@ is a result of the coordinate system transformation. Adding the laser
polarization vector for each of the two plane waves in Equation 35

DA (u=a)’+v? COS&COSP
EIaser (9’ ¢X:’ = Sin(:9 € o’ e_mé(@-a, ¢)§(a) — ), sin P 36
—singcos p

This is the expression of the laser field traveling away from the focus in the far field and
in the absence of a reflective screen. There is another term in (6,¢)coordinates for the
incoming laser beam traveling into the focus. This incident field is located at the
coordinates (6 = 7 —a,¢ = x). Note that the vectors are written in Cartesian coordinates.
Since the orientation of the vector of the incident laser beam is the same as the exiting
beam the expression the x-component picks up a negative sign when the radial
coordinates undergo the transformation (§=a > 0=7-a,4=0—->p=1)

D (u=a)®+v? - COS&COSP
E.Iaser (91 ¢X = Sin(:9 € o’ e_i¢§(6'av ¢)5((0 — sin P 37
—singcos p

In the presence of the boundary there are two more terms, one transmission term that is
equal to — Elaser(e,(zﬁ)f and that makes the total field behind the boundary zero, and a

reflection term at coordinates (0 = 7 — a,¢ =0).

2 _u=a)’+v? —cosdcos p
EIaser(e’¢x =- Sin(:9 € o’ e_i(p5(9'a,¢)5(a)—a)o Sinp 38
singcos p

Thus the total laser field in the presence of the boundary is

EIaser (9’¢Xs = EIaser (9, ¢X| + EIaser (9,¢Xr 39

12
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Thus
C2EETA
Elaser (9’¢Xs - Wa(a) 0)0) 40
60~ (7 -a)x-¢)-1,50-(7-a) )
where
—cosécos p —cosécos p
n, = sin p A, = sinp 41
—sinédcos p sindcos p

A diagram of the field components is shown in Figure 7

=0

laser

boundary

FIG 7: The laser field in the presence of the reflective boundary

Assuming no electromagnetic energy is stored in the volume of interaction and no ohmic
losses Poyntings’ Theorem predicts an energy change for the electron

T T
AU =—[§5(60,4,1)- fidadt = —Zi [§E(0.4.1)- E(6,4,t)dadt 42
-T 0-T
where it is assumed that E,B L fi and E L B . This expression can be expanded to

13
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AU == ]‘Zi§(élaser (t) + E.tr (t)) (Elaser (t) + E>tr (t)) ﬁdet 43
-T=0

== ]Zi@ EIaser Iaser dQ + § Etr dQ + 2§ Elaser tr (t)dQ}jt
-T*0

Based on the assumption that boundary is a lossless high reflector

.T[§ E|a59r(0’¢)' EIaser (H1¢)det =0 44

-TQ

Furthermore following the assumption that the laser field magnitude is much larger than
the transition radiation field magnitude we can neglect the transition radiation energy loss

termE, (t)- E, (t) and are left with
2 tr= -
AU ~ == [$E e (t): E, ()t 45

This is valid for real fields. For fields written as phasors the product of the fields in
Equation 58 becomes the product of the real part of the phasors [12]

-2 [fre(Eu ) REfE (o
_ _Z_O[ j FRE(E . (VE () lic20t + j§ RE(E,... (E, (t))dﬂdtJ

46

Changing the time dependent expression into a frequency dependent expression the time
integral of Equation 46 becomes

TE,M E,(t)dt== ( ) (RET ]0 TE,M ke dewd w'dt
- S 7
RE j j j =) e""te"‘“da)da)’dtJ

which simplifies to

00

J. Elaser (t)Etr (t)dt = i REL J. Elaser ((0) “ d o+ .[ Elaser Etr (_ a))d (0] 48
i 4

—0

14
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Using the definitions of E, in Equation 22 and of E_, in equation 29 the second integral
in Equation 48 is zero and therefore

AU ——RE( [ §Eprer (@)- B ( )dea)J 49

Inserting the expression for E,. («) and E, (o)

QE A e
AU ~ i [_[02725 @ +a))da))RE( “’)

000~z -ahr—0)- 1000z -a)g)- Rpsind,
sing(1 - 4 cos? )

50

The term RE(e’i‘”) is simply cos¢. Integrating the delta function expressions and using
the definitions of A, A,and A, the energy gain expression in Equation 50 simplifies to

qE,Acosp  fsina

AU ~ 0S 51
r  1-p°cos’a r
Assuming |a| <<land £ ~1
AU ~ AQE,COsp @ cos p 52
r 1., 5
—+a
Y

One can conclude that for a laser beam terminated by a conductive boundary at normal
incidence to the electron beam the energy gain expected from the path integral (Equation
19) is the same as the energy gain calculated by the inverse-radiation overlap integral
method.

15
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APPENDIX

Define the plane wave decomposition of a field distribution f(x, y) as

¥(u,v)= CI I f(x,y)e ™ e ™ dxdy Al

—00 —00

where (u,v) are angular coordinates and C is an arbitrary constant to be determined by
conservation of total energy flux. The total energy flux of f(x,y) has the form

o0 00

) :P_[ jf(x,y)f*(x,y)dxdy A2

—00 —00

The constant C is chosen such that

®=P T T\P(u,v)‘P*(u,v)dudv A4

—00 —00

Thus from Equation Al

O = PT T cl [f(x y)e“kX“e“dexdyC*T T f(x',y e ™" e™ dx'dy'dudv

—00 —0

—3 é'—-S
—3 é'-—-é?

—38

f (X, y) f *(X,, yr)Q—ikxue—ikyve+ikx’ue+iky'vdxrdyrdxdydudv

—3
—38

Il
5~
O
O,
'—.8

8
8
8
8

8
|
8

*

I
)—U
O
O

f(xy)f (x,y’ I J'e g k=Y dydvdx'dy’dxdy
o A5
j J. e KX ug=k(y=y gy dvdx'dy'dxdy

—00

*

Il

)—U

O

(@)

*
é'—o8 é'—-8 é'—.S
é'_DS 5‘;'—»8 é'—.S é'—.S

Il

5]
O
O

f(x,y)f (X, y' )22 ) 5(x - x)s(y — y' Hx'dy'dxdy

g8 8 L3
—h

*

[
o
@)
O
=2

f(x y)f"(x, y)xdy

5'3'—’8 é'—:S é'—-.S é'—.S

Thus |C|=1/4. Hence the plane wave decomposition is

¥(u,v)=

%T Tf (x,y e ™ e ™ dxdy A6
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