
ORHL-2814 
UC-34 Physics and Mathematics 

TID-4500 (15th ed.) 

MAXIMUM VOLUME- TO-STRESS RATIO FOR A 

TWO-RADII-CONTOUR DIAPHRAGM PUMP 

R. D. Cheverton 

OAK RIDGE NATIONAL LABORATORY 
operated by 

UNION CARBIDE CORPORATION 

for the 

U.S. ATOMIC ENERGY COMMISSION 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



Printed in USA. Price $0o 75 , Available from the 

Office of Technical Services 

Deportment of Commerce 

Washington 25, D. C • 

.------------------------------LEGAL NOTICe-----------------------------, 

This report was prepared as on account of Government sporlSored work. Neither the United States, 

nor the Commission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, 

completeness, or usefulness of the information contained in this report, or that the use of 

any information, apparatus, method, or process disclosed in this report may not infringe 

privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of 

any information, apparatus, method, or process disclosed in this report. 

As used in the above, "person acting on behalf of the Commis~ion" includes any employee or 

contractor of the Commission, or employee of such contractor, to the extent that such employee 

or contractor of the Commission, or employee of such contractor prepares, disseminates, or 

provides access to, any information pursuant to his employment or contract with the Commission, 

or his employment with such contractor. 



Contract No. W-?405·eng·26 

REACTOR EXPERIMENTAL ENGINEERING DIVISION 

MAXIMUM VOLUME· TO-STRESS RATIO FOR A 

TWO-RADII-CONTOUR DIAPHRAGM PUMP 

R. D. Cheverton 

DATE ISSUED. 

FEB 151960 

. ·'·-

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 

operated by 
UNION CARBIDE CORPORATION 

for the 
U.S. ATOMIC ENERGY COMMISSION 

-:·· -:-... ;. . 

ORNL-2814 

... -·-
.· -: 



THIS PAGE 

WAS INTENTIONALLY 

LEFT BLANK 



CONTENTS 

Abstract ..................................................................................................................................... . 

Introduction .............................................................................................................................. .. 

Method of Analysis.................................................................................................................... 2 

Diaphragm Stresses ............................................................................................................ 2 

Failure Criterion.................................................................................................................. 4 

Optimization of Volume-to-Stress Ratio .......................................................................... 6 

Evaluation of Method for Determining Optimum z .......................................................... 7 

Appendix - Derivation of Equations for Membrane Stress in a Diaphragm........................ 8 

Nomenclature .................................................... ·.......................................................................... 15 

iii 



MAXIMUM VOLUME· TO-STRESS RATIO FOR A TWO-RADII-CONTOUR DIAPHRAGM PUMP 

... 

R. D. Cheverton 

ABSTRACT 

Recent experimental work with diaphragm pumps employing the two-radii 

type of cont~ured heads indicates that an optimum ratio of the two radii e~ists 

which provides a maximum ratio of displacement volume to stress. The purpose 

of' this study was to determine by analytical methods whether an optimum 

design does exist and, if so, what it is. In order to do this, it was necessary 

to establish a reasonable criterion for failure. The proposed criterion con

siders the effect of biaxial stresses on fatigue .failure through the use of the 

Mises-Hencky criterion for fatigue failure. By use of the proposed criterion, 

it was determined that an optimum ratio of the two radii does exist, its value 

being dependent on the ratio of diaphragm thickness to. diaphragm deflection. 

Values for the optimum ratio of the two radii {where the ratio of radii ·is defined 

as the radius of the central portion of the diaphragm contour divided by the 

radius of the outer portion of the diaphragm). range from 1.94 to 7.33 as the 

ratio of diaphragm thickness to diaphragm deflection varies from 0.5 to 0.05, 

respective! y. 

INTRODUCTION 

. ' ·' ~··. '; 

To optimize the design of diaphragm pumps from the standpoint of size, weight, 

displacement, and operating lifetime, it is necessary to maximize the ratio of displace

ment volume to diaphragm stress. Recent experimental work· with diaphragm pumps 

employing the two-radii type of contoured heads indicates that an optimum ratio of the 

two radii exists which provides a maximum ratio of displacement volume to stress. 

Prior to this study there apparently has been no effort to establish by analytical means 

the existence of the optimum ratio of the two radii. 

The treatment in this report is limited to. the two-radii-contour type of diaphragm 

pump. In making the analysis an effective·combined stress, based on the Mises-Hencky 

criterion of fatigue failure for combined stress, was used in calculating the volume-to

stress ratio. 



METHOD OF ANALYSIS 

Diaphragm Stresses 

Figure 1 iII u strates the geometrical features considered for the diaphragm-pump 

contoured head. For purposes of calculating the stresses, the diaphragm is divided 

into two regions. Region A is for 

0 ~ r ~ za, and region B is for 

za ~ r ~a, where z "' R ,I(R 1 + R 2). 

In the following analysis it is 

assumed that the diaphragm de· 

flection curve matches the two· 

radii head contour perfectly. This 

assumption is valid since the 

maximum stress occurs when the 

diaphragm is fully deflected against 

the head contour. Therefore the 

deflection equations for both re

gions A and B are derived from 
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Fig. 1. Geometrical Features of Two-Radii-Type 

Diaphragm-Pump Contoured Head. 

the equation of a circle. They are presented here as Eqs. (1) and (2) (see "Nomen

clature" at the end of this report for a definition of symbols): 

A ( 2 2) 1/2 [1 ( T ) 1 ( T )J ] 
w = 8 - R 1 + R 1 - T = 0 - T 2 R; + 8 \~ + . . • ( 1) 

Provided that r/R 1 « 1 and (a - r}/R 2 « l, Eqs. (1) and (2) are adequately approxi

mated as follows: 

(3) 

B (a - r}2 
w ""'----

= 2R 
2 

(4) 

Equations (3) and (4) were used in the derivation of the stress equations and in calcu

lating the volumetric displacements of the pumps. 

Since the deflection of the diaphragms considered is several times the thickness 

of the diaphragms (although small in comparison with other dimensions) the strain in· 

the middle plane of the diaphragm could not be neglected. Thus the membrane stresses, 

2 



as well as the bending stresses, were considered. The equations (see the Appendix 

for derivations) far the membrane stresses are as foll6ws: 

--- In z- z + - + 
• ~ z

2
(1 + v) z

3
(l + v) 11 -13vJ 

(1-z)2 . 4(1-v) 6(1-v) 12(1-v) 
(5) 

(6) 

---=---

z2 ( 1 + v) (2 ,\ 11 - 13v l 
+ 4(1 - v) J z-

1
) - 12(1 - v)j ' (7) 

+ z
2 

(1 + v) (2 z _ 1\ 23- 25v l (S) 
4( 1 - v) 3 ) - 12( 1 - ~)J · 

The bending !1JOments. in a circular plate are represented approximately by the fol

lowing equations: 1 

(9) 

M = -D (2_ dw + v d2 w \ . 
t r dr dr2) 

( 10) 

Using Eqs. (3) and (4) and the relationship 8 = a 2 z/2R1, the bending. stresses are 

·given by 

h 
--=--=----

8z(1 - v) 
( 11) 

a-
8 

a2 h [ ] _r_B_. = ------ ( 1 +v) _ v
7

a 

E82 . 8(1- z){l- v2 ) 

( 12) 

(13) 

1s. Timoshe~ko, Theory of Plates and Shells, lst ed., McGrciw-Hill, New York, 1940. 
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Failure Criterion 

During operation of the pump, the diaphragm is deflected from -8 to +8 in a con

tinuous cycle. With the diaphragm on either side of the neutral position the sign of the 

membrane stresses is the some, but the bending stresses change sign as the diaphragm 

is deflected from one side to the other of the neutral position. Therefore the stress· 

vs-displocement curve is similar to that shown in Fig. 2. The problem now is one of 

selecting a suitable criterion for 

I 
I 

I 
I 

I 

1\ ..---RESULTANT 
I \ 

I \ 
I \ 

UNCLASSIFIED 
ORNL·LR·DWG 43236 

0 DISPLACEMENT 

failure, where failure in this case 

may be defined as a fatigue crock. 

Si nee the foti gue strength of ma

terials is greatly influenced by 

many variables such as surface 

finish and environment, and since 

there is not a great deo I known 

about fatigue properties for com· 

bined stress conditions, the selec· 

tion of a suitable failure criterion 

is difficult and is not likely to 

produce a criterion that 1s neces· 

Fig. 2. Stress-Displacement Curves for a Diaphragm 

Deflected from +S to -S. 

sari I y accurate for a II co ses. Therefore, in a somewhat orbi trory foshi on, the Mi ses

Hencky2 criterion for complete reversal of combined stresses was selected and is 

represented here by Eq. (14): 

O"e ~ V 0"~ + 0"~ - 0" 1 0" 2 ( 14) 

Here a- 1 and 0" 2 ore the pri nci poI stresses, and O"e 1 s the endurance stress for the 

material, assuming complete reversal of stresses. Thus, the effect of combined stresses 

on fatigue is considered. The equation implies that, if more than about 107 cycles of 

reversed stresses ore desired without a fatigue failure, a- 1 and a- 2 must be such as to 

produce a value on the right-hand side of Eq. (14) not greater than the endurance limit 

of the material. Therefore, Eq. (14) provides on effective combined stress, a-c, that 

might be useful in comparing diaphragm designs, where 

-v 2 2 
(Jc = 0" 1 + 0" 2 - 0" 1 a- 2 ( 15) 

As mentioned above, Eq. (14) is strictly applicable only for complete reversal of 

stresses, and as indicated in Fig. 2, such reversal does not exist for the diaphragm 

2M. Het~nyi, Handbook of Experimental Stress Analysis, p 450, Wiley, New York, 1950. 
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pumps. In order to treat the actual case, or q slight modification thereof, use is made 

of Gerber's parabola or, more precisely, the modified Goodman diagram. The diagram 

used is illustrated in Fig. 3. 

The equation for the diagonal 

line in ·Fig. 3 is 

where 

(j 
r 

Ur Uave 
-=-+--
K Ue Uult 

2 

(16) ~K K . . 

.,.,. ' 

UNCLASSIFIED 
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(j 
ave 2 

Fig. 3. Application of Modified Goodman Diagram to 

Diaphragm Analysis, 

ere =endurance limit of material, 

Uult =ultimate strength of material, 

K =safety factor or experimental correlation factor. 

The hypothesis is that a point anywhere on or below the diagonal line indicates that 

an es:>entially infinite number (> 107 ) of cyr:les is permitted without fatigue failure. 

Referring· now to Fig. 2, it is observed that the diaphragm cycle consists of two stress 

peaks having different amplitudes. The smaller peak may be neglected, provided that 

the maximum peak gives a point on or below the diagonal line in Fig. 3. Under these 

conditions umin = 0, and Eq. (16) can be rearranged to yield 

cr max ( 17) 

In Eq. (17) umox is considered to be an effective endurance limit for the diaphragm. 

Therefore, substituting umax for ur: in Eq. (14), the proposed failure criterion is given 

by the relation 

2u u · : .. 
e. ult J· 2 2 . . . . 

(ue)effective = K(u + u ) ~ u 1 + cr 2 - cr 1 u 2 ( 18) .. 
e ult 

If ue and uult ore known for a particular material that is subjected to a set of specified 

conditions, then val~es for u 1 and u 2, which satisfy Eq. (18), can be obtained by the 

appropriate selection of ·values for the parameters in Eqs. (5) through (13). The value 

of K should reflect the accuracy with which ue and crult ore known, as well as the 

validity of the failure criterion, and should be as close to unity as possible to obtain 

the maximum volumetric displacement for a given pump. 

5 



Optimization of Vol ume•to·Stress Ratio 

To minimize the size of a pump, the displacement-volume-to-stress ratio should be 

as large as possible. The existence of a value of z that would produce a maximum 

volume-to-stress ratio was postulated by Hise 3 on the basis of considerable experi

mental work. Examination of Eq. (19), 

( 19) 

which represents the pump displacement volume from -8 to +8, and Eqs. (5) through 

(13), which represent the diaphragm stresses, indicates that an optimum value of z 

would depend only on the dimensionless ratio h/8. 

When calculating the volume-to-stress ratio for a particular pump having fixed 

values for z and h/8, the maximum stress with respect to r/a must be used, yielding 

the minimum volume-to-stress ratio for the particular pump design. Using Eqs. (15) 

and (19), the latter volume-to-stress 

ratios were calculated and plotted 

against z in Fig. 4 for several 

values of h/8. It is observed that 

optimum values of z do exist for 

the model being considered in this 

study. 

If a pump is designed with an 

optimum z,there will be two points 

at which the maximum . stress 

occurs: one at the center of the 

diaphragm and one somewhere in 

region B, the exact location de

pending on the value of z and h/8. 

If the pump has a z less than the 

optimum, the maximum stress will 

be at the center of the diaphragm, 

and if z is greater than optimum, 

the maxi mum stress wi II be some

where in region B. 

3 E. C. Hise, ORNL, private com
munication, November 1958. 
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Fig. 4. Volume-Stress Ratio vs z for Various Values 

of hiS, Using Combined Stress, ac. 



Evaluation of Method for Determining Optimum z 

How accurately does the above analysis determine the optimum value of z? Avoiding 

a comparison with fatigue-failure-type experimental data at this time,_ t.he question 

might best be answered in terms of the. accuracy of the individual stresses and of the 

criterion used for predicting failure. A very limited amount of experimental data acquired 

by Zerby and Stevens 4 indicates that actual radial stresses in region A are about 25% 

less than calculated and those in region B about 10% greater. This results in about a 

15% increase in the optimum value of z, assuming that Eq. {18) is an adequate criterion 

for predicting failure. Whether or not the same results apply for.all values of h/5 is not 

known since an insufficient amount of data is available. The adequacy of Eq. (18) is 

questionable and will remain so until experimental data from diaphragm tests prove its 

validity. For this reason, Eq. (18) was compared with a simple maximum-stress criterion 

of failure, for which the maximum principal stress, op, replaces the radical term in 

Eq. (18) to give Eq. (20): 

2o-e o-ult 
o- = =0" 

IIHJX K(o- + o- ) p 
e ult 

(20) 

The results, illustrated in Fig. 5, 

show that the optimum value of z, 

using the maximum-combined-stress 

criterion defined by Eq. {15), gives 

optimum z values 1.5% (h/5"" 0.5) 

to 6. 6% (hi 5 = 0. 1) greater than 

those obtained using the maximum· 

principal-stress criterio~. The 

close agreement between the two 

methods does not necessarily indi

cate the accuracy of either. How" 

ever, it does indicate that either 

method is probably equally good 

for computing optimum z values. 

4p. N. Stevens, "Pul sa feeder Dia
phragm Studies," inter-company corre· 
spondence, ORNL, September 1953. 
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Appendix 

DERIVATION OF EQUATIONS FOR MEMBRANE STRESSES IN A DIAPHRAGM 

The following analysis 5 is applicable to a diaphragm that is deflected a distance 

equal to several times the diaphragm thickness, in which case the strain in the mid

plane must not be neglected; the deflection, however, is considered small in comparison 

with other deminsions, A system such as this is typical of many types of diaphragm 

pumps. 

The equilibrium and continuity equations for a diaphragm of the type described 

above (considering membrane stresses only) are derived from a force balance on an 

element of the diaphragm and from Hooke's law, respectively,6 Consider the element 

in Fig. 6, subjected to the membrane forces Nr and N t' A summation of the forces in the 

radial direction gives 

or 

From Hook's l~w, 

d() 
N r d() + 2Nt dr-= 

r 2 (
N + dNr dr) (r + dr) d() 

1 r dr 

dN r 
N -N +r-=0 

r t dr 

Eh 
N =--- (e +vet) , r 

2 
r 

1-v 

Eh 
N =---(e + ve) t 

2 
t r 

1 - v 

(1 A) 

(2A) 

(3A) 

Referring to Fig, 7, the radial unit elongation of the element due to the radial dis

placement u is du/dr. The unit elongation due to the normal displacement w is 

5This method of analysis is similar to that .used by C. D. Zerby (unpublished analysis, 
January 1953) and P. N. Stevens ("Pul sa feeder Diaphragm Studies," inter-company correspond
ence, ORNL, September 1953). 

6S. Timosheriko, Theory of Plates and Shells, 1st ed., McGraw-Hill, New York, 1940. 
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Fig, 6. Forces on Element of Diaphragm. 
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1/2(dw/dr)2• In the circumferential direction the unit elongation is just u/r. There

fore, the tangential and radial strain components are given by 

u 
et =- ., 

r 

e = du +..!_ (dw)
2 

• 
r dr 2 \dr 

Adding Eqs. (2A) and (3A) and making use of Eqs. (4A) and (SA) gives 

1 · du 1 ~dw)2 

- (N - vN) = e =-+·- - , 
Eh r :· t r dr 2 dr 

1 u 
-· (N vN ) = e =- . Eh t - r t r 

I I 
Differentiating Eq. (?A) gives 

From Eq. (lA), 

dTJ. dN 1 ( dN,) 
Eh-= N + r--- v N + r--

dr 1 dr r dr 

dN, 

N1 = N, + '--;!;·. 

Differentiating Eq. {1Aa) and multiplying by r, 

dN 1 dN, 
2 

d2N 
r--= 2r-- + r --. 
-' dr dr dr2 

Substituting Eqs. (1Aa) and (9A) into (SA), 

dN d 2 N ~ du . . r 2 r 
l::.h- = N r (1 - v) + r- (3 -: v) + r --

dr dr dr2 

(4A) 

(SA) 

(6A) 

(?A) 

(8/\) 

{1Aa) 

{9A) 

(lOA) 

( 11 A) 

The deflection curve w(r) for the fully deflected diaphragm is represented by the 

arcs of two different diameter circles, thus dividing the diaphragm into the two regions 

A and B. The solution of Eq. (11A) in the two regions follows. 
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Region A 

For region A, 

(12A) 

(13A) 

Substituting Eq. (13A) into (11A), 

d2N, 3 dN, Eh 
--+- -+--=0 

dr2 r dr 2R2 
1 

(14A) 

For convenience, let 

T =X 1 

Then 

{14Aa) 

The complementary solution of Eq. {14Aa) is obtained from the homogeneous equation 

In Eq. {15A) let 

dy 
v=-

dx 

Then 

which gives 

or 

which gives 

10 

d 2 y 3 dy 
--+--=0 

dx2 x dx 

dv 3v 
-+-=0 
dx X 

1 

V = cx- 3 
I 

dy 3 
-=Cx-
dx 

(lSA) 

(16A) 



The particular solution of Eq. (14Aa) is obtained by letting 

The resu It is 

dy 
- = Cx 
dx 

K . 2 
1 " 

Yp=--
8
-+C3 

The general sol uti on for Eq. (14Aa) is 

Region B 

For region B, 

(a - r}2 
w= 

2R 2 

(:~)2 (a- r} 2 
2 

R2 

Substituting Eq. (20A) into (llA), 

d
2 

NT 3 dNT Eh(a- r} 2 

--+---+ =0 
dr 2 r dr 2R 2 r2 

2 

For convenience, let 

NT= y I r =" ' 

Then 

2 d2 y dy 2 
x -- + 3x- = -K2 (a - x} 

dx2 dx 

The complementary solution of Eq. (21Aa} is obtained from 

d 2 y 3 dy 
--+--=0 

dx2 x dx 

which is the same as Eq. (lSA ). Therefore, 

To obtain the particular solution of Eq. (21Aa), let 

dx 
1 -=e =X 

dt 

(17A) 

(18A} 

(19A} 

(20A) 

(21A) 

(21Aa) 

(22A) 

11 



and let 

dy dy dt dy 1 
-=- -=-
dx dt dx dt x 

(23A) 

(24A) 

Substituting Eqs. (23A) and (24A) into (21Aa), 

d2 y dy t 2 
-- + 2- = -K (a- e ) 

dt 2 dt 2 
(25A) 

The solution has the form 

y = At + Be 1 + Ce 21 
, 

or 

or 

(26A) 

The general sol uti on for Eq. (21 Aa) is 

_ 2 (a2 
2ax x2

) 
y = C x + C - K -In x-- +-

3 4 2 2 3 8. 
(27A) 

Substituting y = N and x = r into Eqs. (18A) and (27A), r 

(18Aa) 

C 3 (a 2 
2ar r 2~ 

N8 =-+C -K -lnr--+-
r 2 4 22 3 8 

r 
(27 Aa) 

Differentiating Eqs. (18Aa) and (27Aa) and substituting into (1Aa) gives 

A cl 3 2 
N =----K r +C 

t 2 8 1 2 
r 

(28A) 

(29A) 
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Boundary Conditions 

The boundary conditions are: 

1. Forces must be finite for all values of r. 

2. At r = za, N~ = N~ and Nt = N~. 
3. At r =a, et = 0; thus from Eq. (7A), N~ = vN~. 

From boundary condition 1, C 1 = 0. From boundary condition 2, 

c, = c4 _ K~a' [loza + > 2z < (1 <:)] 
From boundary condition 3, 

C
3 

(1 + v) K
2

a 2 

c = +--
4 a2(1-v) 2 r 

11 - 13v] In a- . 
12(1 - v) 

Substituting Eq. (30A) into (32A), 

Substituting Eq. (33A) into (31A), 

K a 2 
2 

c =--
2 2 {-lo [( 

K 1) 1 + v] 1 - K
2 

+ 1 - v 

The following substitutions are made: 

N 
(T'=.-, 

b 

+In a--,...,----,--
11 - 13v ] 
12(1 - v) 

2z 3 (1+v) 
+----

3(1 - v) 

( 
K 1 ) 17 - 19v} 

1 
- K 

2 
- 12( 1 - v) 

Z=---

(30A) 

(31A) 

(32A) 

(33A) 

(34A) 

13 



·~ •, 

The stress equations ore now given by 

crrAa
2 

1 ('~2 1 [ z 2 (1+v) z3 (1+v) 11-13v] 
~ = - 4z2 --;;) - ( 1 _ z) 2 In z - z + 4(1 - v) - 6( 1 - v) + 12(1 - v)j ' (3SA) 

14 

+ -z-1 ----z
2

(1 + v) (2 ) 11 -13vl 
4( 1 - v) 3 12( 1 - v) 

+ -z-1 z
2 

(1 + v) (2 ) 
4( 1 - v) 3 . 

23- 25v] 
12(1 - v) 

(36A) 

(37A) 

(38A) 



NOMENCLATURE 

a Outside radius of diaphragm 

A Arbitrary constant; if superscript, denotes region A 

B Arbitrary constant; if superscript, denotes region B 

C Arbitrary constant, with or without subscripts or superscripts 

D Flexural rigidity of plate= Eh 3/[12(1 - v2)] 

e Radial strain of middle plane 
r 

et Tangential strain of middle plane 

E Young's modulus 

h Thickness of diaphragm 

M Radial bending moment per unit length of circumference r 

M
1 

Tangential bending moment per unit length of circumference 

N, Radial membrane force per unit length 

Nt Tangential membrane force per unit lengll1 

r Radial distance 

R
1 

Contour radius, region A 

R 2 Contour radius, region B 

u Radial component of displacement at a point in the middle plane 

w Normal component of displacement at a point in the middle plnne 

V Volumetric displacement of pump 

z Dimensionless parameter= R /(R 
1
+ R 2) 

8 Maximum deflection at center of diaphragm 

v Poisson's ratio 

o- Stress 

o-,M' o-,8 Radial membrane and bending stresses, respectively 

o-tM' o-tB Tangential membrane ahd bending stresses, respectively 

15 
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