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Progress  Report 

Phys ica l  Metallurgy of  Uncommon Metals 

In t roduc t ion  

The progress  r e p o r t  covers  the  work c a r r i e d  out  dur ing  the f i s c a l  

year 1958-59 i n  the  department of  metal lurgy a t  M.I.T. under the 

supe rv i s ion  of P ro fes so r s  John T. Norton and Robert B. Ogi lv ie .  

A brief summary of the  work t h a t  has been completed and in some 

cases  s t i l l  cont inuing  i s  given. 

the  fol lowing genera l  headings: 

The work has been l i s t e d  under 

1. Dif fus ion  S tud ie s  i n  the  Uranium-Niobium System 

2 .  X-ray Detec t ion  o f  Cladding Defects 

3 .  

4. 

5. 

P r e c i s i o n  -X-ray S t r e s s  Analys is  .of Uranium and Zirconium 

Magnetic S tud ie s  of  Fe,03 *Single C r y s t a l s  

C r y s t a l  S t r u c t u r e  S tud ie s  o f  Yttrium Compounds 

6. S t r u c t u r a l  Re la t ionsh ips  i n  the ZrFe,-ZrCr, System 
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Diffus ion  S tud ie s  i n  the  Uranium-Niobium System 

by Norman Peterson  

The s o l i d  so luBi l i ty  l i m i t s  of  the m i s c i b i l i t y  gap i n  the 

uranium-niobium phase diagram were determined be tween 800°C and 

1000°C by a n a l y s i s  of d i f f u s i o n  couples us ing  an  e l e c t r o n  microbeam 

probe technique.  A t y p i c a l  d i f f u s i o n  g rad ien t  ob ta ined  by t h i s  

technique is shown i n  Fig.  1. 

A previous ly  unreported phase,  des igna ted  h e r e a f t e r  as the d e l t a  

phase,  was found t o  ex i s t  along the  niobium r i c h  s i d e  of the m i s c i b i l i t y  

gap. 

8OO0C, 60 t o  65 atomic percent  N b  a t  892"C, and about 53 t o  55 atomic 

percent  N b  a t  996OC, The presence of t h i s  phase was confirmed by 

microhardness and metal lographic  ana lys i s .  The micros t ruc ture  of a 

d i f f u s i o n  couple annealed f o r  25 days a t  800°C is  shown i n  Fig. 2. 

The phase diagram r e s u l t i n g  from t h i s  work and previous  work by 

Rogers e t  a1 is shown i n  Fig.  3. 

Its range of  composition i s  from 65 t o  75 atomic percent  Nb a t  

I n t e r d i f f u s i o n  c o e f f i c i e n t s  were determined as  a func t ion  of 

composition and temperature f o r  the d e l t a  phase and the high uranium 

gammal phase by means of a Matano a n a l y s i s  of the concent ra t ion  

g r a d i e n t s  ob ta ined  i n  the d i f f u s i o n  couples.  The d i f f u s i o n  c o e f f i c i e n t s  

decrease w i t h  inc reas ing  niobium content  i n  the  gamma phase. The 

v a r i a t i o n  of the i n t e r d i f f f s i o n  c o e f f i c i e n t ,  D, w i t h  temperature T ,  

can be represented  f o r  t h r e e  d i f f e r e n t  compbqitions i n  the garvnal 

phase as fol lows:  

1 
N 
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f i  

= 2.4 x exp (-21,8oO/RT) 

= 9.6 x 10 exp (-23,40O/RT) 

D90 a/o U 

D95 a/o u 

D99.5 a/o u 

-6 & 

-5 A. 

= 3.4 x 10 exp (-25,80O/RT) 

N 

D va lues  were a l s o  measured for d i f f u s i o n  i n  the  d e l t a  phase a t  

800°C and 892°C by the  Matano a n a l y s i s  of g r a d i e n t s  involving the 

phase. The values  found are:  
/v 

= 4.13 x 10"O cm2 per  s ec  a t  30 a/o U D800"C 
N 

= 2.3 x 10-l~ cm2 per  s e c  a t  37 a/o u D892°C 

The presence of p o r o s i t y  on the  uranium r i c h  s ide  of  the d i f f u s i o n  

couple i n  a d d i t i o n  t o  the  p o s i t i o n  of the marker i n t e r f a c e  ( see  Fig. 2) 

leads  t o  the  conclusion that the uranium atoms a r e  d i f f u s i n g  more 

r a p i d l y  ' than  the  niobium atoms. From t h i s  information,  i n t r i n s i c  

d i f f u s i o n  c o e f f i c i e n t s  D 

uranium. 

fol lowing r e l a t i o n s  : 

and DNb were obtained a t  99.5 atomic percent  U 

Thei r  v a r i a t i o n  w i t h  temperature may be represeqked by the  

Du = 2 x 

DNb = 3.1 x 

exp (-23,20O/RT) 

(-25 800/RT) 

Re fe r e  nce s 

1. B. A.  Rogers D, F. Atk ins ,  E. J. Manthon, and M. E. Ki rkpa t r ick  
Trans. AIm 212 (1958) 387. - 
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Microstructure of a Diffusion Couple 

Annealed for 25 days at 800OC 
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XFray q t e c t i o n  of Cladding Defects 

by Richard Herkner and Roy Pinker ton  
1 

, 

The use  of f l u m e s c e n t  x-ray a t t e n u a t i o n  as a non-destruct ive 

t e s t i n g  method f o r  determining the  th i ckness  of z i r c a l l o y  cladding on 

small d i a q e t e r  uranium fuel p i n s  and the l o c a t i o n  of d e f e c t s  in the  

cladding was inves t iga t ed .  

l e d  t o  the  choice of  using the  uranium L q l  l i n e  as the  one most 

suhted for  Work i n  t h i s  p a r t i c u l a r  case. 

The i n i t i a l  i n v e s t i g a t i o n  o f  the  problem 

The i n v e s t i g a t i o n  was conducted u t i l i z i n g  f u e l  p i  

i n  diameter  of the  type that a re  t o  be used i n  the B n r i c m  Fermi 

power r e a a t o r .  

The r e s u l t s  ShDw tha t  it is  poss ib l e  t o  measure cladding th i ckness  

extremely a c c u r a t e l y  up t o  th icknesses  of about  7 mils .  Thicker 

c l a d s  than  t h i s  reduce the  i n t e n s i t y  of  the ULql t o  the po in t  t h a t  

it camrot be measured adequately.  

These p i n s  have a nominal c ladding  th i ckness  of  6 m i l s .  

The r e s u l t s  o f  the i n v e s t i g a t i o n  c l e a r l y  i n d i c a t e  that d e f e c t s  

i n  the  cladding can be found i n a  continuous canning process .  
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P r e c i s i o n  X-ray S t r e s s  Analysis  of Uranium and Zirconium 

Edward C. House and Bruce J. Wooden 

The f e a s i b i l i t y  of us ing  x-ray d i f f r a c t i o n  methods t o  measure 

r e s i d u a l  s t r e s s e s  i n  uranium and zirconium (Zircal loy-2)  was 

inves t iga ted .  A p r e c i s i o n  method was developed f o r  the determinat ion 

o f - d i f f r a c t i o n  peak p o s i t i o n s  and the  p r e c i s i o n  a s s o c i a t e d  therewith.  

The s t a t i s t i c a l  t a b l e s  of F i s h e r  and Yates were used t o  determine 

what order  polynomial provided the  b e s t  l e a s t  squares  f i t  w i t h i n  the  

known p r e c i s i o n  of  the observed da ta .  It was found that a second 

order  polynomial provided an adequate regress ion .  With the  a i d  of 

a desk c a l c u l a t o r ,  l e s s  than f i v e  minutes '  c a l c u l a t i o n  time is  requi red  

t o  determine the  peak p o s i t i o n  t o  a p r e c i s i o n  of - 0.01O. + 

A'Gepleral E l e c t t i c  XRD-3 D i f f r a c t i o n  Unit  was used i n  t h i s  

i n v e s t i g a t i o n .  The s tandard two-exposure method was employed i n  a l l  

s t r e s s  measurements w i t h  the  oblique p o s i t i o n  taken a t  45'. Cobal t ,  

copper and chromium r a d i a t i o n s  were i n v e s t i g a t e d  i n  determining the  

b e s t  high angle l i n e s  t o  be employed. The s t r e s s  cons tan ts  were 

determined us ing  annealed specimens o f  uranium and Zi rca l loy-2  

s t r e s s e d  i n  bending. 

placed one on e i t h e r  s i d e  of  the i r r a d i a t e d  a rea .  

The s t r e s s  w a s  measured w i t h  two s t r a i n  gages 

+ 
The s t r e s s  confftant f o r  uranium was determined t o  be 1308 - 110 

psi/O.0lo sh i f t '  i n b 2 0  f o r  copper r a d i a t i o n  on the (116) p lanes  a t  

2 0 = 158.3O. The stress conskant ' fo r  Zircal loy-2 was determined t o  

be 430 psi/O.0lo s h i f t  i n A 2 0  f o r  chromium r a d i a t i o n  on the (10.4) 

planes a t  2 8 = 156.4O. 
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The s u r f a c e  stress d i s t r i b u t i o n  ad jacen t  t o  the b u t t  weld o f  two 

f l a t  p l a t e s  of  Zircal loy-2 was measured. It was found that the  weld 

produted a s i g n i f i c a n t  e f f e c t  upon the s t r e s s  d i s t r i b u t i o n  ad jacen t  

t o  the weld. 

It is concluded that the  expected p r e c i s i o n  a s  determined by 

s t a t i s t i c a l  a n a l y s i s  can be a t t a i n e d  us ing  the method developed here in .  

It  is recommended that a round r o b i n  specimen be s e n t  t o  s e v e r a l  

stress a n a l y s i s  l a b o r a t o r i e s  t o  f u l l y  v e r i f y  t h i s  fact  and t o  e s t a b l i s h  

confidence i n  t h i s  method of r e s i d u a l  stress measurement. 
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Some New Magnetic Phenomena of Hematite S ing le  C r y s t a l s  

by S. T, Lin  

The magnetic p r o p e r t i e s  of hematite (4 - Fe,O,) have been 

a c o n t r o v e r s i a l  problem f o r  s e v e r a l  decades. There are s t i l l  some 

fundamental p r o p e r t i e s  t h a t  a r e  quest ionable .  Hematite is  p r i m a r i l y  

an an t i fe r romagnet ic  ma te r i a l  possessing a p a r a s i t i c  ferromagnetism. 

The an t i fe r romagnet ic  p r o p e r t i e s  have g e n e r a l l y  been agreed upon. 

The most c o n t r o v e r s i a l  problems a r e  the o r i g i n  and the na ture  of the 

weak ferromagnetism above the t r a n s i t i o n  temperature (about  250'K) 

and the  ex i s t ence  and th nature  of the weaker ferromagnetism below 

the t r a n s i t i o n  temperature.  Many au tho r s ,  inc ludlng  the  French 

a u t h o r i t y  L. Ne/el(') bel ieve t h a t  the weak ferromagnetism is e i t h e r  

due t o  ferromagnet ic  impur i t i e s  such as magnetite,  or  some type of 

l a t t i c e  de fec t .  L i  , Jacobs and Beqn th ink  t h a t  the weak 

ferromagnetism comes from the unbalanced an t i fe r romagnet ic  domain 

walls. Nee1 has thought that the p a r a s i t i c  ferromagnetism c o n s i s t s  

of two p a r t s ,  one i s o t r o p i c  which i n  independent of d i r e c t i o n  i n  

the  c r y s t a l ,  and the o the r  a n i s o t r o p i c  which t i g h t l y  coupled w i t h  the 

d i r e c t i o n  of ant i ferromagnet ism,  which can be observed only above 

(2) ( 3 )  

250'K and i n  a d i r e c t i o n + p e r p e n d i c u l a r  t o  the t e r n a r y  axis. Very 

r e c e n t l y  the Russian au tho r s  D ~ y a l o s h i n s k y ( ~ )  and Vonsovsky 

developed some new t h e o r i e s  which sugges t  tha t  the weak ferromagnetism 

is  due t o  the r e s u l t  of canted ant i ferromagnet ism.  

(5 )  have 
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It  seems t h a t  the confusion probably comes from the inadequacy 

of the  experimental  da ta .  The most important s i n g l e  c r y s t a l  d a t a  is  

very rare ,  some which is l i m i t e d  t o  a narrow range of temperature 

and some o t h e r s  t o  the range of the f i e l d .  I n  order  t o  understand 

the whole p i c t u r e  of the magnetic p r o p e r t i e s  of t h i s  m a t e r i a l  i t  i s  

necessary  t o  o b t a i n  enough i s o t h e m s  f o r  a wide enough range of 

temperature and f i e l d  a long d i f f e r e n t  d i r e c t i o n s  of the s i n g l e  

c r y s t a l s .  Prom these  isotherms many important p r o p e r t i e s  can be 

der ived.  Following t h i s  idea  we have performed a g r e a t  dea l  of 

experimental  wtmk and obtained a considerable  amount of data which 

di 'splay many new r e s u l t s .  

he,lp t o  solve these  c o n t r o v e r s i a l  problems. 

We be l ieve  dhat these  n e w  r e s u l t s  w i l l  
i 

Experimental  Procedure 

1. The magnet izat ion isotherms along a cer ' ta in  d i r e c t i o n  i n  

the b a s a l  plane perpendicular  t o  the rhombohedral axis of the hematite 

s i n g l e  c r y s t a l  f o r  the  temperafure range from 488'K down t o  l i q u i d  

helium temperature are obtained and shown i n  Figure 1. The genera l  

f e a t u r e s  of the curves are as fol lows:  (1) A t  low f i e l d ,  the curves 

bend toward the  f i e l d  axis, (2) A t  h i g h , f i e l d ,  I _  t h e  curves  a r e  almost 

l i n e a r  w i t h  f i e l d ,  ( 3 )  The l i n e a r  p o r t i o n  of  a l l  the curves a r e  

a lmost  p a r a l l e l  except  i n  tbe  t r a n s i t i o n  region. These a r e  the  
1 

c h a r a c t e r i s t i c s  of  a m a t e r i a l  withweakferromagnetism superimposed 

on a n  ant i ferromagnet ism observed i n  the  reg ion  of  small an iso t ropy  

energy. ThGrefore, t h i s  s e t  o f  curves  confirms the magnetic s t r u c t u r e  

n 
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proposed by NGel. I t  is  t o  be noted t h a t  below 250'K the  i n t e r c e p t s  

on the isotherms a r e  small and t h a t  the isotherms below 250°K and 

above 360'K a r e  a l l  crowded toge the r  a t  their re spec t ive  l i m i t i n g  

pos i t i ons .  These phenomena are very s i g n i f i c a n t  i n  ana lyz ing  the  

isotherms. 

2. The isotherms along the t e r n a r y  axis which is  perpendicular  

t o  the basa l  plane f o r  the same temperature range as i n  the previous 

case a r e  shown i n  Figure 2. These curves d i s p l a y  a very unusual 

form. A t  temperatures  we l l  below t r a n s i t i o n ,  the  isotherms a r e  

almost independent of magnetic f i e l d  up t o  15000 oer s t eds  except  a t  

very low f i e l d s  a t  which the curves a r e  concave downward. Above 

250'K the  curves  i n  gene ra l  bend towa?d the  f i e l d  a x i s  f o r  low 

f ie lds  and then  go l i n e a r l y  w i t h  the f i e l d .  After the f i e l d  reaches 

a c e r t a i n  va lue  ( c r i t i c a l  f i e l d )  i t  bends away from the f i e l d  a x i s ,  

and f o r  s t i l l  higher  f i e l d s ,  it bends toward the f i e l d  axis again.  

The c r i t i c a l  f i e l d  inc reases  w i t h  decreas ing  temperature.  The curves 

are also crowded toge the r  a t  t h e i r  r e spec t ive  l i m i t i n g  p o s i t i o n s  

co r re spondhg  t o  the  temperature below 250'K and above 360°K. 

From these  two s e t s  of isotherms the  spontaneous magnet izat ion,  

rot of t h y  weak ferromagnetism and the an t i fe r romagnet ic  s u s c e p t i b i l i t y  

X ,  may be sepa ra t ed  by the usua l  technique of e x t r a p o l a t i q g .  

Discussion 
'> 

From t h e  fouf:-+Eurves of 'Figures 3 and 4 t h e  fo l lowing  conclusions 
-2- 

4- 

can be drawn: 
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1. Since r is p r a c t i c a l l y  equal  t o  z e r o  above 360°K i n  

0 

Curve 2 ,  Fig. 4 ,  and below 250°K i n  Curve 1, Fig.  4 ,  i t  i n d i c a t e s  

that t h e r e  is no evidence of i s o t r o p i c  ferromagnetism. 

2. From Curve 2, Fig.  4 ,  the a n i s o t r o p i c  weak ferromagnetism is 

observable below t r a n s i t i o n  (250OK) and the magnitude is above .2 emu/gm. 

3 .  From the  fou r  curves o f . & -  T,  and - T ,  i t  i s  ev iden t  
0 

that i n  a wide reg iqn  o f  over a hundred degrees  the t r a n s i t i o n  t akes  

p l ace  g radua l ly  and cont inuously i n s t e a d  of  r a p i d l y  and d iscont inuous ly .  

4. The two curves of  Fig. 4 a r e  complementary t o  each  o the r .  

Above 360°K r(111) ( 0' i n  (111) plane)  i s  a maximum value while 
0 0 

[lid ( c a l o n g  llll] d i r e c t i o n )  i s  a l m o s t  zero.  When the 
0 0 

temperature dqcreases  from 360°K t o  250°K, co (111) decreased from 

maximum t o  ze ro  while 

Below 250°K, 5 (111) remains ze ro  while foD1iJ remains almost 

maximum. 

[ill] i nc reases  from ze ro  t o  maximum. 

5 .  From the s ta tement  (4) i t  i n d i c a t e s  that the ferromagnetism 

along the  t e r n a r y  a x i s  a t  low temperature and i n  the basa l  plane a t  

h igh  temperature seems t o  have the  same na ture  and o r ig in .  

The above conclusions a r e  new r e s u l t s  which a re  the c h a r a c t e r i s t i c s  

of the  weak ferromagnetism o f  hemati te .  These c h a r a c t e r i s t i c  phenomena 

are appa ren t ly  con t r ad ic to ry  t o  Ne(el*s i n t e r p r e t a t i o n .  

and Bean's proposal  of unbalanced an t i f e r romagne t i c  domain w a l l  can 

L i * s ,  Jacobs 

a l s o  no t  exp la in  them. Hgwever, the Russian au thor ' s  p roposa l  of 

canted ant i ferromagnet ism e x p l a i n s  the  weak fermanagw t i s m  above the  

t r a n s i t i o n  very w e l l ,  but i t  f a i l s  t o  e x p l a i n  the  weak ferromagnetism 

,' 
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below the  t r a n s i t i o n .  I n  order  t o  e x p l a i n  the phenomena completely 

a more gene ra l  model of canted ant i ferromagnet ism w i t h  unequal 

s u b l a t t i c e  moments i s  proposed; i . e .  t he  magnetic moment o f  the 

s u b l a t t i c e  may tilt  s l i g h t l y  toward each o ther  above and i n  the 

t r a n s i t i o n  reg ion  and a t  the same time t h e i r  magnitude may d i f f e r  

s l i g h t l y .  When the  temperature decreases  through t r a n s i t i o n  range 

t h e  s u b l a t t i c e  moments t u r n  from the basa l  plane toward the t e r n a r y  

axis and a t  the  same time the, canted s u b l a t t i c e  moments a r e  g radua l ly  

s t r a i g h t e n e d  out  t o  become a n t i p a r a l l e l  below t r a n s i t i o n .  

With t h i s  model a l l  of the experimental  d a t a ,  o ld  and new can 

be expla ined  very wel l .  

I t  i s  very  ' i n t e r e s t i n g  t o  note t h a t  the complementary curves of 

Fig.  4 can be expla ined  completely and the complicated isotherms 

of Fig. 2 can a l s o  be expla ined  s a t i s f a c t o r i l y  by in t roducing  an 

an iso t ropy  energy i n  the c r y s t a l .  The achievement of t h i s  work and 

the  explana t ion  of the important p r o p e r t i e s  of t h i s  m a t e r i a l  a r e  

d e s c r i b e d  i n  more d e t a i l  inFa paper which has been submit ted t o  the  

Phys ica l  Reviewfbr pub l i ca t ion .  
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Crys ta l  S t r u c t u r e  Research 

by Erwin Parthe 

The progress  i n  c r y s t a l  s t r u c t u r e  r e sea rch  can be b r i e f l y  

summarized i n  the fo l lowing  two s e c t i o n s .  

I. C r y s t a l  S t r u c t u r e s  of Yttrium Compounds 

The compounds YJSi3 and Y5Ge3 have been prepared by a r c  mel t ing 

a mixture of the components. The molten bu t ton  c o n s i s t i n g  of Y5Si3 

contained a s i n g l e  c r y s t a l ,  which could be i s o l a t e d  and mounted on 

the goniometer head o f  a Weissenberg camera. The x-ray p a t t e r n  of  

Y,Si, and the i s o t r o p i c  Y5Ge, could be indexed corresponding t o  a 

hexagonal u n i t  c e l l  w i t h  the cons tan ts :  

Y5Si, 
0 0 

a = 8.40,,A a = 8.45 A 
0 

c = 6.30, A 
0 

c = 6.34 A 

and &'a = 0.75 and c/a = 0.75 

The e x t i n c t i o n s  l e a d  t o  the poss ib l e  space groups: D i h  - Pb,/mcm, 

D:h - P 6 ~ 2 ,  Czv - P 6 3  CITI, 

c a l c u l a t i o n  has been successfu l  by assuming,space group D3 

and p l ac ing  the y t t r ium atoms i n  4d) and 6g) wi th  x = 0.25 and the 

s i l i c o n  o r  germanium atoms i n  6g),, w i th  xII = 0.61. 

- P3 c l  and C:v - P3 c l .  The i n t e n s i t y  

- Pb,/mcm 
<- 6h 

I I 

The s t r u c t u r e  proves t o  be i d e n t i c a l  t o  t h e  Mn5Si3 type ,  w i t h  

the  except ion  that the  c/a r a t i o  i s  excep t iona l ly  l a rge .  

t o  o the r  s t r u c t u r e s  w i t h  Mn5Si, type the  metal  atoms i n  6gI and i n  

the  case of YsSi, much nearer t o  those i n  4d) .  

w i t h  w h a t  might be expected,  s ince  as i n  the case o f  Y5Si3 the metal  

I n  comparison 

Th i s  i s ' i n  good agreement 

atoms i n  6g have t o  con t r ibu te  e l e c t r o n s  t o  the 4d metals.  I t  is I 



known from an e a r l i e r  developed s t a b i l i t y  c r i t e r i a  f o r  Nowotny phases ,  

that the  e l e c t r o n  concent ra t ion  i n  4d) has t o  be cons tan t .  A s  the  

y t t r ium atoms i n  4d) cannot provide enough e l e c t r o n s ,  e l e c t r o n s  from 

6gII metal  atoms have t o  con t r ibu te .  

Y,Si, s t r u c t u r e  is compressed which e x p l a i n s  the excep t iona l ly  

l a r g e  c/a r a t i o .  

Therefore ,  the a a x i s  of  the 

11. A New Method t o  Calcu la te  One-Dimensional Madelung Constants  

From the  po in t  of view of  a t h e o r e t i c a l  s t r u c t u r e  chemist  i t  i s  

of i n t e r e s t  t o  c a l c u l a t e  the l a t t i c e  energy,  more c o r r e c t l y  the 

s t r u c t u r e  energy of  d i f f e r e n t  s t r u c t u r e s .  In  the case of  i o n i c  

compounds i t  i s  necessary  f o r  the energy c a l c u l a t i o n  t o  know the 

va lue  of  the Madelung cons tan t .  

dimensional Madelung cons t an t s  has been der ived .  

A new method of c a l c u l a t i n g  one- 

The Madelung cons tan t  o f  any complicated s t r u c t u r e  can be c a l c u l a t e d  

by summing up the  Madelung cons t an t s  of  base s t r u c t u r e s .  Each of  

t hese  base s t r u c t u r e s  has the  same u n i t  c e l l  as the o r i g i n a l  s t r u c t u r e  

but only 2 ions  pe r  u n i t  c e l l .  Thus the ,base s t r u c t u r e  c o n s i s t s  of 

two simple l a t t i c e  arrays occupied w i t h  ions  of opposi te  charge.  The 

Madelung cons tan t  o f  the base s t r u c t u r e  depends only on the  amount 

these  two l a t t i c e  a r r a y s  are d i sp laced  from each  o t h e r  and the charge 

of t h e  ions.  Thus t h e  Madelung cons t an t  of  a base s t r u c t u r e  w i t h  i ons  

of  charge +lO1 - 1 is a func t ion  of the t r a n s l a t i o n  parameter only 

and is  denoted as Madelung func t ion  M(x) o r  M(x,y) o r  M(x,y,z) 

depending if we dea l  w i t h  one, two o r  t h r e e  dimensional s t r u c t u r e s .  



I 

'tj 
I 1.9 .- 

.~.The one-dimensional Madelung func t ion  M(x) cante  expressed by 

a well-known mathematical func t ion ,  which is  r epor t ed  i n  the l i t e r a t u r e  

as YCx) f u n c t i o n  

1 
(7 - o m i t  h + 0 

M(x) = - 1 + 2- 
1x1 hbx I 

IF-- 

- 1 - - - 2 r -  y(x) - y ( -XI 
1x1 

where 4 is  Euler  's cons tan t .  

F ig ,  1 shows the M(x) func t ions  i n  the  range from 0 4  x 5 - 1 
2 

A s  t he  va lues  of t h e 3 y ( x )  func t ions  a r e  e a s i l y  access ib l e  

from mathematical t a b l e s ,  the Madelung cons tan t  of any one-dimensional 

s t r u c t u r e  can be ca l cu la t ed  t o  a high degree of accuracy i n  very s h o r t  

s h o r t  time and without  much e f f o r t .  

The d e t a i l s . o f  t h i s  s tudy  on the Madelung cons tan t  has been 

submit ted t o  Z e i t s c h r i f t  f u r  Kr i s t a l log raph ie ,  
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S t r u c t u r a l  Rela t ionships  i n  the Pseudo Binary System ZrFe,-ZrCr, 

by Simon Moss 

The purpose of t h i s  work was t o  s tudy by x-ray methods the 

s o l u b i l i t y  l i m i t s  and s t r u c t u r a l  i d e n t i t i e s  of the phases  wi th in  

the pseudo b inary  s e c t i o n  ZrFe,-ZrCr,. These phases through down 

done on the b ina ry  components are known t o  be of  the Laves type AB,. 

The t h r e e  Laves phases  a r e  a c t i v e l y  very similar i n  na ture  d i f f e r i n g  

only i n  s tacking  sequence. 

arrangements of the l a r g e  atoms i n  the t h r e e  types:  

Below i n  Figure 1 a r e  presented  the 

1. C14 MgZn, - hexagonal s tacking:  AB/AB/AB 

2. C15 MgCu, - cubic  (viewed only 111) s t ack ing  ABC/ABC/ABC 

3.  C36 MgNi, : - hexagonal s t ack ing :  ABAC/ABAC/ABAC 

I t  was known and v e r i f i e d  here that ZrFe, is  isomorphous w i t h  

the cubic  C15 type a t  a l l  temperatures .  ZrCr ,  has been the s u b j e c t  o f  

some controversy because it  e x h i b i t s  a l l o t r o p y .  Some previous  

i n v e s t i g a t o r s  have f e l t  t h a t  Z r C r ,  was isomorphous w i t h  C14 a t  low 

temperatures (below 1000°C> and isomorphous, w i t h  C15  above 1OOO"C 

and up t o  the melt ing po in t .  Others  have ind ica t ed  t h a t  the C14 

s t r u c t u r e  is s t a b l e  only w i t h i n  a small range of temperature near  the 

mel t ing  po in t  and C15 is  s t a b l e  below t h i s  region. The present  work 

s u b s t a n t i a t e s  the l a t t e r  observat ion.  

Samples in te rmedia te  between the  two b ina ry  components a t  each  

10 atom percent  were s o l u t i o n  t r e a t e d  a t  140O0C, 1OOO"C and 890°C. 

X-ray p a t t e r n s  were then  made o f  t he  e a s i l y  crushed powder which 

were indexed and solved f o r  the appropr ia te  l a t t i c e  cons t an t s .  



I n  Figure 2 the  r e s u l t s  for t h e  1400°C and 89OOC runs a r e  included 

along w i t h  d a t a  taken on the as-quenched a r c  melted but tons .  The 

phase diagram ind ica t ed  is merely t h a t  which has been proposed t o  

exp la in  the d a t a  and has  not been corroborated by a d d i t i o n a l  measurements. 

The r e s u l t s  o f  the l a t t i c e  constarit ,  because of  the  s t r u c t u r a l  

na ture  of  Laves phases can be app l i ed  d i r e c t l y  t o  the problem of  

atom s i z e s  w i t h i n  the  compounds. Thus A-A ( Z r - Z r )  d i s t a n c e s  could 

be c a l c u l a t e d  d i r e c t l y  from the va lues  of the hexagonal C 

and the B-B (Fe,Cr-Fe, C r )  d i s t a n c e s  could be obtained from the 

va lues  of  AHex. These va lues  were used t o  show that the  t ransformat ion  

from cubic  ZrCr, a t  the C r  r i c h  end t o  heagonal C14 i s  accompanied 

mainly by r e l a x a t i o n s  i n  the A-A o r  Z r - Z r  d i s t o r t i o n s .  A t  the  i r o n  

r i c h  end i t  seems t h a t  the t ransformat ion  from cubic  ZrFe 

t o  hexaongal C14 is  accompanied by s t r u c t u r a l  r e l a t i o n s i o n s  i n  B-B 

atom d i s t a n c e s .  

cons t an t s  Hex 

1. gCr .2 

I t  a l s o  appears  t h a t  the cubic  s t r u c t u r e  accommodates i t s e l f  t o  

an observed rad ius  r a t i o  o f  d /d = 1.225 which is  the i d e a l  r a t i o  

f o r  Laves phases.  The hexagonal s t r u c t u r e  seems t o  e x h i b i t  an  observed 

AA BB 

r a t i o  s l i g h t l y  higher than  t h i s  va lue  f o r  a l l  cases .  
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