

Search for Standard Model Higgs Boson Production in Association with W Boson at CDF

Y. Ishizawa^a, S. Kim^a, K. Kondo^b, **Y. Kusakabe**^b, T. Masubuchi^a, M. McFarlane^c, J. Nielsen^c, A. Taffard^d, W. Yao^c

(a): University of Tsukuba, (b): Waseda University, (c): Lawrence Barkley National Laboratory, (d): University of Illinois at Urbana-Champaign

The Standard Model (SM)

- · Quarks and Leptons are the fundamental particles
- Gauge bosons mediate forces between fundamental fermions
- Higgs Mechanism gives masses to elementary particles without breaking SU(2)×U(1) symmetry

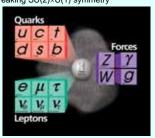


Figure.1 Elementary particles in the standard model.

Motivation

- Standard Model needs higgs boson as a fundamental particle
- Constraint from W and Top mass m_H < 207 GeV/c² @95%C.L. m_H >114.4 GeV/c² @95%C.L.
- LEP2 Direct search
- TEVATRON is the only active collider with a potential to find higgs

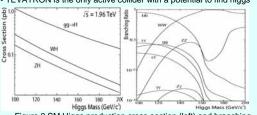


Figure.2 SM Higgs production cross section (left) and branching ratio (right) as a function of higgs mass at the TEVATRON.

One of the most sensitive processes at TEVATRON for m_H<135GeV/c² $p\bar{p} \to W^{\pm}H \to \ell \nu b\bar{b}$

The CDF II Detector

- Central Tracker Measures momentum, p, of charged particles.
- Calorimeters Measure energy, E, of particles.
- Muon Chambers Used to identify muons.

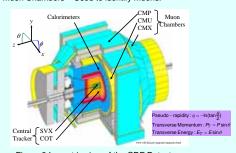
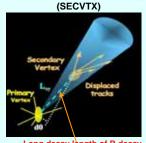



Figure.3 Isometric view of the CDF Detector.

b-tagging

Crucial to reduce large W + light flavor background

Displaced Secondary Vertex tagging

Long decay length of B decay Figure 4. Displaced Secondary Vertex b-tagging.

- Finite tracking resolution

Neural Network(NN) b-tagging

· Separate b-jet from light-jet(mistag) and c-jet in SECVTX tagged jet

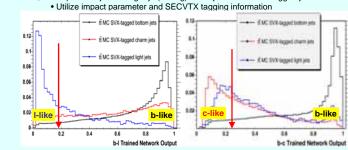


Figure.5 Neural network output for I-jet, c-jet and b-jet.

Keeping 90% of b-jet, reject 65% of light-jet and 50% of c-jet

Data Sample and Event Selection

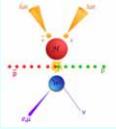


Figure.6 WH production and decay.

•Luminosity: 695pb-1 (March 2002 - September 2005)

- •2 jet (E_T>15GeV)
- At least 1 SECVTX tagged jet
 - 1 SECVTX tagged jet → require NN b-tagging
 - ≥2 SECVTX tagged jets → no NN b-tagging
- 1 primary high p_T isolated lepton (e/ μ , p_T >20GeV/c) Large missing E_T (>20GeV)

Background and Observed Data

Contamination in SECVTX b-tagged jet (major background)

- Long decay length of D-meson → c-jet identified as b

→ false tag

b-tagging

Table.2 Systematic uncertainties.

b-tagging strategy	=1 tag with NN tag	≥ 2jet	
Mistag	39.2 ± 8.6	2.6 ± 0.4	
$Wb\bar{b}$	105.4 ± 36.0	14.8 ± 5.1	
$Wc\bar{c}$	31.3 ± 10.7	2.4 ± 0.8	
Wc	25.0 ± 6.5	0.0 ± 0.0	
$t\bar{t}$ (6.7pb)	30.4 ± 4.7	7.5 ± 1.6	
Single Top	17.1 ± 1.7	3.0 ± 0.5	
Diboson/ $Z^0 ightarrow au au$	9.8 ± 1.6	0.8 ± 0.2	
non-W QCD	28.5 ± 4.9	1.0 ± 0.2	
Total Background	286.6 ± 48.7	32.2 ± 6.2	
Observed Events	306	29	

Table.1 Background estimate and observed data for b-tagging strategies in W+2jets sample.

Acceptance and Systematics

NN b-tagging keeps ~90% of signal (~35% of total background is rejected)

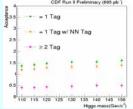


Figure.7 Signal acceptance as a function of higgs mass.

Dijet Mass Distribution

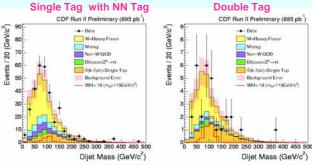


Figure.8 Dijet mass distributions for each b-tagging strategy.

No significant excess over the SM background prediction

by fitting the dijet mass distributions using binned likelihood technique

$$L(\sigma imes exttt{BR}) = \prod_{i= exttt{bin}} rac{\mu_i^{N_i} e^{-\mu_i}}{N_i!}$$

 μ_i : Expected events in *i*-th bin(Signal+Background)

 N_i : Observed events in i-th bin

Combine single and double tag likelihood $L(combined) = L(1tag w/NN tag) \times L(\ge 2tag)$

Result 95% C.L. Upper Limit

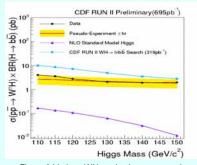


Figure.9 Limit on WH production cross section times branching ratio as a function of higgs mass.

Conclusions

- Set an upper limit on the production cross section times branching ratio Analysis technique improved significantly compared to the previous WH search with 319pb-1 at CDF.
 - Dijet mass distributions are consistent with SM background
 - · Set an upper limit on the production cross section as

 $\sigma(p\bar{p}\rightarrow WH)BR(H\rightarrow b\bar{b})<2.0-4.0pb$ $m_H = 110-150 \text{GeV/c}^2$ at 95% C.L.

Best limit from single higgs production process

For more information.

http://www-cdf.fnal.gov/physics/exotic/r2a/20060420.lmetbj_wh