
. . . r-"'. 
• ' . • ~..u:... 

...... t. . 
II• ...... .. I • 

. /.iti~· ! jo ( 

NOVEMBER 1974 MATT-1084 

ENERGY TRANSPORT ACROSS A 
MAGNETIC FIELD BY 

PLASMA WAVES 
BY 

,, 
JOSE CANOSA AND HIDEO OKUDA 

PLASMA PHYSICS 
LABORATORY 

PRINCETON UNIVERSITY 
P R I N C E T 0 N, N E W J E RS E Y 

This work was supported by U. S. Atomic Energy Commission Contract AT ( 11-1) -3073. Reproduction, transla­
tion, publication, use, and disposal, in whole or in part, by or for the United States Government is permitted. 

,. 

DISTRIFUT'O F' - I"' 'JfJCU .~ .. ~r UNliMITED 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



' 

Energy Transport Across a Magnetic Field 

by Plasma Waves 

* Jose Canosa and Hideo Okuda . 

· Pla~ma Physics Laboratory, Princeton University 

Princeton, New·Jersey 08540 

ABSTRACT 

Cross-field energy transport by electrostatic plasma 

waves has been studied theoretically and nume.rically for 

·a pl~sma near thermal equilibrium. Energy transfer by· 

plasma waves is significant in a high temperature plasma 

where r.ollisional transport is quite· small. For strong 

magnetic fields (w > w} ·,·the simulations verify the 
c - p 

·theoretical prediction that energy transport by plasma 

waves increases slowly with _the magnetic field, and that 

in the limit of large field magnitudes wave transport 

dominates classical collisional transport. Furthermore, 

in a strong magnetic field the relaxation of the tern-

perature by wave transport may· result in an 

anisotropic velocity distribution. ·For weak fields 

(w > w } ; the simulation shows that collisional p c 

transport is more important.than wave transport, also 

in agreement.with the theory. 
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I. INTRODUCTION 

The study of plasma confinement in a strong magnetic field 

has been one of the main goals of the controlled thermonuclear 

research program. As is well known, the classical theory of 

plasma transport almost always fails to explain the experimentally 

observed rapid loss of particles and heat in mapy of the confining 

devices. The rapid losses are assumed implicitly to be du_e to 

some kind of plasma instability which causes turbulent transfer. 

Recently, it has been po·inted out1 ' 2 that in _addition to 

classical processes, there is a large transport of particles and 

heat due to low-frequency electrostatic fluctuations, even in 

thermal equilibrium. These t_hermal convective cells are created 

by low-frequency fluctuations across the magnetic field which 

transport particles very easily by the c_ ~ x ~/B2 drift. Further­

more; it has also been found 2 that low frequency ion fluctuations 

near the lower hybrid frequency can cause large electron trans-

port across the magnetic field. In add;itiqn to these energy 

transport mechanisms, Rosenbluth and Liu3 have shown recently 

that electrostatic waves can carry an appreciable amount of energy 

across a strong magnetic field in a high temperature collisionless 

plasma. While the particles are not able to move easily across 

strong magnetic fields, there is a net flux of energy .from the 

plasma center teward the boundaries as~ociated with the spontane-

ous emission and absorption of electrostatic waves which propagate 

at arbitrary angles with respect to the ma~netic field; this is 

because the· amplitude of the thermal fluctuations is determined 

by the local __ temperature. 

' 
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In this paper, we report on a theoretical and numerical 

study of energy transport across a magnetic field by electro­

static waves in a plasma near thermal equilibrium. In Section 

II, we obtain asymptotic forms -of the dispersion relation for 

electrostatic waves both in t~e strong and ~e~k magnetic field 

limits; these results are the foundation of the theory of wave 

energy transport. In Section III, we extend the work of 

Rosenbluth and Liu, and give a theory that describes explicitly 

and in some detail the influence of the magnetic field magnitude 

and of the plasma size on the energy transport. After a 

description of the numerical model used, in Section IV, we_ give 

the results of the numerical simulation of wave energy transport 

performed with a 2 1/2-dimensional particle code. The agreement 

between theory and simulation is quite satisfactory. We wish to 

emphasize that, although the present simulations are for a 

plasma near thermal equilibrium, it is straightforward to extend 

them to the more important case ·of a weakly turbulent plasma, 

such as those existing in present tokamak devices. Throughout 

the paper, it• is assumed that the ions form an immobile uniform 

background. 

II. DISPERSION RELATIONS FOR ELECTROSTATIC-WAVES 

IN A MAGNETIC FIELD 

The theory of plasma energy_transport across a magnetic 

field by electrostatic plasma waves is_based on a detailed 

knowledge of the dispersion properties of these waves. In this 

section, we obtain, therefore, asymptotic forms of the disper­

sion relation both in the strong and weak magnetic field limits. 
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For fixed ion background, no.drift velocity, and an iso-
., 

.·..j 

disp~rsi.on equa-tropic Maxwellian distribution, . the 

ti on for electrostatic ~aJ~~ ·in a rnagneti.c field· reduces to 
4 

00 

K;2 + 1 + iTI 1 / 2 zw(z) + I:' (l/lnl!) P/2Jlnl.ti+~;l/2 zw(z+nz )}=O, c 
. n=·-oo 

where the prime means that the n = 0 term is not included in the 
. . 

sum, K = kA.
0 

(k is the wavenumber and A. 0 is the Debye length), 

w(z) is the function related to t~e complex error function and 

the plasma dispersion fun~tion, 5 z is the dimensionless complex 

frequericy defined by 

(2) 

and zp and zc are the dime~sionless electron plasma and cyclo­

tron frequencies. In the d~riyation of (1), we.used the 

asymptotic approximations 

In(A.) - (l/n!)(A/2)n 

valid for small A. , 

and. exp C-A.) - 1 , where I are the . n 

Bessel functions, A. is the parameter for the finite gyroradius 

2 2 2 2 
A. k v /w = k ... .1. e c 

. 2e sin 21 2 V W I e c (3) 

and e is the angle between'the magnetic field and the wave 

vector! It should be noted that for parallel propagation, k" 

in (2) becomes k ., and· A. = o , so that Eq. (1) 

(1) 

.. 

· ................ : 
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becomes identical to Landau's dispersion equation, 617 as it 

should. 

A. Strong Magnetic Field Limit 

In this case, the main damping is due to the term with w(z) 

in (l); therefore, we use the asymptotic expansion of w(z ± z) 
c 

for large values of the argument and keep only the first term, 

i.e., w(z ± z ) - (i/n1/ 2 ) (z ± z ) '-l· . In this way, (1) becomes c c 

2 2 
As z >> z , Eq. (4) can be approximated by c 

Defining the parameter 

2 K a , 

( 4) 

(5) 

(6) 

we can write (5) in exactly the same form as Landau's dispersion 

equation 

K2 + 1 + in1/ 2 zw{z) = 0 , 
m 

(7) 

whose fifth-order solution in the long wavelength limit K + 0 

is of the same form as for the magnetic field free case,
8 

once 

K is substituted by Km Transforming back to physical variables 

l}y nsing (2), the second-order solution of (7) is 
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w cos 8 p 1 

a 
1/2 

x exp(-l/2a K2 )•exp(-3/2) 

(8) 

It should be noted that in the very strong magnetic field limit 

w + oo , a + 1 , and (8) adopts still a simpler form. 
c 

B. Weak Magnetic Field Limit 

It is known that for weak magnetic fields, z < z , the c p 

Landau damping of electrostatic waves propagating in particular 

directions relative to the magnetic field can be orders of 
. . . 9 

magnitude higher than the field-free Landau, damping. Tpe 

dispersion equation (1) is solved as follows. To obtain the 

real part of the solution, we approximate (1) by.keeping only 

then= ±1 terms in the ·Sum. In this way, we again obtain (4). 

·• 

• 
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For weak magnetic fields, z~ << z
2 

, and the fraction in 

the last term of (4) can be expanded as follows: 

2 z 
p 

2 2 z -z c 

= 2 2 2 
. . z2 ( .. Z~) 
- _ ___E l+ 2 

z2 z 
( 9) 

so that (4) becomes 

z (1-z /z ) c 

2 2 

K
2 + l + i ir

1
/

2 
z w(z) - K

2 
sin

2 
0 ~ ( l +·)) = 0 • (10) 

In the long wavelength limit K + 0 , the well-known asymptotic 

expansion of w(z) valid for large z gives 618 

· K
2 

-
1 

-
3 

• • • - K
2 

sin
2 

0 ~ (1 + zz~) = 0 , 
2z

2 ~ z 

where the exponential term has been neglected as we are only 

solving for the real part. If the term z
2
/z 2 

<< 1 inside the c 

(11) 

parentheses ;is dropped, we get a first-order approximation to 

2 2 
the real part, z - z p L tt . 1 + 21 2 1 2/ 2 . ( 1 e ing zc z - + z z in 1 ) , c p 

we get after a little rearrangement 

K2 - b. 3 = 0 -2 - -4 ' 2z 4z 

(1 + 

2 

a) 1 
z 

2 
b 

c sin (12) - . 2 2 . 
cos e zp 
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Equation (12) is again in exactly the same form as the algebraic 

part of the field-free Landau's dispersion equation for long 

wavelengths, except that now there is the parameter b in the 

. . 8 h second term of (12) instead of 1 in Landau's equation. T e 

second-order solution for the real part is obtained as before,
8 

and transforming back to physical variables with the use of 

(2), we get 

2 
1 w 2 + c sin 2 2 

(13) 
w p 

Once the real part has been found, the imaginary part is obtained 

by substituting z by its real part in the exponential terms 

arising from the asymptotic expansions of thew functions in (1). 

After transforming back to physical variables by using (2)', and 

further approximating ~ - w in the imaginary part, we get9 
p 

w = 

w 
p 

cos 

2 
WC 

2 
w 

p 

00 L. 
e .. 

n=-oo 

0./2) 1nl· 2 2 
lnl !· exp[.(-l/2K cos 8) 

x ( w - nw ) 2 I w 2 J • 
p c p 

For a given w /w , Ingvesson and Perkins 9 have shown that p c 

the most important term in the ~um in (14). is that where n 

(14) 

' 
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is the smallest integer closest to w /w •. This can be seen p c 

because the. argument of the corresponding exponential is then 

the smallest. Therefore, we have finally 

2 

( 
. 1 .WC 

w - WP 1+2 2 
w p 

- i(TI/8)~ 1 WP 
i1T K3 cos 

(15) 

where for simplicity we have assumed that the ratio w /w is suffi­p c . 

ciently close to the integer n, so that the exponential.term 

in (14) can be approximated by unity. As noted by Ingvesson and 

Perkins, 9 the Landau damping given by (15) might be orders of 

magnitude higher than the field-free Landau damping for intermediate 

9 values of the angle e. 

III. THEORY OF ENERGY TRANSPORT BY. PLASMA WAVES 

Rosenbluth and Liu3 have discussed recently the energy 

transport across a magnetic field by the spontaneous emission 
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and absorption by Landau damping of high frequency, long mean­

free path plasma waves. They obtained asymptotic results valid 

in the limits wc >> wp and L >> AD , where L is the half-width 

of the plasma slab. Their main conclusion is that this mecha-. 

nism of energy transport is independent of the magnetic field 

magnitude and will dominate classical thermal diffusion in very 

large systems. 

Our interest here is to develop a theory that can be 

subject to verification by cqmputer simulation. This requires 

that we consider explicitly and in detail the influence of the 

magnetic field magni tud_e and of the plasma size on the energy­

transport. We have thus extended·Rosenbluth and Liu's treatment 

.and obtained more general results that appro·ach asymptotically· 

their results in the limits w /w + 00 and L/A0 + 00 • In the c p 

strong magnetic field case, w > w c p our second-order calcula-

tion: g.ives an energy loss. which is significantly higher than 

that obtained by the first-order calculation, 3 even for large 

plasmas. We also find that the energy transport by plasma 

waves increases slowly with the magne~ic field. In the weak 

magnetic field case, wc ~ wp , the energy loss by plasma waves 

is almost independent of its magnitude, and approaches the 

level due to wave absorption in the absence of magnetic field. 

A. Strong Magnetic Field Limit 

We first give the second-order calculation of the energy 

loss in the case w /w > 1 • The treatment is based on that c p 

" 
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given by Rosenbl.uth and Liu. 3 The transport equation for the 

electrostatic energy per mode in thermal equilibrium steady 

state is 

dE + >.(x)E = >.(x)T(x) 
dx · 

E(-L) = 0 • (16) 

The boundary condition in (16) is the reflective boundary condi-

tion for electrostatic waves, as these cannot escape the plasma. 

Here .we consider a two-dimensional slab plasma in order to 

compare the theoretical results with those obtained from a 2 1/2-

dimensional particle simulation. Thus, the· magnetic field is 

"' ~ = By , and the steady electron temperature is given by 

T(x) = T
0

(1 - x
2
/L

2
) , where Lis _the plasma half-width. The 

absorption probability per unit length is given by >.(x) = 2yL/vx , 

where yL is Landau's damping coefficient given by (8), and vx is 

the group velocity 

.. 

d(Re w) 
dkx 

1 
. 2 

6 
2
1 

2 a - + E sin , E _ w w 
p c 

obtained using the real part of the dispersion relation· (8), 

(17) 

and having approximated a ~ 1 inside the parentheses. Taking 

into account the tempe~ature gradient in the strongly dominant 

exponential term of Landau's coefficient, we get explicitly 

for the absorption probability 
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.(· 7T) 112 1 i. 1 
= 2 4.5 AD k kA2 

x D 

} 

1 . . 2 =-372 ( 1 + E COS 8 
a 

(18) 

where we have approximated exp(-3/2) ~ 1/4.5 also asymptotic 

expansions in powers of the small parameters E and k2 A~ have been 

used. At .the plasma center T(O) =T0 and the exponential in.'(.18) 

becomes equal to the. exponent~al in .Landa·u '.s damping coefficient 

given in (8) , becau•e AD ~n (18)' as in all the rest 0£ the ~aper 

designates the Debye le.ngth at the plasma center, :X. 0 :: AD (O). 

The transport equatiori (16) is a first-order linear differential 

equation who~e exact sblution ~s / 

l 

E(x,k) = jµ{r-L,x) e-µ ·T{z)dµ , 
0 

µ (z ,x) :: j x A (x') dx' . 
z 

( 19) . 

The total energy loss per unit volume of the plasma is obtained 

by integrating over all the wav.es. 

E(x,k)l (20) 
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We now calculate the rate of energy loss at the plasma center 

A(O); this requires the evaluation of T(O) - E(O,~}· in the inte­

grand of (20). It is noted that from (19) 

llmax = ll ( - L, o) . = f 0 .A ( x ' ) dx ' = J L .A ( x ' ) dx ' ~ 
-L o 

JL 2 2 2 2 
.A(O) 

0 

exp(-x /2ak .A
0

L ) dx ~ · 100 

2 2 2 2 .A(O) 
0 

exp(-x /2ak .A
0

L )dx 

( 21) 

In (21), we have expanded .A(x) (see Eq. (18)) near the plasma 

center by setting explicitly T /T (x) = T /T (l-x2 /L 2 ) -1 + x 2 
/L 

2 
0 0 0 . 

this is justified because T(L) = 0 , and (18) shows that wave 

absorption becomes vanishingly small near the plasma boundary. 

Puttingµ = µ(-L,o) and T(z) = T (1 - z 2/L2 ) in (19) and max o 

noting that for µ >> 1 , we can app.roximate sinh µ 
max max 

- cosh µmax ' Eq. Ci9) giv~s3 

T(O) - E(O,k) 

z 2 cosh(µ - µ )dµ 
max 

sinh µ max 

Substituting now (21) and (22) in (20), we get 

(22) 
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A ( 0) 

(23) 

The integrations in (23) are carried out as follows. First, 

the last integral in (23) is integrated by parts, noting that 

the integrand is obtained from (19) as µ(z,o) appearing in 

1/2 µ(z,o) = erf(z/2 a 112 kA L)µ · the result of the integra-D max.'· 

tion by parts is 

roµmax .. z2 2 2 2 { 00 
}, cosh(µ - µmax)dµ ~ 4ak ADL Jo vdv sinh µmax(l-erf v). 

Now we change variables in ( 23) from k to ·µ 
max 

given by (18) into (21), one gets 

1T 1 L 1 = 2 4.5 AD kxAD 

2 . 2 2 . 
l+e:cos 8-(9/2)k A

0
;·· . 2 2 

a · exp(-l/2ak AD) 

2 2 _ c exp(-l/2ak A
0

) ; 

(24) 

( 25) 

now if the dependence of C on k is neglected with ~espect to the 
I 

stronger dependence given by the exponential, we get 

kdk ~ k 4 A2 a dµ /µ 
D max max 

(26) 
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Substituting (24-26) into (23), we get 

loco v dv sinh µ · (1 - erf v) . 4 .. max 
x a(kA0 ) . h 

sin µmax 
(27) 

.. 
" 

Approximating further the expression in (25) by 

(28) 

we get 

(29) 

As Rosenbluth and Liu pointed out, 3 it· is clear that the most 

important wavelengths contributing to the energy transport are 

those whose absorption mean free path is of the order of the 

length of the system, i.e., if (O) = l/A(O) ~ L. Using (21), mp 

it can be seen that these wavelengths are those corresponding 

to·µ - 1 Therefore, kA0 in (2i) is substituted by its ' max - · 

expression (29) with µmax ~ 1 , and we get 

A(O)= 7T2 ~;~ wlATD~· {{de dµmaxl sine cose I [c1 - E cos
2 

8) 
4

a ~ 
}} in (L/A

0
) 

9 1 1 loco V 

+ 2 8a 2 in 3 (L/Ao) ---~~s-1-. n_h_µ _____ _ 

max 

dv sinh µmax(l-erf v) 

( 3 0) 

...... ;· .. 

.• .... ~.' .. 
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Using the definition of a given by (17), we get the following 

asymptotic expansions 

1
(1-e: cos2 8) /a= (1-e: cos 2 

8) I (l+e: sin2 
8)- (1-e: cos 2 

8) (1-e: sin2 
8) -1-e:, 

l/a2 - 1/(1 + e: sin2 ~) 2 
- 1 - 2e: sin2 

8 ( 31) 

.--. 

After substittiting (31) into (jo)~ the angle integrals are done 

by elementary means. ·rt is now noted that the integral with 

respect to µm is o~ the form J 00 

(sinh px/sinh x) dx ~nd is ax · o · 
known in closed form..l,O The remaining v-integral was obtained 

numerically in Ref~. 3, so that 

.f
0

00 

v. dv s.inh. µ (1 - erf v) 

L. oo Jc max · . _ 1 

0
. d~max sinh µ = 8.25 x. 10 . 

max 
(32) 

Finally, the rate of energy loss at the plas~a center is given 

by: 

A (O) = 3.34 x 10-2 p 0 1 w T ( 
LA.

0 

-1 -2 J x [l + 2. 25 R.n. (L/A.
0

) + 0 ( R.n L/A.0 ) • · ( 33) 

. -2 . 
The term O(R.n L/A.

0
) in (33} ·~ould be obtai.n-ed using a third-

order dispersion relati6n instead of (8). The result (33) gives 

'•. 
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the first two terms of a series which is asymptotic in the limit 

L/A
0 

+ oo • Rosenbluth and Liu's treatment gives essentially the 

first term of (33) when wc + 00 also. The importance of the 

second-order term in (33) is that it provides an inner consist-

ency check of the validity of the asymptotic theory. Thus, for 

L/A
0 

= 8., the series (33) does not converge well, because its 

second term is as large as the first term (see Table I); the 

reason is that the most important wayelength for the energy 

.transport given by (29) with µ ~ 1, a ~ 1, is kA 0 ~ 0.5, for max 

which the long wavelength dispersion relation used [see ( 8)] is 

not quite correct. As shown clearly in Fig. 3 of Ref. 6, the 

long wavelength dispersion relation is reasonably correct for 

kA 0 < 0.5 • Whenever kA0 as determined by (29) approaches 0.5 , 

the. asymptotic theory starts to break down as is indicated 

plainly by the data in Table I. These data show quite 

clearly that, for a convincing verification of the theory, the 

numerical simulation of wave energy transport requires a fairly 

large computer plasma (where L/A = 16 at least). Furthermore, 
D 

the sec·ond_.order term in (33), which originates in the second-

order dispersion relation (8), provides a substantial 

correction to the first-order treatment, 3 even for the large 

sizes shown in Table I; this result .is consistent with.the 

fact that the second-order dispersion relation (8) is substan-

tially more accurate than the first-order one, even for quite 

8 
long wavelengths. It should also be noticed that wave energy 

transport increases slowly with the magnetic field, and in the 
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limit w -+ 00 it becomes independent of its magnitude, in agreement 
c 

with the 
3· 

first order treatment. 

Finally, it should be noticed that only some trivial differences 

in-the k- and 8-dependence ~f the integrand in (23)distinguish 

our two-dimensional treatment from the three-dimensional treatment 

of Ref. 3. 

B. Weak Magnetic Field Limit 

Here we give the calculation of the energy transport valid for 

w S w • This calculation is similar to that· given in the previous 
c p 

section. The absorption probability is determined as before from 

the corresponding dispersion relation (15), A. (xY=2yL/v: . The group . x 

velocity is 

d (Rew) k k2 
3k2 

A. 2 ) v = = w ¥ (£ + x dkx p k 
y D , 

- 21 2 E=W W 
c 12. 

(34) 

The absorption probability is then 

>,.(x) = = ('IT/2)~ ~: n 
2. 

. 2n-l 
.S.l..TI . 8 (w /w )2n 

p. c 

where we recall that n is the lowest integer closest to the 

ratio w /w . Because of the simple algebraic dependence of the p c ~ . 

absorption probability on the distance, the treatment is now· 
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much simpler than for the strong magnetic field case. In particular 

expanding the temperature profile in ·.(35) about the plasma center 

and integrating term by term, .one gets 

·ii max 
= µ <o ,.Ll = [\ <x • > dx' • [ 1-n·;1 + <n·-iun-2> •• ·] . A <O> L 

- c).(O)L 

µ ( 0 , z ) = 1 z A ( x ' ) dx ' = c A ( 0 ) z . ( 36) 

It should be noticed that the formal solution of the transport 

equation (16) is given exactly by (19) for any given ).(x). Using 

(19) and (36), we get quite simply· · 

iµmax 
T(O) E(O,k) 

TO 1 o µ2exp(-µ) dµ - = 
L2 c 2 ). 2 (0) 

0.16 TO 
= 

c
2 

A(O) 7 

where the integral has been evaluated taking µ =l· this means max ' 

that for purposes of integration the important ·wavelengths are 

( 3 7) 

those with an absorption mean free path of the order of the length 

of the system,i.e., 1 f =l/).(O)=L (see (36)). The energy flux mp . 

at the plasma center is now given by (see Eqs. (20) and (23)): 



A (0) = . · 
1 

2 
J J k de dk 

( 2 Tr) 
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2 
wpkxky 

k4 

(38) 

Using again the basic simplification of taking µ max=cA(O)L=l 

in the integrand of (38), the remaining k- and 8-integrations 

are done by elementary means. We obtain finally 

A(O) = ( 39) 

where c is the constant close to unity defined by (36) in terms 

of the lowest integer n closest to the ratio w /w . The second p c . 

term in.(39) is almost negligible relative to the first term; this 

latter depends only weakly on the magnetic field magnitude through 

the constant c~ 1. Therefore, for a plasma in a weak magnetic 

ffeld, wave transport is almost independent of its m~gnitude. 

Lastli, the calculation of the energy flux for the limiting 

case w =w is even eas1er than for the limit w >w . p c . p c 

The. details of the calculation a.re given in Appendix A, and the 

result is 

A (0) 
. -3 · w nTO 

= 4. 6 x 10 ~ 
LA 

D 

Because wave energy transport is almost independent of the 

( 40) 
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magnetic field magnitude, in this region this process is not as 

important as classical collisional transport, because this latter 

varies as l/B
2

; this is confirmed by our simulation.results to 

be discussed below. 

IV. COMPUTER SIMULATIONS 

In this section, we give the results of the simulations of 

wave energy transport, and compare them with the theoretical 

results obtained in Section III. For strong magnetic fields, 

the computations verify the theoretical prediction that energy 

transport by plasma waves increases slowly with the magnetic 

field, and that in the limit of large field magnitudes wave 

transport dominates classical collisional transport. For weak 

fields, the simulation shows that collisional transport is more 

important than wave transport, also in agreement with the 

theory. 

A. The Simulation Model 

As shown in Section III, waves propagating obliquely 

to the magnetic field contribute to the energy transport, 

while those·traveling in the perpendicular direction are 

not Landau damped (see Ref.·4, p. 226), and therefore, 
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cannot be absorbed. In order to simulate energy transport by 

plasma waves, we require therefore that their k-vectors have 

all possible.directions relative to the magnetic field. 

This requirement is met by the 2 1/2-dimen~ional 

(two positions and three velocity components) electrostatic 

h . . 1 2 particle model s own in Fig. . The magnetic field is in the 

y-direction and the initial electron temperature profile was 

chosen to be 

T(x,0) = Tb[l + 3 sin (nx/2L)] ( 41) 

which is parabolic at the plasma center, as assumed in the 

theory, and is also periodic in the x-direction with a period 

2L equal to the plasma size. We assume that the plasma is 

periodic, and because it is also symmetric with respect to the 

x = L plane, the periodic boundary conditions are equivalent 

~o reflective boundary conditions with respect to the relaxation 

of the temperature profile. As mentioned before, the ions are 

assumed to form an immobile uniform background. 

A very significant advantage of the model shown in Fig. 1 

is that it can completely eliminate the large energy transfer 

. 2 2 
due to electron convective cells, because the c.E x ~/B drift 

velocity of the electrons is always in the z-direction, and 

therefore it does .not contribute to the relaxation of .the tern-

perature profile in the x-direction. On the other hand, because 

of the discretenes$ of the simulation model, it is not possible 
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to eliminate the energy transfer due to binary collisions 

completely. However, as we. show below, there is an unambiguous 

way of separating the energy transfer by plasma waves from the 

collisional·transfer. This is because energy transfer by plasma 

waves is due to their Landau damping along the magnetic field, 

and as a result only the parallel component of the temperature 

decreases. The relaxation of the perpendicular component of the 

temperature results from collisional diffusion, because waves 

are not damped in the perpendicular direction (see Ref. 4 ,- p. 
• 

22 6) • There is of course collisional relaxation between the 

d d . 1 11 h 1 . t' parallel an perpen 1cu ar temperatures. T e re axat1on 1me 

for this process is given essentially by the 90° collision time 

and is independent of the magnetic field strength. Because the 

cross-field diffusion distance is smaller than the gyroradius, 

the characteristic time for collisional relaxation between the' 

parallel and perpendicular components of the temperature is 

longer than the cross-field diffusion time. This is confirmed 

by the simulation results to be discussed below. 

It should be noted here that using a particle code, the 

perpendicular and parallel components of the average temperature 

of a particle can be output very simply, as they are defined by 

T.1. = (1/3) m {<v2
> + <v2

>) - (1/3) m x z 

T 11 = (1/3) m <v2> - (1/3) m y 
2 <v .. > ( 4 2) 
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where m is the electron mass, and < v~ > and < v~ > are 

aver~ges of the square of the velocities in the perpendicular 

and parallel directions. 

For a sufficiently short time in which the relaxati0n of 

the initial temperature is small, we may assume that 

T .1. ( t) /T .1. ( 0 ) = 1 - v t = 1 - v.1.t , c 

T II ( t) /T II ( 0) = 1 - ( v + v ) t . = 1 - v II t ' 
c w. 

(43) 

where v and v are the relaxation rates due to.collisional and c w 

wave transport respectively. Collisions tend to relax the 

temperature equally in th7 parallel and per_penqi.cular direction~, 

while wave transport leads to a decreas~ of the temperature in 

the parallel direction only .. Th~ simulation resu.l ts below show 

that the basic assumption (43). is satisfied well. Initially 

the electron velocity distribution is an·isotr9pic Maxwellian 

distribution, i.e., T.1.(0) = 2T 11 (0) , because there are two 

degrees of freedom·in the transve~se direction [see Eq. (42)]; 

noting this, the relaxation of the total electron temperature· 

can be obtained from (43) as: 

T(t)/T(O) - [T.1.(t) + T 11 (t))/~T 11 (0) 

= 1 - (v + v /3)t _ 1 - vt 
q w 

(44) 

., 

We must now relate the electron temperature profile, which 

is given by the simulation as a function of time, with the 

wave energy flux obtained theoretically in Section III 
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[i.e., Eqs. (33), (39), and (40)]. The set of time-dependent 

equations coupling the wave energy with the electron temperature 

may be written as follows: 

1 Jd2 [aE (t,x,~_) aE . ] 
k + vx ~x + 2yLE = (2rr)2 - at 0 

3 anT(x,t) 
2 at 

= a 0 anT + _l __ f~ 2 k ( 
ax aX" (2rr)2 2yL E - T) ' 

where D is the classical collisional diffusi~n coefficient, 2 

( 4 5) 

( 4 6) 

n is the electron density, and the other symbols have been 

defined before. Equation (45) is the wave energy conservation 

equation; it expresses the fact that the rate of change of wave 

energy per unit volume is due to the divergence of the energy 

flux v E , to the wave absorption by Landau damping and to the -x 
12 spontaneous Cerenkov emission of the waves. Equation (46) is 

the balance equation for the heat density; it states that its 

rate of change is due to losses by collisional heat transfer and 

wave transport. We have neglected convective heat transfer and 

. f h d t . . t 13 b f h generation o eat ue o viscosi y ecause or t e present 

simulation model (Fig. 1) the drift velocity is primarily in the 

z-direction. This assumption is verified by the simulation 

results to be discussed below. Adding Eqs. (45) and (46), and 

then integrating over the whole plasma volume, we obtain 

(47) 

) 
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because the divergence terms in both equations vanish when 

integratin~ over the whole plasma. Equation (47) expresses 

then the conservation of the total energy of th~ pla~ma. 

The electron temperature, given by Eqs. (45) and (46) 

together With the initial Condition (41) I is expanded as follows: 

N 

T(x,t) ~ ~ 
j=-N 

C. (t) exp(ijnx/L) 
J 

(48) 

where the coefficients Cj(t) are given directly by the particle 

simulation code. The decay of the Fourier coefficient gives a 

much.more reliable and smooth measurement of the relaxation rate 

than the decay of the temperature me~sured= locally at the center, 

because the Fourier coefficient is obtained by averaging the 

temperature. profile over many spatial points. The.space-

independent component does not change with time 'because it 

gives rise to a uniform system fbr which the steady-state 

solution [see Eq. (16)] is E = T ·. and (46) gives dC /dt = 0 . 
0 0 0 

Because of the initial condition (41), we expect that the 

amplitude of the first space-dependent Fourier mode is much 

larger than that of the higher modesi i.e., 

> j 2 ( 49) 

which is indeed confirmed by the numerical results. Therefore, 

using Eqs. (41), (46), (48), and (49), and noting that for the 

initial condition (41) c1 (0) = -0.64 T~ we ~et for the rate of 

change of the temperature at the plasma center: 



_, 

= 

3 - n 
2 

aT(L,t) 
at 
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= -3n [( ddct1 ) + ( ddCt!) ] 
c w 

[ 
a D anT] + [ 1 2 f d2k 2yL (E - T)l . I 

ax ax x=L ( 2n) x=L 
(50) 

after having separated the amount of the temperature decay due 

to the wave transport from that due to classical collisional 

transport. During a sufficiently short time in which the tern-

perature decay is quite small, the wave energy does not change 

much either; therefore, the time-dependent term in (45) can be 

neglected in a first approximation, and the energy flux at the 

plasma center due to wave transport in (50) is approximated ·by 

the flux [see Eq. (20)] obtained from the solution of the steady­

state equation (16), i.e., by Eqs. (33), (39), and (40). The agree-

ment between theoretical and numerical results shown below is the 

most convincing proof of the validity of this assumption. (Note 

that, Fig. 1, for notational convenience the center of the 

computer plasma is at x = L , which corresponds to x = 0 for the 

theoretical plasma.) Therefore, Eq. (50) gives 

A ( 0) 
"311 ( 51) 

We now divide both sides of (51) by !c1 (o) I , and it is noted 

that from (41), lc1 (0) I = 0.64 Tb= (0.64/4)T(L,O) = 0.16 T
0 

, 

where T
0 

is the notation used in the theory for the temperature 

at the plasma center; as in the simulation the time is in units 
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of w-l , we finally obtain the rate of relaxation of the total 
p 

plasma temperature [see also (43) and (44)]: 

-v c 

v 
w 
3 

=-v 
c 

A ( 0) 
2.08 nw T 

p 0 

The relative rates of the total temperat~re t~laxation due to 

wave transport and collisional transport, v /3 and v , are w c 

(52) 

quantities which ar~-measured directly in the simulation. The 

rate of temperature decay due to wave transport will be compared 

below with the theoretical energy flux A(O) given by Eqs. (33), 

( 3 9 )" , arid ( 4 O ) . 

B. Numerical Results 

The initial conditions used with· the particle code are 

similar in many respects to those described before in consider-

2 
able detail. As we are interested in a thermal plasma with all 

modes of the system excited, no quiet start was use<l. The guiding 

centers were uniformly loaded on the (x,y)-plane, and the 

initial velocity distribution was an isotropic local Maxwellian 

to ensure an accurate thermal spectrum. The thermal v~locities 

of the Maxwellian electrons were chosen so as to gi:ve the tern-

perature distribution (41). The electrostatic energy per mode 

of wavenumber k in a thermal equilibrium plasma with a uniform 

temperature distributio~ is2114 
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(53) 

where 6E is the electric field amplitude, and·· a is the width of 

14 the finite size gaussian cloud, which was taken equal to the 

grid size in all the simulations. Because the Poisson equation 

is solved in ~-space replacing 9 2
¢ by -k

2
¢ , there are 

very small grid effects on the thermal spectrum even for large 

k modes; this is verified by the agreement between the simula-

tion results and Eq. (53) (see Figs. 2 and 3). Equation (53) 

has been used with T and A~ defined as rough averages of the 

actual temperature profile and Debye length; specifically, for 
- -2 2 - . 

the temperature profile (41) we took T::: 2.5 and A
0

:::A
0

(0)T=2.5 

The ~omputed electrostatic energy in each mode was compared with 

·the theoretical fluctuation spectrum given by (53). The results 

obtained in two typical computations are shown in Figs. 2 and 3 . 

. Although not nearly as good as the agreement found before for a 

plasma with a uniform temperature profile (see Fig. 2 of Ref. 2), 

there is unquestionably a semiquantitative agreement between the 

computed and theoretical thermal equilibrium spectrun, making us 

confident that our computer plasma is reasonably close to local 

thermal equilibrium. 

In Fig. 4, we.show the re.pults of the simulation for the 

case run with the strongest magnetic field, w /w = 1/4 . As 
p c 

discussed in the previous subsection, the relaxation of the 

temperature at the plasma center, T , is given by the decay of 

the first spatially-dependent Fourier mode of the temperature 
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profile [see Eqs. ( 48-52) J . Furthermore, the particle co.de 

gives separately the parallei and perpendicular temperature 

components, T 11 and T.1. [see Eqs. (42-44)]. The basic assump-

tion (43) is confirmed very satisfactorily by the results 

shown in 'F'ig. 4. For this case with a very strong magnetic 

field, the decay of T 11 is due mostly.to wave ·transport, and 

approaches its maximum limiting val.ue for wp/wc -+ 0 [see Eqs. 

(33) and (52)]. On the other hand, the decay of Ti is entirely 

due to collisions and is significantly smaller than the decay 

due to wave transport, as expected. Using Eq. (43), we get 

-6 
vc = v.1. = 2.6 x 10 , and vw = v 11 - 4 74 10 - 5 ·the v.1. = . x . ; 

total temperature decay rate is now obtained from (44), 

v = v + v /3 = 1.84 x c w . 
-5 -10 , and this checks well the experi~ -

mental value (Fig. 4), 
. -5 

v = 1.9 x 10 , showing that the slopes 

of the straight lines drawn through the computed points are 

consistent with Eqs. (43) and (44). One should note that 

because the average gyroradius is about one half ·of the particle 

size, the particles do not collide with each other within the 

gyroradius. This explains why the collisional relaxation is so 

small in this simulation. It should also be noticed that 

·colli~ional transport will vanish in the limit of very large 

magnetic fields and, Eqs. (43) and (44), v = v -+ O , .1. c 

v 11 = v + v -+ (v ) , and v/v 11 -+ v/(v 11 ) -+ 1/3 ; the results c w w max max 

in Fig. 2 give v/v 11 = 0.38 showing that this limit ~s being · 

approached. Thus, for very strong magnetic fields where colli-

sional transfer is negligible, the effect of wave energy· trans-

port is to produce a significant anisotropy in the local velocity 

distribution, because only the parallel component of the temperature 

decays. 

.. 
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In Table II, the theoretical results obtained for the strong 

magnetic field case, Eqs. (33) and (52), are compared with the 

simulation results. Because the computer plasma size used, 

L/A = 16 , is not as large as might have been desired for the 
D 

strong asymptGtic convergence of the result (33) (see Table I), 

the agreement between the theoretical and the numerical results 

might be considered quite satisfactory. 

All computations in this paper were done with an IBM 360/91 

computing system. Depending on the magnetic field strength, the 

computing time required for each case varied from 5 to 12 hrs. 

-1 
The total physical time followed was almost.1000 wp , and the 

.time step used was ~t = 0.1 - 0.2 w-l The total number of p 

particles used was 65, 536 and the grid was 64 x 64 . This is the 

reason for not baving computed with even larger plasma sizes. 

In Fig. 5, we give the results of a simulation where 

w /w = 1/2 , this is a weaker magnetic field. than that in 
p c 

Fig. 4. As expected, collisional transport becomes more 

important, as indicated by the significant increase in the decay 

rate of the perpendicular component of the temperature with 

respect to the case in Fig. 4. Using only the numerical values 

of v,, and v.1. and Eq. ( 4 3) ' one gets v = V.1. = 1. 6 x 10-5 and c ' 
v = v,, - v.1. = 3.3 x 10-5 therefore, from (44) the total w 

temperature decay rate is v = v + v /3 = 2.7 x 10-5 , which c w 

agrees well with the experimental value shown in Fig. 5. 

The relaxation of the parallel component of the tempera-

ture due to wave transport is about twice as high as that due to 
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collisions, i.e., vw ~ 2vc . ·However, the decay of the total 

temperature due to wave transport' is only one third of the wave 

decay rate of the parallel component [see (44)]. As a conse-

quence, for this simulation the contributions to the total 

temperature decay rate from collisional and wave transport are 

almost the same (see Table II). The agreement of the theoreti-

cal results, Eqs. (33) and (52), with the numerical results for 

w /w = 1/4 and w /w = 1/2 shown in Table II is a-striking 
p c p c 

confirmation of the fact that the dependence of wave transport 

on the magnetic field is as predicted by the .theory. 

In Fig. 6, we show the results rif the simulation for the 

case with w /w = 1 . The most obvious difference relative to 
p c 

Figs. 4 and 5 is that the relaxation rates of the total, parallel 

and perpendicular temperatures are now approaching each other, 

indicating clearly that collisional transport is now dominant 

and that the. ani.sotropy- in the temperature decay due to wave 

transport is becoming quite small. Using (43) and the 

-5 numerical values of v" and Vi, one gets v =vi.= 4.7 x 10 c 

and v = v - v, = 3.3 x 10-5 
w " ... 

decay rate is from Eq. (41) v 

thus, the total temperature 

= v + v /3 = 5.1 x 10-5 , which c w 

agrees with the numerical result in·Fig. 6. Because only one 

third of the wave decay rate contributes to the total-decay rate, 

this latter is·now mostly due to collisional transport; more 

precisely, Table II shows that the total decay rate due to 

collisional transport is now over 12 times higher than that due 

to wave transport. It is worth noting that for the stronger 

fields the collisional relaxation rate scal~s approximately as 

-2 
B (see Table II) ,in rough agreement with the classical 
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theory. It should be noticed that the present model is not quite 

appropiate for the study of collisional diffusio~. 2 The agree­

ment between theory and simulation shown in Table II is not as 

satisfactory as for the pre~iou~ two cases, although the theore-

tical wave decay rate shows the correct qualitative dependence 

on the magnetic field magnitude. 

In Fig. 7,we give the results of the simulation for the 

only weak magnetic field case run, w /w =2.5. The decay rates 
p c 

are now mostly due to collisions, although one can notice that 

·the parallel decay rate is still higher than the perpendicular 

decay rate, indicating that wave transport effects are still 

noticeable. The precise data obtained from the numerical results 

and Eqs. (43) and (44) are given in Table II. Figure 7 indicates 

clearly the approach to the limit of very small magnetic fields, 

when energy transport would become entirely dominated by colli­

sions and the decay rates of the total,parallel and perpendicular 

temperatures would become equal, the anisotropy due to wave 

transport being finally negligible. Table II shows that the 

theoretical result obtainedfor the weak magnetic field case, 

Eqs. (39) and (52), is in fair agreement with the simulation, 

even though the theoretical result is based on the simplification 

w /w ~ 2. More significant is the fact that the theoretical p c 

results for the two weak magnetic ·field cases, w /w = 1 and 2.5, p c 

show the correct qualitative dependence on the magnetic field 

magnitude as given by the simulations. 

,. 
,; ' 

'·· , ~.i 

Both the theoretical and numerical results in Table II establish 

that wave transport increases slowly with the magnetic field, and 

that in the range shown,wave transport is of the same order of 

magnitude. Indeed, one does not need very strong magnetic fields 

for wave transport to be a significant effect. 
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V. CONCLUSION 
' 

It has been shown that cross-field energy~ransport by 

plasma waves is a slowly inc~easing function of the magnetic 

. field. For strong magnetic fields, wc > wp , its magnitude 

remains of the same order.while approaching its maximum limit-

ing value.for w + oo. . c Because collisional transport decreases 

markedly as the magnetic field increases, when w > w ·wave . . c p 

transport can be more i~portant than collisional transport, 

even for.the small plas~as (L/A 0 = 16) used in our ~imulations. 

As Rosenbluth and Liu have pointed out, when the size of the 

system. increases, wave. tr'ansport becomes even more predominant. 

It ~hould be noted that in the present simulation mod~l, 
. 2 

heat conduction due to low frequency ion waves . has been delib-

er~tely eliminated. However, in a real plasma in a strong 

magnetic .fi~ld this process may be more important than 61assical 

or wave transport: As opposed to the case of collisional 

transport., t~e relaxation. of the temperature due to wave trans-

port leads to an anisotrbpic ~elocity distribution in a strong 

magnetic field, when the relaxation time of the collisional 

process that results in an isotropic distribution is long. 

It is expected that any m~chanis~s which modify the ampli-

tudes of the waves or their dispersion propertie~ can change_ 

the wave transport process significantly. Many of the labora-

tory plasmas are subject to instabilities which will enhance 

wave transport as well as convective transport. It is also 

( 

'\'. 
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possible that radio frequency plasma heating can significantly 

enhance the wave transport process. 

Near the center of the plasma column .of present tokamak 

devices, wc is typically a few times larger than w ; therefore, . p 

near the boundary w .>> wp , and anomalous transport processes 
C. 

such as those due to convective cells and waves are dominant 

over collisional transport. 

Finally; it is perhaps worthwhile to emphasize the imper-

tance of simulation methods to investigate problems such as 

heat transfer due to waves. It would be extremely difficult to 

study this phenomenon in laboratory experiments, because many 

physical effects occur simultaneously and. they cannot be 

separated from each other. The agreement between theory and 

numerical results confirms the validity of the present 

simulation model to study wave transport. 
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APPENDIX A 

Here we obtain the wave energy flux for the special case 

w =W , given in Eq. (40) of the text. The Landau dampin. g coeffi-
p c . 

cient is given by Eq. (15) of the text with n=l. However,the fre-

quency is not· given by Eq. {15) and must be obtained by the follo-

wing special treatment. Expanding the w-function in Eq. (4) for 

.large values of the argument and keeping only algebraic terms (as 

we are ,solving for the frequency only), one gets to first order 

K2 1 K2 . 28 -2z2 + ••• + .sin 

2 z p 
2 2 .z -z 
p 

= 0, (Al) 

h~ving used z ~z . Eq. (Al) .after a little manipulation is reduced c p 
' ~ exactly to a biquadratic equation whose solution i~ z ~ z (l+sin8) . 

p 

In physical variables: 

w 
w (l+sin8)~ - i(n/8)~ P 

p , k3,3 
. /\D cos8 

(1/2) k 2
>.

2 ~in2 e. 
D. 

(A2) 

The treatment is now the same as that given in the main text for 

the weak magnetic field case. So 

>.(~) = k sin2e · l l = (n/2 ) 2 3 -,~ ~~-=-2~~2-k=--
cos 8 /\D (l,.;,x /L ) 2 

- >. ( O) 
1 (A3). 
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Also,we get

W    = 1.17 1(0)L, v = 1.17 X(0)z, (A4)max

and .'further,

T
T(0) - E(O,k) =

B
... (A5)

0 12    0

A (0)  LZ

Substituting (A5) into the expression corresponding to (38) of

the text, and carrying out the k- and 0-integrations, we get

the desired result, Eq. (40) of the text.

.

.

.

*
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Table I.   The convergence of the series (33) as a function

of the plapma size.

c                                                                                       a                                                             bkA = Second-order term
D

L/AD  (2£n L/AD)
2.25 in L/AD

-1/2 -1

4 0.6 1.62

8 0.49 1.08

16 0.42 0.81
"

2
10 0.33 0.49

103 0.27 0.33

104 0.23 0.24

5
10 0.21 0.19

 These are the wavelengths that for each size contribute most

to the energy transport, see Eq. (29).

bNote that the relative magnitude of the first-order term is

unity.

..

.,
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Table II. Total temperature decay at the plasma center due to wave transport and

collisional transport as a function of the magnetic field.

Wave transport

VS.

Collis. transport

Temp. decay by plasma waves, v /3  Collisional temp. decay, v- (vw/3)/vcW v
a

Sp'Sc Theory Simulation Th./Sim. Simulatioh
-R -5 -51/4 1.5 x 10 -' 1.6 x 10 0.94 0.26 x 10 6.1             i

W
R -R -5 to

1/2 1.2 x 10 ' 1.1 x 10 1.09 1.6 x 10 0.7             1

-5
1       0.9 X 10-5 0.4 x 10-5 2.25 4.7 x 10 0.08

-5 -5 -42.5 1.2 x 10   1.0 x 10 1.20 1.0 x 10 0.1

 For w/w  <1, the theoretical values are obtained from Eqs. (33) and (52), for
P  C

W /1.0 >    1    from    (3 9)     and     (5 2) ,    and   when    w /w = 1 from (40) and (52); the plasma halfP C P  C

width is L=3 2, the Debye length at the plasma center is AD =2,s o that L/AD =1 6

(see Table I), and finally the electron density is n = 256 x 256/64 x 64 = 16 .



-40-

REFERENCES

*
Permanent address: IBM Scientific Center, Palo Alto,

California  94304.

1
J. B. Taylor and B. McNamara, Phys. Fluids 14, 1492 (1971).

2
H. Okuda and J. M. Dawson, Phys. Fluids 16, 408 (1973);

also R. F. Kluge, H. Okuda, and J. M. Dawson, Bull. Am. Phys.

Soc. II, 17 (1972)1E7; also Cheng Chu, Ph.D. dissertation,

Princeton University (1974).

3
M. N. Rosenbluth and C. S. Liu, Fifth European Conference

on Controlled Fusion and Plasma Physics, Grenoble, 1972, Vol. I,

p. 12.

4
T. H. Stix, The Theory of Plasma Waves (McGraw-Hill, New

1,

York, 1962), p. 225.

5M. Abramowitz and I. A. Stegun (Eds.), Handbook of                  «

Mathematical Functions (Dover, New York, 1965), p. 297.

6
J. D. Jackson, J. Nucl. Energy C 1, 171 (1960).

7J. Canosa, J. Comput. Phys. 13, 158 (1973).

8J. Canosa, Phys. Fluids 15, 1536 (1972).

 K. 0. Yngvesson and F. W. Perkins, J. Geophys. Res. 73,
I                                                                                                                                                                                                                                                                                                                                                                            -

97 (1968).

I.



-41-

10
H. B. Dwight, Tables of Integrals and Other Mathematical

Data (Macmillan, New York, 1963), p. 239.
11S. Ichimaru and M. N. Rosenbluth, Phys. Fluids , 13,

2778 (1970).

12V. D. Shafranov, in Reviews of Plasma Physics, edited by

M. A. Leontovich (Consultants Bureau, New York, 1967), Vol. 3,

p. 144. The right-hand side of Eq. (15-24) of this reference can

be shown to become 27LT by calculating the average energy loss of
the particles due to Cerenkov emission.

13S. I. Braginskii, in Reviews of Plasma Physics, edited

by M. A. Leontovich (Consultants Bureau, New York, 1969), Vol. 1,

p. 214.

. 14
A. B. Langdon and C. K. Birdsall, Phys. Fluids 13, 2115

.        (1970); also H. Okuda and C. K. Birdsall, Phys. Fluids 13, 2123

(1970).

Pr

'.



-42-

.

Z

, Bo

k"
.,          Y

ki         /
I

--

k
'

T(x)

2 /
X

742132

Fig. 1. Illustration of the 2 1/2-dimensional particle
model. In all the computations reported, we used 64 x 64
grids, 256 x 256 particles, XD(L) = 2, L/XD(L) = 16.
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Fig. 2. Measurement of the time-averaged fluctuation

sp ctrum in k space.  Time-averaged from upt 3 854 to 926;W W = 1/4. Amplitudes of many modes are slightly higher
than the equilibrium level due to the temperature gradient.
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Fig. 3. Measurement of the time-averaged fluctuation
spectrum in k space.  Time-averaged from wpt = 861 to 1019;
wp/wc = 1.
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Fig. 4. Relative temperature relaxation at the plasma
center. T i s the. total temperature,T=T„+Ti,   and  the
v's are the experimentally determined slopes; wp/wc = 1/4.
For very strong magnetic fields, the T„-decay is almost
entirely due to wave transport and is considerably higher
than the Tl-decay which is due to collisional transfer.                 .
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Fig. 5. Relative temperature relaxation at the plasma
center.  up/wc = 1/2.  The contribution to the total temperature
decay rate from wave transport is almost as high as that from
collisional transport (see Table II).
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Fig. 6. Relative temperature relaxation at the plasma 
center. wp/wc = 1. The total temperature decay rate is now 
mostly due to collisional transport (see Table II}. 
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Fig. 7. Relative temperature relaxation at the plasma 
center. wp/Wc = 2.5. The total temperature decay rate is now 
mostly due to collisional transport (see Table II). Note the 
change in. the vertica~ scale relative to the previous figures. 
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This report was prepared as an account of Government sponsored 

work. Neither the United States, nor the Comnission, nor any person 
acting on behalf of the Comnission: 

A. Makes any warranty or representation, express or implied, 
with respect to the accuracy, completeness, or usefulness of the 
information contained in this report, or that the use of any infor­
mation, apparatus, method, or process disclosed in this report may 
not infringe privately owned rightsi or 

B. Assumes any liabilities with respect to the use of, or for 
damages resulting from the use of any information, apparatus, method, 
or process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Col!llllission to the extent 
that such employee or contractor prepares, handles or distributes, or 
provides access to, any information pursuant to his employment or 
contract with the Commission. 
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