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ABSTRACT

- Cross-field energy transport by electrostatic plasma
waves has been studied theoretically and numerically for
‘a plasma near thermal equilibrium. Energy transfer by
plasma waves is significant in a high temperature plasmé
where collisional transport is quite small. For strong
- magnetic fields (wc > wp)-,-the simulations verify the

"theoretical prediction that energy transport by plasma
waves increases slowly with_the ﬁagnetic‘field, and that
in the limit of large field magnitudes wave transport
dominates classical collisional transéort. Furthermore,
in a strong magnetic field the relaxation of the tem-
perature by wave transport may: result in an
anisotropic velocity distribution. ‘'For weak fields
(wp > wc) ; the simulation shows thét co;lisional
transport is more important. than wave transport, also

in agreement. with the theory.
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I. INTRODUCTION

The stﬁdy of plasma cénfinement ih a strong magnetic field
has been one of the main goals of the controlled thermonuclear
research program. As is well known, the classical theory of
plasma transport almoét always fails to explain the éxperimentally
observed rapid loss of particles.and heat in many of the confining
devices. The rapid losses are assumed implicitly to be dué to
some kind of plasma instability which causes turbulent transfer.

Recently, it has been pointed 'c;outl'v2 that in addition to
classical procésses, there is a large transport of particles and
heat due-tollow—frequency electrostatic fluctuations, even in
thermal equilibrium. These thermal éonvective cells are created
by low—frequency fluctuatlons across the magnetlc fleld wh1ch
‘transport particles very ea31ly by the c E x B/B2 drift. Further-
more, it has also been found2 that low frequency ion fluctuations
near the lower hybrid frequency can cause.lgrge electron trans-
port across the magnetic field. In aﬁditiqn to these energy
transport mechanisms, Rosenbluth and Liu3 have shown recently
that electrostatic waves.canAéarry an appreciable amount éf energy
across a strong magnetic field in a high temperature collisionless
plasma. While the particles are not able to move easily across
strong magnetic fields, there is a net flux of energy from the
plasma center teward the boundaries associated with the spontane-
ous emission and absorption of'electrostatic waves which propagate
at érbitrary angles with respect to the magnetic field; tﬁis is
because the’ amplitude of the thermal fiuctuations'is’determined

by the local temperature.



In this paper, we report on a theoretical and numerical
study ofzeﬂergy transport aéréss ; magnefic fiéld‘by éieétro;
static waves iﬁ.a plasha‘ﬁear thermal equilibriﬁm; In Section
II, we obtéin‘aéymptotic formsvof.the dispersion relation fof
electrostatic waves both in the strong and weak magnetic field
limits{ these results are the foundation of the theory of wave
energy transport. In Sectiop I1I, we extend the work of
Ro#enbluth and Liu: and gi?e a thedry that describes explicitly‘
and in some detail ﬁhe influence of ;he.magnetic field magnitude
and of the éiasma size on the energy t:énsport. After a
description of the numérical ﬁodel uséd, in Section IV, we give
the results of the numerical simulation of wave energy transport
performed with a 2 l/2—dimenéional particle code. The agreemeﬁt
between theéry and simulation is quife satisfactory. - We wish to
emphasize that, although the present simulations are for a
plasma near thermal‘equilibrium, it‘is stfaightforward to extend
lthem to the more importaﬁt case'df a weaklf turbulent plasma,
such as those existinqnih.present tokamak devicés. Throughdut
the paper, it is assumed that the ions form an immobile unifofm

background.

IT. DISPERSION RELATIONS FOR ELECTROSTATIC-WAVES
IN A.MAGNETIC FIELD ‘

‘The fhéory of.plasma enéfgy;fransport across a magnetic
field by eiéc££osta£ié pla#ma wavéé.ig‘based on a detailed
knowledge of the dispersiéh éroperﬁies of these waves. In this
section, we obtain, therefore, asymptotic forms of the disper-i

sion relation both in the strong and weak magnetic field limits.



For fixed ion background no drlft veloc1ty, and an iso-

tropic Maxwelllan dlstrlbutlon, .the dlsper51on equa-

tlon for electrostatlc waves 1n a magnetlc fleld reduces to

Ki2+1+inl/2 zw(z) + Z (1/|n|')(>\/2)|nl[l+1wl/2 zw(z+nzc)].=0 , (1)

- n==-c

where the prime means that_the n =<0 term is not included in the
sum, K = kA (k is the'wavenumbef and X ’isfthe Debye length),
w(z) is the function related to the complex error function and

the plasma dlsper51on funct-lon,5 z is the dlmen51onless complex

frequency defined by .'f " .
2z w2y, ., S e

and zp and z, are the dimehsioniess_electron plasma and eyclo—
tron frequencies. 1In the derivation of (1), we.used the
asymptotic approximations valid for small A

() - (1/n!) (A\/2)"

I
, ‘and. exp(-A) ~ 1 , where I, are the
Bessel functlons, A is the parameter for the finite gyroradius

2,2 2,2 2 .2 2,2
A= ky v /ug T~k~ 51n>e've(Qc‘ ’ | (3)

and 6 is the angle between{the magneticjfield'and the wave
vector. It should be noted that for parallel propagation, k,

in (2) becomes k , and-A = 0' , SO that Eq. (1)



becomes identical to Landau's dispersion equati.on,6’7 as it

should.

A. Strong Magnetic Field Limit
In this case, the main damping is due to the term with w(z)
in (1); therefore, we use the asymptotic expansion of w(z t zc)

for large values of the argument and keep only the first term,

i.e., w(z t zc) ~ (i/ﬂl/z)(z + zc);l‘. In this way, (1) becomes

K2 + 1 + iﬂl/z zw(z) + K2 sin2 ¢ z;/(zi - 22) . (4)

2 2 .
As 2, >> 2z Eg. (4) can be approximated by
K2 + 1 + iﬂl/z zw(z) +,K2 sin’o z;/zg =0 . - (5)
Defining the parameter
. 2,2, _ _2 :
Ki = K?(l + 51n26 zp/zc) = Ka, - (6)

we can write (5) in exactly the same form as Landau's dispersion
equation

Ki + 1 + inl/z zw(z) = 0 , (7)
whose fifth-order solution in the long wavelength limit K + 0
is of the same form as for the magnetic field free case,8 once
K is substituted by Km . Transforming back to physical variables

by using (2). the second-order solution of (7) is



© Ww_ cos 6 3 2 T W, 1
© = 172 (1 t3 K a), -1 (§) S 172 K3613/'2

a
x exp(-1/2a K2)~exp(—3/2) ,

2

p/wi) sin2 8 . (8)

az1l+ (w
It should be noted that in the very strong magnetic field limit
w, >, a1, and (8) adopts still a simpler form.

C

| B. Weak Magnetic Field Limit
It is known that‘for weak magnetic fields, z, < zp , the
Landau damping of elect;ostatic waves‘propagating in particular
directions relative to the magnetic.field can be orders of
magnitude higher than the field-free Landauciambihg.l9 The
~dispersion equation (1) is solved as follows. To obtain the
real part of theisolution, we approximate (1) by keeping only

the n = t1 terms in the sum. In this way, we again obtain (4).



For weak magnetic fields, zi << 22 , and the fraction in

the last term of (4) can be expanded as follows:

z; Z; . .. i; ..zi ‘
= - ~ - 1+ — ’ (9)
22—22 zz(l—zz/zz) 22 < 22

so that (4) becomes

2 2
z z
K2 + 1+ i ﬂl/z z w(z) - K2 sin2 S —% <l +'—%> =0 . (10)
2z

In the long wavelength limit K + 0 , the well-known asymptotic

expansion of w(z) valid for large z givesG’8

2
zZ z
.2 1 3 .
K" - —5 - —g *** - K" sin” 6 —% 1+ —% =0, (11)
2z 4z z

where the exponential term has been neglected as we are only
solving for the real part. If the term zi/z2 << 1 inside the
parenthéseéA ié dropped, we get a first-order approximaﬁidnﬂté
the real part, z2 - z; . Letting 1 + zz/z2 ~ 1+ zi/z; in (li),

we get after a little rearrangement

Kz_ bz_.__.3 PR =0,
22 4z
2
1 Zc .2 ) ,
b E'_——TT_— <1 + —- sin 6) . (12)
cos @ zp



Equation (12) is again in exactly the same form as the algebraic
part of the field-free Landag's dispersion eqﬁation for long
wavelengths, except that now there is the parameter b in the
second term of (12) instead of 1 in Landau'sAequatibn.8 The
second-order solution for the real part is obtained as before,8
and transforming back to physical.variables with the use of

(2), we get

2
4w : .
w =W <l + % —% sin2 6 + 3 K2 co_s4 9) . (13)
P wp . _

Once the real.part has been found, the.imaginary part is obtainéd
by substituting z by its reéi part iﬁ the'éxponential terms
~arising from the asymptoti¢ expansions of the w functions in (1).
After transforming back to pﬁysical variables by using (2), and

further approximating w ~ w_ in the imaginary part, we get9

p
2
_ ( 1% .2 3 .2 4
w = wp 1+ > ;7 sin” 6 + 5. cos- Q)
P
1/2 w 2y (x/2y Inl |
T o 2 : (A\/2) " 2 2
- 1(_), —_— : exp|(-1/2K"~ cos” 8)
\8 k> cos 6. =, [n]* [
2,2
X (w_ - nw w .
o ) /u] (14)
For a given wp/wc , Inévesson and Perkins9 have éhown that

the most important term in the sum in (14) is that where n



: , ‘
is the smallest integer closest to wp/wc .. This can be seen
because the argument of the corresponding exponential is then
the smallest. Therefore, we have finally
2

2
A w .
W~ W (l+l =< sin 6+2 K2cos46)
P 2 w2 2
b ,

1 wp n
= ——— /)",
° K~ cos 6

- i(n/8)%

o= kaviel o, (15)

where for simplicity we have assumed that the ratio wp/wc is suffi-
ciently close to the integer n, so that the exponenfial_term

in (14) can be approximated by unity. As noted by Ingvesson and
Perkins,9 the Landau damping given by (15) might be orders of
magnitude higher than the field-free Landau damping for intermediate

values of the angle 6.9

III. THEORY OF ENERGY TRANSPORT BY. PLASMA WAVES

Rosenbluth and Liu3 have discussed recently the energy

transport across a magnetic field by the spontaneous emission
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and absorption by Landau damping of high frequency,}long mean-

free path plasma waves. They obtained asyﬁptefic results valid
in the limits‘wc >> mp and L >>~AD , where L is the half-width

of the plasma slab. Their main conclusion is that this mecha— 
nism ef energy transport is independent of the megnetic field
mégnitﬁde and will dominate classical thermal diffusion in very
large systems.

Our interest here is to develop a theory that can be
‘subject to verification by computer simulation. This requires
that we consider explicitly and in detail the influence of the
magnetie field magnitude and of the plasma.size on the energy
transport. We have thus extended -Rosenbluth and Liu's treatment
and obtained more-geneﬁalvresults that. approach asymptoticallye
their results in the limits wc/wp + o and L/>\D > o , In the
strong magnetic field ease, W, > wp ’ our second-order calcula-
tion: gives an energy loss which is significantly higher than
that obtained by the first-order calculation,3 even for large
plasmas. We'also find that the energy transport by plasma
waves increases slowly with the magnetic field. 1In the weak
magnetic field case, wc‘g wp , the energy loss by plasma waves

is almost independent of its magnitude, and approaches the

level due to wave absorption in the absence of magnetic field.

1

A. Strong Magnetic Field Limit

We first give the second-order calculation of the energy

loss in the case wc/wp > 1 . The treatment is based on that
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given by Rosenbluth and Liu.3 The transport equation for the

electrostatic energy per mode in thermal equilibrium steady

state is

A (X) T (%)

i

dE ‘
ax +'A(x)E

(16)

H
o

E(-L)

The boundary condition in (16) is the reflective boundary condi-

tion for elgctrostatic waves, as these cannot escape the plasma.
Here .we consider a two-dimensional slab plasma in order to
compare the theoretical results with those obtained from a 2 1/2-
dimensional particle simulation. Thus, the magnetic field is

B = B§ ,.and the steady electron temperature is given by

T(x) = To(l - x2/L2) , where L is the plasma half-width. The =
absorption probability per gnit length is given by A(x) = ZYL/VX ;

where Yy, is Landau's damping coefficient given by (é), and Ve is

the group velocity

_ d(Re w) _ X'y _ 2 9 .2,2
< = _—HE;_—jT wp ;3_;T75 (1 € cos” 6 + 5 k AD) ,
- . 2 _ 2,2
a=z1l+¢€sin” 8 , € = wp/wc , (17)

obtéinéd using the real part of the dispersion relation- (8),
and having approximated a ® 1 inside the parentheses. Taking
into account the temperature gradient in the strongly dominant
exponential term of Landau's coefficiept, we.get explicitly

‘for the absorption probability
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| _ YL _ym 1 1 1 1 2 _9_k 2
Ax) = 52 =(3) e 7 737 (1+€cos’® - 3 D]
X D kxk)\D‘
x exp[— T /2ak x T(x)] S (18)

where we have approximated exp(-3/2) ~ 1/4.5 ; also asymptotic

expansions in powers of the small parameters € and kzké'

have been
used. At,thé-plasma‘center T(0)=:T6 and éhe‘expoﬁential inf(lé)-
becomes equal to the.exponential,in.LandauPs damping coefficient
given in (8), becéuSe AD in‘(lS)fas in all the rest of the paper
desigﬁates thé Debye length at'the plasma center,'xb = AD(O).
TheAtransport equatioht(lG)_is a first-order linear differential

R

equation whose exact solution is

i E(x,k) =f“'§’°-L"x) e M T(z)au ,
(o]

u(z,x) E./.x A(x')dx' . | (19)?

z

( : ‘ .
The total energy loss per unit volume of the plasma is obtained

by integrating over all the waves )

1 2., dE 1 2
A(x) = a“k|v l’—l= /d k|v_o||x(x)]|T(x)-E(x,k)
(211)2,/ = xtldx '(21r)2 ‘.— X l - l[ | —]

L /dzk 2YL(X)[T(X) - E(x, k)] (20)
(2m) ,;
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We now calculate the rate of energy loss at the plasma center
A(0); this requires the evaluation of T(0) - E(O0,k)  in the inte-

grand of (20). It is noted that from (19)

| ~[o L
uoo = u(-L,0) =/ Ax')ax’ =/ A(x')ax' =
-L o

L . s
;\(O)f exp (-x /2ak2>\;L2) ax = A(O)/ exp (-x /2ak2)\2L2)dx
[} . (o]

= A(0) (n/2) /2 3172 kAL . (21)

In (21), we have expanded \A(x) (see Eq. (18)) near the plasma
center by setting explicitly To/T(x)= To/To(lfxz/L2)~l-+x2/L2 ;
this is justified because T(L) = 0 , and (18) shows that wave

absorption becomes vanishingly small near the plasma boundary.

Putting Hpax = u(-L,0) and T(z) = To(l - zz/Lz) in (19) and
notlng that for u >> 1 , we can approximate sinh Hoax
Lo~ cosh Mo ’ Eq. (19) glves3
Mmax
To . z” cosh(y - umax)du
T(0) - E(0,k) = - . (22)
L sinh u

max

Substituting now (21) and (22) in (20), we get
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_ w k k ' | B
A(0) *= 1 f/ kde dk _%}2(_}(13 (1-_5 c(‘)s2 8 +%k2)\g ) (%) 1/2.
a , :

Hmax 2 :
) 1 ) EQ jC) 2~ cosh(u - umax)du , (23)
al72kA [ max L2 sinh Hnax

The integrations in (23) are carried out as follows. First,
the last integral in (23) is integrated by parts, noting that
u(z,0) appearing in the integrand is obtained from (19) as

1/2

p(z,0) = er‘f(z/zl/2 a kXDL)umaX ; -the result of the integra-

tion by parts is
‘max ' 2.2.2[ ..
z” cosh(u - p ydu =~ 4ak“ AL vdv sinh u (l-erf v).
° - max D~ o max
’ (24)
Now we change variables in (23) from k to'umax ; using A (o) as

given by (18) into (21), one gets

2. . 2.2.° .
- % Zlg %L k]i l+e cos™ 6-(9/2)k XDa4exp(_1/2ak2Ag)
max . b Xx*p a .
_ 2.2
= C exp(-1/2ak XD) H (25)

now if the dependence of C on k is neglected with respect to the
stronger dependence given by the exponential, we get
4.2

kdk = k AD a dumax/umax . (26)

]
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Substituting (24-26) into (23), we get

A(0)= l/2w "o de du . |51n9 cosf| (1-€ cos 29 + 2x2) 2)
7 LX 2 D

[+ . i _ )
A v dv Slnh;pmax (1 e%f V)
x a(kip) sinh : (27)
max
Approximating further the expreséion in (55) by
u x (L/A.) exp(—l/2ak2A2) ) ' (28)
max D D’ !
we get .
. -1/2 '
KAy = (2a 2n L/Ap b .) . (29)

As Rosenbluth and Liu pointed out,3 it'is clear that the most
important wavelengths contributing to the energy transport are
those whose absorption mean free path is of the order of the
length of the system, i.e., lmfp(O) = 1/A(0) ~ L . Using (21),
it can be seen that these wavelengths are those corresponding
to:'u ~ 1 . Therefore, kA. in (275 is substituted by its

max D
1

expression (29) with Mo >

ax » and we get

max

1/2w T // I [ 1
A(O)— ae du sind cos8 || (1 - s:cos 8)
572 X 4a on (L/Ay)
’ v dv si -
Lo 1 ] Jy v v sinh vy, (-ere v)
2 ) . ‘ 30
? 8a%en’ (L/2) sinh p - B



_Al6._

Using the definition of a given by (17), we get the following
asymptotic expansions
- .

(1-€ 0052 6)/a=(l—e.cos2 8)/(1+e sin2 8)~(1l-¢ cosz-e)(l—e sin2 0)~1-¢,

2

1/a° = 1/(1 + ¢ sin2 9)2 ~ 1 - 2¢ sinz‘e (31)

After substiﬁUting (31) into (30), the ingle integrals are done
by.elemeﬂtary means,"It’is now néted that the integral with
fespect to “max.is 6% theformj;°° (sinh(px/éinh x)dx and is
knde in closed form‘.l'0 The reﬁaihing v4integra1 was dbfained

numerically in Ref. 3, so that

/w | ]; v dv sinh p (1 - erf v) | 1 32)
-+ du - - . = 8.25 x 10 .
o mag - . sinh Hinax . oo

Finally, the rate of energy loss at the plésma center is given

by:
l‘ 4¥2 wsTo w2\ 1
a() =3.38x10°££2(1- L )—5=——
R W, n (L/)\D)
« [1 + 2.25 an"L(@/ay) + 0(en”2L/A]. (33)
D "p

The term O(4n L/AD) in (33) would be obtained using a third-

order dispersion relation instead of (8). The result (33) gives

s
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the first two terms of a series which is asymptotic in the limit
L/>\D > o Rosénbluth and Liu's treatment gives eésentially the
first term of (33) when w, > @ also. The importance of the
second-order term in (33) is that it provides an inner consist-
ency check of the validity of the asymptotic theory. Thus, for
L/AD = 8 , the series (33) does not converge well, because its
second term is as large as the first term (see Table I); the
reason is that the most important wavelength for the energy
transport given by (29) with Brax ~ l, a =1, is kAD ~ 0.5, for
which the long wavelengﬁh dispérsion relation used [see (8)] is
not quite correct. As shown clearly in Fig. 3 of Ref. 6, the
long wavelength disperéion relation is reasonably correct for
kAD < 0.5 . Whenever kAD as determined by (29) appfoaches 0.5.,
the asymptotic theory starts to break down as is indicated
plainly by the data in Table I. These data show quite

clearly that, for a convincing verification of the theory, the
numerical simulation of wave energy transpor# requires a fairly
large computer plasma (where L/)\D = 16 at least). Furthermore,
the sédond4ofdef term’ in (33), which originates in the‘éecond-
order dispersion relation (8), Provides a substantial |
correction to the first-order treatment,3 even for the large
sizes shown in Table I; this_result:is consistent with‘the,

fact that the second-order dispersion relation (8) is substan-
tially more accurate than the first-order one, evén for quite

long wavelengths.8 It should also be noticed that wave energy

transport increases sléwly with the magnetic field, and iﬁ the



limit w_> « it becomes independent of its mégnitude, in agreement:
with the first order treatment.3

Finally, it should be noticed that only some trivial differences
in the k- and 6-dependence of the integrand in (23)distinguish
our two—dimensionalvtreatmenf froﬁ the three—dimensiénal treatment

of Ref. 3.

. B. Weak Magnetic Field Limit

Here we give the calculation of the energy transport valid for

w_<w_. This calculation is similar to that given in the previous

section. The absorption probability is determined as before from

the corresponding dispersion. relation (15), A(k)éZyL/vk. The group
velocity is
' k_k
_ d(Rew) _ X 2,2
Vx = —'———dkx = U)p —ij (E + 3kyAD) ’

_ 2, 2 '
e:wc/wp‘f - (34)

The absorption probability is then

2n—l'

2. 4 A . 4. sin” 8 (w_/w )?n
Ax) = 2= (r/2)il A p/)
X T2, 36 (e+3k222)
| - p 9% Fy'D
)72 %% 13" = a0 a-x2% T (35

where we recall that n is the lowest integer closest to the

.ratio wp/wc. Because of the simple algebraic dependence of the

—

absorption probability on the distance, the treatment is now
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much simpler than for the strong magnetic field case. In particular
expanding the temperature profile in :(35) about the plasma center

and integrating term by term, one gets

L .
n - ~ ' . [ n-1 o (n=1)(n-2)
Hopax = H(0.L) ij[_k(x )dx —[l 3+ 10 ...].A(O)L

= cA(0)L
z ‘ .
u(o,2) =L A(x') dx' = ci(0)z. ) (36)
It should be noticed that the formal solution of the transport

equation (16) is given exactly by (19) for any given A(x). Using

(19) and (36), we get quité simply "

T Hmax .
_ 0 1 2
T(0) - E(0,k) = — u exp(-u) du
o
12 CZAZ(O)
T ~
0.16 0 : _
© 72 2 (37)
c” A(0) LT : '
where the integral has been evaluated taking u =1; this means

max
that for purposes of integration the important wavelengths are

those with an absorption mean free path of the order of the length

of the system,i.e., 1mfp=1/k(0)=L (see (36)). The energy flux

at the plasma center is now given by (see Egs. (20) and (23)):

)
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1 w kxk2 5 2
A(0) = - k do ak B XY (z—:+3ky>\D)
(2n)2 k4 ' o ' .
x A(0) S 0. | (38)
' c“r%(0) Lz ' :

Using againtthe basic simplification of taking u max=cA(0)L=l

in the integrand of (38), the remaining k- and 6-integrations

are aone by elementary means. We obtain finally

: -3 w.T
_3.2x10 p o0 . 2,2
.A(O) = G LXD"- (1 + }.67 wc/wp

Yoo (39

where ¢ is the constant close to unity defined by (36) in terms
of the lowest integer n closest to the ratio w /w . The second‘
term in (39) is almost negllglble relative to the first term, this -
latter depends only weakly on the magnetlc field magnltude through
the constant c< 1. Therefore, for a plasma in a weak magnetic
field, wave transport is almost independent of its megnitude.
Lastly, the calculetion of the energy flux for the limiting
case wp#wc is even easier than for the limit Wy >0,
The details of the calculation are given in Appendix A, and the
result is
4.6 x1073 SBO | (40) :

'LKD

A(0)

Because wave energy transport is almost independent of the
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magnetic field magnitude, in this region this process is not as

important as classical collisional transport, because this latter

. 2 . \ . .
varies as 1/B"; this is confirmed by our simulation results to

be discussed below.

Iv. COMPUTER SIMULATIONS

In this section, we give the results of the simulations of
wave energy transport, and compare them with the theoretical
results obtained in Section III. For strong magnetic fields,
the computations verify the theoretical prediction that energy
transport by plasma waves increases slowly with the magnetic
field, and fhat in the limit of large field magnitudes wave
transport dominates classical collisional transport. For weak
fields, the simulation shows that collisional transport is more
important than wave transport, also in agreement with the

theory.

A. The Simulation Model

As shown in Section III, waves propagating obliquely
to the magnetic field contribute to the energy transport,
while thbsevtraveling in the perpendicularAdirection are

not Landau damped (see Ref. 4, p. 226), and therefore,
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cannot be absorbed. In order to simulate energy transport by
plasma waves, we require therefore that rheir k-vectors have
all possible directions relative to the nagneric field.

This requirement is met by the 2 1/2-dimensional

(two positions and three velocity components) electrostatic
particle model shown in Fig. l.2 The magnetic field is in the
y-direction and the initial electron temperature profile was

chosen to be

T(x,0) = Ty[1 + 3 sin (mx/21)] , (41)

which is parabolic at the plasma center, as assumed in the
theory, and is also periodic in the x—direetion with a period
2L equal to the plasma'size.v We assume that the plasma is
peribdic,‘and because it is also symmetric.with resnect to the
Xx = L plane, rhe periodic boundery conditions are equivalent
to reflective boundary'conditione wiﬁh respect to the relaxation
of the temperature profile. As mentioned before, the ions are
assumed to form an immobile uniform background. |

A very significant advantage of the model shown in Fig. 1
is that it can completely eliminate the large energy transfer
due to electron convective ceIls,2 because the c.E x E/B2 drift
velocity of the electrons is always in the z-direction, and
therefore it does not contribute to the relaxation of the tem-
perature profile in the x-direction. On the other hand, because

of the discreteness of the simulation model, it is not possible
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to eliminate the energy transfer due to.binary collisions
completely. However, as we show below, there is an unambiguous
way of separating the energy transfer by plasma waves from the
collisional transfer. This is because energy transfer by plasma
waves is due to their Landau damping along the magnetic field,
and as a result only the parallel component of the temperature
decreases. The relaxation of the perpendicular component of the
temperature results from collisional diffusion, because waves
are not damped in the perpendicular direction (see Ref. 4, p.
226). There is of course collisional relaxation between the
parallel and perpendicular temperatures.11 The relaxation time
for this p;ocess is éiven essentially by the 90° collision time
and is independent of the magnetic field strength. Because the
cross-field diffusion distance is smaller than the gyroradius,
the characteristic time for collisional relaxation between the’
parallel and perpendicular components of the temperature is
longer than the cross-field diffusion time. This is confirmed
by the simulation results to be discussed below.

It should be noted here that using a particle code, the
perpendicular and parallel components of the average temperature

of a particle can be output very simply, as they are defined by

T, = (1/3) m (<vi> + <v2>) = (1/3) m <vi>

T, = (1/3) m <v§> = (1/3) m <v3> (42)
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wherg m is the electron mass, and < vf > and < v% > are
averages of the square of the velocities in the perpendicular

and parallel directions.

For a sufficiently short time in which the relaxation of

the initial temperature is small, we may assume that

1 -v,t,

T, (£)/T,(0) = 1 - v t

T, (£)/Ta(0) = 1 = (v, + vt =1 - at (43)

~

where Ve and v, are the relaxation rates due to.collisional and
wave transport respectively. Collisions tend to relax the
temperature equally in th?'parallel and perpendicular directions,
while wave transport leads to a decrease of the temperature in
the parallel direction only. . The simulation results below éhdw
that the basic assumption (43) is satisfied well. Initially

the electron velocity diStributiqnvis én-isotropic Maxwellian
distribution, i.e., TL(O) = 2T,(0) , because there are two
dégrees of freedom in the transverse direction [see Eqg. (42)];
noting this, the relaxation of the total electron température-

can be obtained from (43) as:
T(t)/T(0) = [T,(t) + T.,(t)]/3T,(0) .

=1 -'(vc + vw/3)t =1 - vt . ; - (44)

We must now relate the electron temperature profile,kwhich
is given by the simulation as a function of time, with the

wave energy flux obtained theoretically in Section III
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[i.e., Egs. (33), (39), and (40)]. The set of time-dependent
equations coupling the wave energy with the electron temperature

may be written as follows:

IE(t,x,k) '
1 /2 [ X, K SE 1 2
d5—+v—+2yE]= fd k 2y.T , (45)
2m 2 3 x 3% L 2m 2 £ oYy
3 3nT(x,t) _ 3 _ anT 1 2
2 — 3t 3 Poax* (2“)2'[‘i k 2y (B -T) , (46)

where D is the classical collisional diffusion coefficient,2

n is the electron density, and the other symbols have been

defined before. Equation (45) is the wave energy conservation
equation; it expresses the fact that the rate of change of wave
energy per unit'volume is due to the divergence of the energy
flux XxE . to the wave absorption by Landau damping and to fhe
spontaneous Cerenkov emission of the waves.12 Equation (46) 1is
the balance equation for the heat density; it states that its
rate of change is due to losses by collisional heat transfer and
wave transport. We have neglected convective heat transfer and
generation of heat due to viscosity13 because for the present
simulation model (Fig. 1) the drift velocity is primarily in the
z-direction. This assumption is verified by the simulation
results to be discussed below. Adding Egs. (45) and (46), and

then integrating over the whole plasma volume, we obtain

a 3 l 2 2 : . -
-ﬁ_/vlinT+(2n)2/E-d£]d§=o' (47)
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because the divérgence terms in{both equations vanish when
integrating over the whole plasma. Equation (47) expresses
_ then the conservation of the total énergy of the plasma. |
The electron temperature, given by Egs. (45) and (46)
together with the initial coéaition (41), is expanded as follows:
N

T(x,t) = }E: Cj(t) exp(ijmx/L) , (48)
N

where the coefficients Cj(t) are éiven directly by the particle
simulation code. The decay of the Fourier coefficient gives a
much more reliable and smooth measurement of the relaxation rate
than the decay of the temperature measuredflocally at the cénter,
because the Fourier coefficient is obtained by averaging the
temperature,profile'oVer many spatial points. The space-
independent component does not change Qith time ' because it
gives rise to a uniform sygtem fbr which the steady-state
solution [see Eg. (16)] is E, =T, and (46) gives dCo/dt =0 .
Because of the initial condition (41), we expect that the
amplitude of the first space-dependent Fourier mode is much
larger than that of the higher modes,; i.e.,

lcy (e) ] >> |cj(t)l'~, j 2

2 - (49)
which is indeed confirmed by- the numerical results. Therefore,
using Egs. (41), (46), (48), and (49), and noting that for the
initial condition (41) C,(0) = -0.64 T_ we get for the rate of

change of the temperature at the plasma center:
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' ac ac. '\
s 52, (5
3 3t dt c dt w

3 anT [ 1 f 2 - ] (50) -
= = p &= + d“k 2’Y (E T) .
) [Bx ax]x=L (217)2 - L x=L

after having separated the amount of the temperature decay due

to the wave transport from that due to classical collisional
transport. During a sufficiently short time in which the tem-
perature decay is quite small, the wave energy does not change
much either; therefore, the time-dependent term in (45) can be
neglected in a first approximation, and the energy flux at the
plasma center due to wave transport in (50) is approximated by
the flux [see Eq. (20)] obtained from the solution of the steady-
state equation (16), i.e., by Egs.(33),(39),and(40). The‘agree—
ment between theoretical and numerical results shown below is the
most convincing proof of the validity of this assumption. (Note
that, Fig. 1, for notational convenience the center of the

computer plasma is at x = L , which corresponds to x = 0 for the

theoretical plasma.) Therefore, Egq. (50) gives
<‘i|cll> ~ - A(0) | (51)
dt w 3p
We now divide both sides of (51) by ICl(O)I » and it is noted
that from (41), ICl(O)l = 0.64 T = (0.64/4)T(L,0) = 0.16 T,

where TO is the notation used in the theory for the temperature

at the plasma center; as in the simulation the time is in units
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of wp , we finally obtain the rate of relaxation of the total

plasma temperature [see also (43) and (44)] -

1 [(dcl) +(&)]=—v B P (1
Cl(O) dt c dt w c 3 c npro

The relative rates of the total temperature telaxation due to
wave transport and collisional transport, Qw/3 and Ve ,_afe
guantities which are-measured directly in the simulation. The
rate of temperature decay due to wave transport will be compared
bglow with the theoretical energy flux A(0) given by Eqgs. (33),

(39y, and (40).
B. Numerical Results

The initial conditions used with' the particle code are
similar in many respecté to those described before in consider-
able detail.z As we are interested in a thermal plasma with all
modes of the system excited, no quiet start wss used. The guiding
centers were uniformly loaded on the (x(y)—plane, and the
initial velocity distribution was an isotropic local Maxwellian
to ensure an-accufaté thermal spectrum. The thermal velbcities
of the Maxwellian.electrons were chosen so as to give the tem-
perature distributién (41). The electrosfatié energy per mode
of'wavenumber k in a thermal equilibrium plasma with a uniform

temperature distribution is2’l?
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2.2
*p

(68%) /81 = (xT/2) [1 + k%22 exp(xk®a®)] ™t , (53)
where 6E is the electric field amplitude, and a is the width of
the finite size gaussian cloud,14 whiéh was taken equal to the
grid size in all the simulations. Because the Poisson equation
is solved in k-space replacing V2¢ by —k2¢ , there are

very small grid effects on the thermal spectrum even for large

.k modes; this is verified by the agreement between the simula-
tion results aﬂd Eg. (53) (see Figs. 2 and 3). Equation (53)

has been used with T and Ag defined as rough averages of the

actual temperature profile and Debye length; specifically, for

2~
2=

the temperature profile (41) we took T = 2.5 and X A;(O)§;=2.5.
The computed electrostatic énergy in each mode was comparea.with

" the theoreticalAfluctuation spectrum given by (53). The results
obtained in.two typical computations are shown in Figs. 2 and 3.
"Although not nearly as good as the agreement found before for a
plasma with a uniform temperature profile (see Fig. 2 of Ref. 2),
there is unquestionably a semiquantitative agreement between the
computed and theoretical thermal equilibrium‘spectrun, making us

confident that our computer plasma is reasonably close to local

thermal equilibrium.

In Fig. 4, we show the regults of the simulatioﬁ for the
case run with the strongest ﬁagnetic field, wp/wc = 1/4 . As
discussed in the previous subsectioh, the relaxation of the
temperature at the plasma center, T , is given by the decay of

the first spatially-dependent Fourier mode of the temperature
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ﬁrofile [see Eqs..(48—52)]. Furthermore, the particle code
gives separately the paralleliand perpendicular temperature
components;'T" and T, [see Eqé. (42-44)]. The basic éssump—
tion (43) is confirméd very satisfactorily by the results

shown in Fig. 4. For this case with a very strong magnetic
field, the decay of T, 1is due mostly‘tb wave -transport, and
approaches its maximum limiting value for wp/wé >0 [see Egs.
(33) and (52)]. On the other hand, the decay of T, is entirely
~due to collisions and is significantly smaller thén the decay

due to wave transport, as expected. Using Eq. (43), we get

- - _5 .
Vo T v, = 2.6 x 10 6 , and vw = Vv, - V; = 4.74 x 10 © ; ‘the

total temperature decay rate is now obtained from (44),

_ \ -5
Vo= v, + vw/3 = 1.84 x 10

, and this checks well the experi- -
nental value (Fig. 4), v = 1.9 x lO—SA, showing that the slopeé
of the straight lines drawn through the computed péints are
consistent with Egs. (43) andA(44). One Should_note that
because the average gyroradius is about 6ne half of the parficle
éize, the particles dolnot collide with each other within the
gyroradius. This explains why the collisional relaxation is so
small in this simulation. It should also be noticed that
'collisionai transport will vanish in the limit of very large
magnetic fields and, Egs. (43) and (44), v, = Ve - 0 ,

Ve = V_ + v > (v)

c w Vo, , and v/v, - v/(\).,)max + 1/3 ; the results

max
in Fig. 2 give v/v, = 0.38 showing that this limit is being
approached. Thus, for very strong magnetic fields where colli-
sional transfer is negligible, the effect of wave energy  trans-
port is to produce a significant anisotropy in the local velocity

distfibution, because only the parallel component of the temperature

decays.
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In Table Ii, theltheoretical results obtained for the strong
magnetic field case, Egs. (33) and (52), are compared with the
simulation'results. Because the computer plasma size used,
L/AD = 16 , is not as large as might have been desired for the
strong asymptotic convergence of the result (33) (see Table I),
the agreement between the theoretical and the numerical results
might be considered quite satisfactory.

All computations in this paper were done with an IBM 360/91
-.computing system. Depending on the magnétic field strength, the
computing time required for each case varied from 5 to 12 hrs.
The total physical time followed was almost 1000 w;l , and the
" . time step used was At = 0.1 - 0.2 w;l . The total number of

particles used was 65,536 and the grid was 64 x 64 . This is the

reason for not having computed with even larger plasma sizes.

In Fig. 5, we give the results of a simulation where
wp/wc = 1/2 , this is a weaker magnetic field than that in
Fig. 4. As expected, collisional transport becomes more
important, as indicated by the significant increase in the decay
rate of the perpendicular component of the temperature with
respect to the case in Fig. 4. Using only the numerical values
of v, and v, and Eq. (43), one gets Vo = vy = 1.6 x 10_5 , and
vw = v, - Vv, = 3.3 X 10-5 ; therefore, from (44) the total
temperature decay rate is v = Vo t vw/3 = 2.7 x 10—5 , which
agrees well with the experimental value shown in Fig. 5.

The relaxation of the parallel component of the tempera-

ture due to wave transport is about twice as high as that due to
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collisions,-i.e;, Vy 3 2vc . 'However, the decay of the total
temperature due to wave transports is only one third of the:wave
decay rate of the parallel component [see (44)]. As a conse-
quence, for this simulation the contributions to the total
temperature decay rate from collisional and wave transport are
almost the same (see Table II). The agreement of the theoreti-
cal results, Egs. (33) and'(52),‘with the numerical reéults for
wp/wc = 1/4 and'wp/wc = 1/2 shown inTéble II is a -striking
.confirmation of the fact that the dependence of wave transport
on the magnetic field is as predicted by the theory.-

In Fig. 6, we show the results bf the -'simulation for thé
case with wp/wc = 1 . The mos? obvious difference relative to
Figs. 4'and.5 is that"the‘relaxatioh'rates of thé total, parallel
and perpendicular temperatures are now approaching each other,
indicating clearly that collisional transport is now dominant .
and that the. anisotropy in the temperature decay due to wave
trénsport is becoming quite small. Using (43) and the

numerical values of v, and v, , one gets vc = v, =4.7 x 10—5 ’

and v = v, - v, = 3.3 x 107° ; thus, the total temperature
decay rate is from Eg. (41) v = Ve + vw/3 = 5.1 x lO“5 ’ whiéh
agrees with the numerical result in Fig. 6. Because only one
third of the wave decay rate contributes to the total decay rate,
this latter is now mostly due to collisional transport; more
precisely, Table II shows that the total decay rate due to
collisional transport is now over 12 times higher than that due

to wave transport. It is worth noting that for the stronger

fields the collisional relaxation rate scales approximatély as

B (see Table II),in rough agreement with the classical
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theory. It should be noticed that the present model is not quite
appropiate for the study of collisional diffusion’.2 The agree-
mént between theory and simulation shown in Table II is not as
satisfactory as for the previous two cases, although the theore-
tical wave decay rate shows the correct qualitative dependence'
on the magnetic field magnitude.

In Fig. 7,we give the results of the simulation for the
only weak magnetic field case run, wp/wc =2.5. The decay rates
are now mostly due to collisions, although one can notice that
‘the parallel decay rate is still higher than the perpendicular
decay rate, indicating that wave transport effects are still
noticeable. The precise data obtained from the numerical results
and Egs. (43) and (44) are given in Table II. Figure 7 indicates
clearly the approach to the limit of very small maénetic fields,
Qhen energy transport would become entirely dominated by colli-
sions and the decay rates of the total,parallel and perpenaicular
temperatures would become equal, the anisotropy due to wave
transport being finally negligible. Table II shows that the
theoretical result obtained for the weak magnetic field case,

Egs. (39) and (52), is in fair agreement with the simulation,

even though the theoretical result is based on the simplification
wp/wc ~ 2. More significant is the fact that the theoretical
results for the two weak magnetic field cases, wp/wc =1 and 2.5,
show the correct qualitative dependence on the magnetic field
magnitude as given by the simulatidns.

Both the theoretical and numerical results in Table II establish
that wave transport increases slowly with the magnetic field, and
that in the range shown,wave transport is of the same oraer of .
magnitude. Indeed, one does not need very strong magnetic fields

for wave transport to be a significant effect.

3

Cad
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V. CONCLUSION

It has been shown that cross-field energy\transport by
plasma waves is a slowly increasing function of the magnetic
-field. For strong magnetic fiéldg, W, >.wp , 1ts magnitude
femains of the same order while approaching its maximum limit—>
ing value: for w, T Because collisional transport decrease%l
markedly as the magnetic field increases, whén W, > wp'wave .
fransport can be more important than collisional transport,
even for.the small plasmas (L/>\D = 16) used in our simulations.
As Rosenblufh and Liu have‘poihted out, when the size of the |
systeﬁ‘increases, Wavé'transport beconies even more predominant.

It should be noted that in the present simulation modél,
_heat conduétionldue to low frequency ion waves? has been delib-
erately eliminated. However, in a réal plasma in a sFrong~
magnetic field this process may be more important than élassical
of wave tfansportl As opposed to the case of collisional
transport, the relaxafién,of the. temperature due to wave trans-
‘port leads to an anisotropic velocity distribution in a strong
magnetic fieid, when the rélaxatiop time of the collisional
érocess that results in an isotropic distribution is long.

It is expected that any mechanismé which modify the}ampli;
tudes of the waves or their dispersion properties éan change
" the wave transport process significantly. Many of the labora-
tory plasmas are subject to instabilities which will enhance

wave transport as well as convective transport. It is also
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possible that radio frequency plasma heating can significantly
enhance the wave transport process.
Near the center of the plasma column of present tokamak
. devices, W, is typically a few times larger than wp ; therefo;e,
near the boundary wc’?> wp , and anomalqus transport procgsses
such as those due to convective cells and waves are dominant
over collisional transport;
Finally, it is perhaps worthwhile to emphasize the impor-
tance of simulation methods to investigate problems such as
" heat transfer due to waves. It would be extremely difficultlto
study this phenomenon in laboratory experiments, because many
physical effects occur simultaneously and. they canno£ be
separated from each other. The agreement between theory and
numerical results confirms the validity of the present

simulation model to study wave transport.
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APPENDIX A

Here we obtain the wave energy flux for the special case

wp=wc,'given in Eq. (40) of the text. The Landau damping coeffi--

cient is given by Eg. (15) of the text with n=1. However,the fre-
guency - .is not given by Eq. (15) and must be obtained by the follo-
wing épecial treatmént.'Expanding the w—function in Eq. (4)-for
large values of theAargumént and keeping only algébraic terms (as

we are solving for the ffeéuency only), oﬁé gets to'first order

~

2 .
2 1 2 .2 2y A
K -— + ...+K” sin"@ -7—27 = 0, ~(Al)
2z -zp-z _

\

having used zcézp. Eqg. (A1)1after a little manipulation is reduced
. . ' . ‘ )
exactly to a biquadratic equation whose solution is z = zp(l+sine)6.
In physical variables:
w

w ~ w_(l+sing)? - i(n/8)% ——=PB — (1/2) k%% sin%e.  (a2)
- P " kTA, cos® D

s

The treatment is now the same as that given in the main text for

the weak magnetic field case. So

A ()s) = TL = (TT/Z)% sin“ 6 l ~~~~~~ 1 2 .
| X cos™6- "D (1-x°/1%)*
= A(0) — 'gl‘é'% ) ' . (83)
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Also,we get

W = 1.17 A(0)L, b= 1.17 X(0)z,

and /further,

0.12 Ty

220 1l

T(0) - E(0,k) =

(a4)

(A5)

Substituting (A5) into the expression corresponding to (38) of

. the text, and carrying out the k- and O-integrations, we get

the desired result, Eq. (40) of the text.
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Table I.  The convergence of the series (33) as a function

of the plagma size.

\ kAD =2 Second~order termb
. -1/2 =1
L/>\D (24n L/AD) 2.25'4n L/>\D
4 0.6 1.62
8 0.49 1.08
16 0.42 0.81
102 0.33 0.49
103 0.27 0.33 -
102 0.23 0.24
10° 0.21 o 0.19

qThese are the wavelengths that for each size contribute most
to the energy transport, see Eg. (29).

bNote that the relative magnitude of the first-order term is

unity.




Table II. Total temperature decay at the plasma center due to wave transport and

collisional transport as a function of the magnetic field.

Wave transport
vs.

Collis. transport

Temp. decay by plasma waves, vwég Collisional temp. decay, Ve (\)w/3)/\)c
wp/wc Theorya Simulation Th./Sim. Simulation
1/4 1.5 x 107> 1.6 x 107> .94 0.26 x 107° 6.1
1/2 1.2 x 1075 1.1 x 10™°  1.09 1.6 x 107° 0.7
1 0.9 x 10”2 0.4 x 107> 2.25 4.7 x 107° 0.08
2.5 1.2 x 10 1.0 x 107> 1.20 1.0 x 10°% 0.1

qFor wp/wc < 1 , the theoretical values are obtained from Egs. (33) and (52), for
wp/wc > 1 from (39) and (52), and when wp/wC = 1 from (40) and (52); the plasma half
width is L = 32 , the Debye length at the plasma center is AD = 2 , so that L/>\D = 16

(see Table I), and finally the electron density is n = 256 x 256/64 x 64 = 16 .

_68_
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In all the computations reported, we used 64 x 64
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grids, 256 x 256 particles, AD(L) = 2, L/AD(L)
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Fig. 2. Measurement of the time-averaged fluctuation
spectrum in k space. Time-averaged from w,t = 854 to 926;
wp/We = 1/4. Amplitudes of many modes are slightly higher
than the equilibrium level due to the temperature gradient.
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, Fig. 3. Measurement of the time-averaged fluctuation
spectrum in k space. Time-averaged from wpt = 861 to 1019;
wp/wc = 1. '
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Fig. 4. Relative temperature relaxation at the plasma
center. T is the total temperature, T =T, + T,, and the
v's are the experimentally determined slopes; wp/mc = 1/4.
For very strong magnetic fields, the T,-decay is almost
entirely due to wave transport and is considerably higher

than the T,-decay which is due to collisional transfer. A
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Fig. 5. Relative temperature relaxation at the plasma
center. wp/we = 1/2. The contribution to the total temperature
decay rate from wave transport is almost as high as that from
collisional transport (see Table II).
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Fig. 6. Relative temperature relaxation at the plasma
The total temperature decay rate is now

center. wp/wc = 1.

- mostly due to collisional transport (see Table IT).
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Fig. 7. Relative temperature rélaxation at the plasma
The total temperature decay rate is now

center. wp/we = 2.5.

mostly due to collisional transport (see Table II).

Note the

change in the vertical scale relative to the previous figures.



LEGEAL NOFICE

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the Commission, nor any person
acting on be_half of the Commission:

A. Makes any warranty or representation, express or implied,
with respect to the accuracy, completeness, or usefulness of the
information contained in this report, or that the use of any infor-
mation, apparatus, method, or process disclosed in this report may
not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus, method,
or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission to the extent
that such employee or contractor prepares, handles or distributes, or
provides access to, any information pursuant to his employment or
contract with the Commission.
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