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Abstract 

The geometry kernel of the developmental Monte Carlo transport code 
MC21 is designed as a combination of the geometry capabilities of several 
existing Monte Carlo codes. This combination of capabilities is intended to 
meet efficiently the general requirements associated with in-core design 
products and, at the same time, be flexible enough to support highly general 
geometric models. This paper provides a description of the different 
geometry representations of MC21 and outlines how the geometric data is 
stored internally through the use of Fortran-90 data structures.    

Finally, two alternative geometric representations of a published BWR 
unit assembly model are discussed. Results for the two representations are 
contrasted, including k-effective results, relative memory footprints, and 
relative computational speeds. While total memory footprint is not 
noticeably reduced, results show significant speed advantages of one 
representation. 
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1. Introduction 
MC21 [1] is the Monte Carlo neutron and photon transport code currently under joint 

development at Bettis Atomic Power Laboratory and Knolls Atomic Power Laboratory (KAPL). 
MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool 
(CMCDT), which is also currently under development. The Vision of CMCDT is to provide an 
automated, computer-aided modeling and post-processing environment integrated with a Monte 
Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the 
Monte Carlo method beyond its traditional role as a benchmarking tool or “tool of last resort” 
and into a dominant design role. This strategy requires continued growth in computing power to 
bear the high cost of 3-D transport theory calculations, transport kernels that maximize 
performance and minimize memory for the largest models, and computer aided modeling and 
results processing to facilitate rapid engineering turn-around. 

This paper presents an overview of the geometry representations of MC21. The geometry 
kernel in MC21 is one of the most important sub-systems of the solver and affects virtually every 
other aspect of MC21. In particular, because particle tracking is intricately woven into the Monte 
Carlo geometry, efficient tracking depends on a suitable geometry representation. The MC21 
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geometry kernel is designed as a combination of the geometry capabilities of RCP01 [2], 
RACER [3], and MCNP [4] optimized with respect to the general requirements associated with 
in-core design products. For example, like RACER and RCP01, MC21 possesses a dedicated 
two-dimensional (2-D) geometry kernel that ensures that 2-D geometries can be compactly 
represented and efficiently tracked. Similar to MCNP, MC21 possesses a flexible three-
dimensional combinatorial geometry representation, including union/intersection operators and 
hierarchical relationships.  

MC21’s internal geometry representations are considered necessary to meet performance and 
memory requirements associated with 3-D reactor design applications. An individual user of 
MC21 is not expected to interact significantly with each of these representations, as this could be 
cumbersome and would not be consistent with the simplified model building platform that 
CMCDT is intended to provide. As the user interface features of CMCDT are in an early stage of 
development, this letter does not discuss how model building at the CMCDT level will be 
translated to the MC21 internal geometric representations.  

2. Geometry Description 
2.1. Overview 

The five main geometric constructs of MC21 are: surface, component, grid, 2Dlattice, and 
ellipse. General quadratic surfaces are the building blocks of components. Components, which 
are generally equivalent to cells in MCNP, are volumes defined by union and/or intersection sets 
of surface half-spaces. In addition to their half-space definitions, components can be further 
specified hierarchically with respect to other components.  Through this hierarchical definition, 
components can be constrained to exist only within another component or may contain other 
components. 

Any component can possess additional internal geometric detail in the form of a grid. The 
three available grid types are a spherical grid (r), a cylindrical grid (r,z) and a Cartesian grid 
(x,y,z). The Cartesian grid may have an arbitrary angle between the grid’s x and y axes, and the 
axial grid separations are specified perpendicular to the grid’s x-y plane. The grid cells of the 
Cartesian grid may possess an x-y 2Dlattice which repeats in the grid cell.  The x-y 2Dlattice has 
the same angle between the x and y axes as the Cartesian grid it resides within. Finally, each 
2Dlattice element may contain a series of ellipses. These ellipses may be nested, tangent, or 
disjoint, but for tracking efficiency may not intersect within the lattice element. Figure 1 shows a 
simple example of how these separate constructs can be combined to form a complex geometry. 

Figure 1: The geometric structures in MC21 combined to form a single model. 
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For simplicity, the component view in Figure 1 is assumed to be an x-y slice and it is stated as 
a given that no geometric axial (z) variation exists in this component. This type of component is 



referred to as 2D-extruded and is commonly encountered in nuclear reactors. The component is 
defined as the intersection of the four plane half-spaces shown in Figure 1 and the top and 
bottom planes, which are not shown.    

The component is specified as containing a Cartesian grid. The grid is defined by parallel sets 
of x planes, y planes, and z planes. Essentially, the x and y planes define a non-uniform 2-D grid, 
which is then stacked axially based on the number of specified z planes. Each unique grid 
element is referred to as a grid cell. A grid must entirely fill the component it resides within but 
does not need to be contiguous with the component boundaries. Any part of the grid that extends 
beyond the component is effectively truncated. This means that a component that is not 2D-
extruded in nature may still possess a Cartesian grid.  

Each grid cell may be assigned additional geometric information in the form of a 2Dlattice. 
The 2Dlattice is a uniform mesh that repeats on the x-y grid frame and is the same height as the 
grid cell it occupies. The 2Dlattice repeats to the extent of the grid cell, and 2Dlattice elements 
that overlap the grid cell are effectively truncated by the grid cell. The repeating lattice element 
may be populated with a series of ellipses. An ellipse may be arbitrarily positioned and oriented 
in the 2Dlattice element and extends the height of the 2Dlattice element. Ellipse placement is 
subject to the restriction that ellipses may not intersect within the 2Dlattice element. The final 
result is a uniform array of elliptical tubes which fills the grid cell.  

Materials are assigned at the innermost level of geometry. If a component contains no grid, it 
contains a material. If a grid cell contains no 2Dlattice, it contains a material. A 2Dlattice 
element always contains a base material, and each ellipse contains a material assignment.  

The data associated with the MC21 geometry are stored in Fortran-90 data structures.  This 
protocol permits associated data to be stored in a single location, which leads to improved 
maintainability and extensibility by simplifying the layout of data within the source code.  The 
following sections detail the data structures for all the MC21 geometry constructs 

2.2. Surface 
All surfaces are defined in the absolute coordinate frame. MC21 holds a surface array of 

length equal to the number of surfaces in the model. Each array element in the surface array is of 
data type surface, which is a Fortran 90 derived data structure that holds all the data associated 
with a surface. The surface data structure possesses the geometric information shown in Table 1.  

Table 1: Surface data structure attributes. 

Surface Data Data Type Description 
surface type  Integer Defines the form of the surface equation 
surface 
coefficients  

Real Array The equation coefficients. The number of coefficients is 
dependent on the surface type. 

positive surface 
neighbors  

Integer Array
  

A dynamic array listing the indices of all the components 
that are bounded by the positive half-space of the surface 

negative surface 
neighbors  

Integer Array A dynamic array listing the indices of all the components 
that are bounded by the negative half-space of the surface 

boundary 
condition 

Integer The boundary condition: normal, escape, or reflecting 

Every surface has a surface type indicator and a set of coefficients that explicitly defines the 
surface. The number of coefficients is dependent on the surface type. At the current time, MC21 



permits general quadratic surfaces as well as reduced forms of the general quadratic equation.   
Each surface contains two neighbor arrays: one for the positive half-space and one for the 
negative half-space. The positive and negative neighbor arrays for a given surface are lists of all 
of the components whose definitions include the positive and negative half-space of that surface, 
respectively. These neighbor lists are computed by MC21 from the component definitions and 
are used to accelerate tracking through components. Each surface also contains its boundary 
condition. The current options are normal (transmission), escape, and reflective. 

2.3. Component 
A component is a uniquely defined region in three-dimensional space. A component’s two 

main features are its boundary representation and its hierarchical associations with other 
components. MC21 holds a component array of length equal to the number of components in the 
model. Each element of the component array is of data type component, which is a derived data 
structure that holds all the data associated with a component. The component data structure 
possesses the geometric information shown in Table 2. 

Table 2: Component data structure attributes. 

Component Data Data Type Description 
number of items Integer  The number of operators and surfaces used in the 

boundary list 
boundary list Integer Array  Array defining the Component as a string of 

intersections and/or unions of half-spaces 
number of inner 
components   

Integer The number of Components contained within this 
Component 

inner components Integer Array The list of Components that have been defined as 
existing only within this component 

number of outer 
components 

Integer The number of Components that this component is 
contained within (0 or 1) 

outer component 
 

Integer Array The Component that this Component exists within, if 
any 

material Integer The index of the material assigned to the component 
grid form  Integer The type of grid contained within the component, if any
grid  Grid  The grid data structure 

The boundary list is a set theory description of the unions and/or intersections of surface half-
spaces that combine to form the boundaries of the component. The boundary list is held by 
MC21 as a string of integers. Surfaces are referenced by the position they occupy in the surface 
array, and the indices are signed according to their positive or negative half-space. The 
intersection operator is implicit in the boundary list. Unique integers are used to denote the union 
operator as well as right and left parentheses that are used to determine the order of operation. 
These special integers are identical to those used by MCNP for the same purpose. 

The component contains hierarchical information that completes the geometric description of 
the component. This information describes the numbers and indices of other components at the 
next hierarchical level up (inner components) and the next hierarchical level down (outer 
components). The first, or outermost, hierarchical level is level 0. Only a single component 



resides at level 0. All other components in a MC21 model exist either directly or indirectly 
within the outermost component. The MC21 definition of hierarchy is a generalization of the 
restricted hierarchy available in RCP01 and is similar to the Universe construct of MCNP.  

A component may contain a grid, in which case the component data structure contains the 
attached grid data structure. The grid data structure is described in the next section.  

2.4. Grid 
MC21 permits three types of grids to be specified: Cartesian, spherical, and cylindrical. 

Spherical and cylindrical grids are very similar in structure to the Cartesian grid, except these 
two grid types do not permit the inclusion of embedded 2Dlattice information. For this reason, 
only the Cartesian grid will be described here. The component data structure possesses the 
geometric information shown in Table 3. 

Table 3: Cartesian grid data structure attributes. 

Grid Data Data Type Description 
# of x planes  Integer The # of x planes defining the grid 
x list Real Array The x planes, from least to greatest 
# of y plane Integer The # of y planes defining the grid 
y list Real Array The y planes, from least to greatest 
# of z planes Integer The # of z planes defining the grid 
z list Real Array The z planes, from least to greatest 
origin Integer  Point in the absolute (component) frame that the grid origin 

is linked to 
rotation Real Array component-to-grid rotation matrix 
x-y angle data Real The  sine, cosine, cosecant, and cotangent of the angle 

between the x and y planes 
material Integer Array For each grid cell, the index of the material assigned  
max Repeat Integer Array For each grid cell, the # of repeated 2Dlattice elements in the 

positive x and positive y directions relative to the 2Dlattice 
origin point  

min Repeat Integer Array For each grid cell, the # of repeated 2Dlattice elements in the 
negative x and negative y directions relative to the 2Dlattice 
origin point 

A Cartesian grid is defined by three sets of x coordinates, y coordinates, and z coordinates, 
respectively. The x and y planes may be orthogonal (by default) or may have an arbitrary 
included angle. The axial grid separations created by the z coordinates are specified 
perpendicular to the grid’s x-y plane. A grid zone is the volume between two adjacent parallel 
grid boundaries. A grid cell is the volume between a complete set of adjacent grid boundaries, 
which is six adjacent planes for a Cartesian grid. For a Cartesian grid, the number of grid zones 
for each coordinate x, y, and z is the number of constant planes in each coordinate minus one. A 
grid cell is uniquely specified by the x, y, and z zones that it occupies.  The number of grid cells 
is the product of the number of x zones, y zones, and z zones.   

In addition to its own geometric structure, a Cartesian grid must also hold information 
describing its connection to the component coordinate frame and its internal 2Dlattice 



information. The grid’s origin and rotation connect the grid’s coordinate frame to the absolute 
coordinate frame on which all components are defined.  Each grid is uniquely defined.  The grid 
data structure holds 2Dlattice information in two separate ways. First, maximum and minimum 
repeat indices are stored for every grid cell for both the x and y directions.  If a grid does not 
contain a 2Dlattice, then the repeat indices are zeroes. The 2Dlattice data structure itself is not 
stored in the Grid data structure.  Rather, a 2Dlattice is assigned to a grid cell through the use of 
special material indices.  A grid cell containing a material index greater than the maximum 
number of defined materials is interpreted by MC21 as containing a 2Dlattice.  

2.5. 2-D Lattice and embedded ellipses 
Obviously not all of the internal detail of a component can be represented by the non-uniform 

x-y mesh of a Cartesian grid. Additional detail may be represented by arrays of elliptical 
cylinders within Cartesian grid cells. In MC21, this repeating array of elliptical cylinders is 
defined by a geometric structure referred to as a 2Dlattice. The x-y cross section of the repeating 
element, or sub-cell, of the 2Dlattice is a parallelogram whose x and y axes are parallel to the x 
and y axes of the grid cell. The sub-cell is considered to extend along the grid’s z axis from the 
bottom to the top of the grid cell that contains it. The 2D lattice sub-cell automatically repeats in 
the positive and in the negative x and y directions, starting from an arbitrarily specified point in 
the grid cell, until the x and y boundaries of the grid cell are reached. Any 2Dlattice sub-cells that 
protrude through the x or y boundaries of the grid cell are effectively truncated. Table 4 describes 
both the 2Dlattice and ellipse data structures. 

Table 4: 2Dlattice and ellipse data structures 

2Dlattice Data Data Type Description 
lattice origin Real Origin of the 2Dlattice on the grid coordinate frame  
delta x Real 2Dlattice element width in the x direction 
delta y Real 2Dlattice element width in the y direction 
# of ellipses Integer The number of ellipses in the repeating 2Dlattice element 
ellipses Ellipse Array An array of ellipse data types 
material Integer Array The indices of the materials assigned to the sub-cell and each 

of the embedded ellipses  
Ellipse data Data Type Description 
center  Real Origin of the ellipse center on the 2Dlattice coordinate frame 
x-y angle data Real The  sine and cosine of the angle between the ellipse semi-

major axis and the grid x axis  
ellipse  
coefficients 

Real array The inverse of the major and minor radii, respectively. 

The interior of the sub-cell may be divided by an arbitrary number of ellipses. The ellipses 
may have arbitrary positions, rotations, and lengths along the semi-major and semi-minor axes. 
All ellipses are truncated by the x and y boundaries of the 2D lattice sub-cell. In order to reduce 
tracking complexity (i.e., cost), the areas of any two ellipses within the sub-cell must either be 
disjoint, tangent, or one completely contained within the other.  



3. Application of MC21 to a Benchmark Problem 
3.1. Model Description 

A benchmark problem previously published by D.J. Kelly [5] to describe the RACER 
depletion capability was used to compare the relative performance of MC21 when calculating k∞ 
for two different geometric representations of the benchmark. The benchmark problem is a fully 
reflected conventional BWR 8x8 fuel assembly design with a single large central water rod and 
eight urania-gadolinia rods. Figure 2 illustrates the Benchmark model as a single gridded 
component in MC21.  
 

Figure 2: A BWR assembly as a single MC21 component containing a Cartesian grid and 
2Dlattice data 

 

The outer boundary of Figure 2, including the top and bottom z-planes (not shown), forms the 
component boundary.  The assembly is 15.24cm by 15.24cm and is 1cm high. The component is 
at hierarchy level 1, meaning it resides within another bounding component at level 0. However, 
since the component shown has fully reflecting boundaries, neutrons never enter the bounding 
component. All of the inner detail shown in Figure 2 is represented as a single Cartesian grid 
with 2Dlattice and ellipse data to represent the numerous circles and circular arcs shown.  Eight 
of the pins are further subdivided into ten equal volume regions using nested ellipses in the 
associated grid cells. Only one axial (z) zone is modeled. 

In addition to the model shown in Figure 2, an MC21 model was created using only 
components.  The majority of the physical detail shown in Figure 2 was modeled as 274 explicit 
components that were specified as simple intersections of surface half-spaces.  These 274 
components all reside at hierarchy level 1 and reside within a bounding component at level 0. A 
small amount of the physical space shown in Figure 2 was implicitly represented since it falls 
into the bounding component and was not accounted for by the components at level 1.     



3.2. Results 
The two different models were run on an AMD Opteron-based Linux cluster using four 

processors per job. The only tally computed with each model was the multiplication factor. Table 
5 shows k∞ results for each model and compares the relative speed and relative memory footprint 
of each model. 

Table 5: Benchmark Results from 2 Alternative Representations. 

MC21 Model k∞ Relative Speed 
[histories/time] 

Relative Memory 

Pure Component 1.0896(6) 1 1 
Gridded Geometry 1.0897(6) 9.6 1 

As expected, the multiplication factors are statistically equivalent for the two MC21 models. 
The memory footprints were also equivalent between the two representations.  This is due to the 
fact that while the memory taken up by geometry information is less in the gridded model case 
than for the pure component case, the overall memory was dominated by the problem’s cross 
section data.  In general, for large problems where memory management is considered critical, 
the memory footprint is expected to be dominated by 3-D tally data.  Therefore the use of grid 
representations is not likely to be justified on the basis of memory savings. The justification for 
modeling with grids lies in the expected speed benefit over an equivalent component 
representation. Table 5 shows that, for this model, the gridded model runs 9.6 times faster than 
the component model.   

4. Conclusion 
The geometric representations of MC21 are designed to provide a highly flexible 3-D 

combinatorial geometry capability coupled with a dedicated two-dimensional geometry kernel 
that allows 2-D extruded geometries to be compactly represented and efficiently tracked. MC21’s 
combinatorial geometry and use of component hierarchy is similar to MCNP, while the 2-D 
geometries of grid, 2Dlattice, and ellipse are based on similar structures in RCP01 and RACER. 
Ultimately, when MC21 is fully integrated into CMCDT, user’s will predominantly model using 
combinations of 3-D and 2-D primitive objects rather than dealing directly at the less intuitive 
level of surface half-spaces and grids. The CMCDT model will then be transferred via an 
automated process to the desired MC21 representation based on a minimal set of user requests. 

The internal data structures are presented to illustrate how MC21 internally stores all 
geometric data in an intuitive way using Fortran 90.  The BWR benchmark demonstrates the 
overall capability level of MC21, but is especially useful in contrasting the performance 
differences that can be observed due to the different geometric modeling options that MC21 
provides. Both versions of the benchmark are considered to be tracking-dominated, meaning that 
the largest fraction of the overall run time is due to tracking.  This benchmark therefore 
maximizes the performance differences between the two representations.  For models with large 
numbers of nuclides and tally regions, collision handling and tallying also become dominant 
fractions of run-time.  For such models, the performance difference between gridded and 
component-only models is not expected to be as great as shown in Table 5, but is clearly 
expected to be significant.   
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