ACF INDUSTRIES

INCORPORATED

ALBUQUERQUE DIVISION

APPLIED RESEARCH AND DEVELOPMENT

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal hability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

METALLURGICAL CHARACTERISTICS OF WELDMENTS IN 0.750-INCH-THICK 6061 ALUMINUM

ACF-412-253

August 14, 1965

DISTRIBUTION:

W. W. Stagg, AEC-SAAO (2) W. J. Jackel J. C. O'Hara W. T. Geyer C. R. Garr C. E. Arnold H. L. Brammer J. E. Fisher J. M. Fowler V. J. Goetz H. E. Hendricks (3) R. T. Johnson L. P. Martin (18) J. W. McConnell R. E. Pozega D.G. Roberts R. E. Wandrey Alameda Accountability Center (2) ACF Library

Prepared by:

A. J. Kish, Supervisor Metallurgical Engineering

Erickson

Welding Engineer

Approved by

G. W. Offer, Manager Materials and Process Development

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

Section	Title	Page
1		4
2	OBJECTIVE	4
3	PROCEDURE	5
4	RESULTS AND DISCUSSION	10
	 4.1 Effects of the Welding Heat on the Metallurgical Structure of 6061 Aluminum 4.2 Determination of Properties Versus Heat-treat Cycle 4.3 Selection of Condition and Heat-treat Cycle 4.4 Determination of Properties Utilizing Weld Procedures A, B, and C. 4.5 Measurements of Weld Metal, Heat Zone, and Base Metal Hardness 4.6 Microprobe Analysis of Weld Metal, Base Metal and Areas in Contact with Copper Back-up 	10 10 14 14 18
5		30
Figure		
]	CHEMICAL COMPOSITION OF 6061, 4043, AND 4643 ALUMINUM ALLOYS	6
2	DEFINITION OF WELD PLATE MATERIAL CONDITIONS AND PROCEDURES	6
3	GROOVE CONFIGURATION FOR CONDITIONS 1,2,3, AND 4 AND FOR PROCEDURES A, B, AND C	7
_ 4	WELD PARAMETERS USED FOR JOINING OF 6061 ALUMINUM WELDMENTS	8
5	SPECIMEN LAYOUT FOR ALL WELDMENTS OF 6061 ALUMINUM, CONDITION 1-4, PROCEDURES A, B, AND C	9
- 6	TYPICAL AREAS AND HARDNESS OF HEAT-AFFECTED ZONES IN THICK WELDMENTS OF 6061 - T6 ALUMINUM DUE TO WELD HEAT	11
"	MACROSTRUCTURE OF CONDITIONS 1 AND 2	12
8	MACROSTRUCTURE OF CONDITIONS 3 AND 4	13

1

ACF-412-253

Figure	Title	Page
9	AVERAGE MECHANICAL PROPERTIES FROM FOUR WELDMENTS, EACH OF CONDITIONS 1,2,3, AND 4, 0.750" 6061 ALUMINUM	.15
10	SUMMARY OF AVERAGE MECHANICAL PROPERTIES OF CONDITIONS 1,2,3, AND 4 ARRANGED BY SPECIMEN TYPE	.16
11	MINIMUM MECHANICAL PROPERTY VALUES OBTAINED IN TESTING OF CONDITIONS 1,2,3, AND 4,.750" 6061 WELDMENTS	.17
12	MACROSTRUCTURE OF 6061 WELDMENTS FABRICATED BY THE MANUAL MIG PROCESS WITH BACK PASS-PROCEDURE A	. 19
13	MACROSTRUCTURE OF 6061 WELDMENTS FABRICATED BY THE AUTOMATIC MIG PROCESS WITH BACK PASS – PROCEDURE B	. 20
14	MACROSTRUCTURE OF 6061 WELDMENTS FABRICATED BY THE AUTOMATIC MIG PROCESS AGAINST A COPPER BACK-UP	.21
15	AVERAGE MECHANICAL PROPERTIES OF 0.750-INCH 6061 WELD- MENTS JOINED IN THE -T6 TEMPER, AS-WELDED BY PROCEDURES A, B, AND C	. 22
16	AVERAGE MECHANICAL PROPERTIES OF .750 INCH 6061 WELD- MENTS JOINED IN THE -T6 TEMPER, AS-WELDED AND AGED FOUR-HOURS AT 350°F	.23
17	MINIMUM MECHANICAL PROPERTY VALUES OBSERVED IN WELD- MENTS JOINED PER PROCEDURE A, B, AND C	.24
18	ROCKWELL 30T HARDNESS OF 6061 WELDMENT JOINED BY THE MANUAL MIG PROCESS WITH BACK PASS	.25
19	ROCKWELL 30T HARDNESS OF 6061 WELDMENT JOINED BY THE AUTOMATIC MIG PROCESS WITH BACK PASS	·25
20	ROCKWELL 30T HARDNESS OF 6061 WELDMENT JOINED BY THE AUTOMATIC MIG PROCESS WITH COPPER BACK-UP	. 26
21	MICROPROBE ANALYSIS FOR IRON, SILICON, AND COPPER ON A SURFACE IN CONTACT WITH COPPER BACK-UP	.27
22	MICROPROBE ANALYSIS FOR IRON, SILICON, CHROMIUM AND COPPER IN THE FILLER PASS AREA OF A 6061 WELDMENT WITH 4643 FILLER ADDITION	.28
23	MICROPROBE ANALYSIS OF BASE METAL 6061 ALUMINUM FOR ELEMENTS IRON, SILICON, CHROMIUM, AND COPPER	. 29

1. INTRODUCTION

- 1.1 One of the most widely used alloys of aluminum is the alloy designated 6061. This heattreatable alloy contains relatively small amounts of silicon and magnesium and produces strongths, after heat-treatment, that are of intermediate level, i.e., 35 ksi yield strength.
- 1.2 Weldability of this alloy, even though heat-treatable, is considered excellent and where section sizes are thin and full post-weld treatments can be conducted, weld efficiencies approach 100%. The normal filler material is alloy 4043 which is a high silicon aluminum alloy and is not, in itself, heat-treatable. Strength levels of weldments utilizing 4043 are dependent upon the degree of base metal dilution achieved in the joint. In thicker sections where little or no dilution is obtained, strength levels are a function of the lower non-heat-treatable 4043 filler unless fillers such as 4643 are used. Alloy 4643 is very similar to 4043 but advantage is taken of the heat-treat response due to small amounts of magnesium, silicon, and copper contained in 4643 (Figure 1). Improvements in thick weld-ment strength levels utilizing 4643 have been noted in the as-welded, aged-only or fully post-weld heat-treated conditions.
- 1.3 Heat-treatment of this alloy is of major interest in fabricated weldments. The normal cycle consists of solution-heat-treatment at 990°F, followed by immediate and rapid, cold water quenching (-T4), and with a subsequent eight-hour, 350°F aging treatment (-T6 condition). This treatment produces maximum strength levels on both base metal or fabricated weldments. There are, however, instances where full heat-treatment after welding is impractical if not impossible. The most applicable pre-weld and post-weld material conditions and heat-treatment can be defined as follows:
 - (a) -T6 material, weld and leave as-welded.
 - (b) -T6 material, weld and slight age only.
 - (c) -T4 material, weld and age only.
 - (d) -T6 material, weld and fully heat-treat.

The final weld characteristics, of course, depend on which of these conditions is used.

2. OBJECTIVE

- 2.1 The objectives of this investigation can be stated as follows:
 - (a) To weld 3/4-inch-thick 6061 aluminum in various conditions and to evaluate and select the most promising heat-treatment.
 - (b) To compare this heat-treatment with as-welded properties of 3/4-inch 6061 welded by the MIG manual back pass, automatic back pass, and automatic copper backup techniques.
 - (c) To determine the effects of various heat-treating cycles on welded plates.
 - (d) To determine the effects of weld groove configuration and weld procedure.
 - (e) To establish techniques and data directly applicable to production processing of welded 6061 aluminum.

3. PROCEDURE

3.1 Four weld plates were fabricated under each of the following conditions:

1

Ì

Condition	Original Material	Post-weld Heat-Treatment
1	-T6	None — As-welded
2	-T6	Aged 4 hrs @ 350°F
3	-T4	Aged 8 hrs @ 350 ⁰ F
4	- T4	Solution Treat@990 ⁰ F,Water Quench,Age 8 hrs@350 ⁰ F

3.2 Two additional weld plates were fabricated under Conditions 1 and 2 with the following welding procedures as defined in Figure 2.

Procedure	Welding Technique
A	Hand MIG weld, chip, and back pass
В	Automatic MIG weld, chip, and back pass
С	Automatic MIG weld, copper backup

- 3.3 Welding parameters and groove configuration were monitored and recorded for each weld series. Data recorded included wire alloy, gas cover, current, voltage, wire feed speed, welding speed, number of weld passes, and interpass temperature. This data is included in Figures 3 and 4.
- 3.4 Testing of plates was conducted with the same pattern layout for specimens in all plates evaluated. Specimen included full-thickness cross-weld, 0.252" diameter all-weld, 0.352" diameter base-metal and cross-weld, guided bends, and macro/micro specimens. The layout plan is shown in Figure 5.
- 3.5 Further tests were conducted for 30T Rockwell hardness and microprobe chemistry in certain areas of interest.

		% of Element	
Element	Alloy 6061	Alloy 4043	Alloy 4643
Magnesium	0.8 - 1.2	0.05 max.	0.10 - 0.30
Silicon	0.40 - 0.8	4.5 - 6.0	3.6 - 4.6
Copper	0.15 - 0.40	0.30 max.	0.10 max.
Iron	0.7 max.	0.8 ma×.	0.8 max.
Manganese	0.15 max.	0.05 max.	0.05 max.
Chromium	0.15 - 0.35		996 999 400
Zinc	0.10 max.	0.10 max.	0.10 ma×.
Titanium	0.15 max.	0.20 ma×.	0.15 max.
Aluminum	Balance	Balance	Balance

Figure 1. CHEMICAL COMPOSITION OF 6061, 4043, AND 4643 ALUMINUM ALLOYS

Category	Processing
Condition 1	Welded in -T6 temper and left as-welded.
Condition 2	Welded in -T6 temper and aged only, 4 hours at 350 ⁰ F.
Condition 3	Welded in -T4 temper and aged only, 8 hours at 350 ^o F.
Condition 4	Welded in -T4 temper, solutioned at 990 ^o F, water quenched, and aged 8 hours at 350 ^o F.
Procedure A	Same as Conditions 1 and 2, but welded by the Manual MIG process with back pass.
Procedure B	Same as Conditions 1 and 2, but welded by Automatic MIG process with back pass.
Procedure C	Same as Conditions 1 and 2, but welded by the Automatic MIG pro- cess against a copper back-up bar.

Figure 2. DEFINITION OF WELD PLATE MATERIAL CONDITIONS AND PROCEDURES

ġ

ACF-412-253

Figure 3. GROOVE CONFIGURATION FOR CONDITIONS 1, 2, 3, and 4 and FOR PROCEDURES A, B, and C

7

Weld	Conditions	Procedure	Procedure	Procedure
<u>Parameter</u>	1, 2, 3, and 4	A	B	C
Filler Alloy	1/16" 4643	1/16" 4643	1/16" 4643	1/16"4643
Gas Helium	100 CFH	75 CFH	100 CFH	100 CFH
Cover Argon	5 CFH	10 CFH	5 CFH	5 CFH
Current-Root	200–220 amps	200–220 amps	220-240 [,] amps	220–240 amps
Current-Filler	260–290 amps	240–260 amps	250-270 amps	260–290 amps
Voltage-Root	28-30 ∨	31-33 ∨	29-30 ∨	29-32 ∨
Voltage-Filler	32-33 ∨	33-34 ∨	32-33 ∨	29 - 32 ∨
Wire Feed	265-285 IPM	250-260 IPM	260-270 IPM	260-270 IPM
Speed	18-20 IPM	Manual	18-20 IPM	16-18 IPM
No. Passes	7-8	8	8	7
Interpass Temp.	150 ⁰ F max.	150°F max.	150 ⁰ F max.	150°F max.
	NOTE: Plates weld	ded per Procedure A	received an initio	al
	TIG fusion	pass conducted at 1	50 – 190 amps, 1	4
	volts, 26-	35 IPM wire feed an	d 11–13 IPM trave	erse .

Figure 4. WELD PARAMETERS USED FOR JOINING OF 6061 ALUMINUM WELDMENTS

新

Figure 5. SPECIMEN LAYOUT FOR ALL WELDMENTS OF 6061 ALUMINUM, CONDITION 1-4, PROCEDURES A, B, and C

9

4. RESULTS AND DISCUSSION

4.1 Effects of the Welding Heat on the Metallurgical Structure of 6061 Aluminum

(

- 4.1.1 In order to fully appreciate the variations and effects of high temperature and short duration heat input on 6061 aluminum, it is necessary to discuss some of the metallurgical aspects of the alloy.
- 4.1.2 At temperatures of 990°F optimum solution of the hardening elements, chiefly magnesium and silicon in 6061, is obtained, and by water quenching, the potential for hardening under artificial aging cycles is retained. Aging treatments for extended times (8 hours to 20 hours) at temperatures of 320°F to 350°F result in hardness and strength increases. Optimum properties of -T6 material are 45 ksi ultimate, 40 ksi yield, and 12% elongation with 95 Brinell hardness. Hardening to less than optimum levels can be obtained by shorter aging times and/or higher aging temperatures. Excessive temperatures or times result in lowered hardness with strengths approaching those typical of an annealed structure. Full annealing of 6061 is obtained under conditions of heating to 775°F, holding for two to three hours and furnace cooling at 50°F per hour to 500°F. This condition is the softest structure of 6061 aluminum. Typical annealed properties are 18 ksi ultimate, 8 ksi yield, and 25% elongation with 30 Brinell hardness.
- 4.1.3 Since welding heat input causes temperatures that can be higher than the melting point of 6061 aluminum and the weld heat is localized and of short duration, variations between the optimum -T6 condition and the soft annealed condition can be expected in a weld heat-affected zone. In a weld heat-affected zone, maximum -T6 properties are not expected since quenching is not normally conducted after welding. Fully annealed structures are not expected either, since the times are not sufficiently long and furnace cooling is not normally conducted after welding.
- 4.1.4 Figure 6 shows the various zones that can be expected in as-welded or as-welded aged-only weldments. Multi-pass welding naturally complicates the location, widths, and degree of the affected zones.

4.2 Determination of Properties Versus Heat-treat Cycle

- 4.2.1 This portion of the evaluation was concerned with weldments processed per Conditions 1 through 4. Of major interest was the macrostructure and mechanical properties of each condition. These macrostructures are shown at a magnification of 2.5 X in Figures 7 and 8.
- 4.2.2 The macrostructures of the as-welded, and the as-welded and aged conditions are essentially identical. The only noticeable effect is one of a darker etching of weld metal in the aged condition. Some darkening is also present in the midpasses of the as-welded condition due to aging from weld heat. A dark zone of maximum overaging is visible in each macro. The fully heat-treated macro exhibits complete elimination of heat-affected zones and a general weld homogenization effect.

- Zone 5 Maximum Overaging
- Zone 6 Decreasing Overage

1.

Zone 7 Unaffected Base Metal

Figure 6. TYPICAL AREAS AND HARDNESS OF HEAT-AFFECTED ZONES IN THICK WELDMENTS OF 6061 - T6 ALUMINUM DUE TO WELD HEAT

1

Condition 1. Welded in -T6 Temper, As-welded

Condition 2. Welded in -T6 Temper, Aged Four Hours at 350°F

Figure 7. MACROSTRUCTURE OF CONDITIONS 1 AND 2 2.5X

4

Condition 3. Welded in -T4 Temper, Aged 8 Hours at 350°F

Condition 4. Welded in -T4 Temper, Solution Treated at $990^{\rm o}F,$ Water Quenched, Aged 8 Hours at $350^{\rm o}F$

Figure 8. MACROSTRUCTURE OF CONDITIONS 3 and 4 2.5 X

- 4.2.3 Average mechanical properties of specimens from each condition are shown in Figure 9. Pertinent results can be summarized as follows:
 - (a) As-deposited weld metal exhibits the lowest strength levels, but highest elongations (yield 14 ksi, ultimate 30 ksi, elongation 18%).
 - (b) Aging of as-deposited weld metal (4643 filler) results in increases by a factor of two in yield strength, one-quarter in ultimate strength and a reduction to one-half of the as-deposited elongation.
 - (c) Full heat-treatment of deposited weld metal (4643 filler) produces strength levels equivalent to base metal, but because of the cast structure and type of aging, a reduction in elongation to one-quarter of that of the basemetal level is experienced.
 - (d) The effects of aging on the cross-weld R₂ and full-thickness specimens essentially parallel those experienced on all-weld material. Full heattreatment results in approximate 100% weld strength efficiency but with lowered elongations.

4.3 Selection of Condition and Heat-treat Cycle

- 4.3.1 A summary of tensile data obtained by welding in -T4 and -T6 conditions and conducting various post heat-treat cycles is shown in Figure 10. The data shows that the as-welded condition is the most ductile, but through use of a simple four-hour, 350°F age cycle, strength levels can be significantly increased with-out serious reduction in weld elongation or -T6 base-metal properties.
- 4.3.2 Further examination of the minimum value obtained in all tests for each condition (Figure 11) shows again that a significant increase in weld yield strengths can be obtained by a relatively simple aging cycle of four-hours at 350°F. Comparison of the minimum values with the average properties (Figures 10 and 11) shows that there is little variation between the average properties and minimum specimen values.
- 4.3.3 Welding of -T6 material, both as-welded and aged, was selected for further evaluation. These conditions were believed to be most interesting from the stand-point of weldment fabrication and processing involving 0.750-inch-thick 6061 welded, complicated shapes. Further weld studies were made on weldments fabricated by the manual MIG, automatic MIG, and automatic MIG, copper back-up processes.

4.4 Determination of Properties Utilizing Weld Procedures A, B, and C

4.4.1 This portion of the evaluation was concerned with weldments fabricated by manual MIG, automatic MIG, and automatic MIG with copper back-up. Each of these weldments was given the heat-treatment considered best from previous data (weld in -T6, age four hours at 350°F). Each procedure was also evaluated in the as-welded condition.

Type	No.	Yield (ksi)	Ultimate (ksi)	Elong.	
Туре	Spec.				
Condition 1, Weld i	n -T6, As-welded				
All-weld, R ₃	4	14.4	29.7	18.0	
X-weld, R_2	12	15.2	27.8	13.2	
Base Metal-L, R ₂	12	45.2	47.7	12.2	
Full Thick. XW	16	17.7	31.8	10.4	
Guided Bend-XW	1	33 ⁰ angle	- 11.6% elongation	at failure.	
Condition 2, Weld in	n -T6, AgedOnly	– 4 hrs @ 350 ⁰ F			
All-weld	4	28.0	36.5	7.7	
X-weld	12	21.6	30.5	9.2	
Base Metal-L, R ₂	12	41.7	45.7	14.5	
Full Thick. XW	16	26.1	34.0	5.8	
Guided Bend-XW	1	26° angle	- 8.7% elongation c	t failure.	
Condition 3, Weld in	n -T4,Aged Only	– 8 hrs @ 350 ⁰ F			
All-weld	4	28.0	36.4	7.5	
X-weld	12	22.5	31.7	7.5	
Base Metal-L, R ₂	12	41.8	44.9	16.0	
Full Thick. XW	16	26.8	35.8	4.8	
Guided Bend-XW	1	25 ⁰ angle	- 8.2% elongation c	t failure.	
Condition 4, Weld in	n -T4, Full Heat-	treat			
All-weld	3	42.0	46.5	4.0	
X-weld	9	42.3	47.8	10.0	
Base Metal-L, Ro	9	43.7	48.2	18.0	
Full Thick, XW	11	40.8	46.2	5.4	
Guided Bend-XW	1	16° angle – 5.6% elongation at failure.			

1

1

Figure 9. AVERAGE MECHANICAL PROPERTIES FROM FOUR WELDMENTS, EACH OF CONDITIONS 1, 2, 3, AND 4, 0.750" 6061 ALUMINUM

15

TYPE SPECIMEN	CONDITION	YIELD (ksi)	ULTIMATE (ksi)	ELONG. (%)
All-weld, R ₃	 (1) -T6, as-welded (2) -T6, 4 hrs @ 350°F (3) -T4, 8 hrs @ 350°F (4) -T4, Full heat-treat 	14.4 28.0 28.0 42.0	29.7 36.4 36.5 46.5	18.0 7.5 7.7 4.0
X-weld, R ₂	 -T6, as-welded -T4, 8 hrs @ 350°F -T6, 4 hrs @ 350°F -T4, Full heat-treat 	15.2 21.6 22.5 42.3	27.8 30.5 31.7 47.8	13.2 9.2 7.5 10.0
Full Thickness X-weld	 (1) -T6, as-welded (3) -T4, 8 hrs @ 350°F (2) -T6, 4 hrs @ 350°F (4) -T4, Full heat-treat 	17.7 26.1 26.8 40.8	31.8 34.0 35.8 46.2	10.4 5.8 4.8 5.4
Base Metal, Longitudinal	(1) –T6, as welded* (2) –T6, 4 hrs @ 350°F (3) –T4, 8 hrs @ 350°F (4) –T4, Full heat∹treat	45.2 41.8 41.7 43.7	47.7 44.9 45.4 48.2	12.2 16.0 14.5 18.0

*Base metal tempers were: Full -T6, -T6 and slight over age, optimum ACFI age, and optimum solution and age, respectively.

Figure 10. SUMMARY OF AVERAGE MECHANICAL PROPERTIES OF CONDITIONS 1, 2,3, AND,4 ARRANGED BY' SPECIMEN TYPE

ł

Туре	Minimum Yield (ksi)	Minimum Ultimate (ksi)	Minimum Elongation (%)	Failure Location
Condition 1 (weld	l in -T6, as-welde	<u>d)</u>		
All-weld - R2	13.8	28.6	14.0	Predominant
X-weld - Ro	12.9	24.9	9.0	heat-affected
Base metal É R2	42.0	44.7	9.0	zone failures
Full thick. XW	14.3	29.7	6.0	
Condition 2 (weld	l in -T6, aged 4 h	rs 350°F)		
All-weld - R3	25.9	34.5	6.0	Predominant weld
X-weld - R2	20.9	29.3	6.0	metal failures
Base metal - L Ro	39.6	43.9	11.0	some heat-affected
Full thick. XW	23.6	30.4	3.0	zone failures
Condition 3 (weld	Lin -T4, aged 8 h	rs 350°F)		
All-weld - Ra	25.7	35.0	3.0	Borderline weld
X-weld - Ro	21.5	31.2	5.0	metal heat-
Base metal $\stackrel{2}{-}$ L R ₂	39.9	42.9	14.0	affected zone
Full thick. XW	22.3	30.1	3.5	failure
Condition 4 (weld	l in -T4, full heat	-treat)		
All-weld - Ro	40.4	44.7	2.0	Practically all
X-weld - Ro	40.5	46.6	4.0	weld metal
Base metal - L Ro	42.3	47.4	16.0	failures
Full thick. XW	38.3	41.6	4.0	

×

ì

Figure 11. MINIMUM MECHANICAL PROPERTY VALUES OBTAINED IN TESTING OF CONDITIONS 1, 2, 3, AND 4, .750" 6061 WELDMENTS

- 4.4.2 The macrostructures of these weldments are shown in Figures 12, 13, and 14. These structures are typical of those observed previously.
- 4.4.3 Mechanical properties of weldments from each procedure are shown in Figures 15 and 16. These data show that regardless of weld procedure, properties are acceptable and improved significantly by aging four-hours at 350°F. Examination of minimum levels experienced (Figure 17) again shows little variation between the average and minimum values.

4.5 Measurements of Weld Metal, Heat Zone, and Base Metal Hardness

4.5.1 Each series of weldments was evaluated for variation in hardness resulting from the welding heat input. Measurements were made on the Rockwell 30T scale and results are listed in Figures 18, 19, and 20. These values can be summarized as follows:

Rockwell Superficial 30T Hardness

Area	As-welded	Aged
Weld Metal	21 - 34	38 - 54
Inner Heat– affected Zone	23 - 42	28 - 65
Outer Heat– affected Zone	29 - 52	32 - 56
Base Metal	60 - 62	55 - 62

The manual technique appeared to produce slightly lower hardness than the other procedures, possibly due to longer dwell times.

4.6 Microprobe Analysis of Weld Metal, Base Metal and Areas in Contact with Copper Back-up

- 4.6.1 This evaluation was conducted to insure that detrimental effects were not occurring due to melting or diffusion of copper into the aluminum. An analysis was first conducted on areas immediately in contact with the copper. Results, shown in Figure 21, reveal that copper pickup is not a problem.
- 4.6.2 Figures 22 and 23 show an analysis of filler pass areas and a typical base metal structure. Again, no abnormalities are observed.

A. Welded in -T6 Temper - As-welded

B. Welded in -T6 Temper and Aged 4 Hours at 350°F

Figure 12. MACROSTRUCTURE OF 6061 WELDMENTS FABRICATED BY THE MANUAL MIG PROCESS WITH BACK PASS-PROCEDURE A 2.5 X

A. Welded in -T6 Temper - As-welded

B. Welded in -T6 temper and Aged Four Hours at 350°F

Figure 13. MACROSTRUCTURE OF 6061 WELDMENTS FABRICATED BY THE AUTOMATIC MIG PROCESS WITH BACK PASS-PROCEDURE B 2.5X

A. Welded in -T6 Temper - As-welded

B. Welded in -T6 and Aged Four Hours at 350°F

Figure 14. MACROSTRUCTURE OF 6061 WELDMENTS FABRICATED BY THE AUTOMATIC MIG PROCESS AGAINST A COPPER BACK-UP 2.5 X

	No.	Yield	Ultimate	Elong.
Туре	Spec.	(ksi)	(ksi)	(%)
Procedure A - Mo	anual MIG	Back Pass		
All - weld, R ₃	2	13.9	28.2	19.0
X-weld, R ₂	6	15.5	28.0	10.5
Base Metal L, R ₂	6	44.5	47.6	14.0
Full Thick.XW	8	18.0	29.1	8.5
Procedure B - Au	tomatic MI	G Back Pass		
All - weld, R ₃	3	14.5	28.6	19.0
X-weld R ₂	9	15.7	28.0	13.0
Base Metal L, R ₂	9	45.0	47.3	15.0
Full Thick.XW	12	16.7	26.4	8.7
Procedure C - Au	itomatic MI	G – Copper Ba	ick-up	
All - weld, R3	1	13.9	28.8	18.0
X-weld, R	3	15.7	28.5	9.5
Base Meta L, R_2	3	44.7	47.0	14.5
Full Thick XW	4	17.7	32.3	10.0

¢

1

Figure 15. AVERAGE MECHANICAL PROPERTIES OF .750 INCH 6061 WELDMENTS JOINED IN THE -T6 TEMPER, AS-WELDED BY PROCEDURES A, B, AND C

Туре	No. Spec.	Yield (ksi)	Ultimate (ksi)	Elong. (%)
<u>/_</u>				
Procedure A – Ma	nual MIG Bac	k Pass		
All - weld, R3	2	23.5	33.6	12.0
X-weld, R2	6	22.4	31.6	6.5
Base Metal L, R ₂	6	43.0	47.8	13.7
Full Thick. XW	8	23.8	32.1	4.1
Procedure B - Aut	omatic MIG Bo	ick Pass		
All - weld, R3	1	23.7	34.1	10.0
X-weld, R2	3	22.3	31.7	6.0
Base Metal L, R2	3	43.8	47.9	14.0
Full Thick. XW	4	26.1	33.2	4.0
Procedure C - Aut	tomatic MIG C	opper Back up		
All - weld, R3	3	24.9	35.9	12.0
X-weld, R ₂	9	24.3	33.6	6.5
Base Metal L, Ro	9	45.5	47.1	14.0
Full Thick XW	12	26.6	37.1	5.5

Ţ

•

Figure 16. AVERAGE MECHANICAL PROPERTIES OF .750 INCH 6061 WELDMENTS JOINED IN THE -T6 TEMPER, AS-WELDED AND AGED FOUR-HOURS AT 350°F

	Weld	Туре	Min.	Min.	Min.
Condition	Procedure	Specimen	Yield (ksi)	<u>Ultimate (ksi</u>)	Elong.(%)
As-welded	Δ	All-weld	13.5	28.2	18 0
As-welded	R	All-weld	14 0	28.3	18.0
As-welded	C	All-weld	13.9	28.8	18.0
Aged	Δ	All-weld	22.8	33.1	12.0
Aged	B	All-weld	23.7	34.1	10.0
Aged	Č	All-weld	23.4	34.8	10.0
As-welded	Α	X-weld	15.0	27.9	6.0
As-welded	В	X-weld	15.4	27.7	10.0
As-welded	С	X-weld	15.5	28.0	9.0
Aged	A	X-weld	21.8	31.1	5.0
Aged	В	X-weld	22.2	31.7	6.0
Aged	С	X-weld	23.2	32.6	5.0
As-welded	A	Full Thick.XV	V 16.9	27.9	7.0
As-welded	В	Full Thick .XW	/ 13.9	27.3	8.0
As-welded	С	Full Thick . 🕅	/ 17.4	31.6	9.0
Aged	A	Full Thick XV	/ 23.1	30.5	3.0
Aged	В	FullThick XW	/ 25.9	32.6	3.0
Aged	С	Full Thick XW	/ 25.8	37.0	4.0

ſ

Figure 17. MINIMUM MECHANICAL PROPERTY VALUES OBSERVED IN WELDMENTS JOINED PER PROCEDURE A, B, AND C

Figure 18. ROCKWELL 30T HARDNESS OF 6061 WELDMENT JOINED BY THE MANUAL MIG PROCESS WITH BACK PASS

Figure 19. ROCKWELL 30T HARDNESS OF 6061 WELDMENT JOINED BY THE AUTOMATIC MIG PROCESS WITH BACK PASS

Figure 20. ROCKWELL 30T HARDNESS OF 6061 WELDMENT JOINED BY THE AUTOMATIC MIG PROCESS WITH COPPER BACK-UP

A. Electron Back Scatter Actual Scan Area – .014" x .014"

C. Silicon X-ray

B. Iron X-ray

Figure 21. MICROPROBE ANALYSIS FOR IRON, SILICON, AND COPPER ON A SURFACE IN CONTACT WITH COPPER BACK-UP 220 X

1-

A. Visual Micro of Scan Area

C. Silicon X-ray

D. Chromium X-ray

E. Copper X-ray

Figure 22. MICROPROBE ANALYSIS FOR IRON, SILICON, CHROMIUM AND COPPER IN THE FILLER PASS AREA OF A 6061 WELDMENT WITH 4643 FILLER ADDITION 250 X

A. Visual Micro of Scan Area

B. Iron X-ray

C. Silicon X-ray

D. Chromium X-ray

E. Copper X-ray

Figure 23. MICROPROBE ANALYSIS OF BASE METAL 6061 ALUMINUM FOR ELEMENTS IRON, SILICON, CHROMIUM, AND COPPER 250 X

5. CONCLUSIONS

- 5.1 The techniques and weld procedures used in this investigation produce acceptable weldments in 3/4-inch-thick 6061 aluminum.
- 5.2 Strength levels (cross-weld) of 15 ksi yield and 27 ksi ultimate are typical in the as-welded condition (welded in -T6 temper).
- 5.3 Weld metal elongations as-deposited are typically 18% in one inch.
- 5.4 Aging-only of weldments for four-hours at 350°F increases cross-weld strength to typical levels of 22 ksi yield and 31 ksi ultimate.
- 5.5 Weld metal elongations are reduced to 7-10% by the four-hour age at 350°F.
- 5.6 The effect of the four-hour, 350°F age on base metal -T6 temper strength levels is insignificant.