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Ionization and Charge Exchange Rate Coefficients for CTR Calculations

Abstract: Microscopic collisional ionization apd charge exchange cross
sections for neurral, hydropgenic atoms in CTR plasmas are averaged over
plasna phase-space distribution functions to obtain <ov> rate coefflcients.
Prior calculations of this type were restricted to igsotropic plasma dis-
tributions with injection at an energy mear the mean plasma energy,
hewever, in the present case, mirror loss-cone distributioms are allowed.
A discusgsion of methods and exemplary results in the energy range [0.1 -
300 keV] are presented.




1. Intreduction

Studies involving the transport of neutral test particles in background
plasmas require knowledge of the microscopic cross sections for the various
jnteraction Processes (e,g, electron-atom collisional ionization, ion-atom
collisional ionization and ion-atom charge exchange)* If, as is often the
case, the speeds of the plasma particles are comparable to the test particle
speed, it is necessary to average the cross sections over the plasma phase
space distribution te obtain the <ov> rate coefficients for the interaction

PTOCessas.

The farmal! definitian af the rate coefficient begins by considering
the distributions of two distiﬁct particle species in 3-D phase space.tl}
The first particle species has the aumber density n; and the velocity
distribution f;ﬁF:} such that the number of these particles in an incrementa}
€lement d%] is given by nlflt;]]dil. These particles will interact with

-+ - -
a mmber nzf:(vz)dvs of the second particle species im the element dv; at

the rate
- .
dR = maf) (VOmefa (V) [Va - Vol (V) - Va]) aviavs {1)

where I;I - $2| is the relative speed of the two interacting particles

and G{|3j - $a|] i5 the microscopic cross section (assumed to be functionally

dependent upon the relative speed) for the reaction process under consideration.
The total reaction rate, R, is the sixfold integral over all space,

viz.,

* Qther processes (e.g. excitation and scattering) will not be ¢onsidered
here.




- - -+ & - -
R=mmy [, | £.F0) f20v2) [v1 - v2] allvi - vz|) dvidve ')

¥1,Va
The multiple integral in the above expression may be interpreted as the
interaction cross section averaged over the entire range of relative speeds,
suitably weighted according to the distributions f1($1] andrfziﬁz}. This

quantity iz called the rate-coefficient, <gv>, which is defined as follows

- -+ - - e - =
<qv> f f1(v1) f2(v2) |v1 - v2| o(vi - vz|) dvidva (3)
-

- e
Vi, V2

Now the reaction Tate may conveniently expressed as the product of the

number densities of the dissimilar particles and the reaction coefficient,

o

name 1y

R = nny<ov ) {4)
This should, of course, he cnnsi?tent with the familiar form

R =gk (5}

where ¥y is g flux of test particles incident uwpon & target population with

macroscopic cross section I. Equation (4) may be cast in the form
L&Y
R = ming<qgv> . {6}
L
which, under the usual definition, ¢; £ nyvy, becomes

R = $inz T o

Thus, a gemeralized expression for the macrascopic interaction cross section

is seen to be

I=n, <Y . (8)




It may be remarked that in the cold plasma 1imit of vz<<vy, <gv> reduces to

avy and the reaction rate again becomes

R =Uno = I, (9]
as required by Equation (5).
2, Calculation of generalized rate coefficients

In order to apply the formal definition of the general rate coefficient
presented as Equation {3) above, it is necessary to perform some further
manipulations. Consider a test particle characterized by the velocity
distribution £f1(¥1) as it travels through and interacts with a population
of field particles with the distyihutinn f:{ﬁz). Eor a testxparticle with

spead, v _, and angnlar orientations, ¢t, and £, = cos&t, using the Dirac

£

delta function and spherical cocordinate systam, the normalized test particle

tl

velocity distribution is

£1001) = = §(vi - v,) 8(61 - 4,) 8 - B (10)
v

The relative speed, |Vi- V2|, of the test particle and a field particle

is given by

vg = [-V2l = [n® + vet - 2v vacosy] 2 (11)

where ¥ is the angle between the two particles! velegity vectors and iz

given by

¥ = cos '[uabz + y1-ma® \jl-]-lz2 cos (¥, -2)] . {12}



The incremental phase space elements are defined as follows

L[

-
dvy £ vy idvydéyduy (13a}

2
¥z dvzddadys (13b)

-
l:h*z

Using Equations (10-13), Equation (3) may be rewritten in the form

Mo o 4127 Lo
<ov> =f*_1/'f f/‘i’/’ 2 60n - v} §th- 8 50 - uy)
¥i
¢ ¢ -170

-1 0
Hr ¢1 vy np ¢z v

. 2
u{vk} 1° v

]1fz

>
X fa{¥a2} [vi® + v2? - 2vivicoesy

L)

X dvadbadusdv;dé,dn, (14)

This expression may be readily integrated over the subscript "1"

variables using the sifting property of the Dirac delta function to obtain

2w > z z 1/ 2 2
{w}-f f f £2(v2) ['.rt + ¥ - thvzcnsr] UEFR] ¥a
]

-I 0
Uz ¢z V2
K dvaddadp: (15}

where, from Equation {13, it is seen that

I = cos ' [guz + Vl-n? VL-ue® cos(é, - %)) 1 (16)
and the cross section is evaluated such that

otvg) = a(/¥, - V2 a7



It remains to characterize both the field particle velocity distribution
function, fz{3;], and the interaction cross sections of interest as analytic
expressions, These issues will be considered in later sections of this report.

Also, Equation (15) must be normalized such that

+1 2T e . .
fa(vz) va2© dved@zdu, = 1 (18)
Q a

-1
171 fz  v:

It i5s expected that Equation (15) will require evaluation by muelti-
dimensieonal aumerical integration, although, under favorable simplifying

circumstances, a closed form solution might be obtainable.

3. Cross section data

Following Rivierefz} analytic expressions for the collisional

ionization and charge exchange cross sections are obtazined, It is assumed

(%)

(with some justificatiom "’} that the cross sections fer interactions

between hydrogenic isotopes depend only on the relative collision speed
and not on the masses of the particles involved. The expressions cited
by Riviere cast the cross sections as functions of the cellision energy,

E, where E = %—mavﬂz.

Values for E are in e¥ units throughout,
The following expressions are used for the ionization of atemic hydrogen

by protons
o, (E) = 3.6 x 10712E Y og, (0. 1666E) for E> 1.5 x 10%V  cm®  (19a)

log1e0,; (E) = -0.8712 (lomeE)? + 8.156(logeE) - 34.833
for E < 1,5 x 10%v {196}



The wicroscopic <ross section for charge exchange by prutuﬁs in atomic
hydregen is fairly well represented by the following expression
0.6937 x 107'%{1 - 0,155 logyE)? .

7. (E) = &m (2¢)
ex 1+ 0.1112 x 10714g3*

This expression is found to be somewhat less relisble in Tepresenting
experimental results in low enexrgy (< 100e¥) and high enerpy (>*1.0 Xx 10°e¥)
extrapclations; in both cases Equation (20) over-estimates the available

data.

The above cross section expressions are presented in Figure 1 as a function
of deuterium atom impact energy, E. Figure Z graphs the product of the impact speed,
Ve and the micraoscopic interaction cross sections a5 a function of impact
energy, E, for deutexrium atoms incident upen deuterium ions. It will be
remembered that this represents the limiting case for rate coefficients in
a celd plasma, and as such will be used to test the numerical results

discussed in later sections of this report.
4. Plasma velocity distribution functions

Equation (15) requires an expressian for the plasma velocity dis-
tribution fimction, fzf;z]. Following Haldren{q}, it is assumed that the
digtribution function is aziwuthally invariant and approximately separable
in the p and v components of veleocity; W being the cosime of the angle,
9, between the plasma velocity vector and the local magnetic field vecter,
E, and v being the speed of the plasma particle. Thus, to first order in anple,

£2(v2) % % £lva2) M{u) (21)
¥a



where M(u) is the lowest eigenmode of Legemdre's equation

2
a-wy)3H _ M M=o (223
2 dp
an
lul<L, M{u > ue) = 0, M) = M(-1)
Far application to mirror devices, We = [(R™ - 13/R“1Y2 = cosBy, where
6y is the critical loss-cone angle. Particles whose velocity vectors are
within 99 of B escape preferentially from the system. R” is the effective

mirror ratio in the presence of an ambipeclar potential, ¢, defined such

that 2
R* = R(l + 22ed/mv; ) ! (23)

where R is the vacuum mirror ratioc.
In mi?rar devices, the velocity distribution of electrons is assumed
to be in approximate equilibrium, following Riviere, allowing use of a
Maxwellian speed distribution and the default isotropic case, H(u]tl, COT - .
responding to R”==. Maxwellian, isotropic distribution are assumed for bath

iong apd electrons in toreoidal devices.

For ions in mirror devices, the following expression (normalized to

be unity at p = 0) is used for the first normal-wode appular distributiocn

MQu) = el - ]:2 + (3u,? - 1) log.[(l - w2/ (1 - up®)) (24}
Bo© - (3ue? - 1} log [1 - it}

For convenience in Some applications, this expression may be appruximntsd{s}

to witﬁin 10% by

M(u) = 1 - p®/pe?, for R” < 1.5 (25a)

M(u) = 1 + log (1 - n?)/log R", for R* > 1.5 , (25b)

Equation (22) was used fer the numerical computation of nmirror rate

coeffician£5 discussed below. The behavieor of Equation (24) is shown




Fravaa - =

for two typical mifror ratiaos, R™ = 3, 1ﬁ, in Figure (3).

In mirror devices, loss-cone effects and particle injection at energy En
distort the energy distribution function of confined ions, The expected
steady-state ion energy distribution functions for mirror ratios R* = 3 and 10
have been computed using Fokker-Planck techniques by Kuo-Petravic and cownrkers.fﬁ]
The following analytical expressions, having the same functicnal forms (but

{2}

with modified coefficients) as suggested by Riviere“™’, are used to represent

these energy distributions,

for R" = 3, and 0.18 < EHEo < 1.0
'E(EIEG} = -1.515(3;50}2 + 2.831(E/E)) - 0.515 (26a)
for A" = 3, and 1.0 < E;"Eu < 2.5

£(E/E) = 1.52 - 0.95[-3.69 + S(E/E,) - {€/E )1 (26b)

for B = 10, and 0.05 < E/E < 1.0

£(E/E,) = 1.00 - 1.4251{0.85 - {E;EJ]z (27a)
for R" = 10, and 1.0 < E/E, < 2.5

£(E/E,) = 1.52 - 0.95[-3.69 + S(E/E) - (e/E )21 * (275)

These new expressions more closely reproduce the desired energy distribution shapes,

An equilibrium Maxweliian energy distribution function with kT = Eo

and scaled such that

£(E/E,) = L.4S(E/E)/* exp(-E/E,) (28)

- -

iz graphed for cemparison with Equations (26-2?j in Figure 4.



In order to make the integrations over these energy distributioms com-

patible with Equation {15}, it is necessary tc apply the transformation

{EIEu}max vhax
f(EfEn} d(E;’Eu] = f f{vz,{vﬂ“] 2—:— dy {29}
I:E"’En‘.:t)m:i.n Yhin Yo

where Eu = % ma"ﬁz- Iuspection of Figure (4) suggests the following
values for the limits of integraticn in Equation (2%) for the mirror

loss=cone distributions

[E;I'Eu]]lirjl = 0,18, for R = 3 {30a)}
= 0.04, for R* = 1D (30b)
[E!En]max = 2.5, for both R™ = 3,10 (30c)

5. MNumerical Computation of Rate Coefficients

A-FORTRAN program called MCSAV2 has been developed which
mmerically integrates Equation (15). The program has been implemented
on the IBM 360/75 machine operated by the University of Illinois Digital
Computer Laberatory. A three-dimemsional versiom of the Gauss-Legendre
quadrature technique is used to perform the required integrations. This

method requires that a standard variable transformation of the form

F(x) = {b-a) Fla + (b-a)t] dt (31)

be applied to each of the phase-space dimensions in order that the inteprations
over the intervals [2,b] may be more convenlently performed over the umit

interval [0Q,1].

n e = rwe oA A - -
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Such data as mirror ratic; test and fleld particle identities; test
particle velocity vector and magmetic field vector orientations; and plasma
energy are set at the user's option. Specifications of either Maxwellian
or mirror energy distributions and either isotropic or loss-cone angular
distributions are alsc made. Program resuits are presented in tabular form
as functions of test particle speed and kinetic energy. Once such rate
coeffictent tables are available for a series of representative parameters
spanning the repimes of imterest, an interpoiation scheme may be employed

to approximate intermediate values not themselves obtzined by actual integration.

6. Discussion of Results

The rate coefficient results reported by Riviere are restricted to cases
invelving isotropic plasma angular distributions and test partiele kinetic
energics equal to the characteristic energy, Eﬂ. of the background plasma. By
relaxing these restrictions it is possible t¢ obtain more general results for
application to neutral particle trensport studies in (TR plasmas. A series of
runs of the MCSAVZ code have been made, the results of which are included
with this report to suggest those features of Tate coefficient behavior that
are of potential consequence to CTR design studies. While the Tesulis pre-
sented in Figures (5-7) are primarily of interest to energetic neutral bean
injection analyses, extrapolation of the curves to low (<107 V) test particle
kinetic energies gives rate cocefficients applicable to neutral particles ex-
pected in CTR devices to enter the plasma either from first wall reflux or
surrounding neutral gas hlankats.(?}

Figures (5a-b) present charge exchange and ionization rate coefficfents
calculated according to Equation (15} above for neutral deuteriun test particleas

in a background of deuterium ions having the Maxwellian distribution of

Equation (28) and 2n isotropic (M{p)=l) angular distributian. Eu’ the
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characteristic energy of the background distribution is varied as a parameter
for representative values in the range [0.1 - 300.0 ke¥]., In Figures (6a-b},
the Maxwellian speed distribution has been replaced by the R' = 3 mirror loss-
cone speed distribution of Equetion (26) above. The isotropic angular
distribution has been retained. The new speed distribution produces non-
trivizl changes in the resultant rate coefficients, suggesting the de-
girability of accurate representations of the plasma distributiéns used in
neutral particle transport ¢zlculations. As expected, for very energetic
test particles (i.e. those whose kinetic energy greatly exceeds Ea} the
influence of the distribdbuted plasma background becomes small and the rate
coefficients tend to converge toward an asymptotic limit.

Figures (7a-e) present rate coefficient results for a plasm: backpground
with fixed energy Eo = 55 keV. This energy corresponds to the operating
energy of the proposed mirror Fusion Engineering Research Facility [FERF].{B}
These results incorporate the combined effects of the loss-cone speed dis-
tribution and the anisotropic loss-cone angular distribution. The effective
mirTer vatio is ggain equal to 3. The angle, Bi, between the test particle
velocity vector and the B-field is varied over its range [Q,m/2]. Figure (8)
plots these same charge exchange results as a function of injection angle for
varicous deuterium test particle energies, The striking feature of this series
of results is the clear variation with angle in the charge exchange rate
coefficients, particularly in the rang; of test particle energies consistent
with energetic neutral-beam injection for eventual mirror fusion devices. Near-
perpendicular injection tends to maximize the probability of particle charpe
exchange. Physically, if the test particle velocity vector lies in or near
the phase space loss-cone of the background plasma, there are fewer plasma ions

gvailable whose velocity vectors are compatible with the low collision speed
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bias of the charge exchange cross section exhibited in Figure 1. These
various effects are being -incorporated inte a Monte Carlo computer simulation
¢f neutral beam injection for the FERF device,[g] which should provide the
desired extension of previous warktlﬂ} in this area.

Sowe additional effort was expended in order to verify the results of
the above calculatiens. As a check, the equations used by Riviere, which
employ a formalism somewhat different from that described in Section 2 of
this report, were programmed in order to replicate the resuits cof the
generalized MCSAVZ code under the default case of an isotropic target plasma
distribution. For sufficiently energetic D® test particles, both approaches
were found to return the cold plasma limit results predicted by Figure (2).
Confirmstion of Tesults for higher values of Eﬂ is also obtained. Finally,
the modifications mentioned in Section 4 te Riviere's analytic expression
for the plasma loss-cone energy distributions were found to have unl} niner

influence on the rate coefficient results.

7. Electron Ionizationm

In mest plasmes of CTR interest, cellisions betwsen the neutral test
particle and the background electrons can also result in ionization of the
neutral atowm. The cross section for collisiomal ionization of hydrogen atoms
by electxoh impact can be represented by the analytic expression,

_ 6,513 x 1071

2
ol

icnization pa%entiai {13.46 &V)

0,5 (E,) g(x] o’ (32)

where Ui

1

x

f2
and gix) = %(;:i) / [1 + -;-"-( - 21_::) log, (2.7 v’i‘-"i‘]:l

the ratic Enfui
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The electrons are assumed to have a Maxwellian energy distribution
characterized by kT; = Eb' Since the mean slectron speed in usunal appli-
~cations is 50 much greater than typical neutral test particle speeds, the
Tate coefficients for the electron case are found to be esseantially constant
functions of test particle speed. The format of previous figures is
therefore abandoned and ionizational rate coefficients are plotted in
Figure (9) as a fumction of electron energy Eo' The broken line repressnts
results of the MCSAY2 code while the solid line is a simple analytic approxi-

mation to Riviere®s resunlts givem by
<ov>,. % 0.4877228 Eu{‘“'”“““ (cn®/sec) (33)

This approximation to the MCSAV2 results breaks down in the low ensrpgy (<1 kel)
extrapolation but is considered adequate for CTR design studies, for which the

electTon energy usually is at least a few keV,

8. Conclusion

The availability of charge exchange and ionization rate coefficients tailored
to specific applications allews the development of more sophisticated neutral
particle transport models for such CTR applicaticns as eneérgetic neutral
beamfinjection or neutral gas blanketing. The accompanying results indicate
the variations and sensitivities which make detailed knowledge of these rate
¢oefficients important. The techniques required to cbtain these generalized
results are seen to be straightforward and easily incorporated into overall

plasma transport codes.

Acknowledgment: Encouragement and support by Drs, R. J. Burke and T. A. Coultas
while one of us (RLM) was 2 summer employee of the Engilneering Division of
Argonne National Laboratory as well as stimtlating discussion with Dr. G. A.
Carlson of Lawrence Livermore Laboratory are gratefully acknowledged.
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Figure 4

Figure 5a-b

Figure 6a-b

Figure 73-2

Figure §

Figure 9

Fipure Captions

Deuterium jonization and charge-exchange microscopic cross
sections as a function of impact energy. These curves are
obtained from Equations [19-Z0) of this report.

Product of the impact speed and deuterium ifonization and
¢harge-exchange microscopic cross sections as a function of
impact emergy. These curves represent the cold plasma
limiting cases for the respective interaction rate co-
efficients.

Angular component of the mirror loss-cone plasma phase-space
distribution function vs. u, the cosine of the angle O from
the magnetic axis, for two typical effective mirror ratios,
i.e. R' = 3,10; cbtained from Equation (24) of this report.

Energy component of the mirror loss-cone and Maxwellian plasma
space distributicen functions as obtainsd from Equations {26-28)
of this report.

Deuterium-Deuterium charge exchange and ionization interaction
rate coefficients as a function of neutral test particle kinetic
energy for a plasma with a Maxwellian, isotropic phase space
distribution for various values of En'

Deuterium-Deuterium charge exchange and ionization interacticon
rate coefficients as a fimetion of neutral test particle kinetic
energy for a R' = 3 mirror-confined plasma having an isotropic
angular distribution for various values of Eﬂ.

Deuterium-Deuterium charge exchange and ionization interaction

Tate caefficients as a function of neutral test particle

kinetic energy for a R* = 3 mirror-confined plasma with E_ = 65 keV
for various values of injection angle © in the rvange [0, 7/2].

Deuterium-Deuterium charge exchange interaction rate coefficients
as a function of injection angle Ei for warious walues of injection
energy in a R' = 3 mirror-confined plasma with E':|I = 65 keV.

Comparison of electren-Deuterium ionization interaction rate coef-
ficiemt results as obtained from Equation (15) of this report to the
approximation given by Equation {33) of this report.

T
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