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Atomistic simulations of alloys at the classic - or empirical - level face the challenge to correctly
model basic thermodynamic properties. In this work we propose a methodology to generalize many-
body classic potentials to incorporate complex formation energy curves. Application to Fe-Cr allows
us to correctly predict the order vs segregation tendency in this alloy, as observed experimentally
and calculated with ab initio techniques, providing in this way a potential suitable for radiation

damage studies.

Computational Materials Science is nowadays a stan-
dard approach to study complex problems in solids. Be-
sides ab initio techniques, a great interest exists for clas-
sic approaches adequate for large number of atoms, as
needed in studies of large crystalline defects with long
range interactions. The requirement of accurate, pre-
dictive simulation tools points towards the necessity of
models for the interactions that are able to reproduce
important fundamental properties of materials. Usually
the models used are known as 'many body’ potentials,
grouped in large categories as the Embedded Atom Mod-
els and the Second Moment Approximation [1]. Most
of the vast amount of work done using these classic po-
tentials addresses either pure elements or intermetallic
compounds, only a few address concentrated alloys.

Based on the enormous success of these many body
potentials for large scale atomistic simulations of mate-
rials [2, 3], there has been a continuous progress in the
field since its inception, extending the models towards in-
creasingly complex materials like bee, covalent, ordered
compounds and dilute alloys. In this paper, we focus
on concentrated alloys with complex heat of formation,
and provide a methodology to address arbitrarily com-
plex systems. This methodology is applied to Fe-Cr,
a system of interest in fission and fusion technology as
structural material with good mechanical, thermal, and
radiation properties. Computer simulation studies of ra-
diation damage in these alloys require models that can
adequately predict alloy stability / microstructure evolu-
tion under large doses.

The so-called many body potentials share in common
a description of the total energy in terms of the sum
over atom energies, themselves composed of two contri-
butions, namely embedding and pair potential terms. For
heteroatomic systems, let’s say binary alloys involving el-
ements A and B, it reads

N

E= Z[Faz(z PaiB; (T'ij)) + 1/2ZVaiﬁj (rij)] (1)
i J#i J#i

where «, (3 stand for elements A or B sitting at sites

i, j; F’s are the embedding functions for either type of

elements, and V'’s and p’s are the pair potentials and den-
sities between a-( pairs. Alloy properties are therefore
described by the functions p4p and V4p. Depending on
the model considered, the density functions do not al-
ways include the cross term p4p. Different expressions
for the embedding energies, densities, and pair potentials
englobe a large diversity of similar models.

In recent papers we addressed the problem of alloy de-
scription with atomistic models from the perspective of
thermodynamics rather than the properties of a single
impurity. We developed numerical tools to calculate free
energies of the relevant phases and applied them to a
couple of systems, namely Au-Ni [4] and Fe-Cu [5]. Both
these systems share in common the fact that the forma-
tion energy of the alloy is a rather symmetric function
of the composition and, as it is shown below, a standard
approach using a cross pair potential term was enough to
reproduce their properties. We found that alloy models
fitted to properties of the dilute limit usually show er-
roneous behavior in the concentrated case. For Fe-Cr in
particular, this problem is at the core of the limitations
of the classic potentials due to the highly non-symmetric
formation energy, that even change sign at low Cr con-
centration [6].

Focusing our attention on disordered alloys, the strate-
gies to develop alloy potentials have been at least twofold:
perform a global optimization of all functions in Eq.(1)
together to match the targeted properties of A, B and
AB systems, or start by developing potentials for pure A
and pure B, and then fit the alloy properties by adjust-
ing the cross terms in that equation. By far, most of the
work done on alloys has used the dilute heat of solution
as the key alloy property to fit, but in general, the de-
scription of concentrated alloys require more information
than that contained in this sole quantity.

A convenient way to analyze alloy properties with inde-
pendence of the pure elements is to discuss excess quan-
tities, i. e. quantities measured with respect to the linear
interpolation between the two constituents. Ideal solu-
tions, by definition, have null excess quantities, while real
alloys depart from linearity. To construct models that de-



part from linearity, we can use either or both terms in
Eq(1). It is important to notice that even without using
a cross density, the embedding term always introduces
a heat of formation, i. e. a non-linearity of energy vs
composition, through the non-linear functions F, (p(z)).

In this work we follow the strategy of taking potentials
from the literature for the pure elements, and adjust the
alloy terms, focusing on non-linearities built upon the
pair potential cross term alone, using a representation
that minimizes the non-linear contribution of the embed-
ding term. We start with a preparation of the two pure
element potentials in a way that is adequate for our pur-
pose, that is, the effective representation with normalized
densities,namely

p = ") p%
= F9(p) = F(pZ9).0°0 (2)
Valr) = Va"io(r) — 2879 (p239).p°" (r)

where the superscript °"% stands for original, the sub-
script ¢4 for equilibrium values, and the prime ’ for deriv-
ative. These transformations do not alter the properties
of the pure elements but have the advantage of mini-
mizing the contribution of the embedding term to the
formation energy of the alloy, as is discussed below, and
allows us to combine potentials for pure elements coming
from different sources with incommensurate magnitudes.

In this work we use the Fe potential reported in [7]
and the Cr potential reported in [8]. For these particular
potentials the transformations (2) drop the contribution
of the embedding term to the formation energy down to 1
meV /atom at z ~ 0.5, making it negligible in front of the
target value for this alloy ~ 100 meV/atom, [6]. This in
practice leaves the pair potential as the sole contributor
to the formation energy.

The free energy of a random solid solution phase of
an alloy with composition z at temperature T is conve-
niently expressed as:

9(2,T) = gia(x, T) + gmix(z, T) + Ag(2,T)  (3)

where g;4 is the compositional weighted free energy of the
pure components, given by g;q(x,T) = (1 —x)ga(z,T) +
zgp(z,T), and gy, is the entropy of mixing for a random
alloy, gmiz(z,T) = kT((1 — 2)In(1 — 2) + zIn(x)). The
excess Gibbs energy of mixing is conveniently expressed
by a Redlich - Kister expansion [9] as:

Ag(x,T) = 21— 2) Y L(T)(1 - 22" (4)
p=0

where Ly, is the pth-order binary interaction parameter; in
general it is a function of temperature. Due to the com-
plexity that represents fitting potentials to actual tem-
perature dependent functions, in what follows we shall

adopt two important simplifications: neglecting the ex-
cess vibrational entropy and assuming that the formation
energy does not depend on T. This simplifies Eq.(4) to:

Ag(z,T) = AH(x) =x(1 —2) Y _ Ly(1—2z)"  (5)

p=0

For Fe-Cr the formation energy has recently been cal-
culated ab initio [6] together with a rough estimate of the
bulk modulus B and lattice parameter of the alloy ag.
These calculations contain several simplifications, as Fe
and Cr both have magnetism, and are therefore not to be
considered as the definitive values classic models have to
reproduce, but as first estimates upon which classic mod-
els can be developed. From those results we shall consider
that B(z) and ag(x) are just given by the linear inter-
polation between the constituents, assumption based on
the errors reported in [6] and the small departure from
the ideal behavior. Therefore the formation energy will
be our single target function to be reproduced.

From Fig(5) in Ref[6] the formation energy of bec fer-
romagnetic Fe-Cr alloys can be reproduced by a Redlich-
Kister expansion, Eq 5, to 4th order in (1 — 2x). Table I
gives the corresponding coefficients in [eV].

TABLE I: Values of the Redlich-Kister expansion coefficients,

Eq. 5, corresponding to AHE.Z . from Ref [6], in eV.

L() L1 L2 L3 L4
0.41566 0.0814134 -0.0101899 0.267659 -0.248269

To find the functional form of the cross potential we
need an analytic model for the alloy. We adopt a model in
which the species that sits on site 7 can either be A or B,
but both are embedded in the same average environment,
as discussed by Ackland and Vitek [2] :

E™" =%y Vaa(ry) + ¢ ) Vea(ry)
+2z 4R Z Vap(rij) + ®aFa(pa) +zFp(p) (6)
with pa = pp =24 ) pa(rij) + 2B ) pB(Tij).
It is now easy to see that in the effective representation,

Egs. (2), the contribution of the embedding terms to the
excess energy of mixing, AE“™  is small:

AE™ =z 4(Fa(p)=Falpo))+a5(Fs(p)—Fp(po)) (7)
By making a Taylor development of F around py and
using Eq.(2) we see that the contribution is quadratic in
(P — po):

AE™ = w4(F{(po)(p— po)*) +p(F5(po) (5 — po)?)
< Ee’mb (8)
The contribution to the excess energy from the pair po-

tential terms is (replacing for short > Vaa(ri;) by va,
and soon, and xg =z, x4 =1 — x),

AEPY" = (1 — x){2vap — (va +vB)} (9)



We now introduce our proposition for the alloy poten-
tial based on the following points: - Taking advantage
of the result Eq. (8) we build up the non-linearity upon
the pair potential alone (this is a simplification adopted
for this case in particular; it can easily be removed in
other cases and use either or both contributions); ii- we
assume that Vap is a function of both (z,r) that it can
be separated into a product h(x)uap(r), we then choose,

Vas(e,7) = h(@)5 (Vaa(r) + Vas(r)) (10

This election of the cross pair potential allows us to
describe any type of formation energy curves, giving an
ideal solution for h(z) = 1, a regular solution with pos-
itive or negative heat of mixing for h(xz) = 1, and an
arbitrary complex heat of mixing for h(z) a polynomial
on x. We also see that without introducing a polyno-
mial on x we can not go beyond symmetric formation
energies (i. e. only Lo in the expansion 4). Eq. 10
also shows that if the target function is a fourth order
Redlich-Kister polynomial, so will h(z) be. It provides
then with a hint on what kind of function to use in the
optimization procedure.

We replace now Vap(r;;) in Eq. 6 by h(z)4(Vaa(ri;)+
Vep(ri;) and by minimizing the difference between this
expression for the energy and the target formation en-
ergy (Eq. 5 and Table II), at the lattice parameter that
minimizes the energy, we find the coefficients of h(x),
reported in Table 11.

TABLE II: Coefficients of the 4" order polynomial h(z) in
Eq. 10, with values extracted from a global minimization as
explained in the text
ho hl h2 h3 h4
0.883644 -0.059302 0.644634 -1.342524 0.918932

It is interesting to point out that if Eq. 8 gives a really
small contribution, as is the case for these two pure ele-
ment potentials in the effective representation, we can ne-
glect altogether the contribution of the embedding terms
and then, equating Egs. 5 and 9 instead of minimizing
a target function, we can define h(x) the composition
dependence of the cross potential through an identity,
namely:

n

(h(z) = D(va+vp) ~ Y LEA—22)P  (11)
p=0

The formation energy, the lattice parameter and the
Bulk modulus of the resulting alloy are shown in Figs. 1.
The Bulk modulus shows a small softening with respect
to linearity of about 5 GPa at z ~ 0.5, that in terms of
the absolute value of B represents a change of 3%. The
lattice parameter is linear within 0.1%. The formation
energy in turn shows a curve indistinguishable from the

target function extracted from Ref. [6]. In summary, the
potential reproduces extremely well the energy, lattice
parameter, and bulk modulus.
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FIG. 1: Variations of Bulk modulus B, and lattice parameter
ao (a), and formation energy of the alloy (b) as a function
of Fe composition. Thin straight lines represent the linear
interpolation corresponding to the ideal solution. Maximum
departures for B and ao from ideal behavior are 2.5% and
0.1% respectively

Figure 2 shows that the polynomial h(z) that results
from the fitting procedure is a smooth function of z, close
to y = 1, and that it crosses the line h = 1 at x ~ 0.94,
the composition at which the alloy behaves as ideal, as
expected.

The final requirement for practical applications is to
define the concentration = to be used in a simulation.
There is some alternatives to choose x(r) and a sound
choice is to define the composition to be used in the cross
term involving atoms at location ¢ and j through the par-
tial B-density (i. e. the component of the total density
at atom ¢ originated by B atoms at sites j) as,

1 1 o J
Tij = 5(%‘ +z;) = 5(%3 %)

This definition provides a well behaved function, ade-
quate for force calculations [10].

Application of this potential requires small modifica-
tions to the standard EAM programs to implement the
calculation of h(z) and the derivatives of Vap(z,r).

(12)
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FIG. 2: Polynomial h(z) representing the composition depen-
dence of the cross potential versus Fe composition, according
to Eq. 11

To test the new potential and its ability to predict or-
dering tendencies in the alloy, we run Monte Carlo sim-
ulations at 500K and determined the Warren-Cowley [9]
short range order parameter of the first neighbor shell.
Results are reported in Figure 3, together with the ex-
perimental results from Ref. [11]. Inversion of order in
transition-metal alloy has been predicted long ago, with a
change in sign at = 0.25 for the case of Fe-Cr [12]. First
measurements found it at = 0.10 [11]. With the ab ini-
tio data used to develop this potential, change in ordering
tendency occurs at © = 0.06, where the formation energy
is zero. Also, with the maximum strength of the negative
formation energy being only a few meV/atom, the max-
imum order obtained at 500K is only -0.025, while the
experimental result reports a value at a higher tempera-
ture (700K) that is close to its maximum possible value
—z/(1 —x) ~ —0.05.

In conclusion, this is the first potential designed to
adjust a complex behavior of a real alloy, namely an in-
tricate heat of solution as reported by [6]. Even if the
target function is probably not the definitive ab initio
result for this alloy, the procedure proposed in this work
can be used to reproduce any function of the composi-
tion. It is important to note that in this work, because
we choose only one function to fit, the determination of
the polynomial h(xz) Eq. 11 was the result of an opti-
mization of an easy target function, while in the general
case, all targeted properties, i. e. energy, B, ap, and
others, have to be determined simultaneously by an op-
timization procedure as is usually done with empirical
potentials, and that the natural way to achieve this is by
considering the r-dependent part of the cross potential
to also be an unknown function with parameters to be
determined, instead of the simple average potential used
here.
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FIG. 3: Short Range Order parameter versus Cr composi-
tion as calculated by Monte Carlo simulations with the new
potential and experimental measurements from [11]
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