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INTRODUCTION

Potential CO2 reservoirs are often geologically 
complex and possible leakage pathways such as those 
created. Reservoir heterogeneity can affect 
injectivity, storage capacity, and trapping rate. 
Similarly, discontinuous caprocks and faults can 
create risk of CO2 leakage. The characteristics of 
potential CO2 reservoirs need to be well understood 
to increase confidence in injection project success. 
Reservoir site characterization will likely involve the 
collection and integration of multiple geological, 
geophysical, and geochemical data sets. We have 
developed a computational tool to more realistically 
render lithologic models using multiple geological 
and geophysical techniques. Importantly, the 
approach formally and quantitatively integrates 
available data and provides a strict measure of 
probability and uncertainty in the subsurface.  The 
method will characterize solution uncertainties 
whether they stem from unknown reservoir 
properties, measurement error, or poor sensitivity of 
geophysical techniques.

METHODOLOGY

The tool uses statistical theory and geophysical 
forward models to compute images of the subsurface 
reservoirs. It produces images that are consistent with 
disparate data types such as geostatistical trends of 
formation layers, geophysical logs, and surface or 
cross-borehole geophysical measurements. Joint 
reconstruction of these data results in subsurface 
models that are more realistic than those obtained 
conventionally. Our reconstruction method uses 
Bayesian inference, a probabilistic approach that 
combines observed data, geophysical forward 
models, and prior knowledge (e.g., geostatistical 
trends of layer correlation lengths, thicknesses and 
juxtaposition tendencies). The result is a sample of 
the distribution of likely lithology models that are 
consistent with the data collected. The method uses a 
Markov Chain Monte Carlo (MCMC) technique to 
sample the space of possible lithology models, 
including the shape, location and continuity of layers.  

Figure 1 shows a schematic diagram of the MCMC 
approach used for this study.  

The approach that generates random lithology models 
(bottom of Figure 1) uses a geostatistical model to 
generate the “prior” spatial distribution of physical 
properties (resistivity, density, etc.) during each 
iteration in the MCMC process. Given that 
geophysical properties (such as electrical resistivity) 
tend to correlate with lithology or facies (rock 
categories with distinctive characteristics), we have 
employed a categorical geostatistical simulation 
approach.   The model space is defined to consist of 
those combinations of voxel-level lithologic 
categories that are consistent with our prior spatial 
distribution. The main advantages of this approach 
are: (1) data are often categorical (e.g. lithologic 
descriptions), (2) geologic insight on the spatial 
characteristics of geologic systems (e.g., facies 
models) can be exploited, and (3) a very large 
proportion of the information known about the 
system can be represented very compactly using only 
a few lithologic categories.

The stochastic simulation code “TSIM” is used to 
propose random lithology models that honor prior 
data) TSIM (Carle, 1996; Carle et al., 1998) is a 
geostatistical simulation code that accurately honors 
the spatial variability model for multiple lithology 
problems. Each realization exhibits a similar pattern 
of spatial variability that is consistent with borehole 
data and geologic descriptions of the site.  TSIM 
honors “hard” data, such as lithologic data at 
boreholes. “Soft” data, such as electrical resistivity 
logs, cone penetrometer data, or other forms of 
indirect data can also be used; in these cases, the 
relationship between the measured parameter and 
lithology is somewhat uncertain.

Additional capabilities of this approach are:

• Realizations can be generated that are similar to 
previous realization, as required by the MCMC 
algorithm. 

• Prior knowledge of “nonstationarity” of 
lithology placement, e.g. information indicating 
that a certain lithology is more likely to occur in 
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a certain area, can be considered. 

MCMC is a proven technique that uses a random-
walk type procedure to sample possible outcomes 
given all available data. A key advantage of the 
MCMC approach is that it automatically identifies 
alternative models that are consistent with all 
available data, and ranks them according to their 
posterior probabilities and associated confidences. In 
most geophysical applications, the inverse problem is 
substantially under-constrained and ill-posed. Thus, 
the search for a solution that is unique and possesses 
a high degree of confidence is generally impossible. 
Our approach makes use of prior information to 
sufficiently reduce the size of the space of feasible 
solutions in order to mitigate ill-posedness. The 
approach identifies competing models when the 
available information isn’t sufficient to definitively 
identify a single optimal model. Another strength is 
that it can be used to jointly invert disparate data 
types such as those described earlier. The method 
also provides quantitative measures of the uncertainty 
of a generated estimate. Additional details of this 
approach can be found in Ramirez et al., 2005.

RESULTS

We have conducted a numerical experiment where 
disparate data types were used to infer the most likely 
lithologic model. The numerical model is based on a 
well-characterized site located at DOE’s Savannah 
River Site (near Aiken South Carolina). At this site 
the lithology is known along a distal well, 
geophysical borehole logs are available and the 
overall geostatistical trends are well understood on 
the basis of core and outcrop studies. The site 
contains sand, silt and clay layers with minor gravel. 

Using TSIM, we generated random lithologic 
realization that honored the core log and 
geostatistical trend data. One realization is shown in 
Figure 1 (top frame). The location of the distal well 
where the lithology is known is shown as a dark line 
along the right hand side of the figure. One 
realization, chosen as random, was designated as the 
“true” model (Fig.1, left frame, bottom row). Cross-
well electrical resistivity data were calculated for 
electrodes located within a pair of wells (shown as 
small squares in Figure 1). 

All the data (core logs from the distal well, cross well 
electrical resistivity data and geostatistical trends) 
were used to guide the search.  The unknowns were 
the location and spatial trends of the lithologies 
within the domain. The results of the MCMC search 
are shown in the bottom row of Figure 1 as 
probability images. These images indicate the most 
likely location for each soil type. Note that there is 
reasonably good agreement between the probability 
images and the “true” model shown on the lower left 

corner of Figure1.  The “true” model consists mainly 
of sand with a few thin clay and silt layers. The 
probability image corresponding to sand (white-
yellow image, bottom row of Fig. 1) is mostly bright 
yellow; i.e. there is a high probability of sand at most 
locations. The white-blue and white-green images 
indicate the probabilities that clay and silt are present 
(respectively).  These locations are also in good 
agreement with clay and silt locations in the “true 
model”. Importantly, the study resulted in a new and 
more representative reservoir model that better 
explained the distribution of the contaminant plume.

Figure 1. Schematic diagram of the MCMC 
approach used.

Figure 3 schematically illustrates how “soft” 
information such as a geophysical log can be 
incorporated with other data to further constrain the 
TSIM algorithm. Our approach establishes 
confidence levels for given lithology types. The left 
side of the figure shows an electric well log from the 
site. The vertical blue, green and yellow bands 
indicate the range of resistivity values associated with 
clay, silt and sand materials. These ranges were 
determined on the basis of expert judgement but can 
also be determined based on core studies or Bayesian 
time series analysis. Suppose that the resistivity curve 
is near the middle of the resistivity range for a silt 
(green band); a high confidence level would be
assigned in this case because that is likely to be silt. 
Thus, the confidence level for silt at this depth would 
be 1.0 and 0.0 for silt and clay. If the resistivity falls 
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along the edge between the green and yellow bands, 
we are quite confident that material at that location is 
not clay, but cannot decide whether it is sand or silt.  
In this case, the confidence level for clay would be 
0.0, 0.5 for sand and 0.5 for silt. The rest of the 
electric log curve would be analyzed in similar ways. 
The diagram on the right side of Figure 3 
schematically shows the confidence levels assigned 
to each lithology type based on the electric log data. 
The width of the colored section indicates the 
confidence level that each lithology (indicated by 
color) is present. The height of each section indicates 
the depth range associated with the confidence levels.  
This type of “soft” conditioning allows many kinds 
of data to be incorporated in the analysis. For 
example, results of geochemical or mineralogical 
analysis, other types of geophysical well logs, and the 
results of hydrologic pumping tests could be 
incorporated in this manner.

Figure 2. The top frame shows one realization of 
lithology. The bottom left frame shows the “true 
model. The remaning bottom frames show the 
probability that clay (white-blue image), silt (white-
green image) and sand (white-yellow image) is 
present.

Figure 3. Schematic diagram showing how “soft” 
data such as a resistivity log (left side) is 
converted to lithology probabilities (right 
side of the diagram).

ACKNOWLEDGMENT

We wish to acknowledge the contributions of LLNL 
colleagues W. Hanley, S. Carle, R. Glaser and R. 
Newmark. This work was funded by the Laboratory 
Directed Research and Development Program at 
Lawrence Livermore National Laboratory. This work 
was performed under the auspices of the U.S. 
Department of Energy by the University of CA,  
Lawrence Livermore National Laboratory under con-
tract W-7405-ENG-48.

REFERENCES

Carle, Steven F. (1996) A Transition Probability-
Based Approach to Geostatistical Characterization of 
Hydrostratigraphic Architecture.  Ph.D. dissertation, 
Department of Land, Air and Water resources, 
University of California, Davis.

Carle, S.F., Labolle, E.M., Weissmann, G.S., Van 
Brocklin, D, Fogg, G.E., 1998, Geostatistical 
simulation of hydrofacies architecture, a transition 
probability/Markov approach:  in Fraser, GS; Davis, 
JM, Hydrogeologic Models of Sedimentary Aquifers, 
Concepts in Hydrogeology and Environmental 
Geology No. 1, SEPM (Society for Sedimentary 
Geology) Special Publication, p. 147-170.

Ramirez, A. L., J.J. Nitao, W.G. Hanley, R.D. Aines, 
R.E. Glaser, S.K. Sengupta, K.M. Dyer, T.L. 
Hickling, W.D. Daily, 2005, Stochastic Inversion of 
Electrical Resistivity Changes Using a Markov 
Chain, Monte Carlo Approach, Journal of 
Geophysical Research, vol 110, B02101, 
doi:10.1029/2004JB003449.




