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Abstract

Radiation driven heat waves (Marshak Waves!) are ubiquitous in as-
trophysics and terrestrial laser driven high energy density plasma physics
(HEDP) experiments. Generally, the equations describing Marshak waves
are so nonlinear, that solutions involving more than one spatial dimension
require simulation. However, in this paper we show how one may analyt-
ically solve the problem of the two-dimensional nonlinear evolution of a
Marshak wave, bounded by lossy walls, using an asymptotic expansion in a,
parameter related to the wall albedo and a simplification of the heat front
equation of motion.? Three parameters determine the nonlinear evolution,
a modified Markshak diffusion constant, a smallness parameter related to
the wall albedo, and the spacing of the walls. The final nonlinear solution
shows that the Marshak wave will be both slowed and bent by the non-
ideal boundary. In the limit of a perfect boundary, the solution recovers
the original diffusion-like solution of Marshak. The analytic solution will

be compared to a limited set of simulation results and experimental data.

I Marshak, R.E., Phys. Fluids, 1, 24, (1958)
2 J.H. Hammer and M.D. Rosen, Phys. Plasmas, 10, 1829 (2003)



Supersonic radiation transport
experiments have revealed an
unexpected boundary dependence

() experiments by Back, C. A., et al. [Phys. Plas-
mas, 7, p. 2126, 2000] demonstrated significant cur-
vature of the radiation front profile in test samples.
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Au half-raum —/ Au or Be sleeve /

Foam 0.25 - 1.0 mm long
Ta O, 40 mg/cc or
Si0, 50 mg/cc

slit plates
foamvar + al

mfp ~ 0.25 mm in these targets

A 1D streaked spectrometer records photon energies of 550 eV

Further work by Back, C. A., et al. [paper FO1.00009
of this conference| shows that the curvature of the
radiation front depends upon the composition of the
sleeves surrounding the aerogel foam.
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We treat this problem in 2D planar
geometry

Assuming a supersonic radiation front with tem-
perature (T') independent opacity, V2T =0

Lossy Wall

Radiation Front

xLy.0)

T X

Temperature source

T must be of the form
T = 5 cos(kny) [An(t)e"n® + By (t)e ™ n?

n=0
It 1s natural to choose form of the front to be

00
rr(y,t) = ngo cn cos(kny)



The non-ideal boundary generates an
eigenvalue problem

It 1s assumed that the boundary at y = £L has a
constant albedo, a. The energy flux into the bound-
ary 1s the difference between the absorption and re-
emission, SO

oT* 3
—— = “prla — 1T
8y y=I 4 y=L

Using the general solution for 7%, one finds the
eigenvalue condition

E

tan(knL) = ﬁ
n

where € = %,0/43[4(1 —a) < 1 is a useful asymptotic
expansion parameter.



The eigenvalues are nearly nm

Expanding the tangent, we look for the correction
1
tan(nm + ¢p) ~ ¢p + quf,gz + ...

Iy 1 . :
0.5 \ : :
0 , , , :, : ; : : :1_'_’_'_I
( | D 4 6/ 8 10
! knL .I:;::
05
_ 1 E

Solving the eigenvalue condition obtains

5 ni N J(mr)Z N
N —— — 3
" % 9

Since ¢g > 0 we must take the + root.
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Note that ¢, rapidly becomes small

A good expansion parameter, /¢, is apparent

dg = Ve

2
e €
T T
Generally for n > 0,
2
£ £
N — — + ...
On nt  nomd

Thus, we will formally expand in /€ and solve order
by order

Ap = A0 4 JeAD 4 eAl) 1 .
Bn =B + VeBE + eB + ...

The boundary conditions at * = 0 and x = z  will
determine A,, and B,



On the source side (z =0) T =T

oULA

4. 4 3,9
 OnY ] i (my ((bny Py

[ 2,2
TH= % (Ap, + Bp) |cos (W) (1 _ oY

L 212

+ ...

L L 6L°

}

Breaking down the above equation order-by-order
and using orthogonality, one finds

An+Bn:<

TH(145)+0(e2), n =0
2(=1)

1 3
Vel L O(ed), n> 0

n=m



The boundary condition at the curved
front is more complex

Taylor expansion around the front allows one to
approximately satisfy T(zp,y) =0

4

T (zp,y) =T (co,y) + (xF — cp) By

6 X

€0
With this weak curvature expansion, the front B.C.
1s recast as

oT

ox

T*(co,y) = |co — OZOO cn, cos(kny)
n=

€0

Using the expression for T° 4 one eventually finds
through order-by-order solution that

Ape’n 4 Bpe=Fnt = 0 4 O(e

DO
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The lowest order solution shows an edge
cooling

Solving for A,, and B,, one finds the temperature
structure is given by

T 3 y\ sinh [ko(z — ¢p)]
N s J
T2 ( " 3) oo (\/EL) sinh(kgcg)
de o (—1)sinh [ko(z — cg)] 3
— k O(e2
+7r2 nZ1 c0s(kny) n? sinh(kgcq) +0(e)

Contours of T'(z, y)

“os 1 s 2 as



We can now generate the front equation
of motion

For supersonic radiation fronts, Hammer and Rosen
found the simplified equation of motion
do

pexp = — —VT 4
SKP gy
- Internal energy of material at T €
- Opacity of cold material K
- Density of cold material o
- Stefan-Boltzman constant o

Using our expressions for zg(y,t) and T'(z,y) we
can find the unknowns ¢,
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A set of nonlinear equations for the front
shape are generated

40T}
G = (1+5) ﬁﬁ + O(e?)
3ep%e 3 Lsinh (o)
. 80']7(;l E ]‘Cl 3
= — 0,
‘1 3kp?em?sinh(kycp) +0()

— 0,
o 3kp?e nAm? sinh(kncp) +0E)

Note that the diffusion constant of Marshak’s wave
1S

80T
3KkpZe

Dy =
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Remarkably, the equation for cj is easily
solvable

L Det

co(t) = —=arccosh |—— + 1

VE 2L
where D = D;(1 + €/3) is a modified radiation
diffusion constant.

The above solution 1s more easily understandable
through expansion

3

L |2 (Det)\2
Marshak's soln L2'& . B
Drag—like slowing

Note that as € — 0 the solution reduces to the usual
Marshak wave solution.

12



The non-ideal boundary produces a
“drag” on the radiation, bending and
slowing the front

The front is given by

L
rp(y,t) = —=arccosh

NG

0.8

{{t=0 t=1 t= ik 3
] tx 4
0.4’ 7

Y 0.04

- //

08070 0.4 0.8 1.2
X

Det
S|

\[
0T COS 7Y + H.O.T.

The front radius of curvature at y = 0 is

oo L 1
© Vearccosh [D‘St + 1]
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Higher order contributions to xr become
less-and-less important in time

Slowing of x (0,%) compared to Marshak

Marshak sol’n

" Lossy boundary sol'n

0 5 10 15 20
Ratio of ¢;(t) to cp(t)
0 1 2 3 4 5

—0.02;

70.045

G/

—0.06;

—0.08;

—0.1:
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Analytic model compares well with

simulation
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The analytic model also appears to fit
experiment using reasonable parameters

Solving for y(t) at a fixed x, we can compare to

streak data

L
y(t) = = cos™ !

NG

co(t)

Streak Data Courtesy of C.A. Back

xr=sl1t

R(mm)
20

Data from the 0.8 mm radius and 1 mm long Au
sleeve (optically thick case) experiment is well matched
with D = 0.46 mm?/ns and € = 0.3-providing a
measure of wall albedo.
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A lossy boundary creates a “drag” on
the radiation front

e A non-ideal boundary bends and slows Marshak
waves.

e Three key parameters describe the full 2D behav-
10T

- The tube radius: L

- A smallness parameter: & = %p/fL(l — a)

o . _ 80T4 c
- A diffusion constant: D = 357 (1+5)

e The cylindrical coordinate version can be obtained
via the same derivation except with the trigonomet-
ric functions replaced by Bessel functions.

e Toinclude k = k(p,T) and e = e(p, T'), one must
address the eigenvalue problem differently.

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore
National Laboratory under contract W-7405-Eng-48.
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