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Summary 

A distributed memory message-passing parallel implementation of a finite-volume discretization of 

the primitive equations in the Community Atmosphere Model is presented. Due to the data 

dependencies resulting from the polar singularity of the latitude-longitude coordinate system, we 

employ two separate domain decompositions within the dynamical core – one in latitude/level 

space, and the other in longitude/latitude space. This requires that the data be periodically 

redistributed between these two decompositions. In addition, the domains contain halo regions that 

cover the nearest neighbor data dependencies. A combination of several techniques, such as one-

sided communication and multithreading, are presented to optimize data movements. The resulting 

algorithm is shown to scale to very large machine configurations, even for relatively coarse 

resolutions. 
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Introduction 

Atmospheric general circulation models (AGCMs) are key tools for weather prediction and climate 

research. They also require large computing resources: even the largest current supercomputers 

cannot keep pace with the desired increases in the resolution of these models. AGCMs consist, 

roughly speaking, of the dynamics, which calculates the atmospheric flow, and the physics, in 

which parameterizations for subgrid phenomena such as long- and short-wave radiation, moist 

processes, and gravity wave drag, are approximated. The physical parameterizations will not be 

discussed further here. We concentrate on the finite-volume solver of the dynamics (referred to as 

the dynamical core) in the Community Atmosphere Model (CAM; Collins, et al., 2004; McCaa, et 

al., http://www.cgd.ucar.edu/csm/models.atm-cam). 

 

The finite-volume dynamical core, or FV dycore for short, was originally developed during the 

1990’s by Lin and Rood at the NASA Goddard Space Flight Center (Lin and Rood, 1996; Lin and 

Rood, 1997; Lin, 2004). Until that time most prominent general circulation models used either a 

finite-difference method or a spectral method. Finite-difference techniques, when applied on a 

latitude-longitude mesh, are limited in their allowable time step due to the polar singularity, or 

alternatively have to perform costly polar filtering to damp out unwanted modes (Arakawa and 

Lamb, 1977; Wehner, et al, 1995). The pure spectral approach, due to its costly transforms, is 

known to not scale well with horizontal resolution. The finite-volume approach discussed here 

addresses both of these issues while maintaining the traditional latitude/longitude grid. It 

additionally conserves dry air mass and the mass of transported atmospheric constituents, which is 

particularly important for climate simulations due to their long integration times, and imperative for 
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accurate representation of chemical interactions in climate/chemistry simulations. It should be 

noted that there are ongoing efforts to address both the time step limitation and wasted computation 

due to unnecessary polar resolution, by way of reduced grids and alternate grids such as the cubed 

sphere (Rancic, Purser and Mesinger, 1996). 

 

The finite-volume dycore uses a Lagrangian vertical coordinate, where the Lagrangian surfaces are 

in fact material surfaces that bound the control volumes used for the integration. The initial 

coordinate is terrain-following, and the finite volumes are free to float, compress or expand as 

dictated by the hydrostatic dynamics (Lin, 2004). This reduces the dimensionality of the main 

dynamics from three to two. The resulting system closely resembles the shallow water equations, 

with pressure thickness (which is proportional to the mass) playing the role of fluid depth. A 

system of equations for mass, constituent concentration, heat, and horizontal momentum within 

each control volume is discretized using a conservative flux-form semi-Lagrangian algorithm (Lin 

and Rood, 1996). Smaller time steps are required for the semi-Lagrangian algorithm to solve the 

dynamical equations as compared to the constituent transport. A mass, momentum and total energy 

conserving algorithm is used to remap the prognostic variables from the floating Lagrangian 

control volumes to an Eulerian terrain-following coordinate, thereby preventing undue distortion of 

the Lagrangian surfaces. The remapping typically occurs on a time scale several times longer than 

that of the constituent transport. After development at NASA Goddard, this methodology was 

installed in the NCAR-based Community Atmospheric Model. 

 

The efficient parallelization of the finite-volume dynamical core is not trivial, in part due to the 

latitude-longitude nature of the underlying grid. The convergence of meridians at the poles brings 
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not only well-known numerical challenges, but creates software challenges as well.  We will see 

that for the method presented here to scale to a reasonably large processor set, it is necessary to 

redistribute the data on a regular basis. We present a variety of techniques using advanced features 

of the current Message-Passing Interface standard MPI-2 (http://www.mpi-forum.org), and the 

OpenMP standard for multithreading (Dagum and Menon, 1998), to handle the redistribution 

efficiently. Many of these techniques are new in the field of atmospheric modeling, and we believe 

an extensive analysis is key to attaining the highest possible performance of CAM in a production 

environment. 

 

The message-passing parallelization with both one- and two-dimensional decompositions is treated 

in Sec. 1, with a discussion of the underlying communication primitives in Sec.2. In Sec. 3 the 

optimizations for improved performance on large parallel computers are presented. Results are 

presented in Sec.4, where it is seen that the approach scales well to large machine configurations.  

Additional conclusions and future directions are presented in Sec. 5. 

 

1. Parallelization 

The solution procedure for the FV dynamical core is divided into two portions: (1) dynamics and 

transport within each control volume (referred to as cd_core for the main dynamics and trac2d for 

the tracer advection) and (2) remapping from the Lagrangian frame back to the original vertical 

coordinate (referred to as te_map). Time-integrations within control volumes are two-dimensional 

in nature and are vertically decoupled, except for the solution of the hydrostatic equation, which is 

inherently a vertical integration (referred to as geopk). Dynamics is subcycled with respect to tracer 

transport, and solution of the hydrostatic equation occurs on the faster time scale. All of these 
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components were first parallelized with the OpenMP shared memory multitasking paradigm, and 

respectable performance was obtained on up to 16-32 CPUs on an SGI Origin 2000 (Sawyer, 

1999). 

 

The FV dynamical core, however, contains considerably more inherent parallelism. It is clear that 

the cd_core calculation at each level is independent of all others (with the exception of geopk). 

There is no reason, beyond convenience, to parallelize the vertical calculation with shared memory 

parallelism alone. If there are enough levels, these can be separated into contiguous sets, much like 

packages of sliced cheese (see Fig. 1). Within each package it is still possible to employ OpenMP 

parallelism on the small number of local levels or with respect to latitude. This approach is 

employed on clusters of shared memory nodes, such as the IBM SP, which was used (along with 

the SGI Origin) for the subsequent performance tests. 

 

The stencil of points needed for one finite-volume time-iteration is determined by the spatial 

accuracy order of the algorithm and the geographical separation of the grid points, as dictated by 

the dimensionless Courant numbers: 

 

Cλ = u ∆t / (R ∆λ cos θ) Cθ= v ∆t / (R ∆θ) 

 

where λ and θ are longitude and latitude, resp., u and v are the zonal (longitudinal) and meridional 

(latitudinal) velocities, resp., and R is the earth’s radius. The Courant number represents the 

number of mesh widths that a signal travels in one time step. If the difference scheme uses just 

nearest neighbors, the Courant number must generally be less than unity. Hence, use of larger time 
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steps requires the domain of dependence of the difference scheme to extend beyond nearest 

neighbors. In latitude the geographical separation ∆θ  is constant. Therefore, if ∆t is chosen 

appropriately, and the wind speeds, u and v, remain in an atmospherically realistic range, only the 

accuracy order of the algorithm is significant, and there are limited north-south neighbor 

dependencies (1, 2, or 3 lines of latitude) on each level. A similar statement for the cd_core 

calculation in λ is not possible; even if the longitudinal separation ∆λ is constant, the cos θ term 

goes to zero at the poles. In order to solve the pole problem of converging meridians near the pole, 

a semi-Lagrangian approach is employed to determine the fluxes in λ. The quantity Cλ will 

typically become large, and the semi-Lagrangian method will have dependencies on grid points that 

are at geographical distances dictated by the departure point for a given ∆t. Near the poles, this set 

goes well beyond the immediate east-west neighbors. 

 

In the one-dimensional domain decomposition algorithm the domain is cut into latitude slabs, with 

each slab (or more abstractly decomposition element, subsequently referred to as a DE) maintaining 

a halo (or ghost) region on both the north and south, as illustrated in Fig.1. The horizontal 

calculation can be performed in a distributed memory setting: the halo regions are first exchanged 

using message-passing, and the latitude-slab calculation is then performed independently on all 

DE’s. In the vertical, shared memory parallelism is still utilized, resulting in a hybrid-parallel 

model. The one-dimensional domain decomposition is applicable to both cd_core (including geopk) 

and te_map. 

 

In the two-dimensional domain decomposition formalism, cd_core is decomposed in latitude and 

level. Unfortunately this decomposition is no longer appropriate for te_map and the vertical 
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integration for the calculation of the pressure term (known in atmospheric modeling as ρκ) in 

geopk; here the dependencies are vertical instead of horizontal. For these components the domain is 

best decomposed in latitude and longitude (see Fig. 2). This requires the constituent arrays to be 

redistributed, or transposed, from a latitude-level to a longitude-latitude decomposition before the 

vertical calculation and back thereafter. The communication pattern for the transposes can be quite 

involved. However, if the latitudinal sub-decomposition is the same for both two-dimensional 

decompositions, then the communication pattern corresponds to that of shifting between one-

dimensional decompositions in longitude/vertical, for each latitudinal subdomain. We have applied 

this multi-two-dimensional domain decomposition technique, putting much emphasis on a highly 

optimized transpose operation. In all cases a single MPI task is assigned to a subdomain. 

 

2. Communication Primitives 

At the lowest level, we have based the parallelization on the pilgrim (Sawyer and Messmer, 2002) 

and the mod_comm (Putman, Lin and Shen, 2004) libraries. The former is designed for general, 

unstructured domain decompositions while the latter was originally designed for the types of 

structured communication, in particular halo exchanges, needed for one- and two-dimensional 

rectangular domain decompositions. Mod_comm optionally invokes one-sided communication 

based on the MPI-2 standard, and combines this with OpenMP multithreading; this is supported on 

a number of architectures, such as the SGI Origin. 

 

We have added facilities for the types of irregular communication inherent to the transpose, namely 

exchange of unequally sized data chunks between decomposition elements (DE’s). The following 
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Fortran-90 type is used to describe a set of non-uniform blocks by their memory displacements and 

sizes: 

TYPE BlockDescriptor 
  INTEGER                        :: method 
  INTEGER                        :: type   
  INTEGER, POINTER     :: displacements(:) 
  INTEGER, POINTER     :: blocksizes(:) 
  INTEGER                        :: partneroffset 
  INTEGER                        :: partnertype 
END TYPE BlockDescriptor 
 

Within each communication paradigm (MPI-1 or MPI-2), more than one communication method is 

available. Depending on which method is used, the type may contain an MPI derived datatype; 

otherwise the displacements and blocksizes may be used directly. The partneroffset is used to 

specify the target location, and the partnertype the target datatype, when invoking MPI-2. Different 

communication methods can be used for different code sections; such specification can be made at 

run-time, although the choice of whether to invoke MPI-2 must be made at compile time. Various 

communication methods are discussed in the following section. 

  

Pilgrim defines communication patterns using the ParPatternType, which contains two arrays of 

extent [1: #DE’s] - the send descriptor, an array of block descriptors corresponding to data to be 

sent, and the receive descriptor, an array of block descriptors corresponding to data to be received. 

 

TYPE ParPatternType 
  INTEGER                                          ::     Comm 
  INTEGER                                          ::     Iam 
  INTEGER                                          ::     Size 
  TYPE(BlockDescriptor), POINTER :: SendDesc(:) 
  TYPE(BlockDescriptor), POINTER :: RecvDesc(:) 
END TYPE ParPatternType 
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A given data array A may have two different decompositions, D1 and D2.  The redistribution, or 

transpose R is the communication pattern 

 

R: AD1 → AD2 

 

That is, redistributions are a function only of the data decompositions and can be calculated once at 

initialization and stored. The mod_comm library has been extended to handle these irregular 

datatypes through the routines mp_sendirr and mp_recvirr, which are analogous in functionality to 

the regular variants mp_send and mp_recv. The mp_sendirr primitive requires specification of both 

the send and receive descriptors (both are needed to support one-sided communication), while 

mp_recvirr requires only the receive descriptor. 

 

3. Optimizations 

In our original MPI-1 implementation, data was gathered into a contiguous send buffer, 

communicated using the nonblocking MPI_Isend and MPI_Irecv primitives, and then scattered to 

its target destination. Our first optimization was to define MPI derived data types in order to 

circumvent the temporary contiguous buffers. As MPI performance varies with the local 

implementation, both approaches continue to be supported. 

  

The enhanced MPI-2 standard offers one-sided communication through the MPI_Put primitive.  

One-sided communication requires the definition of an MPI-2 window, which designates the areas 

of memory that can receive remote data. As with MPI-1, one can specify either contiguous data or 
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MPI derived data types. In addition, the MPI-2 standard provides for multithreading of 

communications. 

 

These choices led us to consider four methods for one-sided communication (see Fig. 3). In the 

most basic method (denoted as method A), data is gathered into a contiguous buffer, written to a 

contiguous target using MPI_Put, and scattered to its final destination. The memory associated with 

the target window is dedicated to receiving data from MPI_Put and is allocated either statically or 

with MPI_Alloc_mem. The target window itself is defined at initialization and remains in place 

throughout the calculation. The communicated data is partitioned into blocks to enable 

multithreading using OpenMP. 

 

In method B, each contiguous block of source data is instead written directly into the target window 

using MPI_Put, with multithreading carried out with respect to the blocks of source data. The 

tradeoff is between the gather step of method A and the extra MPI_Put operations of method B. 

 

In method C, the source data is defined by a single MPI derived type and directly written into the 

target using MPI_Put. Threading is carried out with respect to the target destinations. Compared to 

method B, there are two tradeoffs – multiple MPI_Put operations of contiguous blocks of source 

data versus a single MPI_Put of an MPI derived type, and threading over the source blocks versus 

over the target destinations. 

 

In method D, the source data is defined by a single MPI derived type (as with method C), but the 

data is instead placed directly into its target destination using MPI_Put, bypassing the dedicated 
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target window. This method requires the definition of a target window for each target array. It 

would seem that these target windows could be defined at initialization, thereby saving the window 

creation overhead. However, some of the arrays that undergo communication operations are 

temporary arrays that are allocated and deallocated each time step, and their location in memory 

will therefore vary throughout the course of the calculation. Since memory windows are defined in 

terms of locations rather than syntactic array names, method D might therefore incur a significant 

windowing overhead. An additional problem with method D is that some machines (such as the 

SGI Origin) restrict the storage types associated with target windows, with ordinary dynamically 

allocated memory not qualifying. 

 

The geopotential calculation geopk is a vertical integration within the dynamics calculation that 

occurs on the fast dynamics time scale. This is at a point in the calculation when the domain is 

decomposed in the latitude and vertical directions. For a one-half degree mesh, the fast dynamics 

time scale is typically 16 times faster than that of the physics and remapping; hence it is imperative 

that the geopk communications be optimal. Our original approach to computing these indefinite 

integrals was to transpose the relevant arrays before and after this operation. We have instead 

developed an alternative approach that obviates the need for transposes (see Fig. 4). To compute an 

upward indefinite integral, local partial sums are computed within each subdomain; each complete 

local sum is then communicated to all higher subdomains; the complete local sums and local 

partial sums are added together accordingly to give global partial sums. This method does not 

require transposes - only the communication of the partial sums to all higher subdomains. The 

partial sum method gives round-off variations with respect to the number of vertical subdomains, 
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due to differences in the order of summation. But a quadruple precision mode to ensure bit-wise 

reproducibility over all possible parallel configurations is available for debugging purposes. 

 

4. Results 

 

The FV dynamical core was tested at 0.5o x 0.625o, 1o x 1.25o and 2o x 2.5o horizontal resolutions, 

corresponding to horizontal grid sizes of 576 x 361, 288 x 181 and 144 x 91, respectively. Twenty-

six (26) vertical levels were used for the majority of the cases; some simulations were run using 66 

levels. Unless otherwise specified, the partial sum method was used for the geopotential 

calculation, and MPI-1 with derived types was used for the communications. The target platforms 

were the SGI Origin 3800 Chapman (at NASA Ames) with 1024 MIPS R14000 CPUs @ 600 

MHz, and the IBM SP Seaborg (at DOE LBNL/NERSC) with 380 Nighthawk nodes, each with 16 

Power-3 CPUs @ 375 MHz. All runs used version 3 of CAM. For timing purposes cases were 

generally run for one simulated day and repeated, with output time excluded from the throughput 

figures. 

 

The one-dimensional decomposition was extensively evaluated at the 1o x 1.25o x 26L resolution 

on the SGI Origin with various numbers of latitude slabs per subdomain and OpenMP threads per 

slab, using different communication paradigms. Table 1 gives an overview of the timing results for 

the entire FV dynamical core in CAM using MPI-1 with intermediate buffers, MPI-1 with derived 

data types, and MPI-2 with intermediate buffers (method A). Figure 5 shows some of these results 

graphically. As the number of OpenMP threads increases, the performance using MPI-2 becomes 

correspondingly better than that using MPI-1. Because the performance of the computational 
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portions is independent of the communication paradigm, the increase in relative performance with 

MPI-2 (versus MPI-1) with thread count must be attributable to the multithreading in the halo 

exchange communication. In fact, closer investigation of the communication timings indicates 

excellent speedup in the halo exchange. These results are in line with those of Putman, Lin and 

Shen (2004). 

 

Figure 6 compares the timing percentiles of various components of CAM on the IBM SP when run 

with the FV dynamical core at the 0.5o x 0.625o x 26L resolution, both at small (32) and large 

(2944) processor count. The 32-processor case corresponds to a 4x1 latitude/vertical decomposition 

and the 2944-processor case to a 92x4 decomposition, each with 8 OpenMP threads per task. The 

latter case runs approximately 25 times faster than the former (see Fig. 8), which corresponds to a 

relative parallel efficiency of about 27%. Some of the components scaling the worst and best are 

part of the physical parameterizations, which is separate from the dynamical core. Some of these 

physics components scale well because they are communication-free. The land-surface model 

scales by far the worst and is a known bottleneck at very large processor count; this is due primarily 

to an insufficient computational load per land point. All components of the dynamical core scale 

reasonably well to large processor count. For example, the main FV dynamics runs about 30 times 

faster. At 2944 processors the transposes required for the remapping (transposes) account for only 

3% of the overall computation. Even the geopotential routine geopk, which has been the Achille’s 

heel (scaling-wise) of FV dycore due to its vertical coupling and frequent execution, now scales 

reasonably well; its fractional time within the dycore increases from 21% to just 26% in going from 

32 to 2944 processors. 
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Figure 7 illustrates the overall scalability of CAM on the IBM SP at the 1o x 1.25o x 26L resolution, 

in simulated days per day of wall-clock time. This includes both the dynamical core and the column 

physics. We consider two-dimensional decompositions having up to 48 subdomains in latitude and 

7 subdomains in the vertical direction. All cases have 4 OpenMP threads. The relative parallel 

efficiency over this processor count range is approximately 26%. Even for this relatively modest 

resolution, the two-dimensional hybrid-parallel implementation can exploit parallelism up to 1320 

processors. 

 

Figure 8 examines the scalability of CAM on the IBM SP at the 0.5o x 0.625o x 26L resolution. We 

run 2 processes per node with 8 OpenMP threads per process. At 26 levels, we are able to consider 

only up to 4 subdomains in the vertical direction because of the OpenMP usage in the vertical. 

Through use of 92 subdomains in latitude, we are able to effectively use 2944 machine processors. 

The overall throughput is only twice as great as with the finest one-dimensional decomposition, due 

most likely to limitations of the scaling of the land-surface model. 

 

There is a special extension of CAM designed to study coupled chemistry and climate, known as 

the Whole Atmosphere Community Climate Model (WACCM). Required conservation of the 

chemical constituents mandates use of the finite-volume dynamical core. We examine the 

scalability of CAM on the IBM SP for a 2o x 2.5o x 66L WACCM configuration with 51 

constituents (see Fig. 9). The larger vertical mesh allows more effective use of the two-dimensional 

decomposition method, which allows us to realize a four-fold increase in performance as compared 

to the one-dimensional decomposition. 
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We next examine performance of the two-dimensional decomposition methodology using MPI-2 

one-sided communications on the SGI Origin. Table 2 shows the overall transpose times for the 

0.5o x 0.625o x 26L resolution using 4 vertical subdomains and 4 threads per process, for MPI-1 

with derived types, and MPI-2 methods A and B. We would have liked to include MPI-2 methods 

C and D in the comparison, but MPI-2 communications with derived data types have not been 

supported on the Chapman SGI Origin. The performance gains for the transpose are more modest 

than those for the halo exchange, but show a marked improvement of method B over both method 

A and the MPI-1 default. The fact that one-sided communication is of less benefit to the transpose 

calculation is under investigation. 

 

The partial sum optimization of geopk mentioned earlier also achieved a notable performance 

improvement. As indicated in Table 3, the partial sum method (with roundoff error) performs 

consistently as well or better than the transpose approach. One would expect the partial sum 

method to be superior particularly for small numbers of vertical subdomains due to the smaller 

communication stencil. 

 

We have also implemented nested OpenMP constructs in the FV dycore. The motivation for this is 

that, with the two-dimensional decomposition, one of the decomposition directions (vertical) is the 

same as the primary OpenMP direction, and, with only 26 vertical levels, the degree of attainable 

OpenMP parallelism is therefore limited. Nested OpenMP is presently supported on HP/Compaq 

and IBM platforms, although IBM's present implementation is non-standard and not well 

publicized. We apply the nested constructs to the vertically independent phase of cd_core. The 

outer loops are with respect to the vertical direction, and the inner loops thread over latitude. 
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Because there are so many more inner loops than outer loops, nested OpenMP parallelism does 

incur an overhead. Even so, nesting can pay off for large thread count. 

 

Table 4 considers nested OpenMP for the computational kernel of the vertically independent phase 

of the FV dycore on the IBM SP. Cases are carried out at 0.5o x 0.625o x 26L resolution using 4 

latitudinal subdomains and 7 vertical subdomains, so that each subdomain has either 3 or 

(typically) 4 points in the vertical direction. A total of 8 OpenMP threads are used. Without nesting, 

all 8 threads are applied to the vertical direction, but with only 4 vertical points per subdomain, half 

of the threads are wasted. The optimal situation occurs with 4 threads in the vertical direction and 2 

in latitude. The resulting throughput is 50% faster than without nesting. When more threads are 

applied in latitude instead of the vertical, the throughput declines due to the increased overhead of 

the additional inner loops. This section of code represents roughly 15% of the overall computation; 

although the throughput with OpenMP nesting increases by 50%, this translates to just a 7% 

increase overall. 

 

Virtually no improvement is seen with nested OpenMP constructs when the number of latitudinal 

subdomains is increased to 48. This is due most likely to the much reduced workload per OpenMP 

region, making the increased overhead of nesting more significant. 

 

5. Conclusions and Future Work 

 

We have presented a scalable parallel implementation of a finite-volume solver of the primitive 

equations of atmospheric dynamics. This methodology has been fully integrated into the 
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Community Atmosphere Model. The approach utilizes two different two-dimensional domain 

decompositions connected by optimized transposes. Communication is accomplished with either 

ordinary MPI or one-sided MPI-2 constructs; the latter incorporates OpenMP multithreading as 

well. Several approaches for incorporating MPI-2 with OpenMP for the interprocess 

communication have been programmed and evaluated. On machines that support this paradigm, 

such as the SGI Origin, we find significant improvement over the standard MPI-1 approach. Even 

when run with MPI-1, we demonstrate that CAM can scale to roughly 3000 processors at the half-

degree resolution. We also demonstrate the feasibility of nested OpenMP constructs on the IBM, 

although the net benefit for this particular application is marginal. 

 

One unexplained phenomenon is the fact that MPI-2 with multithreading is not nearly as much of a 

benefit to the optimized transposes as it is to the border communications. The reasons for this are 

under investigation. We also were not able to test all four MPI-2 strategies on the SGI Origin 3800, 

as those involving MPI derived types encountered system errors. 

 

We recently ported the FV dycore to the Cray-X1 machine and have performed the necessary 

vectorization. The code is not yet running correctly with MPI-2. We will consider extending the 

SHMEM option in mod_comm to support irregular communcations. 
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Table 1. Comparison of FV dycore timings on the SGI Origin at 1o x 1.25o x 26L resolution for 

various communication paradigms. The one-dimensional decomposition is used, with up to 45 

subdomains in latitude and 9 OpenMP threads. There is a clear increase in performance with MPI-2 

with increasing thread count. 

 
 

DE s / Threads MPI-1 Buffers MPI-1 Types MPI-2 Method A

9 / 1 626 545 641
9 / 4 193 194 187
9 / 9 105 111 98
18 / 1 316 312 300
18 / 4 112 111 102
18 / 9 77 79 62
36 / 1 159 162 165
36 / 4 82 84 66
36 / 9 64 67 42
45 / 1 153 142 171
45 / 4 75 74 62
45 / 9 63 68 40  
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Table 2. Comparison of transpose timings on the SGI Origin at 0.5o x 0.625o x 26L resolution for 

various communication paradigms. We use 4 subdomains in the vertical and 4 OpenMP threads, 

and up to 36 subdomains in latitude. The performance gains for the transpose are more modest than 

those for the halo exchange, but show a marked improvement of MPI-2 method B over both 

method A and the MPI-1 default. 

 

 

Nlat MPI-1 Types MPI-2 Method A MPI-2 Method B

9 113 117 99.5
18 68.8 69.5 60.8
36 46.4 47.4 42.4  
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Table 3. Timings for the geopotential calculation. The partial sum method is as good or better than 

the transpose method, particularly for a moderate number of subdomains in the vertical direction. 

 
 
 

Geopk  method 1 vertical subdomain 4 vertical subdomains 7 vertical subdomains

Transpose 59.7 51.2 36.6
Partial Sum 60 30.1 30.3  
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Table 4. Results using nested OpenMP constructs at 0.5o x 0.625o x 26L resolution on the IBM SP 

for the computational kernel of the vertically independent phase of the FV dycore, with 4 latitudinal 

subdomains, 7 vertical subdomains, and 8 OpenMP threads. The case with 4 vertical threads and 2 

latitudinal threads is optimal. 

 
 

Vertical threads Latitudinal threads Computer time

8 1 200
4 2 136
2 4 181
1 8 261  
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Figure Captions 

Fig. 1. The one-dimensional algorithm decomposes the latitude-longitude-level domain into a set of 

latitudinal slabs. Each slab, or decomposition element (DE), has a north and south halo 

region, which covers the latitudinal data dependencies. These halo regions are filled (halo 

exchange) before cd_core calculations in a communication phase that can be overlapped 

with unrelated computation. The calculation on haloed arrays can then take place without 

further communication. 

Fig. 2. The two-dimensional domain decomposition formulation requires different decompositions 

for different phases of the computation. A decomposition in latitude and level (left) is used 

for dynamics and transport within a control volume, whereas a decomposition in longitude 

and latitude (right) is used for the surface remapping. The two decompositions are 

connected by optimized transposes. 

Fig. 3. There are four MPI-2 communication schemes. Method A packs data into a contiguous send 

buffer, uses multithreaded MPI_Put for communication into a dedicated target window, and 

then unpacks from the receive buffer. Method B performs multithreaded MPI_Put over 

contiguous source segments into a dedicated target window and then unpacks from the 

receive buffer. Method C uses MPI_Put with derived source data types into a dedicated 

target window, with multithreading over the target process, and then unpacks from the 

receive buffer. Method D uses derived source and target data types to MPI_Put directly 

from the source to the target; with method D one must make sure that the window 

continually points to the correct target buffer. 

Fig. 4. Partial sum methodology for geopk. The atmospheric levels (here illustrated in the 

horizontal) are distributed over DE’s. When integrating vertically upward, each DE does a 
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local integration in parallel and passes its result to all DE’s above it. Bitwise reproducibility, 

if desired, can be ensured through use of high precision arithmetic. 

Fig. 5. Wall-clock time for the FV dycore at 1o x 1.25o x 26L resolution on the SGI Origin as a 

function of the number of subdomains, using a one-dimensional decomposition. For 4 and 9 

threads per DE (upper and lower pair of curves, resp.), the MPI-1 (upper curve in pair) and 

MPI-2 (lower curve in pair) performance are given. MPI-2, which can take advantage of the 

multithreading in the communications primitives, can yield as much as a 20% overall 

reduction in computation time for 4 threads, and a 33% reduction for 9 threads. 

Fig. 6. The performance of the overall CAM application on both 32 and 2944 processor 

configurations using IBM Seaborg is broken down by component. The dynamical core 

components main dynamics (which excludes geopotential), geopotential, tracer advection 

and Lagrangian remapping all scale better than average. The land surface model has the 

poorest scaling due to insufficient computational load; the other physical parameterizations 

post-coupler physics and pre-coupler_physics scale better than average, in part thanks to 

their communication-free nature. With the targeted optimizations, the transpose and 

dynamics/physics coupling (denoted dyn/phys coupling) sections do not present a 

performance bottleneck.  

Fig. 7. Throughput (in simulated days per computing day) of the 1o x 1.25o x 26L resolution on the 

IBM SP with Nighthawk 16-way nodes, as a function of processor count. This illustrates the 

scalability of the hybrid-parallel approach at modest resolution on a very large machine. 

Having 1 subdomain in the Z direction (leftmost curve) allows parallelism to be exploited 

up to 200 processors (about 4 latitude rows per process), with 4 subdomains in Z (center 
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curve) up to 780 processors, and with 7 subdomains in Z (longest curve) up to 1320 

processors. For all tests, 4 OpenMP threads per process were used. 

Fig. 8.  Throughput (in simulated days per computing day) of the 0.5o x 0.625o x 26L resolution on 

the IBM SP with Nighthawk 16-way nodes, as a function of processor count. The leftmost 

curve is with 1 subdomain in the Z direction (up to 736 processors), and the longest curve is 

with 4 subdomains in the Z direction (up to 2944 processors). All cases use 8 OpenMP 

threads per process. 

Fig. 9. Throughput (in simulated days per computing day) of the 2o x 2.5o x 66L resolution with 51 

constituents on the IBM SP with Nighthawk 16-way nodes, as a function of processor 

count. This configuration is typical of the Whole Atmosphere Community Climate Model 

(WACCM). The two-dimensional domain decomposition increases the throughput four-fold 

as compared to the one-dimensional decomposition. 
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Fig. 1. The one-dimensional algorithm decomposes the latitude-longitude-level domain into a set of 
latitudinal slabs. Each slab, or decomposition element (DE), has a north and south halo region, 
which covers the latitudinal data dependencies. These halo regions are filled (halo exchange) 
before cd_core calculations in a communication phase that can be overlapped with unrelated 
computation. The calculation on haloed arrays can then take place without further communication. 
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Fig. 2. The two-dimensional domain decomposition formulation requires different decompositions 
for different phases of the computation. A decomposition in latitude and level (left) is used for 
dynamics and transport within a control volume, whereas a decomposition in longitude and latitude 
(right) is used for the surface remapping. The two decompositions are connected by optimized 
transposes. 
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Fig. 3. There are four MPI-2 communication schemes. Method A packs data into a contiguous send 
buffer, uses multithreaded MPI_Put for communication into a dedicated target window, and then 
unpacks from the receive buffer. Method B performs multithreaded MPI_Put over contiguous 
source segments into a dedicated target window and then unpacks from the receive buffer. Method 
C uses MPI_Put with derived source data types into a dedicated target window, with multithreading 
over the target process, and then unpacks from the receive buffer. Method D uses derived source 
and target data types to MPI_Put directly from the source to the target; with method D one must 
make sure that the window continually points to the correct target buffer. 
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Fig. 4. Partial sum methodology for geopk. The atmospheric levels (here illustrated in the 
horizontal) are distributed over DE’s. When integrating vertically upward, each DE does a local 
integration in parallel and passes its result to all DE’s above it. Bitwise reproducibility, if desired, 
can be ensured through use of high precision arithmetic. 
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Fig. 5. Wall-clock time for the FV dycore at 1o x 1.25o x 26L resolution on the SGI Origin as a 
function of the number of subdomains, using a one-dimensional decomposition. For 4 and 9 threads 
per DE (upper and lower pair of curves, resp.), the MPI-1 (upper curve in pair) and MPI-2 (lower 
curve in pair) performance are given. MPI-2, which can take advantage of the multithreading in the 
communications primitives, can yield as much as a 20% overall reduction in computation time for 4 
threads, and a 33% reduction for 9 threads. 
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Fig. 6. The performance of the overall CAM application on both 32 and 2944 processor 
configurations using IBM Seaborg is broken down by component. The dynamical core components 
main dynamics (which excludes geopotential), geopotential, tracer advection and Lagrangian 
remapping all scale better than average. The land surface model has the poorest scaling due to 
insufficient computational load; the other physical parameterizations post-coupler physics and pre-
coupler_physics scale better than average, in part thanks to their communication-free nature. With 
the targeted optimizations, the transpose and dynamics/physics coupling (denoted dyn/phys 
coupling) sections do not present a performance bottleneck. 
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Fig. 7. Throughput (in simulated days per computing day) of the 1o x 1.25o x 26L resolution on the 
IBM SP with Nighthawk 16-way nodes, as a function of processor count. This illustrates the 
scalability of the hybrid-parallel approach at modest resolution on a very large machine. Having 1 
subdomain in the Z direction (leftmost curve) allows parallelism to be exploited up to 200 
processors (about 4 latitude rows per process), with 4 subdomains in Z (center curve) up to 780 
processors, and with 7 subdomains in Z (longest curve) up to 1320 processors. For all tests, 4 
OpenMP threads per process were used. 
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Fig. 8. Throughput (in simulated days per computing day) of the 0.5o x 0.625o x 26L resolution on 
the IBM SP with Nighthawk 16-way nodes, as a function of processor count. The leftmost curve is 
with 1 subdomain in the Z direction (up to 736 processors), and the longest curve is with 4 
subdomains in the Z direction (up to 2944 processors). All cases use 8 OpenMP threads per 
process. 
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Fig. 9. Throughput (in simulated days per computing day) of the 2o x 2.5o x 66L resolution with 51 
constituents on the IBM SP with Nighthawk 16-way nodes, as a function of processor count. This 
configuration is typical of the Whole Atmosphere Community Climate Model (WACCM). The 
two-dimensional domain decomposition increases the throughput four-fold as compared to the one-
dimensional decomposition. 
 
 


