
UCRL-JRNL-208330

Progress in Scientific
Visualization

N. Max

December 2, 2004

The Visual Computer



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Progress in Scientific Visualization 

NELSON MAX 

Lawrence Livermore National Laboratory 
Post Office Box 808, Mail Stop L-560 
Livermore, CA 94550, USA 
e-mail: max2@llnl.gov 
phone: +1 925 422 4074 
fax: +1 925 422 6287 

abstract: This paper surveys recent work in the visualization of molecules, scalar fields, and vector fields.  

Keywords: molecular visualization, volume visualization, flow visualization 

Introduction 

Visualization of observed data or simulation output is important to science and 

engineering. I have been particularly interested in visualizing 3-D structures, and report 

here my personal impressions on progress in the last 20 years in visualizing molecules, 

scalar fields, and vector fields and their associated flows. I have tried to keep the survey 

and list of references manageable, so apologize to those authors whose techniques I have 

not mentioned, or have described without a reference citation. 

Molecular visualization. 

In 1983 I wrote a survey article on molecular graphics [1], and the basic visualization 

paradigms discussed there are still in use now. These include stick representations of the 

covalent bonds (figure 1), small atom spheres connected by such sticks, "space filling" 

models with larger overlapping atom spheres and no sticks (figure 2), and smooth 

molecular surfaces. In the space filling models, the spheres have the atom's Van der 



Waals radius, so that the contact forces from these "hard" spheres approximates the 

contact forces between the electron clouds around two non-bonded atoms. 

 Even in very early implementations [2] the models were interactively moveable, 

at least by rigid body translations and rotations, which are useful in motion parallax for 3-

D understanding, and to move or "dock" one molecule relative to another. Molecules also 

have some internal flexibility. Usually the distance between two covalently bonded atoms 

cannot change by much, nor can the angle between two covalent bonds from the same 

atom. However, in situations where a covalent bond is not part of a cycle, so that 

removing this bond would break the molecule into left hand and right hand pieces, the 

right hand piece can often rotate with respect to the left hand piece, about an axis through 

the bond. Interactive molecular modeling packages also allow such bond rotations. 

 The smooth "solvent accessible" surface represents the inner surface of the 

volume filled by possible positions of a solid sphere approximating the shape of a solvent 

molecule like water, as it moves without penetrating the space filling model of the solute. 

This volume is bounded by convex pieces of the space filling surface where the solvent 

sphere touches one solute atom sphere, convex pieces of tori formed when the solvent 

sphere rolls touching two solute atom spheres, and convex pieces of the solute sphere, 

where it is in a fixed position touching three solute atom spheres. (See [3].) 

 Another smooth surface is formed by approximating the electron density by a sum 

of gaussian densities centered at the atomic nuclei, and taking a contour surface. An even 

smoother spherical harmonic surface represents the overall molecular shape without 

showing the individual atoms, as in figure 3. Such surfaces are parameterized by a sum of 



orthogonal spherical harmonic functions on the unit sphere, or equivalently, by limited 

total degree polynomials of the x, y, and z coordinates of the point on the unit sphere. 

 Recently, Jane Richardson has suggested a ribbon representation for protein 

structures, showing a strip representing the "backbone" of the protein chain, spiraling 

around a cylinder for alpha helixes, or with a directional arrow for strands in beta sheets, 

and showing a narrower tube in other regions (figure 4). This representation shows the 

basic connectivity and secondary structure of the protein backbone, without obscuring it 

with the clutter of atoms in the side chains. 

 A recent development in computer modeling is rapid prototyping systems, which 

can construct a physical model from a computer one, a thin layer at a time. Arthur Olson 

and his colleagues at Scripps Research Institute have made colored physical molecular 

models in this way (figure 3), including flexible ones that can be rotated about covalent 

bonds. They have also instrumented the models for computer vision by adding readily 

recognizable high contrast patterns, so that the manipulations can be automatically 

recorded in electronic form, and computer data can be superimposed on the video image 

(see [4]). Thus, they have replaced the artificial reality interfaces for molecular modeling 

with true physical reality. 

 

Volume Rendering 

Rendering of a semi-transparent colored volume density representing a 3-D scalar field 

was pioneered in a series of publications in 1988 [5, 6, 7, 8]. See figure 5. This 

visualization method simulates the emission, absorption, and scattering of light from 

small dispersed particles in the volume, as described in [9]. So-called "transfer functions" 



specify how the densities and colors of the particles depend on the scalar field. In order to 

emphasize the boundaries between different materials, the color and opacity can be 

modified to emphasize particular contour values or high gradients, and emulate shading 

and highlights on semitransparent or opaque surfaces. 

 Volume rendering was initially done in software, but it was soon implemented in 

hardware, either as a 3-D extension to 2-D texture mapping on high-end general purpose 

graphics machines, or on special purpose hardware. Now 3-D texturing is a standard 

feature of the relatively inexpensive graphics cards used in computer games. The 3-D 

texture method slices a number of closely spaced planes through the volume, parallel to 

the image plane. At each pixel in the projection of the polygon where the slice intersects 

the data volume, the 3-D scalar data is interpolated from the eight surrounding texture 

samples, and the RGBA values are determined from the transfer functions. Hardware 

back-to-front compositing of these textured polygons then approximates the integral for 

the light reaching the eye through each pixel. 

 This hardware 3-D texture method only works if the scalar field is sampled on a 

regular cubic grid (or an affine or projective transformation of such a grid). In finite 

element simulation for solids, or Lagrangian simulations for fluids, the data samples are 

irregularly spaced. They can be resampled onto a regular grid, but this can create too 

many samples, introduce blurring, or miss small details, so it is sometimes better to 

directly render the irregular grid. Irregular tetrahedral grids were first ray traced in 

software by Garrity [10], and in hardware by Weiler et al. [11]. Alternatively, general 

polyhedral cells can be projected as a whole in back to front order. Currently, the 

polyhedron projection can be done in hardware, but the necessary back to front visibility 



sort is usually done in software [12]. As graphics processing units (GPUs) become more 

powerful and flexible, more and more graphics and visualization algorithms will migrate 

from the CPU to the GPU, where they can take advantage of local data, parallel 

computation streams, and proximity to the frame buffer. 

 The visualization of continuous 3-D data on a 2-D image remains problematical, 

even in the presence of binocular stereo and/or motion parallax, since a 2-D image cannot 

possibly convey all the data in a dense volume distribution. So, as the size and 

complexity of volume data grows in the future, automatic methods of recognizing and 

highlighting the salient regions will become more important. Highlighting appropriate 

contour surfaces with enhanced shading is a first step in this direction. 

 

Contour surfaces 

 Instead of enhancing contours with volume rendered shading, the contour surface 

can be triangulated, and rendered with traditional polygon-based graphics hardware. The 

scalar field is sampled at the vertices of a regular cubical grid. The topology of the 

surface on a grid square or cube depends in part on which of the vertices have field value 

greater than the contour value. Straight contour lines are drawn on each cube face, joining 

the points on the edges where the linearly interpolated scalar takes on the contour value. 

One must then choose a polygonal surface inside each cube whose boundary is these 

contour lines.  

 Wyvill et al. [13] considered each of the 16 possible cases for each cube face. 

One face case, where the scalar field is greater than the contour value at only two 

diagonally opposite vertices, is ambiguous because the four edge points that result can be 



joined by a pairs of lines in two different ways. Wyvill et al. [13] chose one. Lorenson 

and Cline, in a later but better known paper [14], considered the 256 possible cases for a 

cube, and then reduced them by rotation and reflection symmetry to only 14 essentially 

different ones, for which they proposed triangulations. Unfortunately, ambiguous faces 

were not always treated the same on adjacent cubes, creating cracks in the surface. 

Hamann and Nielson [15] showed how to resolve this ambiguity by choosing the contour 

lines on a face so that their topology is consistent with that of the field bilinearly 

interpolated from the four vertices, and Nielson [16] showed how to triangulate the 

interior of a cube so that the topology is consistent with that of the trilinearly interpolated 

field.  

 These contour surfaces often have too many polygons to be viewed interactively, 

and are prime candidates for hierarchical surface simplification, by eliminating vertices, 

edges, or faces in areas of less detail, and retriangulating. An alternative is a hierarchical 

representation by wavelets defined on a simple base mesh, as in [17]. 

 

Flow Visualization 

The velocity of a flow is a vector field, and any vector field can be integrated to produce 

a flow, so flows and vector fields are essentially equivalent for the purposes of 

visualization. The simple method of placing a vector arrow with its tail at each point in a 

regular grid sometimes works well in 2-D, but usually produces an unintelligible clutter 

in 3-D. More successful methods emulate the visualization techniques used in physical 

experiments: smearing colored oil on surfaces, releasing smoke into a gas or dye into a 

liquid, or releasing discrete particles whose motion can be tracked.  



 For an unsteady flow, with time-varying velocity, the track of dye or smoke 

continuously released from a point is called a streak line, and can move in time, while the 

track left by a single released particle in a time exposure is called a path line. For a steady 

flow, these two tracks are the same, and are called streamlines. Since the visualization 

techniques for these three types of lines are similar, I will refer only to streamlines below. 

 Streamlines are easy to draw in 3-D, but if they originate at each point in a regular 

grid, they can become cluttered, so care must be taken in placing them. Turk and Banks 

[18] used image processing and optimization to place streamlines evenly in 2-D, as in 

figure 6. In 3-D, streamlines are often placed interactively by the user, at specified points, 

or spaced evenly along specified line segments. 

 If streamlines are drawn through every point on a line segment, they sweep out a 

stream ribbon, which reveals rotation or shear in the flow. A stream tube, formed from all 

stream lines passing through a closed curve like a circle  shows expansion and 

contraction perpendicular to the flow direction. Finally, the union of the stream lines 

passing through the interior of a polygon fills up a "flow volume", which can be rendered 

by polyhedron projection, as in figure 7. In all these techniques, care must be taken to add 

new elements to the surface or volume as the flow diverges, or break it when the flow 

passes around an obstacle. 

 As in volume rendering, it is difficult to perceive the 3-D structure in a collection 

of streamlines that overlap in a 2-D image, so shading and occlusion cues can help. One 

can simply render a stream line twice; once as a wide dark line, and again as a narrower 

brighter line in front of it. When used with depth buffer visibility testing, this produces an 

outlined or haloed line effect. One can also render the lines as fully modeled cylindrical 



tubes, although this takes more time, or simulate the cylindrical shading with a texture 

map, as in figure 8. Finally, one can shade the stream line by the average color integrated 

across the width of the projected cylinder, which can be computed with an analytic 

formula from the viewing and lighting directions, and/or stored in a table or texture. All 

these techniques are discussed by Schussman[19]. 

 Another way to avoid clutter is to automatically place only a few stream lines near 

significant features like object surfaces, regions of high velocity, or vortices. When 

studying drag or turbulence, the vortices may be the main objects of interest, and can be 

indicated by vortex tubes, as in Banks and Singer [20].  

 In aerodynamic simulations, the flow near the aircraft surface is important, and 

can be visualized in a wind tunnel by putting colored oil on the model surface, and 

watching how it is smeared by the wind. An equivalent effect can be achieved by the line 

integral convolution (LIC) technique of Cabral and Leedom[21] by integrating a noise 

filter along the streamline through every pixel, weighted by a filter to limit the integration 

to a small region (see figure 9). If the filter changes in time, an animation cycle can be 

created. This was originally done in software for 2D vector fields on a plane, but has now 

been extended to curved surfaces, and implemented on GPUs. Directly advecting a 

texture by the flow is a related technique which can also now be done on the GPU. 

 A final way to analyze a vector field is by its topology, which can be studied by 

locating the critical points where the velocity is zero, and analyzing the derivatives of the 

velocity there. A general vector field can have critical points at sources and sinks near 

which the velocity is incoming or outgoing , respectively. This is impossible for an 

incompressible flow, but all flows can have saddle critical points where the flow is 



incoming along some directions, and outgoing along others. These critical points can be 

classified by looking at the eigenvalues and eigenvectors of the matrix of partial 

derivatives of the velocity vector, as described in Hellman and Hesselink [22]. 

 

Acknowledgements 

This work was performed under the auspices of the U.S. Department of Energy by 

University of California Lawrence Livermore National Laboratory under contract No. W-

7405-Eng-48. Figures 1, 2, and 4 were produced by the ProteinShop system described in 

Kreylos et al. [23]. 

 
1. Max, N (1983) Computer representation of molecular surfaces. IEEE Computer Graphics and applications 3(5) 21-

29. 

2. Levinthal, C (1966) Molecular model building by computer. Scientific American 214(6) 42. 

3. Connolly, M (1983) Analytical molecular surface calculation. J. Appl. Crystallogr. 16 538-558. 

4. Gillet, M, Sanner, M, Stoffler D, Goodsell, D and Olson, A (2004) Augmented reality with tangible auto-fabricated 

models for molecular biology applications. IEEE Visualization 2004 proceedings, pp. 235 – 241. 

5. Levoy, M (1988) Display of surfaces from volume data. IEEE Computer Graphics and Applications 8(3) 29-37. 

6. Sabella P (1988) A rendering algorithm for visualizing scalar fields. Computer Graphics 22(4) 51-58. 

7. Upson C and Keeler M (1988) V-BUFFER: visible volume rendering. Computer Graphics 22(4) 59-64. 

8. Dreben R, Carpenter L and Hanrahan P (1988) Volume rendering. Computer Graphics 22(4) 65-74. 

9. Max N (1995) Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer 

Graphics 1(2) 99-108. 

10. Garrity M (1990) Ray tracing irregular volume data. Computer Graphics 24(5) 35-40. 

11. Weiler M, Kraus M, Merz M, and Ertl T (2003) Hardware-based ray casting for tetrahedral meshes. IEEE 

Visualization 2003 proceedings, pp. 333-340. 

12. Max N, Williams P, Silva C, and Cook, R (2003) Volume rendering for curvilinear and unstructured grids. 

Computer Graphics International proceedings, IEEE Computer Society, pp. 210-215.. 

13. Wyvill, G, McPheeters, C, and Wyvill B (1986) Data structures for soft objects. The Visual Computer 2(4): 227-

234. 

14. Lorensen W and Cline H (1987) Marching cubes: a high resolution surface construction algorithm. Computer 

Graphics 21(4): 163-169. 

15. Nielson G and Hamann B (1991) The asymptotic decider: resolving the ambiguity in marching cubes. IEEE 

Visualization 1991 proceedings, pp. 83-91. 



16. Nielson G (2003) On Marching Cubes. IEEE Transactions on Visualization and Computer Graphics 9(3) 283-297. 

17. Bertram M, Laney D, Duchaineau M, Hansen C and Hamann B (2001) Wavelet representation of contour sets. 

IEEE Visualization 2001 proceedings, pp. 303-310. 

18. Turk G and Banks D (1996) Image-gided streamline placement. ACM Siggraph 96 Conference proceedings, pp. 

453-460. 

19. Schussman G (2003) Interactive and perceptually enhanced visualization of large, complex line-based data sets, 

PhD thesis, Computer Science, University of California, Davis  

20. Banks D and Singer B (1995) A predictor-corrector technique for visualizing unsteady flow. Transactions on 

Visualization and Computer Graphics 1(2): 151-163. 

21. Cabral B and Leedom L (1993) Imaging vector fields using line integral convolution. Siggraph 93 Conference 

proceedings, pp. 263-270. 

22. Helman J and Hesselink L (1991) Visualizing vector field topology in fluid flows. IEEE Computer Graphics and 

Applications 11(3) 36-46. 

23. Kreylos, O, Max, N, Hamann, B, Crivelli, S, and Bethel E W (2003) Interactive protein manipulation. IEEE 

Visualization 2003 proceedings, pp. 581 – 588. 

 

 



Figures 

 
Figure 1. Ball and stick model of the immunoglobin-binding domain of domain of 
streptococcal protein G (1pgx from the Protein Data Bank www.rcsb.org/pdb/ ). 
 



 
Figure 2. Space filling sphere model of 1pgx. 
 



 
Figure 3. Photograph of a physical rapid prototyping spherical model of the complex 
between Tissue Factor (white), Factor VIIa (pink) and Factor X (blue) inserted into a 
lipid membrane. This is the initiation complex for blood coagulation. 
 
 



 
Figure 4. A ribbon representation of 1pgx. 
 



 
Figure 5. An early volume rendering from Pixar, showing fat in green, muscle in red, and 
bone in white, using the methods of [8]. 
 

 
Figure 6. Optimized placement of stream line arrows, from Turk and Banks [18]. Reprint 
permission applied for from IEEE. 
 



 
Figure 7. A flow volume for global winds. 
 



 
Figure 8. Magnetic field lines with cylindrical shading from a texture map, rendered by 
the techniques of Schussman [19]. 
 

 
Figure 9. A line integral convolution image for a velocity field from computational fluid 
dynamics, from Cabral and Leedom [21]. Reprint permission requested from the ACM. 
 


