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Abstract

The Fe-Cu system is of relevance to the nuclear industry because of the 

deleterious consequences of Cu precipitates in the mechanical properties of Fe.  Several

sets of classical potentials are used in molecular dynamics simulations studies of this 

system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 

19 (1998)).  In this work we extract thermodynamic information from this interatomic 

potentials.  We obtain equilibrium phase diagram and find a reasonable agreement with 

the experimental phases in the regions of relevance to radiation damage studies.  We 

compare the results with the predicted phase diagram based on other potential, as 

calculated in previous work.  We discuss the disagreements found between the phase 

diagram calculated here and experimental results, focusing on the pure components and 

discuss the applicability of these potentials; finally we suggest an approach to improve

existing potentials for this system.  

PACS: 81.30.Bx, 82.60.Lf, 02.70.Ns, 65.40-b, 64.75.+g, 82.20.Wt
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I. Introduction

As Computational Materials Science becomes a standard approach to study 

complex problems in solids, the requirement of accurate, predictive simulation tools 

stresses the necessity of models for the interactions that are able to reproduce important 

fundamental properties of materials.  To capture the length scale that is relevant to study 

mechanical properties and microstructures, simple classical empirical total energy 

expressions are required to deal with the large number of atoms this class of problems 

requires.  Usually the models used are of the Embedded Atom Method (EAM) type, 

referred to as “many-body” potentials.  Most of the vast amount of work done using 

these classical potentials addresses either pure elements or intermetallic compounds, 

only a few address alloys.

Many properties of some pure materials, in particular the late fcc transition 

metals, are well reproduced with this approach.  For other metals, and in particular Fe, 

the situation is much less satisfactory, due to the importance of magnetism and the 

angular components of bonding in this material.  In addition, most of the available 

potentials for the pure components are only tested at low temperature.

Computational materials science has being paying attention to Fe-Cu for a long 

time, to follow the radiation-induced Cu precipitation.  The first report on bcc Cu 

precipitates dates from 1990 [1,2] using a potential that has a stable bcc phase for Cu 

[3], but this study did not address the Fe-Cu problem because of the absence of an alloy 

potential.  The first potential for the alloy appeared in 1995 [4-6] and precipitation as well 

as vacancy formation inside the precipitates were studied.  Using a simplified energetics, 

lattice Monte Carlo simulations were extensively used to analyze precipitation [7-9].  A 

different Fe-Cu potential was proposed in 1998 [10] and used to study the coherency 
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loss of precipitates [11].  Additional coherence loss studies were reported in 2001 [12] 

using a potential reported in [13].

In a recent series of papers, we addressed the problem of alloy description from 

the perspective of thermodynamics rather than from the properties of a single impurity.  

We developed a series of codes that calculate the free energy of a given phase by 

implementing the switching Hamiltonian technique.  We applied the methodology to Au-

Ni alloys based on a single lattice (fcc) with a miscibility gap [14,15], and to the more 

complex Fe-Cu system as described by the Ackland–Bacon potential [16].  That work 

showed various shortcomings of these potentials with significant differences with the 

experimental phase diagram [17].  In the present work,  we analyze the thermodynamics 

of Fe-Cu as predicted by the Ludwig–Farkas potential [10], built upon the Cu potential 

given by Voter [18] and the Fe potential given by Simonelli et al. [19].  The goal is to test 

the validity of this description for radiation damage studies and to present a comparative 

study that will help guide future development of interatomic potentials for alloys in this 

system.  In the following section, we give a summary of the computational method, with 

references to the full description that we already published.  In section IIII we present the 

calculated phase diagram and discuss the thermodynamic properties of the unaries Cu 

and Fe and of the Fe-Cu alloy system.  We show that these potentials give a better 

agreement in the regions of the phase diagram relevant to radiation damage studies.  

We then discuss the regions where agreement needs to be improved.  We show that 

most of the shortcomings are in the regions of the pure components and point out the 

properties that need to be improved in order to obtain a better description of this alloys 

system.
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II. Free Energy Determination

The calculation of the thermodynamic properties of an alloy implies the 

knowledge of the free energy of the different phases as a function of composition and 

temperature.  The calculation of the free energy is a multi-step process that requires 

several different molecular dynamics (MD) runs.  In recent papers, we implemented a 

numerical package that allows efficient and accurate calculation of it.  For a complete 

description of the method, we refer the reader to those previous publications [14-16].  

Here we only highlight its basic aspects, together with the main equations.

Following the methodology proposed in CALPHAD [20,21] we separate the 

problem of binary alloys in terms of the properties of the pure elements (i. e. the free 

energies of all possible phases of the pure elements) and the properties of the mixtures.  

The later are expressed in terms of excess enthalpy, entropy and free energy.  Excess 

quantities are referred to the linear interpolation between the pure elements, which 

represents the ideal solution.  In this way, the alloy description is conveniently separated 

in two distinct parts: the description of the pure elements on one hand, and the 

description of the mixture on the other.  The CALPHAD approach is a standardized way 

to express the thermodynamic information of a system.  Once the free energies are 

expressed in this way (suggested by the Scientific Group Thermodata Europe (SGTE) 

[22]), the calculation of the quantities of interest and phase diagrams can easily be 

performed with available application software such as Thermo-Calc [23].  Our numerical 

results can be compared with those from thermodynamic databases that contain the 

most accepted values for these quantities, taken from Dinsdale’s compilation [24].  The 

latter constitute for us what we take as experimental values although not all data in the 

database are from experimental assessment.
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Let us first describe the procedure for the pure element case.  Using the Gibbs-

Duhem equation we calculate the free energy per particle at a given temperature T , 

f (T).  This equation is a thermodynamic integration between the state of interest and a 

reference state at temperature T0 with known free energy f (T0) ,

f (T) = f (T0) T
T0

− T h(τ )
τ 2 dτ

T0

T

∫ (1)

where h(τ) is the enthalpy per particle.  The enthalpy is easily obtained from a MD run, 

and it is fitted with a second-order polynomial in T that allows an analytic integration in 

Eq. (1).

The coupling-constant integration, or switching Hamiltonian method [25], is used 

to calculate f (T0) .  We consider a system with Hamiltonian H = (1-λ) W + λ U, where U

describes the actual system (in this work, described with an EAM-type Hamiltonian) and 

W is the Hamiltonian of the reference system, with known free energy.  The parameter λ

switches from U ( for λ = 1) to W (for λ = 0). With this Hamiltonian we can evaluate the 

free-energy difference between W and U by calculating the reversible work required to 

switch from one system to the other. The unknown free energy associated with U, f (T0) , 

is given by

f Sol(T0) = fW (T0) + ∆f1

∆f1 =
1
N

<
∂H
∂λ

> dλ
0

1

∫ =
1
N

< U − W >λ
0

1

∫ dλ

(2)

where fW (T0) is the free energy of the reference system at T0 . The integration is carried 

over the coupling parameter λ that varies between 0 and 1, and  < L > stands for the 

average in a (T, V, N) MD simulation.



6

For the solid phases the reference system W is a set of Einstein oscillators 

centered on the average atomic positions, in the (T0 , P=0, N) ensemble that is 

associated with the Hamiltonian U.  The free energy per atom of the Einstein crystal that 

is known analytically [26] is given by

fEins = −3kB T0 ln(T0 TE ) (3)

where TE is the Einstein temperature of the oscillators, TE = hν E kB where kB is the 

Boltzmann constant, ν E is the frequency of oscillation, and h is the Planck constant.  In 

our calculations we use TE
Cu=343 K, TE

Fe=470 K. These values are in fact arbitrary and 

are chosen so as to make the switching integral, cf. Eq. (2), as smooth as possible to 

improve numerical accuracy.

For the liquid phase, the reference system W is an ideal gas at the same 

temperature and density as the EAM sample.  The process to switch from U to W

involves an intermediate step to avoid particle overlap during the integration, namely we 

first compute the free-energy difference between the true system with potential U (the 

EAM potential) and a system with a repulsive potential WL (soft spheres).  As in the case 

of the solid phase, the integration is carried over the coupling parameter λ that varies 

between 0 and 1.  The system is kept at the constant volume V0, that equilibrates the U

Hamiltonian at temperature T0 and P=1 bar.  Therefore, the free-energy change for a 

pure element due to the switch is given by ∆f1 given by the second line of Eq. (2).

The second step is a reversible expansion of the repulsive gas, from V0 and high 

pressure, to the ideal gas limit, where the free energy can be calculated analytically, 

followed by a reversible compression to recover the initial density.  The change in free 

energy due to both processes is given by
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∆f2 = kBT0
P

ρkBT0

−1
 

 
 

 

 
 

0

ρ0

∫ dρ
ρ

(4)

where ρ0=N/V0 is the particle density.  After the processes represented by Eq. (4) have 

taken place we end up with an ideal gas at (T0,ρ0), whose free energy is given 

analytically by: fW
Liq (T0,ρ0) = kBT0 ln(ρ0Λ

3) −1[ ], where Λ is the de Broglie thermal 

wavelength (Λ2 = h2/2πmkBT0, where m is the atomic mass) [26].  Then the free energy 

of the liquid phase is calculated as the sum of these 3 contributions,

),()( 00210 ρTfffTg Liq
W

Liq +∆+∆= (5)

Equations (1-5) give the free energies of the solid and liquid phases for the pure 

elements as a function of temperature.

The strategy for the alloy follows the same steps as above, but the calculation 

has to be repeated for many samples in random disordered solutions at different 

compositions.  The free energy of the reference mixture of Einstein oscillators can be 

calculated using the following expression [15]:

fEins(x,T0) = x fEins
Cu + (1− x) fEins

Fe − T0sconf (x) (6)

where x measures the Cu composition, and fEins
Cu and fEins

Fe are given by Eq. (3).  The 

configurational entropy per particle, sconf (x) , is given by the usual expression 

−kB x ln x + (1− x)ln(1− x)[ ], assuming the solution is completely random. For the ideal 

gas, 

)()1()(),,( 0 Fe
Fe

idCu
Cu

idid fxfxTxf ρρρ −+= (7)

or, by making the entropy of mixing appear explicitly,

f id (x,T0,ρ) = x f id
Cu(ρ) + (1− x) f id

Fe (ρ) − T0sconf (x) (8)
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where ρ is the total density, ρCu and ρFe are the partial densities (xρ and (1-x)ρ,

respectively), and the f id
i are given in the preceding section.  These and other useful 

expressions are carefully worked out in Ref. [15].

These lead to the following general equation for the free energy of each phase φ,

)()ln()()()()(),( 2 xsTTTxDTxCTxBxATxg conf−+++= φφφφφ (9)

Equation (9) is obtained numerically from computer runs that implement Eqs. (1-

8) for each phase.  We obtain one set of coefficients {A,B,C,D} for each composition 

studied.  The relation between these coefficients and the quadratic fit to the enthalpy is 

h(T) = a − dT − cT 2 , while b is given by b = g(T0) T0 − a /T0 − d lnT0 − cT0 .

To match the CALPHAD expression for the Gibbs energy to Eq. (9), this 

expression is rewritten in terms of three contributions that account for the properties of 

the pure materials, the linear interpolation between them, and the excess free energy of 

the mixture, namely:

gφ (x,T)=ref gφ (x,T)+ id gmix
φ (x,T)+xsgmix

φ (x,T) (10)

where the terms on the right-hand side are: the composition-weighted average Gibbs 

free energy per atom associated with the pure elements (or free energy of the ideal 

solution), the Gibbs ideal mixing energy, and the excess Gibbs energy due to non-ideal 

contributions, respectively.  The excess Gibbs energy of mixing is expressed by a 

Redlich-Kister polynomial expansion [27], and then the terms on the right-hand side of 

Eq. (10), are expressed as follows:

φφφ
CuFe

ref xgTgxTxg +−= )()1(),(

id gmix
φ (x,T) = kBT x ln x + (1− x)ln(1− x)[ ] (11)

xsgmix
φ (x,T) = x(1− x) pLφ (T)(1− 2x)p

p= 0

n

∑
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where p Li, j
φ (T) is the pth-order binary interaction parameter relative to phase Φ, that is a 

function of temperature.  Some algebra transforms the set of coefficients in Eq. (9) to 

those needed in Eq. (11).

Phase stability deserves special consideration in the Fe-Cu system.  In nature, 

as well as in computer simulations, phases usually exist within limited ranges of 

composition.  Based on previous experience with the thermodynamics of EAM Au-Ni 

alloys [14], and Fe-Cu with the Ackland-Bacon potential [16,17], both solid phases, fcc 

and bcc, were stable in the simulations at all compositions.  With the Fe-Cu Ludwig-

Farkas potentials however, the situation is more complex: bcc Cu is unstable and fcc Fe 

is thermally unstable. This can be seen in Fig. 1 where the energy of both elements at 

zero temperature is displayed along a Bain distortion.  Cu has an energy maximum for 

the bcc phase, located 46 meV above the fcc energy.  Fe in turn has a shallow minimum 

for the fcc phase, 27 meV above the equilibrium bcc value, but the height of the potential 

barrier separating both phases is only 31 meV; at room temperature and above, thermal 

excitations drive Fe away from the fcc phase towards the bcc structure.

However, in numerical simulations on finite systems and short times, this is not 

always seen, and the instability usually appears as an abnormally large entropy 

contribution to the free energy as temperature is raised.  This translates into an 

erroneous appearance of these unstable phases in the phase diagram.  To solve this 

problem we have to introduce the stability information as an external constraint, 

restricting the domain of existence of the phases to the compositions where we know 

they are definitely stable, namely the bcc-solid solution in the Fe-rich part of the phase 

diagram, and the fcc-solid solution in the Cu-rich part. We retained then data for Cu 

compositions up to 20 at.% in bcc, and above 80 at.% in fcc.
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Unfortunately, to translate the data into the CALPHAD equations, see Eqs. 

(10,11), that are based on quantities that are in excess with respect to the linear 

interpolation between the pure elements, we still need expressions for the free energy of 

fcc Fe and bcc Cu even if they represent unstable or thermally unstable phases.  This 

requirement introduces some arbitrariness in the procedure whose effect is to introduce 

an uncertainty of ~100 K in the location of the invariant line in the phase diagram.  A 

practical way we have to circumvent this is the following: For unstable bcc Cu we take 

the free energy corresponding to the stable fcc phase and shift it by the energy of the 

unstable bcc phase at 0 K, namely, gCu
bcc (T) = gCu

fcc(T) + ∆ECu
bcc− fcc(T = 0K).  For the free 

energy of the fcc phase of Fe we use the value obtained even if it is affected by finite 

size effects, and shift it by +15 meV/atom to avoid the intrusion of this phase in the Fe-

rich part of the diagram, namely ′ g Fe
fcc(T) = gFe

fcc (T) + 0.15 meV.  We explored several 

other alternatives, but none seems better justified; the need of anchoring points at x=0 

and x=1 forces us to define energies of non-existing (totally unstable) phases for which, 

strictly speaking, the Gibbs energies are ill defined.  This difficulty is inherent to the 

CALPHAD formalism and is also encountered when dealing with experimental data 

requiring anchoring points on phases that are not experimentally accessible.  Figures 

2.a-d show the location of these points in the four coefficients entering the definition of g, 

Eq. (9): Solid squares represent data for the fcc phase, with values for 0.8<xCu<1.0 and 

anchoring point at xCu=0.0; open squares represent data for the bcc phase between 

0.0<xCu<0.2, with anchoring point at xCu=1.0.  With these considerations, the coefficients 

appearing in Eq. (9) for the three phases (φ=liquid, fcc, bcc), as obtained from our 

numerical simulations, are reported in Tables I-III.  From the structure of these data we 

choose to attempt a quadratic fit to determine the coefficients 0Lφ (T) appearing in Eq. 



11

(11).  This is equivalent to choosing to describe this alloy with only the L-term with p=0 in 

the polynomial expression (9), namely:

iφ = x 1− x( ) 0Li
φ + x iCu

φ + 1− x( )iFe
φ (12)

where i stands for A, B, C, and D. The 0Lφ (T) are determined from these fits as:

0Lφ (T)=0La
φ +0Lb

φ T+0Lc
φ T 2+0Ld

φ T ln T( ) (13)

With these quantities we have all the information needed to calculate the phase 

diagram.  Appendix 1 contains the numerical expressions that can be used “manually” 

with the common tangent construction, or be input into Thermo-Calc [23] to automatically 

obtain phase diagram information.  Figure 3 shows the Fe-Cu phase diagram 

corresponding to the Ludwig-Farkas EAM potentials.

III. Discussion

Comparison between the phase diagram displayed in Fig. 3 and the experimental 

one [28], shows reasonable topological agreement up to 1000K.  At higher temperatures 

noticeable differences appear.  The origin of these discrepancies can be analyzed by 

examining the high-temperature properties of the pure elements, and those of the (fcc 

and bcc) solid solutions.

With the EAM potential of Ref. 18, Cu exhibits a fcc phase that melts at 1341 K, a 

temperature quite close to the experimental value of 1358 K.  In Fig. 4 (left panels) the 

results for the enthalpy, entropy and Gibbs free energy for this potential as functions of 

temperature are compared with those from the solid solution database (SSOL) from 

Thermo-Calc [23].  The agreement between the two sets of results is quite satisfactory at 

least below 2000 K.  The bcc phase of Cu with this EAM potential is found unstable, as 

confirmed by its elastic constants calculated at 0 K: C11=0.952 eV/Å3 and C12=1.012 

eV/Å3, with C’=1/2(C11–C12) being negative.  It is worth noting that according to the 
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CALPHAD database, the bcc phase is stable, although it does not explicitly affect the 

phase diagram.  Thus the instability introduces suspicions about the ability of this 

potential to describe Cu precipitates that, when small in size, are known to be bcc.  

Moreover it seems to have been unnoticed when the Fe and Fe-Cu potentials were 

published [10,18].  For precipitation studies, the necessity of having a bcc phase with the 

right energetics as a function of temperature can not be overstated since any study of 

precipitation will be affected by it.

Contrary to the potentials studied here, in our previous study on the Ackland–

Bacon EAM Fe-Cu potentials [16,17], we reported a bcc phase of Cu so stable that it 

entered the equilibrium phase diagram.  As said before, the free energy of bcc Cu is 

reported in the CALPHAD database.  However, in the empirical potentials developed so 

far, the properties of the bcc phase come out with little or no control from the potential 

developers.  As a conclusion we observe that despite the fact that Cu is the element 

best described with EAM, further attempts to reproduce the right thermodynamics of its 

bcc phase may help to improve the capabilities of the potential.  Such attempts are 

currently undertaken, and improved potentials for Cu are becoming available such as the 

one developed by Mishin et al. [29] for diffusion studies.

With the EAM potential of Ref. 19, pure Fe shows a bcc phase stable until 

melting occurs at a temperature 28% higher than the experimental value.  The fcc phase 

of Fe is unstable above room temperature.  This fact is confirmed by the values of the 

elastic constants calculated at 0 K.  For Fe, C11=0.998 eV/Å3 and C12=0.808 eV/Å3, and 

therefore C’=0.190 eV/Å3, a suspiciously small value that presumably goes negative at 

some finite temperature.  None of the potentials available so far for Fe predict the 

existence of the fcc phase at high temperatures, as expected, because it is the result of 

a fundamental change in its electronic structure and magnetic properties rather than in a 
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mere competition between enthalpy and entropy as T varies.  However, Fe melts in the 

bcc phase, and therefore it would be possible to significantly improve the melting point 

by adjusting the properties of the bcc and the liquid phases.  In Fig. 4 (right panels) the 

results obtained with the present EAM potential for the enthalpy, entropy and Gibbs free 

energy are compared with those derived from the SSOL database as functions of 

temperature.  As in the case of the Ackland-Bacon EAM potential [16,17], the 

discrepancies are severe for the enthalpy and the entropy at high temperature above 

1000 K for reasons mentioned above although the melting point has been improved 

(2103 K compared with 2381 K for the Ackland-Bacon EAM potential and 1811 K for the 

experimental value).  Despite the large effort undertaken to develop improved Fe 

potentials, such as the one recently reported by Ackland et al. [30], no thermodynamic 

analysis has been reported yet to judge the quality of the potential.

The Fe-Cu alloy shows an eutectic at xCu=0.75.  Solubility limits are in reasonable

agreement with experimental values.  The almost symmetric behavior of these limits is 

consistent with the retention of only the p=0 term in the Redlich-Kister expansion for the 

excess Gibbs energy, Eq. (11), and with the experimental data as well.

The behavior of these potentials for the Fe-Cu mixture was modeled on the basis 

of the dilute limits of the heats of solution, and this is to our knowledge the strategy 

consistently followed for all alloys described so far in the literature within the EAM 

framework.  The mixed pair potential is the only function that contains information about 

the alloying effects.  It can easily be shown that there is a one to one relation between 

this formulation and the fact that the excess enthalpy of mixing at 0 K is a single-

parameter quadratic curve, i. e., a curve that only needs the te  rm p=0 in the Redlich-

Kister expansion.  Besides the more involved contributions coming from entropy, we can 

analyze the adequacy of this symmetric single parameter description of excess enthalpy 
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of mixing by looking at its contribution at 0 K and comparing it with the CALPHAD 

database.  Figure 5 shows the SSOL values and those from this potential, for both bcc 

and fcc phases.  The agreement is remarkably good.  Within a few percent, EAM and 

CALPHAD values compare favorably, and even more so in the regions of interest, i. e., 

x<<1 for bcc and x~1 for fcc solid solutions.  Note that the agreement for the liquid 

phase is rather poor.

With these observations we conclude by highlighting the fact that alloy 

description is essentially composed of two distinct contributions.  One is the description 

of the pure elements that, in the case under study, is not very satisfactory at high 

temperatures.  The other is the description of the mixture that, for this alloy, is 

remarkably accurate up to 1000K.  The necessity of a more accurate description of 

mixtures at high temperatures is evident, as in general, the p=0 approximation in Eq. 

(11) is not sufficient to describe most systems of interest.  Our analysis indicates that the 

EAM potentials discussed here can be used up to 1000K, and that for higher 

temperatures, improved potentials primarily for the pure components should be 

developed to account for proper phase stability in the solid phase up to melting.
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Figure Captions

Figure 1.  Energy difference along a Bain distortion with respect to the equilibrium phase 

for Fe and Cu at 0 K 

Figure 2.  Coefficients A, B, C, and D of the free energy, Eq. (9), for each phase: liquid 

(open circles), fcc (solid squares), bcc (open squares).

Figure 3.  Phase diagram corresponding to the Ludwig-Farkas EAM potentials for Fe-Cu 

alloys.

Figure 4.  Enthalpy (in kJ/mol) and entropy (in J/K.mol) as functions of temperature for 

the fcc (bcc), and liquid phases of pure Cu (Fe) in the left (right) panel.  The bottom 

figures show the structural molar Gibbs energy differences (in kJ/mol) liq-fcc for Cu (left) 

and liq-bcc for Fe (right), and the arrows indicate the location of the melting points.  The 

solid lines refer to the CALPHAD results obtained from the SSOL database whereas the 

dashed and dotted solid lines correspond to the EAM-derived results.

Figure 5.  Excess enthalpy of mixing at 0 K for both fcc and bcc Fe-Cu solid solutions.  

Open symbols: EAM results, solid symbols CALPHAD data.
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Figure 3 Caro et al.
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Figure 4 Caro et al.
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Table I. Coefficients of the free energy as a function of temperature, cf. Eq. (9), for the 

fcc phase of Fe-Cu alloys.

 xCu
fcc A [eV] B [eV/K] C [eV/K2] D [eV/K]

0 -4.25138 1.45938E-03 -1.40062E-08 -2.59855E-04

0.8 -3.60832 1.29580E-03 -1.91789E-08 -2.53386E-04

0.9 -3.56729 1.32543E-03 -2.23772E-08 -2.52135E-04

0.95 -3.55086 1.33524E-03 -2.50435E-08 -2.50261E-04

0.98 -3.54342 1.35094E-03 -2.51903E-08 -2.50525E-04

0.99 -3.54145 1.34823E-03 -2.64303E-08 -2.49216E-04

0.996 -3.54026 1.34867E-03 -2.67759E-08 -2.48917E-04

0.998 -3.53997 1.35420E-03 -2.64241E-08 -2.49379E-04

1 -3.53953 1.35140E-03 -2.68433E-08 -2.48949E-04

Table II. Same caption as for Table I but for the bcc phase of Fe-Cu alloys.

 xCu
bcc A [eV] B [eV/K] C [eV/K2] D [eV/K]

0 -4.28000 1.45938E-03 -1.40062E-08 -2.59855E-04

0.001458 -4.27806 1.45599E-03 -1.42382E-08 -2.59431E-04

0.004373 -4.27443 1.45423E-03 -1.43561E-08 -2.59279E-04

0.010204 -4.26762 1.45695E-03 -1.41322E-08 -2.59716E-04

0.020408 -4.25453 1.44906E-03 -1.47284E-08 -2.58906E-04

0.049563 -4.22048 1.44485E-03 -1.38446E-08 -2.60285E-04

0.100583 -4.16233 1.42072E-03 -1.37780E-08 -2.60295E-04

0.199708 -4.06114 1.37250E-03 -1.41451E-08 -2.58918E-04

1 -3.49 1.35140E-03 -2.68433E-08 -2.48949E-04
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Table III. Same caption as for Table I but for the liquid phase of Fe-Cu alloys.

 xCu
Liq A [eV] B [eV/K] C [eV/K2] D [eV/K]

0 -4.28610 2.37097E-03 -6.76295E-11 -3.82451E-04

0.002 -4.29362 2.45791E-03 3.31948E-09 -3.94422E-04

0.004 -4.28674 2.42227E-03 2.23661E-09 -3.89912E-04

0.01 -4.27355 2.37365E-03 1.42533E-09 -3.84300E-04

0.02 -4.26018 2.34670E-03 1.13394E-09 -3.81570E-04

0.05 -4.24251 2.42697E-03 4.76908E-09 -3.94123E-04

0.1 -4.19793 2.43993E-03 7.35201E-09 -3.98762E-04

0.2 -4.10003 2.37639E-03 9.49156E-09 -3.95188E-04

0.35 -3.97537 2.34051E-03 1.22849E-08 -3.95192E-04

0.5 -3.85195 2.26136E-03 1.29294E-08 -3.87798E-04

0.65 -3.72193 2.08482E-03 9.86382E-09 -3.66247E-04

0.8 -3.61760 2.05798E-03 1.06525E-08 -3.62702E-04

0.9 -3.56444 2.11319E-03 1.23469E-08 -3.68471E-04

0.95 -3.53277 2.08774E-03 1.14054E-08 -3.63898E-04

0.98 -3.52391 2.15427E-03 1.34532E-08 -3.71691E-04

0.99 -3.51786 2.14454E-03 1.28951E-08 -3.69887E-04

0.996 -3.50209 2.04871E-03 9.90364E-09 -3.56993E-04

0.998 -3.50700 2.09668E-03 1.15027E-08 -3.63299E-04

1 -3.50855 2.12037E-03 1.22168E-08 -3.66211E-04
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Appendix I

Free energies for all phases of pure elements and coefficient for the Redlich – Kister 

expansions of the excess free energy of mixing, Eq. (11), for Fe-Cu alloys.

gFe
fcc = - 4.25138054 - 2.4630144E-04 T ln(T) - 1.5632073E-08 T2 + 1.3533511E-03 T

gFe
bcc = - 4.27999730 - 2.5985509E-04 T ln(T) - 1.4006218E-08 T2 + 1.4593817E-03 T

gFe
Liq = - 4.28610001 - 3.8245119E-04 T ln(T) - 6.7629536E-11 T2 + 2.3709670E-03 T

gCu
fcc = - 3.53953201 - 2.4894946E-04 T ln(T) - 2.6843291E-08 T2 + 1.3514004E-03 T

gCu
bcc = - 3.49000      - 2.4894946E-04 T ln(T) - 2.6843291E-08 T2 + 1.3514004E-03 T

gCu
Liq = - 3.50855397 - 3.6621148E-04 T ln(T) + 1.2216831E-08 T2 + 2.1203670E-03 T

0Lfcc = 0.46899 – 5.0E-05 T + 3.4541E-08 T2 - 3E-05 T ln(T)

0Lbcc = 0.39539 – 9.0E-05 T + 1.5131E-08 T2 - 1E-05 T ln(T)

0LLiq = 0.17057 + 6.4E-04 T + 4.2784E-08 T2 - 1E-04 T ln(T)


