

Identification of a Pairing Isomeric Band in 152Sm

W. D. Kulp, J. L. Wood, P. E. Garrett, J. M. Allmond, D. Cline, A. B. Hayes, H. Hua, K. S. Krane, R.-M. Larimer, J. Loats, E. B. Norman, P. Schmelzenbach, C. J. Stapels, R. Teng, C. Y. Wu

June 13, 2005

Physical Review C.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Identification of a pairing isomeric band in ¹⁵²Sm

W. D. Kulp, J. L. Wood, P. E. Garrett, J. M. Allmond, D. Cline, A. B. Hayes, H. Hua, K. S. Krane, R.-M. Larimer, H. Loats, H. Loats, Loats, Loats, R. E. B. Norman, P. P. Schmelzenbach, R. G. J. Stapels, R. Teng, and C. Y. Wu Lawrence of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA Lawrence Livermore National Laboratory, Livermore, California 94551, USA Nuclear Structure Research Laboratory, Department of Physics, University of Rochester, Rochester, New York, 14627, USA

4 Department of Physics, Oregon State University, Corvallis, Oregon 97331-6507, USA

5 Nuclear Science Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, USA

(Dated: April 28, 2005)

Abstract

A coexisting band structure is identified in 152 Sm through γ -ray coincidence spectroscopy following β decay of 152m,g Eu and following multi-step Coulomb excitation. This structure is interpreted as a pairing isomer analogous to a similar band identified in 154 Gd, based upon relative B(E2) values for transitions out of the band and two-neutron transfer reaction population of the 0^+ and 2^+ band members. Systematics for odd-A isotopes near N=90 suggest that there should be a low-lying pairing isomer in 156 Dy, and similar structures at higher energy in 150 Nd and 158 Er.

PACS numbers: 21.10.Re, 23.20.Lv, 27.70.+q

In the collective model for deformed nuclei [1], it is expected that excited rotational bands have the same deformation as the ground state. Indeed, observed low-lying bands typically have moments of inertia which vary by less than 10% [1]. Contrasting with this expectation, a recent study of 154 Gd [2] reports a less-deformed excited band built upon the 0_3^+ state at 1182 keV with a moment of inertia only 52% of that of the ground-state band (based upon energy differences between states within each band and assuming a rigid rotor model).

In addition to smaller deformation than the ground-state band in 154 Gd, the excited band structure is remarkable due to the highly enhanced (t,p) population [3] and greatly reduced (p,t) population [4] of the 0^+ 1182 and 2^+ 1418 keV states. Based upon this difference in population strength, the excited band is interpreted [2] as a pairing isomer [5], i.e., an isolated structure with a smaller pairing gap than that of the ground state characterized by large two-neutron transfer cross section and a large asymmetry in (t,p) and (p,t) reaction population strength. The possibility of such a structure built upon the $\frac{11}{2}^-$ [505] Nilsson orbital is implied by Peterson and Garrett [6] because of its reduced off-diagonal pairing matrix elements with nearby orbitals, and is suggested to act more like a hole state in the deformed rare earth region, even when the $\frac{11}{2}^-$ [505] orbital is nearly filled. Transfer of two neutrons into the steeply upsloping $\frac{11}{2}^-$ [505] orbital would result in a less-deformed excited structure in an even-even nucleus (where the occupancy of the orbital, $V^2 > 0.5$). If the less-deformed band in 154 Gd is indeed such a pairing isomer, structures like that based upon the 0_3^+ state should exist in nuclei nearby.

In this Rapid Communication, we report the observation of a weakly-deformed coexisting band structure in 152 Sm (cf. Fig. 1) with a moment of inertia that is 58% of that of the ground-state band. The states in 152 Sm, J^{π} (E_x keV) 0⁺ (1083), 2⁺ (1293), 4⁺ (1613), and (6⁺) (2004), shown in Fig. 1 constitute a close analog of the less-deformed band 0⁺ (1182), 2⁺ (1418), and 4⁺ (1701) in 154 Gd [2]. The 0⁺₃ state at 1083 keV, is populated very strongly (68% of the ground-state strength) in the 150 Sm(t, p) 152 Sm reaction [7], but is populated with less than 1% strength in the 154 Sm(p, t) 152 Sm reaction [8]. This dramatic asymmetry in (t, p) and (p, t) population is very much like that found in 154 Gd, as illustrated in Fig. 2, and provides strong evidence that this band is another example of a pairing isomer at N = 90.

The excited band in $^{152}\mathrm{Sm}$ was elucidated through detailed γ -ray coincidence spectroscopy following β decay of $^{152m,g}\mathrm{Eu}$ and multiple-step Coulomb excitation. The decay experiments,

 152m,g Eu \rightarrow 152 Sm, were conducted at Lawrence Berkeley National Laboratory using the 8π spectrometer [10], an array of 20 Compton-suppressed Ge detectors. Europium sources of $\sim 50~\mu$ Ci were produced by the 151 Eu(n,γ) reaction in the Oregon State University reactor. Sources were mounted in the center of the detector array (22.0 cm source-to-detector distance), and scaled-down γ -ray singles and $\gamma - \gamma$ coincidence events were recorded concurrently. Data obtained for the decay of 152g Eu (13 yr, $J^{\pi}=3^{-}$) in a 334-hour measurement contained 2×10^9 singles and $6\times 10^8~\gamma - \gamma$ coincidence events. The 152m Eu (9 hr, $J^{\pi}=0^{-}$) decay data contained 2×10^8 singles and $2\times 10^7~\gamma - \gamma$ coincidence events after 85 hours of counting. The 152g Eu source contained 0.8% 154 Eu, and the 152m Eu sources contained 1.4% 152g Eu and 0.01% 154 Eu, determined as decay rates in this study.

Multiple-step Coulomb excitation of 152 Sm was performed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. A 400 $\mu g/cm^2$, 99.86% enriched 208 Pb target was used to populate excited states in 152 Sm through inverse Coulomb excitation of a 3 particle-nA beam of 152 Sm at a "safe" energy of 652 MeV. Signals from two ions in the CHICO [11] charged-particle detector array in coincidence with at least one "clean" γ ray signal in the Gammasphere [12] array of (104) Compton-suppressed Ge detectors triggered an event. The 1° angular resolution of the CHICO array provided kinematic characterization of scattered ions and recoiling target nuclei so that Doppler corrections could be applied to the detected γ rays emitted from the Coulomb-excited beam nuclei. Approximately 7×10^8 single- γ -ray events, 8×10^7 two-fold $(\gamma - \gamma)$, and 1×10^7 $(\gamma - \gamma - \gamma)$ coincidence events were recorded in 62 hours of running time.

Turning to a discussion of the band, the 0⁺ (1083) and 2⁺ (1293) levels were first associated with each other due to their very strong population in the $^{150}\mathrm{Sm}(t,p)^{152}\mathrm{Sm}$ reaction [7] (cf. Fig. 2). Observation of the 1293 \rightarrow 1083 intraband 210 keV γ ray in the decay of $^{152m,g}\mathrm{Pm}$ with an absolute quadrupole transition $B(E2;1293\rightarrow1083)=184(100)$ W.u. has suggested that the 1083 and 1293 keV states are part of a collective band [13]. In coincidence spectroscopy following the decay of $^{152g}\mathrm{Eu}$, we confirm the placement of the 210 keV (1293 \rightarrow 1083) transition, and observe additional γ -ray transitions from the 1293 keV level to 0⁺, 1⁻, 2⁺, 3⁻, and 4⁺ states which establish a definite $J^{\pi}=2^{+}$ for this level.

The level at 1613 keV is newly assigned as the 4⁺ member of the band [14] built on the 0⁺ level at 1083 keV. Previously, only two γ -ray transitions were assigned to de-excite the 1613 state in the adopted gammas for this level [14]: the 906 (1613 \rightarrow 6 $_q^+$ 707) and 572 (1613 \rightarrow

 3_1^-1041) keV transitions. Coincidence gates from the decay of 152g Eu, shown in Fig. 3, reveal the presence of new transitions at 590 (1613 \rightarrow 4_{β}^+1023) and 320 (1613 \rightarrow 2_i^+1293) keV. The 320 keV transition is observed for the first time in 152 Sm and is the primary indication that the 1613 keV state is associated with the 1293 keV state. Other new transitions de-exciting the 1613 keV level are established by coincidence gating as feeding the 122 (2_g^+), 367 (4_g^+), 811 (2_{β}^+), 1221 (5_1^- , see Fig. 4), and 1234 (3_{γ}^+) levels, from the decay of 152g Eu. The decays from the 1613 keV level to 2^+ , 3^+ , 3^- , 4^+ , 5^- , and 6^+ states establish a definite $J^{\pi}=4^+$ for this state.

Figure 4 shows triple γ -ray coincidences for transitions out of the 4⁺ level at 1613 keV observed in the Coulomb excitation study. The resulting spectra reveal the 391 keV transition from the (6⁺) 2004.1 keV level. (The presence of a 7⁻ level at 2003.6 keV [14] prevents definite assignment of γ -ray transitions to positive-parity levels of spin > 5 due to lack of energy resolution.) We assign the 2004 level as the 6⁺ member of the pairing isomeric band built on the 0_3^+ (1083) state. No other candidates for higher-spin members of the band have been identified in either the β decay or Coulomb excitation studies.

The coincidence spectroscopy for transitions out of the 1083, 1293, 1613, and 2004 keV levels and the relative B(E2) values for the observed γ rays, presented in Table I, strongly support interpreting these states as a band built upon the 0_3^+ (1083) state. In Table I, transitions out of each level are listed in decreasing order of relative B(E2) values in 152 Sm, where negligible M1 admixtures are assumed in calculating the relative B(E2) values. The strongest collective transitions are observed to be the in-band 210 (1293 \rightarrow 1083), 320 (1613 \rightarrow 1293), and 391 keV (2004 \rightarrow 1613) transitions. Relative B(E2) values for the analog transitions in 154 Gd are presented for comparison with the 152 Sm values in Table I.

In addition to the comparable deformation, $\Delta E(0^+ \leftrightarrow 2^+) = 210$ keV in $^{152}\mathrm{Sm}$ and 237 keV in $^{154}\mathrm{Gd}$, and two-neutron transfer reaction data (Fig. 2), the very similar patterns of relative B(E2) values presented in Table I indicate that the 0^+_3 bands in $^{152}\mathrm{Sm}$ and $^{154}\mathrm{Gd}$ have the same structure. While differences in the lower-lying states of these nuclei are reflected in the B(E2) values in Table I, basic trends emerge which not only show the close similarities of the 0^+_3 structures in $^{152}\mathrm{Sm}$ and $^{154}\mathrm{Gd}$, but also may be useful in recognizing analogous bands in nearby nuclei. These trends will be particularly helpful in nuclei where the (t,p) population is not as remarkable as that illustrated in Fig. 2 (for a 0^+_3 state in $^{150}\mathrm{Nd}$, a population limit of $\leq 10\%$ of the ground state strength is reported in the $^{148}\mathrm{Nd}(t,p)^{150}\mathrm{Nd}$

TABLE I: Relative B(E2) values for transitions out of states in the pairing isomer band in 152 Sm compared with relative B(E2) values for analog transitions in 154 Gd. Data for 154 Gd are extracted from [15]. Relative B(E2) values assume negligible M1 admixtures for all transitions.

I	F	$^{152}\mathrm{Sm}$	$^{154}\mathrm{Gd}$
0_i^+	2^+_{eta}	100	100
	2_g^+	4	2
2_i^+	$2_g^+ \ 0_i^+ \ 4_eta^+$	100	100
	4^+_eta	30	26
	3_{γ}^{+}	· · · · · · · · · · · · · · · · · · ·	36
	2_{γ}^{+}	10	4
	2^+_eta	7	16
	4_g^+	2	2
	$2^+_eta \ 4^+_g \ 0^+_eta$	· · · · · · · · · · · · · · · · · · ·	0.4
	0_g^+	0.2	0.1
		0.1	0.1
4_i^+	$2_g^+ \ 2_i^+ \ 3_\gamma^+$	100	100
	3_{γ}^{+}	8	1
	$4^+_eta \ 6^+_g \ 2^+_eta$	3	9
	6_g^+	3	1
	2^+_eta	0.2	0.2
	$4_g^+ \\ 2_g^+$	0.03	0.2
	2_g^+	0.01	0.01
	2_{γ}^{+}	- -	0.1
6_i^+	4_i^+	100	· · · · · · · · · · · · · · · · · · ·
	4_i^+ 4_g^+ 4_β^+	0.2	-
	4^+_{eta}	0.02	

reaction [16, 17]), or in nuclei where transfer reaction data are not available.

As a result of the proximity of the $\frac{11}{2}^-$ [505] Nilsson orbital to the Fermi surface [6], the pairing isomeric band should not be confined to just 154 Gd and 152 Sm, but should be

a feature in other nearby rare-earth nuclei. Band-head systematics for $\frac{11}{2}^-$ [505] in odd-neutron nuclei, plotted in Fig. 5, show a minimum near A=153. The interpolated energies for the N=90 nuclei, illustrated as solid circles, indicate that the relative values for these even-even nuclei are lowest near 152 Sm and 154 Gd. While caution is needed in using Fig. 5 to estimate excitation energies of unobserved pairing isomers because, e.g., the plotted energies will contain effects of pairing correlation blocking, the systematic trend in the odd-A isotopes suggests that there should be a low-lying pairing isomer in 156 Dy. Similarly, Fig. 5 indicates analogous structures in 150 Nd and 158 Er should appear at higher excitation energies than the observed bands at 1182 keV in 154 Gd and 1083 keV in 152 Sm.

In summary, using γ -ray coincidence spectroscopy following the β decay of 152m,g Eu and multiple-step Coulomb excitation, we have identified four states which consititute an excited rotational band which is less deformed than the ground state in the nucleus 152 Sm. The structure in 152 Sm is interpreted as a pairing isomeric band analogous to a recently discovered band in 154 Gd [2]. This result suggests a systematic behavior of the underlying $\frac{11}{2}^-$ [505] Nilsson configuration which gives rise to the pairing isomerism [6], and implies similar bands should be present in neighboring rare earth nuclei.

We wish to thank colleagues at the LBNL 88-Inch Cyclotron and OSU reactor for assistance in the experiments and Dennis Burke for his critical reading of this manuscript. This work was supported in part by DOE grants/contracts DE-FG02-96ER40958 (Ga Tech), DE-FG03-98ER41060 (OSU), W-7405-ENG-48 (LLNL), and DE-AC03-76SF00098 (LBNL) and by NSF award PHY-0244847 (Rochester).

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

^{*} Deceased

[†] Present address: Department of Physics and Engineering, Fort Lewis College, Durango, Colorado 81301, USA

[‡] Present address: L-414, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, USA

[§] Present address: Department of Chemistry and Physics, Erskine College, Due West, South Carolina 29639, USA

^[1] A. Bohr and B. R. Mottelson, Nuclear Structure, vol. 2: Nuclear Deformations (World Scien-

- tific, Singapore, 1998), 2nd ed.
- [2] W. D. Kulp, J. L. Wood, K. S. Krane, J. Loats, P. Schmelzenbach, C. J. Stapels, R. M. Larimer, and E. B. Norman, Phys. Rev. Lett. 91, 102501 (2003).
- [3] M. A. M. Shahabuddin, D. G. Burke, I. Nowikow, and J. C. Waddington, Nucl. Phys. A 340, 109 (1980).
- [4] D. G. Fleming, C. Gunther, G. Hagemann, B. Herskind, and P. O. Tjom, Phys. Rev. C 8, 806 (1973).
- [5] I. Ragnarsson and R. A. Broglia, Nuclear Phys. A263, 315 (1976).
- [6] R. J. Peterson and J. D. Garrett, Nuclear Phys. A414, 59 (1984).
- [7] S. Hinds, J. H. Bjerregaard, O. Hansen, and O. Nathan, Phys. Letters 14, 48 (1965).
- [8] P. Debenham and N. M. Hintz, Nucl. Phys. A 195, 385 (1972).
- [9] J. H. Bjerregaard, O. Hansen, O. Nathan, and S. Hinds, Nuclear Phys. 86, 145 (1966).
- [10] J. P. Martin, D. C. Radford, M. Beaulieu, P. Taras, D. Ward, H. R. Andrews, G. Ayotte, F. J. Sharp, J. C. Waddington, O. Hausser, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 257, 301 (1987).
- [11] M. W. Simon, D. Cline, C. Y. Wu, R. W. Gray, R. Teng, and C. Long, Nucl. Instrum. Methods Phys. Res. A 452, 205 (2000).
- [12] I. Y. Lee, in Proceedings of the Workshop on Gammasphere Physics, edited by M. A. Deleplanque, I. Y. Lee, and A. O. Machiavelli (World Scientific, Singapore, Berkeley, CA, 1996), p. 50.
- [13] H. Mach, M. Hellstrom, B. Fogelberg, D. Jerrestam, and L. Spanier, Phys. Rev. C 46, 1849 (1992).
- [14] A. Artna-Cohen, Nucl. Data Sheets **79**, 1 (1996).
- [15] W. D. Kulp, J. L. Wood, K. S. Krane, J. Loats, P. Schmelzenbach, C. J. Stapels, R. M. Larimer, and E. B. Norman, Phys. Rev. C 69, 064309 (2004).
- [16] R. Chapman, W. McLatchie, and J. E. Kitching, Phys. Letters 31B, 292 (1970).
- [17] R. Chapman, W. McLatchie, and J. E. Kitching, Nucl. Phys. A 186, 603 (1972).
- [18] M. R. Bhat, in Nuclear Data for Science and Technology, edited by S. M. Qaim (Springer-Verlag, Berlin, Germany, 1992), p. 817, data extracted from the ENSDF database, file revised as of October, 2004.

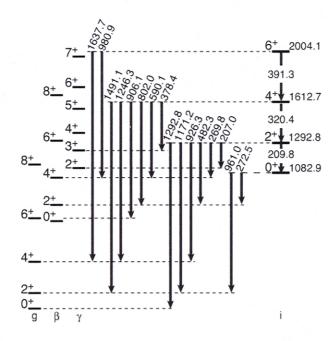


FIG. 1: Levels and transitions (in keV) associated with the pairing isomeric structure in $^{152}\mathrm{Sm}$ determined through γ -ray coincidence spectroscopy. The 0^+_i (1083) and 2^+_{γ} (1086) levels have been displaced for clarity. The 2004.1 keV level is newly established by this study. The 1612.7 keV level previously had an ambiguous J^{π} and no band assignment.

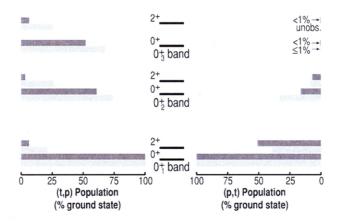


FIG. 2: A comparison of two-neutron transfer reaction strength to states in 152 Sm (light bands) and 154 Gd (dark bands). Data are from [3, 4, 8, 9].

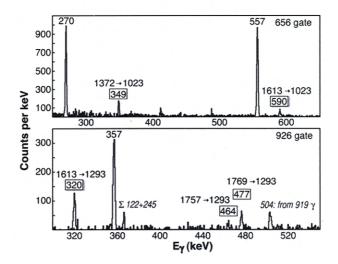


FIG. 3: The 656 (1023 \rightarrow 367; $4_{\beta}^{+} \rightarrow 4_{g}^{+}$) and 926 (1293 \rightarrow 367; $2_{i}^{+} \rightarrow 2_{g}^{+}$) keV γ -ray coincidence gates for the $^{152g}\text{Eu} \rightarrow ^{152}\text{Sm}$ decay show several new transitions (in boxes). Two of the new γ rays feeding the 2_{i}^{+} and 4_{β}^{+} states, at 320 and 590 keV, respectively, are from the 4^{+} band member at 1613 keV. Other new γ rays are from established [14] levels. The 270, 357, and 557 keV transitions have established assignments [14] from previous work.

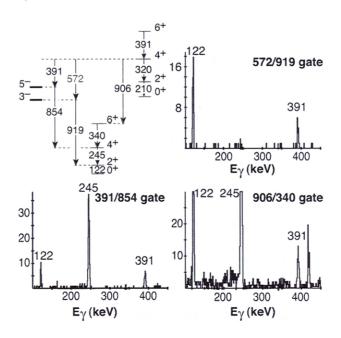


FIG. 4: Triple γ -ray coincidence gates for the multi-step Coulex experiment locate the (6^+) state of the band.

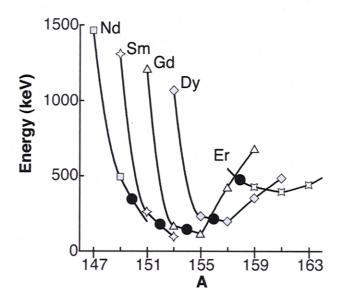


FIG. 5: The $\frac{11}{2}^-$ [505] band-head energies in the odd-mass $87 \le N \le 97$ isotones extracted from the ENSDF database [18] exhibit a systematic trend. Relative values interpolated at N=90 (circles) show that the [505] pairing isomer approaches a minimum excitation energy near $^{152}\mathrm{Sm}$ and $^{154}\mathrm{Gd}$, where bands are identified at 1083 and 1182 keV, respectively.