‘ ! ! . UCRL-CONF-216989

LAWRENCE
LIVERMORE
NATIONAL

wonrony | A parallel computer implementation of
fast low-rank QR approximation of the
Biot-Savart law

D. A. White, B. J. Fasenfest, M. L. Stowell

November 10, 2005

Progress in Electromagnetics Research Symposium
Cambridge, MA, United States
March 26, 2006 through March 29, 2006

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

A Parallel Computer Implementation of Fast Low-Rank
QR Approximation of the Biot-Savart Law

D. A. White, B. J. Fasenfest, M. L. Stowell
Lawrence Livermore National Laboratory, USA

Abstract—In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on
parallel computers. It is assumed that the known current density and the unknown magnetic field are both
expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis
function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if
the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing
distant interactions being low rank and having a compressed QR representation. The matrix partitioning is
determined by the number of processors, the rank of each block (i.e. the compression) is determined by the
specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present
computational results for large-scale computations.

1. Introduction

The computation of magnetic fields from a prescribed electric current is a common problem in magnetic
design and analysis. One approach is to form the problem as a Partial Differential Equation (PDE) for the
unknown field with the prescribed electric current as the source term. Regardless of the particular PDE for-
mulation, e.g. a magnetic vector potential formulation or a mixed B-H formulation, a large volumetric mesh
must be employed, and some boundary condition must be applied on the outer boundary of the mesh. In
contrast to the PDE approach, the Biot-Savart law can be employed to directly compute the magnetic field due
to the prescribed current [1]. The advantage of the Biot-Savart law approach is that a full volume mesh is not
required, and no boundary conditions need be applied. The disadvantage of the Biot-Savart approach is the
computational cost, if there are O(N) magnetic field observation points and O(M) current samples the cost is
O(N % M). In this paper we review a fast low-rank QR method for compressing the M x N Biot-Savart matrix.
The approach is similar to low-rank QR methods developed for boundary element electrostatics [2] [3] and for
low frequency electric field integral equations [4]. The key difference with our approach is that we are concerned
with volumetric current densities and implementation on parallel computers.

2. Formulation

The law of Biot and Savart is given by
5 o 1 J(@') x (@ —a') 4
Bx:VxA:—/ —d ‘. 1
(x) e e M)

where J(z') is the known current density at the source point z’, and B(z) is the desired magnetic flux density
at the observation point z. We assume that we have a finite element representation for J over the volume €,
and a finite element representation for B over a surface I,

N M
J=) &Wi B=) B;Wj, (2)
i=1 j=1

where &; and §; are the ith degree-of-freedom (DOF), and Wf and V_le are vector basis functions. Inserting the
basis function expansions (2) into (1) yields the discrete Biot-Savart law

Mj = Z¢, (3)

Zi; — / / A (m_x;)wjl(x)dﬁ' dr, (4)

/ ,U,47T |g]7(g’|

where

and

W) W
Mu—/rwmwj()dr (5)

and where ¢ and 3 are the arrays of DOF. The matrix M is a “mass matrix” due to the fact that the basis
functions are not orthogonal. The mass matrix is extremely sparse and the computational cost for forming and
solving this matrix is negligible. In many applications the problem of determining the B-field can be posed in
terms of the magnetic vector potential A =V x B with

(6)

u47r |ac — x’|

Using a finite element representation for A yields another version of the discrete Biot-Savart law

N M
T=Y 6w A=) oW}, (7)

i=1 j=1
Ma = Y¢, (8)

where

Y, // L) Wi @) oo)

pdr o — |

We will refer to the M x N matrices Z and Y as Biot-Savart matrices. The computation of these matrices
involves singular and near-singular integrals. The surface integration is performed using standard Gaussian
quadrature points for each surface element. The volume integration uses an adaptive integration rule, which
varies the order of Gaussian quadrature based on the distance between the source point z’ and the observation
point . When the surface element containing z is a face of the volume element containing z’, a highly accurate
height-based singularity cancellation quadrature rule is used [5]. The matrices (4) and (9) are constructed using
2-form or “face elements” for the basis functions W2 and 1-form or “edge elements” for the basis functions W,
see [6] for details on the construction of the basis functions.

Our primary application for the discrete Biot-Savart law is providing boundary conditions for finite element
solution of multi-conductor eddy current problems. In each conductor we solve the time-dependent vector
diffusion equation using an edge element based A-¢ finite element formulation [7]. Clearly the B-field in the
air surrounding the conductors is critical. The finite element formulation requires that either n x AoraxB
be specified on the conductor boundaries, corresponding to inhomogeneous Dirichlet or Neumann boundary
conditions, respectively. Our approach for dealing with the B-field in the air surrounding the conductors is to
use the discrete Biot-Savart law (3) or (8) as the boundary condition on each conducting surface.

3. Parallel Implementation

We assume that the volume €2 has been partitioned into K partitions, where K is the number of computa-
tional processors, with each partition having an equal number of volume elements. The volume elements are
distributed via the partitioning. The surface I" is also partitioned into K equally sized surface partitions. Note
however that the surface elements are not distributed via the surface partitions, each processor can access the
entire surface mesh. The Biot-Savart matrix is then decomposed into a K x K block matrix, with every block
ZP.p € {1 : K},q € {1 : K} representing the interaction of surface partition I', with volume Q,. The ¢th
processor computes blocks ZP4,p = 1 : K, i.e. a column of blocks. Note that the matrix is decomposed via
a partitioning of elements, hence the matrices ZP¢ are overlapping in DOF space. The specific partitioning
algorithm used to partition the elements is not critical, in the examples below we employ a graph-based algo-
rithm [8]. The key point is that if the partitions I',, and €, are well-separated then the sub-matrix ZP? will
have a low-rank QR decomposition. The procedure for computing the low-rank QR decomposition is described
below. We define “well-separated” as follows: the bounding spheres for the element partitions I', and Q4 are
computed, if the bounding spheres do not intersect then the partitions are considered well-separated and a
low-rank QR representation of ZP? is computed. We employ a recursive procedure for computing ZP? when
partitions I', and €2, are not well-separated. This results in a hierarchical representation for Z. If I, and €,
are not well separated, (2, is divided into eight equally sized sub-partitions, I', is divided into four equally sized

sub-partitions, and the “well-separated test” is applied to the sub-partitions I'p; and Qg;, i =1:4,7=1:8. A
space-filling curve algorithm is used for creating the sub-partitions. The process is applied recursively, with a
low-rank QR representation computed for well-separated sub-partitions. The recursion is halted when a volume
sub-partition contains fewer than some number of elements, for applicationexample 512. If at the lowest level
of recursion the interaction is not well separated, it is simply represented by a dense matrix.

No parallel communication is required in the construction of the hierarchical Biot-Savart matrix, each pro-
cessor has the elements that it needs to perform the integrals. Each processor has the same amount of work
hence the computation of is load balanced. Note, however, that in the low-rank QR approximation the rank k
is computed dynamically, and the rank k depends upon the geometry. Hence the application of the hierarchical
Biot-Savart matrix, i.e. the matrix-vector multiplication 3 = Z&, may not be perfectly load balanced. Also
note that the application of the hierarchical Biot-Savart matrix does require parallel communication. This
communication is as follows: (1) each processor ¢ does a gather operation to get the values of £ that it needs,
(2) each processor ¢ loops over the sub-matrices ZP9,p = 1 : K and computes Bq = quf_q, (3) each processor
participates in a global reduction on Bq.

K

&
k4

QR | # | QR

R QF | QR | QR | GR | QR

QR ¥ | QR
K CE. QR | QR | QR | QR] 93

i <F QR | QR | QR | OR

QR | CrR | QR

QR | QR | QR QR QE | QR

Figure 1: Hierarchical partitioning of the Biot-Savart matrix. The highest level of partitioning is based on
the number of processors, as represented by the left-most matrix. The sub-matrices ZP? representing near
interactions are hierarchically decomposed into 8 sub-volumes and 4 sub-surfaces, as illustrated by the right-
most matrix.

4. Low-Rank QR Decomposition

When I', and 2, are well separated the matrix Z?? will have a low-rank representation

qu ~ Q'rnxk X kana (10)

mXn

where k is the rank. We do not want to form the entire ZP9 and then compress it, rather we sample the
matrix by picking s rows and columns of ZP9, where s is some predetermined number, e.g. 50. The procedure
for picking the sampled rows and columns is ad-hoc, the procedure that we employ is described in [4]. The
sampling procedure is solely linear algebra, it does not depend upon the particular Green’s function, finite
element basis functions, etc. For the ad-hoc sampling procedure to be effective we must have s greater than the
expected rank. The algorithm for computing @, xx and Ry« is as follows:

T

and the sampled row matrix S7,,,.

Step 1 : Form the sampled column matrix S¢, . .

Step 2: Compute the rank-revealing QR decomposition QmeRSXS = 5%, using LAPACK routines DGEQPF

and DORGQR. The rank k is determiqed by the criteria Rkk < thresh-}?u ~Where thresh is a threshold
value, we then keep only k£ columns of @, denote this as @, x, and discard R.

Step 3: We form a new matrix st r by taking s rows of @, xx, the exact same rows as used to construct S”.
Step 4: Compute the least-squares solution to stkRan = ST, using LAPACK routine DGELSS.

At this point we have the desired matrices Q,,xx and Ry, which approximate Z2% . The quality of the
approximation, and the amount of compression (the rank k), are determined by the value of thresh used in Step
2 above. Our approach, being based on highly tuned LAPACK routines, is efficient both in terms of FLOPS
and memory usage. The complexity is O(m - s) + O(s - n), using a fixed value of s yields a linear complexity in

m and n.

5. Examples

In these examples we compute a hierarchical low-rank QR approximation of the matrix defined by Equation
(9). For the first example consider the geometry shown in Figure 2. This geometry consists of 19000 volume
elements and is partitioned for 16 processors. Therefore the Biot-Savart matrix will be a 16 x 16 block matrix.
Each block ZP? has roughly 1200 rows and 4000 columns. Using values of s = 50 and thresh = 0.005 gives
the parallel rank map shown in (11). The compression is significant, each 1200 x 4000 matrix is compressed
to Q1200xk + Rixa000 where k is the value shown in (11). Note that the blocks labeled with rank 00 are
near interactions and have full rank. These blocks were decomposed further as explained in Section 3 above.
For example, the Z'! near-interaction matrix will be decomposed into 8 sub-volumes and 4 sub-surfaces, each
resulting sub-matrix has roughly 270 rows and 560 columns. The resulting rank map for the Z!! sun-matrix is
shown in (12). Again the blocks labeled with rank 00 are near-interactions and have full rank. In this specific
case the sub-partitions have around 150 volume elements each, so they will not be partitioned further. The
total compression was 60x for this specific example.

The second example is shown in Figure 3. The geometry consists of three conducting coils, the center coil
is driven with an independent current source, and we wish to compute the eddy currents in the coils due to
the B-field in the surrounding air. The problem consists of 20736 volume elements and was partitioned for 24
parallel processors, therefore the Biot-Savart matrix is a 24 x 24 block matrix. The parallel rank map for this is
too large to show here, but the results were as follow: Each processor had 24 matrices to compute at the highest
level, on average 19 of these corresponded to well-separated regions and were compressed with an average rank
of 10. The remaining 5 full-rank matrices were further partitioned into 4 - 8 = 32 sub-matrices, and on average
29 of these corresponded to well-separated regions and were compressed with an average rank of 25. At the
lowest level of the hierarchy, the near interactions were represented, on average, by dense matrices of dimension
335x 439, there were a total of 24-3 = 72 of these. The total compression was 109x. This compression represents
both the memory savings and the reduction in CPU time required to apply the Biot-Savart interaction.

00 14 16 00 12 10 5 8 5 4 12 20 12 7 7 7]
5 6 6 5 8 12 00 21 00 21 6 4 9 11 18 11
19 00 21 00 0O 17 7 12 11 7 00 12 24 12 10 10
11 00 12 12 00 00 11 00 15 9 17 7 13 14 12 19
6 13 11 9 16 00 14 00 00 12 6 12 16 14 23 5
6 6 5 8 12 00 21 00 21 6 4 9 11 18 11 5
9 7 7 10 34 00 00 00 15 8 5 9 12 18 17 21
12 00 16 9 9 4 8 5 4 12 00 15 9 6 8 19 (11)
16 00 17 17 11 5 9 6 6 45 00 44 12 & 10 13

00 12 14 00 00 9 23 12 8 25 9 16 11 11 13 11

21 21 12 24 11 8 12 12 9 00 12 00 00 12 29 10
14 12 10 16 19 9 17 12 10 00 9 00 00 15 00 5
8§ 5 7 7 11 20 12 15 00 6 5 8 12 00 18 6
9 11 8 10 18 9 22 14 16 13 6 12 00 45 00 5
§ 7 6 10 11 15 20 16 00 9 4 11 37 00 00 15
38 00 16 00 16 11 7 11 10 7 00 15 00 14 12 11

00 11 19 38 00 12 31 21
23 16 21 16 00 36 17 27
26 00 35 00 14 23 43 33
26 13 00 42 41 13 00 00

(12)

Figure 2: Computational mesh for a linear induction Figure 3: Computational mesh for an inductive cou-
motor partitioned for 16 parallel processors. pling application partitioned for 24 parallel processors.

If the computational mesh were refined, the well-separated interactions would still have the same rank,
hence the cost of the well-separated interactions is O(N). Each near-interaction is recursively decomposed into
4.8 = 32 interactions, most of which are again well-separated and have low-rank. The dominant cost is the near-
interactions which are represented as dense m x n matrices, where m and n are determined by fixed parameters
(e.g. the recursion halting parameter of 512 elements) which are independent of the global dimensions M and
N. The number of near interactions is, asymptotically, O(N log(N)), hence the overall method is O(N log(N)).

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by the University of California,
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

REFERENCES

1. J. D. Jackson. Classical Electrodynamics. 1962.

2. S. Kapur and D. Long. IES3: Efficient electrostatic and electromagnetic solution. IEEE Comp.. Sci. Eng.,
5(4):60-67, 1998.

3. D. Gope and V. Jandhyala. PILOT: A fast algorithm for enhanced 3d parasitic capacitance extraction.
Micro. Opt, tech. Lett., 41(3):169-173, 2004.

4. D. Gope and V. Jandhyala. Efficient solution of EFIE via low-rank compression of multilevel predetermined
interactions. IEEE Trans. Ant. Prop., 53(10):3324-3333, 2005.

5. M. A. Khaya and D. R. Wilton. Numerical evaluation of singular and near-signular potential integrals. I[EEE
Trans. Ant. Prop., 53(10):3180-3190, 2005.

6. P. Castillo, J. Koning, R. Rieben, and D. White. A discrete differential forms framework for computational
electromagnetics. Computer Modeling in Engineering € Sciences, 5(4):331-346, 2004.

7. R. Rieben and D. White. Verification of high-order mixed FEM solution of transient magnetic diffusion
problems. IEEE Trans. Mag., October 2005. article in press.

8. G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering.
J. Parallel Distr. Comp., 48(1):71-95, 1998.

