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Final Report on

LLNL Subcontract B546340
“Queuing Network Models of Performance of High End Computing 

Systems”
Jeff Buckwalter

1. Executive Summary

The primary objective of this project is to perform general research into queuing network models 
of performance of high end computing systems. A related objective is to investigate and predict 
how an increase in the number of nodes of a supercomputer will decrease the running time of a 
user's software package, which is often referred to as the strong scaling problem.

We investigate the large, MPI-based Linux cluster MCR at LLNL, running the well-known NAS 
Parallel Benchmark (NPB) applications. Data is collected directly from NPB and also from the 
low-overhead LLNL profiling tool mpiP. 

For a run, we break the wall clock execution time of the benchmark into four components: switch 
delay, MPI contention time, MPI service time, and non-MPI computation time. Switch delay is 
estimated from message statistics. MPI service time and non-MPI computation time are calculated 
directly from measurement data. MPI contention is estimated by means of a queuing network 
model (QNM), based in part on MPI service time.

This model of execution time validates reasonably well against the measured execution time, 
usually within 10%. Since the number of nodes used to run the application is a major input to the 
model, we can use the model to predict application execution times for various numbers of nodes. 

We also investigate how the four components of execution time scale individually as the number 
of nodes increases. Switch delay and MPI service time scale regularly. MPI contention is 
estimated by the QNM submodel and also has a fairly regular pattern. However, non-MPI 
compute time has a somewhat irregular pattern, possibly due to caching effects in the memory 
hierarchy.

In contrast to some other performance modeling methods, this method is relatively fast to set up, 
fast to calculate, simple for data collection, and yet accurate enough to be quite useful.
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2. Project Motivation

An important question that occurs with high end computing systems is: "Given that a particular 
application program uses P processors, how long will it take to execute the program?" When the 
execution time is considered as a function of P, and the input data to the program remains the 
same, the question is often referred to as the strong scaling problem. We build models and 
methods that are an important step toward answering this performance question.

Thus a naturally related question, that is also a motivation for our research, is how to build models 
of application programs running on high end computing systems, where the models are useful for 
analyzing and predicting the behavior of the system. Further, can we extend these modeling 
methods to systems with heterogeneous processors, especially processors with different clock 
speeds.

Our research, performed under this subcontract, provides useful tools and methods for 
approaching these motivating questions.

3. Technical Approach

Since the overall questions we are trying to answer are quite broad, we began our approach to 
modeling high end computing systems in the following way.
1. We use the Linux clusters at LLNL for our high end computing systems. These clusters have 

large numbers of processors, which is good for studying the strong scaling problem. They are 
also representative of many high end computing systems in the world today. The clusters are 
fairly well-understood, well-documented, and some of their performance characteristics have 
been studied by other researchers.

2. We use the NAS Parallel Benchmarks (NPB) as representative application programs. This 
compute-intensive program suite exercises a parallel computer in a number of ways, and is 
often used as a benchmark for performance studies. Furthermore, the program is free and the 
source code is available, which makes it much easier to study and modify the behavior of the 
programs.

3. We use the performance measurement tool, mpiP, available from LLNL, for collecting and 
performing partial analysis of our runs. The mpiP tool has low overhead, collects useful 
information, is relatively easy to install, and is well-known at LLNL.

4. To collect measurement data for building models, we made two major rounds of runs. The 
runs spanned the four major classes (sizes) of the NAS Parallel Benchmarks, different 
numbers of processors, different methods of allocating processors to the benchmarks, and 
different repetitions in order to determine variance from one run to the next.

5. Having collected initial sets of data, we modeled the wall clock execution time of a particular 
application run by breaking the execution time into four components:

• Switch delay: amount of time it takes the network switch to process (transfer) all the
messages.

• MPI contention: amount of time MPI waits for servicing of all messages.
• MPI active time: amount of time MPI actively services messages.
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• Compute time for the application: amount of time spent on non-overlapped 
computation, not related to MPI.

6. The switch delay models the network interconnect and is determined by dividing average 
message size (L) by bandwidth (BW) and adding network latency (Lat).  It represents the 
average network transfer time for a message. The switch delay per message is then multiplied 
by the number of messages per processor to model the switch delay component of wall clock 
time. Note that the parameters for modeling this component of wall clock time are easily 
obtainable from the measurement tool mpiP and from known (or measurable) characteristics 
of the cluster.

7. The MPI contention time is calculated from a queuing network model (QNM, Figure 1 below)
that estimates the average amount of contention among MPI messages that are attempting to 
obtain service from a processor. The primary input for the QNM solver is the MPI active time. 
The number of processors, switch delay, and compute time are also inputs to the queuing 
network model.

8. The MPI active time is the amount of time spent by a processor when servicing MPI calls It
excludes time waiting for MPI transmissions, and also excludes processor computation that 
occurs between MPI calls. MPI active time is calculated as the total MPI time reported by 
mpiP minus the MPI contention described above.

9. The compute time for the application is the amount of non-overlapped computation that 
occurs between MPI calls. It is calculated as the difference between application execution 
time (as reported by mpiP), and total MPI time (also reported by mpiP).

10. We then validate the wall clock model against a substantial number of measurement runs. 
This gives us confidence that the model is a reasonable estimator of the actual application run 
time, over a range of processors (1 to 1024), applications (CG and FT from the NAS Parallel 
Benchmarks), processor allocations (block, cyclic, and linear), and machines (MCR and the 
Keck cluster at University of San Francisco).

11. In addition to building and validating the wall clock model, we also investigate scaling 
behavior of the model. In particular, we investigate how the four components of wall clock 
time vary as the number of processors increases, for a given application running on a given 
system.

Figure 1. Diagram of Queuing Network Model
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4. Research and Results

4.1 Activities
The major activities for the project are summarized below. The work was performed by the 
Principal Investigator, Jeff Buckwalter, and the Research Assistant, Michael Elliott.
1. Installed and used NAS PB (Numerical Aerodynamic Simulation Parallel Benchmarks) 

from NASA Ames as the initial application program we are modeling.
2. Installed and used the communications profiling tool mpiP, from LLNL, for collecting 

information about MPI communications performance.
3. Developed our own queuing network model solver, in addition to initially making use of the 

SHARPE model solving tool, from Kishor Trevedi of Duke University.
4. Established contact with the Performance Modeling and Characterization laboratory at the 

San Diego Supercomputer Center, about the use of their tools, such as MetaSim Tracer and 
MetaSim Convolver, for obtaining memory operation performance.

5. Collected data from about 450 runs of the NAS PB software on MCR, as instrumented with 
mpiP and the Linux time tool. These runs have included
a) Full benchmark suites of Class A, B, C, and D size problems, on various numbers of 

processors, such as 1, 4, 16, 64, 256, and 1024.
b) CG (Conjugate Gradient) benchmarks for Class A, B, C, and D size problems, on 

various numbers of processors, such as 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.
c) Various NAS PB scenarios, such as block processor allocation, cyclic processor 

allocation, and linear (one processor per node). 
d) Repetitions of runs to determine the "natural" variability between runs. 

6. Wrote a Java program, mpiPfilter, that filters the output files from mpiP and NAS PB, and 
creates a text file usable as input for the NBP Spreadsheet.

7. Built the NPB spreadsheet, which receives, as input, select values from the NAS suite and 
mpiP files, as generated by mpiPfilter. The NPB spreadsheet then uses these values to 
calculate model inputs for the QNM Solver. The spreadsheet also performs error analysis 
between modeled and measured values, and graphically displays the results. The graphs 
also compare the components of the model’s wall clock time to the measured components 
of the wall clock time for the application.

8. Wrote the QNM (Queuing Network Model) Solver, which is a Java program, ported from 
algorithms and FORTRAN code in [29]. Using input files generated by our utility inMaker, 
based on values from the NPB spreadsheet, as gathered from the mpiP and NAS PB suite 
files, the program models the system as a queuing network. The solver performs single and 
multiple class mean value analysis, single class load dependent service center modeling, 
and is capable of batch execution The output of the solver is entered into the NPB 
spreadsheet to complete the modeled vs. measured validations

9. Built performance models for most of the 450 runs described above, using the tools 
described above.

10. Investigated scaling behavior of the model as the number of processors increases.
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4.2 Related Activities at Other Institutions
The Research Assistant, Michael Elliott, applied these same modeling tools and techniques to the 
University of San Francisco Department of Computer Science’s Keck Cluster supercomputer, 
which is a 64 node Beowulf cluster of dual Pentium III 1GHz CPUs, connected by a 2Gbps 
Myrinet network. This work was part of a directed research course at USF, and was not directly 
funded by LLNL, although it used tools and techniques developed under the LLNL subcontract. 
The validation between modeled and measured results, which were similar to those of LLNL's 
MCR, helped to increase confidence in the ability of these techniques to predict wall clock 
execution times reasonably accurately.

4.3 Conferences Attended
Both the PI and the RA attended HPCA-11 (Eleventh International Symposium on High-
Performance Computer Architecture) in San Francisco, February 12-16, 2005. This was valuable 
for gaining background and for learning the state of the art in computer architectures for the type 
of systems we are modeling.

The PI, Prof. Buckwalter, attended IPDPS (International Parallel and Distributed Processing 
Symposium) in Denver, April 4-8, 2005. However, this conference was funded by USF.

The PI also attended HPDC-14 (High Performance Distributed Computing) in Raleigh-Durham, 
July 24-27. Again, this was a valuable conference for gaining background and making contacts 
with other researchers.

4.4 Results
In general, there is good correlation between measured and modeled values for application 
execution time, or wall clock time. Almost all relative error values fall within the 30% tolerance 
typical of QNM models, and most fall within 10% or less. Relative errors tend to be less for
smaller numbers of processors, and greater for larger numbers of processors, where there is more 
contention among MPI messages. 

These validations hold up well across the different problem sizes (Class A through Class D). 
However, the smallest size, Class A, which has application execution times of only a few seconds, 
tends to show the greatest variability from run to run. We hypothesize that operating system noise 
and network contention from processors not in the run are having a larger impact on these short 
Class A runs than on the longer runs, such as for Classes B, C, and D.

We give two typical examples of graphs generated by the NPB spreadsheet. Both examples are 
from runs of NPB CG (Conjugate Gradient) Class B on MCR. Note that the modeled application 
execution time validates reasonably well with the measured times. In the first chart, the error bars 
indicate the 30% relative error range. In the second chart's legend, the upper three time 
components refer to the measured aggregate execution time and are represented by the outer 
column for each set of processors. The lower four time components refer to the modeled 
aggregate execution time and are represented by the inner column. (The electronic version of this 
document is in color, which is easier to read.)
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Figure 2. Modeled vs. Measured Application Wall Clock Times
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Figure 3. Modeled vs. Measured Aggregate Component Times
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Our initial investigation of scaling behavior of the NPB CG benchmark on MCR indicates that 
most of the major inputs to the model are reasonably well behaved. In particular, as the number of 
processors increases,

• Average message size decreases approximately as the inverse square.
• The number of messages. increases near-linearly, with a small quadratic component.
• Aggregate MPI active time (MPI service time) also increases near-linearly, with a small 

quadratic component.
• However, aggregate compute time (non-MPI computation) behaves more erratically. It 

roughly follows an overall U-shaped curve, higher on the right, with small, irregular 
sawtooths. We hypothesize that caching at the different layers of memory hierarchy is 
having a strong effect as the working set decreases due to smaller message sizes.

Thus, the following prediction problem will likely have to wait until we have a better model of 
how compute time scales with the number of processors:

Predict how application A will behave on target machine T for large numbers of 
processors, given knowledge of how application A behaves on machine T for small 
numbers of processors and given extensive knowledge of how A behaves on baseline 
machine B.

On the other hand, our results are quite promising for predicting how an application will behave 
on a baseline machine, given a small sample of runs at various numbers of processors.

We note that our technique will accommodate systems with heterogeneous processors (in terms of 
processor clock speeds), although we have not yet experimented with a heterogeneous system at 
LLNL.

In summary, this queuing network modeling technique shows good potential for performance 
prediction of high end computing systems. It gives much better accuracy than is often seen in 
other estimation methods, is easy to calculate, and requires relatively little data collection.

5. Papers and Book Chapters Supported in Part by the Subcontract
Software tools and research techniques developed under the subcontract were used in the 
technical report "Using Queueing Network Modeling to Analyze the University of San Francisco 
Keck Cluster Supercomputer," by Michael Elliott, University of San Francisco, August 19, 2005.

We are also working to publish these results as at least one conference proceeding, although we 
have not yet selected a target conference.
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