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ABSTRACT 

I n  the  f i r s t  of a s e r i e s  of experiments performed f o r  t he  Department 

of Defense t o  invest igate  the protect ion afforded by various t yp i ca l  s t ruc-  

tu res  against  prompt weapons radiat ion,  rad ia t ion- in tens i ty  measurements 

were made a t  the  Tower Shielding F a c i l i t y  i n  two concrete-shielded bunkers 

and i n  an interconnecting tunnel. prompt weapons rad ia t ion  was simulated 

by the  Tower Shielding Reactor I1 (TSR-11), which was operated 100 f t  above 

the ground. The distance between t he  reac tor  and the  bunkers was approxi- 

mately 700 f t .  The bunkers were each 12 - f t  cubes and were constructed so 

t h a t  the  sh ie ld  thickness on the  f r o n t  face  of one and on the  top face  of 

the  other  could be varied i n  4-in. s t eps  from 0 t o  20 i n .  The thickness of 

concrete and d i r t  surrounding a l l  o ther  faces  was su f f i c i en t  t o  make them 

black t o  incident radia t ion.  

The immediate goals of the  experiment were t o  study (1) the  at tenua- 

t i on  of radia t ions  by various thicknesses of ordinary concrete slabs, 

(2) the  buildup of radia t ion i n t e n s i t i e s  within the  cav i t i e s  by s ca t t e r i ng  

of radia t ion i n  t he  walls, and (3)' the  transmission of rad ia t ion  down a 

tunnel with two right-angle bends. The gamma-ray and fast-neutron dose 

r a t e s  and thermal-neutron fluxes measured a t  various posi t ions  within the  

bunkers arid in -the tunnel and the  pulse-height spectra  from a 3-in. sodium 

iodide c r y s t a l  determined a t  one pos i t ion  i n  the  top bunker and one posi -  

t i on  i n  the t u rne l  are repurLed. 
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INTRODUCTION 

A research program i s  being undertaken a t  Oak Ridge National Labora- 

tory with the ultimate goal of producing simplified calculationalmethods 

fo r  estimating the protection afforded by various typical  structures against 

prompt weapons radiation. The f i r s t  experiment i n  t h i s  program was carried 

out a t  the Tower Shielding Faci l i ty  i n  consultation and cooperation with 

the Department of Defense, Office of C i v i l  Defense, and consisted of 

radiation-intensity measurements i n  two concrete-shielded bunkers and an 

interconnecting tunnel. Prompt weapons radiation was simulated by the  

Tower Shielding Reactor I1 (TSR-XI), which was operated 100 ft above the 

ground. The distance between the reactor and the bunkers was approximately 

700 f t .  

The immediate goals of the experiment were (1) t o  study the attenua- 

t ion of radiations by various thicknesses of ordinary concrete slabs, 

(2) t o  investigate the buildup of radiation in tens i t i e s  within the  cavi t ies  

by scattering of radiation i n  the walls, and (3) t o  study the transmission 

of radiation down a tunnel with two right-angle bends. This report de- 

scribes the experhent  and presents the results.  An analysis of the data 

w i l l  be given i n  a subsequent report t o  be submitted t o  the  Defense Atomic 

Support Agency (DASA) . 
FACILITY DESClXETIQN 

The Tower Shielding Faci l i ty  consists of four 315-ft towers which 

support the TSR-I1 and other experimental equipment a t  heights as high as 

200 f t .  Each tower i s  located a t  the comer of a 100 by 200 f t  rectangle, 

with the WR-I1 suspended between towers I and I1 as  shown in Figs. 1 and 

2. For t h i s  experiment no other equipment was suspended fram the s t m -  

ture . 
The TSR-I1 is a water-moderated and -cooled reactor constructed of 

I MI%-type f u e l  p la tes  which form a spherical annulus. The en t i r e  assembly 



Fig. 1. Tower Shielding Facili ty.  
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i s  contained i n  the lower section of a cyl indrical  tank with a hemispheri- 

c a l  bottom. The presence of water and auxi l iary lead shielding above the 

top of the core prevents the uniform emission of radiation i n  about 50$ of 

the 2n so l id  angle i n  the upper hemisphere; however, the remaining 50$ plus 

the  uniform radiat ion emitted by the lower hemisphere simulates an isotropic  

source, such a s  a weapon bvrst ,  f a i r l y  well. 

During t h i s  experiment the spectra of radiations emitted by the TSR-I1 

were modified by the addition of a lead-water shield t o  the outside of the 

cy l indr ica l  tank. A general description of t h i s  shield, ident i f ied as  

COOL-I and shown i n  the l e f t  half  of Fig. 3, may be found el.sewhereS2 The 

neutron-leakage spectrum f o r  t h i s  shield i s  shown i n  Fig. 4. (T'he spec- 

trum shown i n  the  lower par t  of Fig. 4 i s  f o r  the  COOL-I1 shield shown i n  

the  r ight  half  of Fig. 3, but  COOL-I1 was not used i n  t h i s  experiment.) 

BUNKER DESCRIPTICrN 

The two concrete-lined bunkers, which were 12-ft  cubicles, were con- 

s t ructed so t h a t  t he  shields on the f ront  face of one and on the top face of 

the other could be varied as  shown i n  Fig. 5. The thickness of concrete and 

d i r t  surrounding a l l  other faces was suff ic ient  t o  make them black t o  the 

incident radiation. The bunkers were connected by a three-legged passage- 

way o r  tunnel, 3 f t  wide and 8 f t  high, the two legs opening in to  the 

bunkers being perpendicular t o  and at  opposite ends of the middle leg. 

The distance along the f i r s t  l e g  of the passageway from the bunker with the 

variable  f ron t  face, called the "front" bunker, t o  the center l i n e  of the 

middle l eg  was 6 f t  4 in .  Similarly, the length along the th i rd  l eg  from 

the  bunker with the variable top face, cal led the "top" bunker, t o  the 

center l i n e  of the  middle l eg  was 6 ft 4 in., the en t i r e  length of the  mid- 

d le  l e g  being 15 f t  2 in .  The lower end of' a 3-ft-dim, 7-f t  7-in.-high 

entranceway, covered by a 1-ft-thick concrete hatch, opened in to  the center 

of the ce i l ing  of the middle leg. 

2. F. J. Muckenthaler, L. B. Holland, and R. E. Maerker, In-Air Radiation 
Measurements -- i n  the Vicinity --- of the Tower Shielding Reactor II, ORNL- 
3288 ( 1963) 
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Fig. 5 .  Schematic of Bunker-Tunnel Arrangement, Sharing the Coordimte 

Systems. 



Five concrete shields were available fo r  the open face of each bunker, 

varying i n  thickness from 4 t o  20 in.  i n  4-in. steps. Because 09 t h e i r  

la rge  size, the  shields were made i n  two sections and required 112-in. s t ee l  

reinforcing bars on 4-in. centers running the long dimension and 318-in. 

bars  on 6-in. centers running the short dimension. The canposition of a 

concrete sample taken from one of the slabs was analyzed t o  contain the 

following : 

Element 

Aluminum 
Calcium 
Carbon 
Hydrogen 
Iron 
Magnesium 
oxygen 
Si l icon 

Weight Percent 

2.65 
22.12 
4.83 
0.36 
1.32 
0.85 

47.04 
20.83 

The coordinate systems used f o r  most of the measurements i n  the experi- 

ment a re  shown i n  Fig. 5. Note tha t  i n  each case the origin i s  the center 

of the  inside face of the  variable shield. 

INSTRTJvfENT DESCRIPTION 

The instruments used in the experiment consisted of an anthmcene scin- 

t i l l a t i o n  crystal ,  a Hurst-type proportional counter, a BF3 proportional 

counter, and a 3 x 3 in.  N a I  crystal .  

The anthracene crystal ,  which was used f o r  gamma-ray dose-rate men- 

surements, was mounted on a photomultiplier t&e whose current was read 

with a d-c integrator.  Since the pulse output of the integrator was 

proportional t o  the  current input, the automatic p lo t t ing  equipment tha t  

requires a puloc c i p l  could be used. The counter was calibrated against 

the  known in tens i ty  from a coeO source. 

The appreciable response tha t  the anthracene crys ta l  has t o  neutron 

interact ions within the c rys ta l  has not been corrected f o r  i n  the data 

presented here. The portion of the response due t o  fast-neutron in ter -  

actions can be estimated from data taken by General Dynamics/~ort worth3 

3. K. R. Spearman, Jr., Neutron Sensi t ivi ty - of Anthracene Dosimeters, 
N A R F - ~ ~ - ~ ~ T  (0ct.  1 9 5 r  



with s & i l a r  counters. I f  it i s  assumed t h a t  t h e  f a s t  neutrons have a f i s -  

s ion energy spectra, the  GD/FW data  y i e ld  an equivalent  gawaa-ray response 

of 0.125 ergIgtisSue per ergIgtisSue of fast-neutron dose. The anthracene 

c r y s t a l  a l s o  has a s ign i f ican t  response t o  thermal-neutron f i e l d s .  This e f -  

f e c t  was cursor i ly  invest igated by making measurements ( see  Fig. 6 ) ,  with 

and without a stainless-steel-canned Lie sh ie ld  surrounding the  dosimeter, 

along the  center  l i n e  of the  second and t h i r d  l egs  of the  tunnel leading 

from the f r o n t  bunker (with no f r o n t  shie ld)  t o  the  top bunker (with a f u l l  

20-in. top sh ie ld ) .  An estimate of the  thermal-neutron-induced response 

was obtained by using the  r a t i o  of t he  di f ference between the  bare- and 

Lie-covered-counter data t o  t he  thermal-neutron-flux data  a t  t he  same loca-  

t ion .  The region from D = 0 t o  3 f t  was ignored 'because of the  complica- 

t ions  introduced by the high fast-neutron dose present.  The region from 

D = 3 t o  7 f t  gave an estimate of 3.6 x lo-' -1 
erg* g t i s sue  . h r  -' equivalent 

gamma-ray response per  un i t  thermal-neutron f lux.  The da ta  from L = 1 t o  

14 f t ,  i n  a region where the  neutrons a r e  qui te  thermal ( t h e  cadmium ra t i o ,  

o r  r a t i o  of bare BF3 t o  cadmium-covered BF3 readings, i s  around 70), gave 

an est imate of 6.3 x lo-' .hr- l  equivalent gamma-ray response per  
erg*gtissue 

u n i t  thermal-neutron flux.  

The ca l ib ra t ion  procedure f o r  the  ~ u r s t - t &  proportional  counter, 

which was used fo r  fast-neutron dose-rate measurements, involved f i r s t  se t -  

t i n g  the  system gain with a known gamma-ray dose r a t e  and then reading the  

counter i n  a known f i e l d  from a fast-neutron source. I n  par t i cu la r ,  the  

system gain was s e t  so t h a t  a coGO gamma-ray dose r a t e  of 2 r /hr  produced 

40 pulses per  minute l a rge r  than 6 v a t  the  output of the  l i n e a r  amplif ier .  

The pulse output from the  ampli f ier  was in tegrated f o r  the  neutron dose 

rea.dIi.ngs so as t o  obtain an output proportional  t o  the  ionizat ion i n  the  

chamber f o r  neutrons. A Po-Be source was used f o r  t he  d a i l y  ca l ib ra t ions  

of t he  counter. 

The BF3-filled proportional  counter was used f o r  thermal-neutron f l u x  

measurements. Although the  output from the  counter more c lose ly  resembles 

neutron density than neutron flux,  because of the  near ly  l / v  behavior of 

the  ~ ' ' (n ,a )  cross section,  the  readings were normalized t o  cadmium- 

dif ference measurements taken with gold f o i l s  i n  the  rad ia t ion  f i e l d  from 
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the  reactor, ,  The da i l y  ca l ib ra t ions  were checked with a Po-Be source i n  

a Lucite moderator. 

The NaI.crysta1, which was used t o  determine gamma-ray pulse-height 

spectra,  was mounted on a 3-in. photomultiplier  tube. The pulse output 

from t h i s  counter was recorded with a 256-channel pulse-height analyzer. 

Energy ca l ib ra t ions  were made aga ins t  cslS7 and co60 sources and t he  c12 

decay g m a  rays from a Po-Be source. 

DOSE-RATE; AND FLUX MEASUREMENTS I N  BUNKERS 

The f i r s t  s e r i e s  of dose-rate and f lux  measurements i n  the  bunkers 

were f o r  f ixed counter posi t ions  and various reac tor  a l t i t u d e s  i n  order t o  

determine the  e f f e c t  of reactor  height on the  experimental r e su l t s .  The 

measurements, p lo t ted  i n  Figs. 7 and 8 f o r  f a s t  neutrons and gamma rays, 

respectively,  were made i n  the  f ron t  bunker (lower curves) f u l l y  shielded 

with 20 i n .  of concrete and i n  the  top bunker (upper curves) shielded with 

4 i n .  of concrete. It was concluded from these  da ta  t h a t  it would not  be 

w o r t ~ ~ w ~ ~ i l e ,  a t  l e a s t  f o r  t h i s  experiment, t o  take measurements a t  more than . 
one a l t i t u d e .  Consequently, the  r e s t  of the  measurements were taken a t  a 

reactor  a l t i t u d e  of 100 f t ,  f o r  the  various parameters shown i n  Table 1. 

A t  t h i s  a l t i t u d e  a l i n e  from the  reactor  center  t o  the  cen te r  of the  sh ie ld  . . 
'C ' 

on the  f r o n t  bunker was perpendicular t o  the  shield,  and the l i n e  from the  . . 

reactor  center  t o  the  center of the  sh ie ld  on the  top bunker s t ruck the  

shie ld  a t  a grazing angle of 9.5'. 

Also i n  these s e r i e s  of measurements the  e f f e c t  of sh ie ld  placement 

on the  open faces of the  bunkers was invest igated by recessing t he  4-in.- 

th ick  top sh ie ld  16 i n .  below ground l e v e l  and then keeping it f lu sh  with 

the  ground leve l .  As can be seen by comparing t he  two upper curves i n  

Figs. 7 and 8, there  was negl igible  difference 'between the  r e s u l t s  f o r  t h e  

two s lab  posi t ions .  Therefore a l l  l a t e r  measurements were taken with the  

s lab recessed, s ince  t h i s  pos i t ion  was more convenient. 

Most of the  l a t e r  measurements i n  the  bunkers were made a s  a function 

of one of the  var iables  defined i n  the  rectangular coordinate systems shown 

i n  Fig. 5. Unless otherwise specified,  a l l  da ta  taken i n  t he  top bunker 

were fo r  t h e  case of a f u l l  f r o n t  sh ie ld  on the  f ron t  bunker, and v ice  

.versa (although t h i s  was found t o  be unnecessary, a s  w i l l  be seen below). 
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Table 1. S~mnary o? Experimental Parameters 

Shield Thickness ( in . )  Coordizates 

Location of Top.  . Front m e  of Figure 
Measurement Bunker 3unker Measurement x ,u  . y, v z ,w Number 

Front bunker 20 
20 
20 
20 
20 
20 

Front bunker 

Front bunker 

F r m t  bunker 

.' 

Top bunker 

0 Fast . -neutr~n dose r a t e  0 0 Variable 9 
4 
8 

12 
16 
20 

G m - r a y  dose r a t e  0 Variable 10 

Thermal-neutron f lux  0 0 Variable 11 

Gma- ray  dose r a t e  0 0 Variable 12 
- 3' 5.54' Variable 12 

Fast-neutron dose r a t e  0 . 0 Variable 12 
- 2.5: 5.54' Variable 12 

Fa t -neu t ron  dose r a t e  0 9 Variable 13 



Table 1 (cont.) 
- - 

Shield Thickness ( in .  ) Coordinates 

Locstion of TOP Front Ty-pe of Figure 
Measurement Bmker Bunker Measurement x, u Y,V z ,w Numb e r 

Top bunker 0 20 Gamma-ray dose r a t e  0 0 Variable 14 
4 20 
8 20 

12 20 
16 20 
20 20 

Top junker 0 20 .Thermal-neutron f l ux  0 0 Variable 1 5  
4 20 1: 

8 20 
12  .20 

Top bunker 0 20 Fast-neutron dose r a t e  Variable 0 6 ' 16 
4 20 

12 20 

Top bunker 0 20 Gamma-ray dose r a t e  Variable 0 6 ' 17 
4 20 

12 2G 
20 20 

Top bunker 0 20 mermal-neutrcn f l ux  Variable 0 6 ' 18 
4 20 

12 20 
20 20 

Top bunker 0 20 Fast-neutron dose r a t e  Variable . 0 4.75" 19 
4 20 

12 20 



Table 1 (cont.)  
- 

Shield Thickness ( in .  Coordinates 

Location of TOP Front Type of Figure 
Measurement Eunker Bunker Measurement x, u y,v z,w Number 

Top bunker 0 20 G m a - r a y ,  dose r a t e  Variable 0 4.75" 20 
4 20 

12 20 
20 20 

Top bunker 0 20 Fast-neutron dose r a t e  Variable 5 '9" 6 ' 21  
4 20 

12 20 
20 20 

Top bunker 0 
'Y.1 4 

Top bunker 

Gamma-ray dose r a t e  Variable 5 '9" 

C* 20 Thermal-neutron f l ux  Variable 5 '9" 
4 20 

12 20 
2 0 20 

Top bunker 20 0 Ganma-ray dose r a t e  Variabl.2 -5'1" 8 '2" 24 
20 20 Variable -5'1" 8 '2"  24 
2 0 0 Fast-neutron dose r a t e  Variable -5'1" 8 '2" 24 

Top bunker 

Top bunker 

Top bunker 

0 20 Fast-neutron dose r a t e  Variable 0 4.75" 25 
Variable 0 6 ' 2 5 
Variable 5'9" 6 ' 2 5 

0 20 Thernal-neutron f lux Variable 0 6 ' 26 
Variable 5 '9" 6 ' 26 

4 20 Fast  -neutron dose r a t e  Variable 0 4.75" 2 7 
Variable 0 6 ' 2 7 



Table 1 (cant.)  

Shield Thickness ( in . )  Coordinates 

Location of To3! Front Type of Figure 
Measurement Bunker Bunker Measurement x, u y, v z, w Number 

Top 3unker 4 20 Gamma-ray dose r a t e  Variable 0 4.75" 28 
Variable 0 6 ' 28 

Top junker 12 2 0 Fast-neutron dose r a t e  Variable 0 4.75" 
Variable 5 ' 7.5 " 

29 
6.5" 

Variable 0 6 ' 
29 

Variabie 5 '9 " 
29 

6 ' 29 

Top bunker 

Top ibunker 

Gamma-ray dose r a t e  Variable 
Variable 
Variable 
Variable 

Gamma-ray dose r a t e  Variable 
Variable 
Variable 
Variable 
Variable 

Top bunker 20 20 Thermal-neutron f lux  Variable 0 4. 5'l 
Variable 0 6 ' 32 

32 

Variable 5'9" 6 ' 
Variable 

32 
0 11'7.5" 32 

Front bunker, 20 074 Fast-neutron dose r a t e  0 Variable 6 '  
with shadow 

33 

shie ld  

Front bunker, 2 in.  poly- 0,4 Gamma-ray dose r a t e  0 Variable 6 '  
with shadow ethylene, 

34 

shie ld  2 in .  borated 
polyethylene, 
and 4 in.  
concretea 



Table 1 (cont.) 

Shield Thickness ( in.  ) Coordinates 

Location of TOP Front Type of Figure 
Measurement Bunker Bunker IIeasurement x, u Y j V  z,w Number 

Front bunker, 2 in.  poly- 0,4 Thermal-neutron f lux 0 Variable 6 '  3 5 
with shadow e thylsne, 
shie ld  2 in.  borated 

polyet,hylene, 
2nd 4 in. 
concretea 

From rea r  of 2 0 0 
f ron t  bunker 
t o  30 f t  i n  
f ron t  of 
bunker 

Fast-neutron and gamma- 0 0 Variable 36 
ray dose r a t e s  and 
thermal-neutron f l ux  

Tunnel, a l l  
three  legs  

Tunnel, middle 
legC 

Fast-neutron and gamma- . 
ray dose r a t e s  and 
thermal-neutron f l ux  

Fzst-neutron dose r a t e  
Fast-neutron dose r a t e  
Fast-neutron dose r a t e  
Fast-neutron dose r a t e  
Fast-neutron dose r a t e  
Fast  -neutron dose r a t e  
Fast-neutron dose r a t e  
Fast-neutron dose r a t e  

Measurement made along 37 
center  l i n e  of tunnel 

38 
38 
38 

Measursment made along 38 
center l i n e  of tunnel 38 



Table 1 (cont.)  

Shield Thickness ( i n .  ) Coordinates 

Location of T,op Front Type of Figure 
Measurement Bunker Bunker Measurement x, u y, v z , w  Number 

Tunnel, middle 2 0 0 ,Gamma-ray dose r a t e  39 
legC 20 4 G m a - r a y  dose r a t e  39 

20 12 12-amm-ray dose r a t e  39 
10 2 0 G m a - r a y  dose r a t e  Measurements made along 39 
1 0  o ( E ) ; ~ ( v ) ~  Gamma-ray dose r a t e  center  l i n e  of tunnel  39 . 
20 4(E) ;o(w) Gamma-ray dose r a t e  39 - 
20 O(E) ;12(wib Gamma-ray dose r a t e  39 
20 12(E) ; O(W) Gamma-ray dose r a t e  39 

Tunnel, a l l  0 2 0 ~ r s  t -neutron and g m a -  Measuremen-? made along 40 
three  l egs  ray doses and thermal- center  l i n e  of tunnel  

neutron f l ux  

I n  center  of 0 0 Gamma-ray pulse-height 0 0 6 ' 41 
top bunker 4 spectra 

20 

I n  center  of 4 0 G m a - r a y  pulse -height 0 0 6 ' 42 
top bunker spect ra  

2 in .  borated 0 Gamma-ray pulse-height 
polyethylene spectra 
and 4 in .  
concretea 

\ 

2 i n .  poly- 0 G a m - r a y  pulse-height 0 
ethylene, 2 spect ra  
in .  boreted 
polyethylene , 
and 4 in.  
concre t ea  



Table 1 (cont.) 

Shield Thickness ( i n .  ) Coordinates 

Location of TOP FrorLt Type of Figure 
Measurement Bunker Bunker Measurement. x, u Y, lJ z,w Number 

In  center  of 20 
middle l eg  
of tunneld 

0 G m - r a y p u l s e - h e i g h t  Measurem~ntmade i n  
spectra center of t-mnel 

a. Listed i n  ord?r from top layer  down. , 

b; The numbers preceding ( w )  and (E) indidate the thickness of shield,  i n  inches, on the west ( l e f t )  
s ide  and e a s t  ( r i gh t )  side, respectively.  

c. Includes meesurement made while cover was removed from entrance hatch. 

d. Measurements made w i t h  and without boron cover surrounding c rys ta l .  



Figures 9, lo ,  and 11s show measurements of fast-neutron and gamma- 

ray  dose r a t e s  and thermal-neutron fluxes,  respectively,  along the  z ax i s  

of the  f ron t  bunker f o r  various f ront-shie ld  thicknesses. The fast-neutron 

and gamma-ray dose r a t e s  shown i n  Fig. 12 were a l so  obtained a s  a function 

of z, but  f o r  d i f f e r en t  x and y coordinates. For these  l a t t e r  measurements 

the  f u l l  20-in. sh ie ld  was maintained on the  f r o n t  face.  

Figures 13 through 24 a l l  show the  data  obtained i n  the  top .bunker' a s  

a function of pos i t ion  within the  bunker f o r  several  d i f f e r en t  top-shield 

thicknesses. Figure 23 i s  representa t ive  of measurements taken c lose  t o  

and across t he  opening t o  the  interconnecting tunnel i n  order t o  determine 

whether var ia t ions  i n  the  shie ld  on the  f r o n t  bunker a f fec ted  measurements 

i n  the  top bunker. The f ront-s lab thickness was varied from 0 t o  20 in .  

with l e s s  than a 10% e f f e c t  observed i n  the  gamma-ray dose r a t e s  and with 

v i r t u a l l y  no e f f e c t  observed i n  the  fast-neutron dose ra tes .  

Figures 25 throu& 32 cons i s t  pr imari ly  of cross  p l o t s  of t he  data  

given i n  Figs. 13  through 23, each s e t  of cross p l o t s  corresponding t o  a 

spec i f ic  top-shield thickness. These data  demonstrate the  var ia t ions  of 

radia t ion i n t e n s i t i e s  with,posit ion i n  the  bunker f o r  a f ixed shie ld .  

One of t he  objectives of the  experiment was t o  determine the  r e l a t i v e  

contributions from each of the  s i x  surfaces of a cubicle t o  the  i n t e n s i t i e s  

of the  various radia t ions  a t  the  center of t he  cubicle.  This .was attempted 

.experimentally by using a shadow shie ld  t o  block the  de t ec to r ' s  view of one 

o r  more surfaces of the  cubicle.  Since most of the  i n t e r e s t  was i n  f a s t -  

neutron dose ra tes ,  the  shadow shie lds  were designed spec i f i c a l l y  f o r  neu- 

t ron  atte'nuation. They were b u i l t  of 4 x 4 x 8 in .  l i th ia ted-para f f in  

blocks consis t ing of 40 wt '$ l i th ium carbonate (na tu r a l  l i thium) and 60 

wt % paraff in .  The blocks were stacked so a s  t o  approximate a truncated 

pyramid 20 in .  high with a 22-in. square top and a >8-in. square bottom. 

The two ends of the  shadow shie ld  were p a r a l l e l  t o  t he  surface being 

shielded, t he  small end being neares t  the  detector .  

m e s k  f igures  and a l l  succeeding f igures  a r e  assembled a s  a group f o l -  
lowing the  l a s t  page of t ex t .  



Figure 33 gives t h e  r e s u l t s  of the  measurements taken i n  the  f r o n t  

bunker with a fast-neutron dosimeter while various shadow sh ie lds  were i n  

pos i t ion  and t h e  f r o n t  face  was e i t he r  open o r  covered with a 4-in. shie ld .  

Horizontal  t r averses  were made so a s  t o  obtain a normalization value a t  a 

po in t  f a r  enough from the  shadow sh ie lds  far  t he  reading not t o  be exces- 

s i ve ly  perturbed by the  presence of the  shadow shie lds .  Each s e t  of 

curves was normalized t o  the  average reading obtained a t  y = 5 f t .  

Figures 34 and 35 give the  corresponding shadow-shield d a t a . f o r  g m a -  

ray dose r a t e s  and thermal-neutron fluxes,  respectively.  These data  a r e  

somewhat more d i f f i c u l t  t o  i n t e r p r e t  because the  shadow sh ie ld  was not 

b lack  t o  gamma rays and perturbed the  thermal-neutron f luxes  excessively. 

Figure 34 a l s o  shows t he  r e s u l t s  of removing 4 i n .  from the  l a rge  end of 

t he  f r o n t  shadow shield,  namely, a 14% increase i n  gamma-ray dose ra te .  

The fast-neutron dose r a t e  d id  not  vary with t h i s  configuration change. 

The approximate r e l a t i v e  contributions of each w a l l ,  as  derived from the  

fast-neutron dose-rate da t a  by taking di f ferences  of the  various measure- 

ments, a r e  shown below f o r  t h e  two front-shie ld  configurations.  

contr ibut ion ( %) 

Shield on Front Face ( i n . )  Front Side ' Rear 

Figure 36 shows measurements of fast-neutron and gamma-ray dose r a t e s  

and thermal-neutron f luxes  taken along the  z ax i s ' o f  the  f r o n t  bunker with 

no sh i e ld  on t h e  f r o n t  face .  It w i l l . b e  noted t h a t  these measurements 

extended out t he  bunker t o  over the  concrete pad i n  f r o n t  of t he  bunker. 

Included a s  notes on t he  f igure  a r e  values, a t  four  posi t ions ,  of the  

cadmium ra t i o ,  defined a s  t he  r a t i o  of the  measurements made with the  

bare  BF3 counter t o  those with a cadmium-covered counter. 



DOSE-RATE AND FLUX MEASUREMENTS I N  TUNNEL 

~ i ~ u r e s  37 through 40 give r e s u l t s  of t raverses  along t he  center  line 

of the  interconnecting tunnel f o r  various s lab  configurations on the  bunkers. 

The data i n  Figs.  37, 38, and 39 were taken with the  f u l l  shielding on the  

top bunker. I n  Fig. 37, which i s  f o r  the  case of no shie ld  on t he  f r o n t  

bunker, the  measurements.are p lo t ted  a s  a function of the  dis tance along t he  

center  l i n e  of the  tunnel, s t a r t i n g  from the  x,z plane of the  f ron t  bunker 

and continuing along the  center  l i n e s  of a l l  three  legs, a s  shown i n  the  

i n s e r t  on the  f igure .  

Figures 38 and 39 show the  e f f e c t s  of various f ront-s lab thickhesses 

on the  fast-neutron and gamma-ray dose ra tes ,  respectively,  measured along 

the  center  l i n e  of the  long cen te r  l e g  of the  tunnel.  These da ta  a r e  

p lo t ted  a s  a function of the  dis tance from the  tunnel w a l l  c l o se s t  t o  the  

source and include measurements f o r  f ront-shie ld  thicknesses of 0, 4, 12, 

and 20 i n .  The zero-thickness curves i n  these  f igures  correspond t o  the  

data  between 12.5 and 18.5 f t  i n  Fig. .j6. 

Figures 38 and 39 a l s o  show measurements made with only one s ide  of 

a f ron t  slab i n  place.  The curve l abe l s  ind ica te  t he  shie ld  thickness on 

each side; t h a t  i s ,  "4 i n .  W - 0 in .  E" ind ica tes  t h a t  the  west s ide  of 

the  f r o n t  face of the bunker had a 4-in.- thick shie ld ,  whereas the  eas t ,  

o r  r ight ,  s ide  was unshielded. Figures 37 and 38 a l s o  include measurements 

taken with a 20-in. sh ie ld 'on  both bunkers but  with t he  hatch removed from 

the  entranceway. 

Figure 40 shows data  f o r  no shie ld  on t he  top bunker and f o r  20 in .  
" . - on the f r o n t  bunker p lo t ted  a s  a function of the  dis tance along the  center  

l i n e  of the  tunnel, s t a r t i n g  wi th ' the  w,u plane of t he  top bunker. Except 

f o r  the  regions close t o  the  bunkers, the  shapes of these  curves a r e  qu i te  

s imilar  t o  those i n  Fig. 36, which gives comparable data  f o r  no sh ie ld  on , 

Lhe I'ruri L IJ ui'lkes . 
The data  obtained i n  the  tunnels i l l u s t r a t e  the  importance t o  the  

garmna-ray dose r a t e s  of the  thermal-neutron captures i n  the  tunnel walls, 

a s  evidenced by the  s imi l a r i t y  of shape of the  gamma-ray dose-rate and 

theml-neu t ron- f1 .1 .  curves. I n  order t o  ca lcu la te  the  production of 



capture  gamma rays  i n  t he  walls, it was necessary t o  know the  thermal- 

neutron f l u x  d i s t r i b u t i o n  i n  the  tunnel. To a i d  such calcula t ions  i n  t h i s  

and s imi l a r  geometries, an attempt was made t o  measure the  angular d i s -  

t r i b u t i o n  of thermal neutrons leaving a small a rea  of t he  tunnel w a l l .  

The measurements were made with a 3- in . -dim BF3 counter whose housing 

was wrapped over i t s  e n t i r e  length with cadmium sheeting t h a t  extended 

9 in .  beyond t h e  end of t h e  counter, thus forming a coll imator.  The 

col l imator  was used t o  "view" from several  angles a spot on the  tunnel 

w a l l  locatdd a t  about t he  middle of the  cen te r  leg .  A t  each angle, mea- 

surements were made with and without a cadmium cover over the  opening i n  

the  collimator, i n  order t o  cor rec t  f o r  the  contr ibut ion from the  neutrons 

above t h e  cadmium-cutoff energy. The r e s u l t s  showed tha t ,  f o r  angles from 

0 t o  60 deg from the  normal t o  t he  w a l l ,  t he  f luxes  were constant t o  within 

experimental e r ro r .  This ind ica tes  a cosine d i s t r i bu t i on  of the  current  

leaving t h e  w a l l ,  s ince  the  w a l l  a rea  seen by the  counter through t he  

col l imator  va r i e s  approximately a s  t he  inverse of the  cosine of the  polar  

angle.  

GAMMA-RAY SPECTRA DETERMINATIONS 

In  as1 attempt t o  assess  the  r e l a t i v e  importances of various s o u c e s  

of gamma rays, t h e  pulse-height spectra  of gamma rays i n  the  center  o f , bo th  

t he  tunnel  and t he  top bunker with various top-slab configurations were 

determined with a 3-in; NaI c ry s t a l .  Figure 41  shows pulse-height spectra  

obtained i n  the  top bunker with top-shield t h i c h e s s e s  of 0, 4, and 20 in .  

Figure 42 repeats  t he  4-in.-slab data  and a l s o  includes data  f o r  a top-slab 

configuration cons i s t ing  of 2 in .  of borated polyethylene and 4 in .  of 

concrete and f o r  one consis t ing of l ayers  (from the  top down) of 2 in .  of 

polyethylene, 2 in .  of borated polyethylene, and 4 i n .  of concrete. 

Figure 43 gives t h e  da t a  obtained i n  t h e  tunnel, with and without a boron 

cover surrounding the c ry s t a l .  Reduction of these data  t o  incident  'spectra 

has not  been accomplished a t  t h i s  time.. 



UNCLASSIFIED 
2-01-056-039- 1421 

I I 1 

SHIELD ON TOP BUNKER : 2 0 -  in. CONCRETE ; 

x = o ;  y = o  

NO SHIELD 

4-in. SHIELD 

12-in. SHIELD 

-- 16-in. SHIELD 

20- in .  SHIELD 
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Fig. 13. Fast-Neutybn Dose Rates Along w Axis of' Top Bunker for 
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Shield Thicknesses on the Top Face. 
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Fig. 15. Thermal-Neutron Fluxes Along w Axis of Top Bunker for Various 
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Fig. 18. Thermal-Neutron Fluxes in Top Bunker as a Function of u 
for Various Shield Thicknesses on the Top Face. 
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Fig. 19. Fast-Neutron Dose Rates in Top Bunker as a Function of u 
for Various Shield Thichesses on the Top Face. 
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Fig. 20. Gamma-Ray Dose Rates in Top Bunker as a Function of u for 
Various Shield Thicknesses on the Top Face. 
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Fig. 22. Gamma-Ray Dose Rates in Top Bunker as a Function of u for 
Various Shield Thicknesses on the Top Face. 

- -- 
-- 

12 - in.  SHIELD 
I-------- 

2 0  - in. SHIELD - - _ _ _ _ _ _ _ _  
--. 

SHIELD ON FRONT BUNKER : 20- in .  CONCRETE ; 

- 

v = 5 f t  g i n . ;  w = 6  f t  
- 

_ . _- 



UNCLASSIFIED 
2-01-056-039-4434 

-. 

12-in. SHIELD 

---- . . . . . . . . . . . . . . 

20 ;in. SHIELD 
I I 

Fig. 23. Thermal-Neutron Fluxes in Top Bunker as a Function of u 
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Fig. 24. Fast-Neutron and Gamma-Ray Dose Hates i n  Top Bunker Near 
Opening t o  Interconnecting Tunnel. 
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Fig. 25. Fast-Neutron Dose Rates i n  Top Bunker with No Top Shield 
a s  a Function of u f o r  Various Values of v and w. 
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Fig. 26. Thermal-Ne'ul;ron Fluxes i n  Top Bunker with No Top Shield 
as a Function of u f o r  Various Values of v. and w. 
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Fig. 27. Fast-Neutron Dose Rates in Top Bunker with 4-in. Top Shield 
as a Function of u for Various Values of w. 
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Fig. 28. Gamma-Ray Dose Rates i n  Top Bunker with 4-in. Top Shield 
as a Function of u f o r  Various Values 'of w. 
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Fig. 29. Fast-Neutron Dose Rates i n  Top Bunker with 12-in. Top Shield . 
as a ~ ~ c t i o n  of u for Various Values of v and w. 



UNCLASSIFIED 
2-04-056-039-1444 

Fig. 30. Gamma-Ray Dose Rates in Top Bunker with 12-in. Top Shield 
as a Function of u for Various Values of v arld w. 
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Fig. 31. Gamma-Ray Dose Rates i n  Top Bunker with 20-in. Top Shield 
a s  a ~ c t i o n  of u f o r  Various Values of v and w. 
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Fig. 32. Thermal-Neutron Fluxes i n  Top Bunker with 20-in. Top Shield 
as a Function of u f o r  Various Values of v and w. 
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Fig. 34. Gamma-Ray Dose Rates in Wont Bunker as a Function of y 
for Various Shadow-Shield Arrangements. 
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Fig. 35. Thermal-Neutron Fluxes in Front Bunker as a Function of y 
For Varfous Shadow-Shield Arrangements. 
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Fig. 36. Fast-Neutron and Gamma-Ray Dose Rates and Thermal-Neutron 
Fluxes Along z Axis of Front Bunker, Extending from Rear Wall to 30 ft 
in Front of Bunker (NO Shield on Front Face). 
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Fig. 37. Fast-Neutron and Gamma-Ray Dose Rates and Thermal-Neutron 
Fluxes Along Center Line of Interconnecting Tunnel f o r  20-in. Top Shield 
and 6Jo Front Shield. 
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Fig. 38. Fast-Neutron Dose Rates Along Center Line of Middle Leg of 
Interconnecting Tunnel f o r  Various Shfeld Thicknesses on Front Bunker. ' 
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Fig. 39. Gamma-Ray Dose Rates Along Center Line of Middle Leg of 
Iu.l;ercotlrlecl;ir~g Turirlel f o r  Various Shield Thichesses  on Front Bunker; 
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Fig. 40. Fast-Neutron and Gamma-Ray Dose Rates and Thermal-Neutron 
Fluxe's Along Center Line of Interconnecting Tunnel for 20-in. Front Shield 
and No Top Shield. 
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Fig. 41. Gamma-Ray Pulse-Height Spectra i n  Center of Top Bunker f o r  
Top Shields of 0, 4, and 20 in .  of Concrete. 
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Fig. 42. Gamma-Ray Pulse-Height Spectra in Center of Top Bunker for 
Various Top Shields of Concrete and Borated Polyethylene,. 
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Fig. 43. Gamma-Ray Pulse-Height Spectra i n  Center of Tunnel, With 
and Without Boron on Crystal. 
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