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ABSTRACT

In the first of a series of experiments performed for the Department
of Defénse to investigate the protection afforded by various typical struc-
tures against prompt wegpons radiation, radiation-intensity measurements
were made at the Tower Shielding Facility in two concrete-shielded bunkers
and in an interconnecting tunnel. Prbmpt weapons radiation was simglateé
by the Tower Shielding Reactor II (TSR-II), which was operated 100 ft above
the ground. The distance between the reactor and the bunkers was approxi-
mately 700 ft. The bunkers were each 12-ft cubes and'were constructed so
that the shield thickness on the front face of one and on the top face of
the other could be varied in 4-in. steps from O to 20 in. The thickness of
concrete and dirt surrounding all other faces was sufficient to make them

black to incident radiation.

The immediate goals of the experiment were to study (1) the attenua-
- tion of radiafions by various thicknesses of ordinafy concrete slabs,

(2) the buildup of radiation intensities within the cavities by scattering
of radiation in the walls, and (BX'the transmission of radiation down a
tunnel with two right-angle bends. The gamma-ray and fast-neutron dose
rates and thermal-neutron fluxes measured at various positions within the
bunkers and in the tunnel and the pulse-height spectra froma 3-in. sodium
iodide crystal determined at one position in the top bunker and one posi-

tion in the tunnel are reporled.
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INTRODUCTION

A research program is being undertaken at Oak Ridge National Labora-
tory with the ultimate goal of producing simplified calculational methods
for estimating the protection afforded by various typical structures against
prompt weapons radiation. The first experiment in this program was carried
out at the Tower Shielding Facility in consultation and cooperation with
the Department of Defense, Office of Civil Defense, and consisted of
radiation-intensity measurements in two concrete-shielded bunkers and an
interconnecting tunnel. Prompt weapons radiation was simulated by the
Tower Shielding Reactor II (TSR-II), which was operated 100 ft above the
ground. The distance between the reactor and the bunkers was approximately

TOO0 ft.

The immediate goals of the experiment were (I) to study the attenua-
tion of radiations by various thicknesses of ordinary concrete slabs,
(2) to investigate the buildup of radiation intensities within the cavities
by scattering of radiation in the walls, and (3) to study the transmission
of radiation down a tunnel with two right-angle bends. This report de-
scribes the experiment and presents the results. An analysis of the data
will be given in a subsequent report to be submitted to the Defense Atomic

Support Agency (DASA).

FACTLITY DESCRTPTION

The Tower Shielding Facility consists of four 315-ft towers which
support the TSR-IT and other experimental equipment at heights as high as
200 ft. Each tower is located at the corner of a 100 by 200 ft rectangle,
with the TSR-II suspended between towers I and II as shown in Figs. 1 and
2. For this experiment no other equipment was suspended from the struc-

ture.

The TSR-II is a water-moderated and =-cooled reactor constructed of

MIR-type fuel plates which form a spherical annulus.” The entire assembly

1. L. B. Holland and C. E. Clifford, Description of the Tower Shielding
Reactor IT and Proposed Prellmlnary Experiments, ORNL-2747 (1959);
L. B. Holland et al., Neutron Phys. Div. Ann. Prog. Rep. Sept. 1, 1959,
ORNL-2842, p. 39; L. B. Holland et al., Neutron Phys. Div. Ann. Prog.
Rep. Sept. 1, 1960, ORNL-3016, p. . U2,
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is contained in the lower section of a cylindrical tank with a hemispheri-
cal bottom. The presence of water and auxiliary lead shielding above the
top of the core prevents the uniform emission of radiation in about 50% of
the 27 solid angle in the upper hemisphere; however, the remaining 50% plus
the wniform radiation emitted by the lower hemisphere simulates an isotropic

source, such as a weapon burst, fairly well.

During this experiment the spectra of radiations emitted by the TSR-II
were modified by the addition of a lead-water shield to the outside of the
cylindrical tank. A general description of this shield, identified as
COOL-I and shown in the left half of Fig. 3, may be found elsewhere.® The
neutron-leskage spectrum for this shield is shown in Fig. 4. (The spec-
trum shown in the lower part of Fig. 4 is for the COOL-II shield shown in
the right half of Fig. 3, but COOL-II was not used in this experiment.)

BUNKER DESCRIPTION

The two concrete-lined bunkers, which were 12-ft cubicles, were con-
structed so that the shields on the front face of one and on the top face of
the other could be varied as shown in Fig. 5. The thickness of concrete and
dirt surrounding all other faces was sufficient to make them black to the
incident radiation. The bunkers were connected by a three-legged passage-
way or tunnel, 3% ft wide and 8 ft high, the two legs opening into the
bunkers being perpendicular to and at opposite ends of the middle leg.

The distance along the first leg of the passageway from the bunker with the
variable front face, called the "front" bunker, to the center line of the
middle leg was 6 ft 4 in. Similarly, the length along the third leg from
the bunker with the variable top face, called the "top" bunker, to the
center line of the middle leg was 6 ft L4 in., the entire length of the mid-
dle leg being 15 ft 2 in. The lower end of a %-ft-diam, T7-ft T=-in.-high
entranceway, covered by a l-ft-thick concrete hatch, opened into the center

of the ceiling of the middle leg.

2. F. J. Muckenthaler, L. B. Holland, and R. E. Maerker, In-Air Radiation
Measurements in the Vicinity of the Tower Shielding Reactor II, ORNL-

3288 (1963).
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Five concrete shields were available for the open face of each bunker,
varying in thickness from 4 to 20 in. in L-in. steps. Because of their
large size, the shields were made in two sections and required 1/2-in. steel
reinforcing bars on 4-in. centers running the long dimension and 5/8-in.
bars on 6-in. centers running the short dimension. The composition of a

concrete sample taken from one of the slabs was analyzed to contain the

following:
Element Weight Percent
Aluminum 2.65
Calcium 22,12
Carbon 4.83
Hydrogen 0.3%6
TIron 1.3%2
Magnesium 0.85
Oxygen 47,04
Silicon 20.83

The coordinate systems used for most of the measurements in the experi-
ment are shown in Fig. 5. Note that in each case the origin is the center

of the inside face of the variable shield.

INSTRUMENT DESCRTIPTION

The instruments used in the experiment consisted of an anthracene scin-
tillation crystal, a Hurst-type proportional counter, a BFs proportional

counter, and a 3 x 3 in. NalI crystal.

The anthracene crystal, which was used for gamma-ray dose-rate mea-
surements, was mounted on a photomultiplier tube whose current was read
with a d-c integrator. ©Since the pulse output of the integrator was
proportional to the current input, the automalic plotting equipment that
requires a pulsc signal could be used. The counter was calibrated against

the known intensity from a Co®° source.

The appreciable response that the anthracene crystal has to neutron
interactions within the crystal has not been corrected for in the data
presented here. The portion of the response due to fast-ncutron inter-

actions can be estimated from data taken by General Dynamics/Fort Worth®

3. K. R. Spearman, Jr., Neutron Sensitivity of Anthracene Dosimeters,
NARF-55-67T (Oct. 1955).




with similar counters. If it is assumed that the fast neutrons have a fis-
sion energy spectra, the GD/FW data yield~an equivalent gamma-ray response
of 0.125 erg/gtissue per erg/gtissue of fast-neutron dose. The anthracene
crystal also has a significant response to thermal-neutron fields. This ef-
fect was cursorily investigated by making measurements (see Fig. 6), with
and without a stainless-steel-canned Li® shield surrounding the dosimeter,
along the center line of the second and third legs of the tunnel leading
from the front bunker (with no front shield) to the top bunker (with a full
20-in. top shield). An estimate of the thermal-neutron-induced response

was obtained by using the ratio of the difference between the bare- and
Li®-covered-counter data to the thermal-neutron-flux data at the same loca-
tion. The region from D = O to 3 ft was ignored because of the complica-
tions introduced by the high fast-neutron dose present. The region from
D=3 to 7 ft gave an estimate of 3.6 x 10 > erg.g;issue.hr-l equivalent
gamma-ray response per unit thermal-neutron flux. The data from L= 1 to

14 ft, in a region where the neutrons are quite thermal (the cadmium ratio,
or ratio of bare BFs to cadmium-covered BFs readings, is around 70), gave

an estimate of 6.% x 10 erg.g;issue.hr-l equivalent gamma-ray response per

uwnit thermal-neutron flux.

The calibration procedure for the Hurst-tybé proportional counter,
which was used for fast-neutron dose-rate measurements, involved first set-
ting the system gain with a known gamma-ray dose rate and then reading the
counter in a known field from a fast-neutron source. In particular, the
system gain was set so that a Co®° gamma-ray dose rate of 2 r/hr produced
40 pulses per minute larger than 6 v at the output of the linear amplifier.
The pulse output from the amplifier was integrated for the neuvutron dose
readings s0 as to obtain an output proportional to the ionization in the
chamber for neutrons. A Po-Be source was used for the daily calibrations

of the counter.

The BFs-filléd proportional counter was used for thermal-neutron flux
measurements. Although the output from the counter more closely resembles
neutron density than neutron flux, because of the nearly 1/v behavior of
the Blo(n,a) cross section, the readings were normalized to cadmium-

difference measurements taken with gold foils in the radiation field from
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the reactor. The daily calibrations were checked with a Po-Be source in

a Lucite moderator.

The Nal crystal, which was used to determine gamma-ray pulse-height
spectra, was mounted on a 3-in. photomultiplier tube. The pulse output
from this counter was recorded with a 256-channel pulse-height analyzer.

137

Energy calibrations were made against Cs and Co®° sources and the C'2

decay gamma rays from a Po-Be source.

DOSE-RATE AND FLUX MEASUREMENTS IN BUNKERS

The first series of dose-rate and flux measurements in the bunkers
were for fixed counter positions and various reactor altitudes in order to
determine the effect of reactor height on the experimental results. The
measurements, plotted in Figs. 7 and 8 for fast neutrons and gamma rays,
respectively, were made in the front bunker (lower curves) fullylshielded
with 20 in. of concrete and in the top bunker (upper curves) shielded with
L in. of concrete. It was concluded from these data that it would not be
worthwhile, at least for this experiment, to take measurements at more than
one altitude. Consequently, the rest of the measurements were taken at a
reactor altitude of 100 ft, for the various parameters shown in Table 1.

At this altitude a line from the reactor center to the center of the shield
on the front bunker was perpendicular to the shield, and the line from the'
reactor center to the center ot the shield on the top bunker struck the

shield at a grazing angle of 9.5°.

Also in these series of measurements the effect of shield placement
on the open faces of the bunkers was investigated by recessing the L-in.=-
thick top shield 16 in. below ground level and then keeping it flush with
the ground level. As can be seen by comparing the two upper curves in
Figs. 7 and 8, there was negligible difference between the results for the
two slab positions. Therefore all later measurements were taken with the

slab recessed, since this position was more convenient.

Most of the later measurements in the bunkers were made as a function
of one of the variables defined in the rectangular coordinate systems shown
in Fig. 5. Unless otherwise specified, all data taken in the top bunker
were for the case of a full front shield on the front bunker, and vice

versa (although this was found to be unnecessary, as will be seen below).
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Table 1. Sumnary of Experimental Parameters
Shield Thickness {in.) Coordinates
Location of Top " Front Type of Figure
Measurement Bunker 3unker Measurement X, u Y,V Z,W Number
Front bunker 20 0 Fast-neutron dose rate 0 0] Variable 9
20 L
20 8
20 12
20 16
20 20
Front bunker 20 0 Gemma-ray dose rate 0 G Variable 10
: 20 L
20 e
20 12
20 1€
20 2C
Front bunker 20 0 Thermal-neutron flux 0 0 Variable 11
20 b
20 8
e, 20 12 -
%, 20 16
20 20
Front bunker 20 20 Gamma-ray dose rate 0 0 Variable 12
- 3! 5.54! Variable 12
20 20 Fast-neutron dose rate 0 .0 Variable 12
- 2. 5.54" Variable 12
Top bunker 0 20 Fzst-neutron dose rate 0 0 Variable 13
L 20
8 20
12 20
16 2C
20° 2c

#T



Table 1 {cont.)

Shield Thickness {(in.)

Coordinates
Location of Top Front Type of Figure
Measurement Bunker Bunker Measurement X,u y,V Z,W Number
Top bunker 0 20 Gamma-ray dose rate 0 0 Variable 1k
Ly 20
8 20
12 20
16 20
20 20
Top Hunker 0 20 " Thermal-neutron flux 0 0 Variable 15
4 20 .
8 20
12 20
16 20
20 20
Top bunker 0 20 Fast-neutron dose rate Variable 0 6! 16
b 20
12 20
Top bunker 0 2C Gamma-ray dose rate Variable 0 6! 17
4 20
12 2C
20 20
Top bunker 0 20 Thermal -neutren flux Variable 0 6 18
L 20
12 20
20 20 _
Top bunker 0 20 Fast-neutron dose rate Variable 0 h.75" 19
4 20
12 20

6T



Table 1 (cont.)

Shield Thickness (in.) Coordinates
Location of Top Front . Type of Figure
Measurement Bunker Bunker Measurement X, U Y,V Z,W Number
Top tunker 4] 20 Gamma-ray doss rate Variable 0 Y 75" 20
I 20
12 20
20 20
Top bunker 0 20 Fast-neutron dose rate Variable 5'9" 6! 21
L 20
12 20
20 20 .
Top bunker L 0 20 Gamma-ray dose rate Variable 5'9" 6! 22
e L 20
12 20
20 20 .
Top bunker C 20 Thermal -neutron flux Variable 5'9" 6! 23
' 4 20
1z 20
20 20
Top bunker 20 0 Gemma-ray dose rate Variabls -5'1" gro" ok
20 20 Variabls -5'1" gro" 2L
20 0 Fast-neutron dose rate Variable -5'1" gro" 2L
Top bunker 0 20 Fast-neutron dose rate Variable 0 L, 75" 25
Variable 0 6! 25
Variable 5'9" 6! 25
Top bunker 0 20 Thermal-neutron flux Variable 0 67 : 26
\ Varisble 5'9" 6' 26
Top bunker L 20 Fast-neutron dose rate Variable 0 L. 75" 27
Variable 0 6! 27

9t




Table 1 (cont.)

Shield Thickness (in.) Coordinates
Location of Top Front Type of Figure
Measurement Bunker Bunker Measurement X,u Y,V Z,W Number
Top bunker L 20 Gamma-ray dose rate Variable 0 4,75" 28
Variable 0 6! 28
Top Hunker 12 20 Fast-neutron dcse rate Variable 0 4 75" 29
: Variable 5'7.5" 6.5" 29
Variable 0 6! 29
Variabie 5'9" 6f 29
Top bunker 12 20 Gamma-ray dose rate Variable 0 4, 75" 30
: Variable 5'7.5" 12.5" 30
Variable 0 6! 30
Variable 5'9" 6! 30
Top bunker 20 20 Gamma-ray dose rate Variable 0 L, 75" 31
Variable 5'7.5" 12.5" 31
Variable 0 6! 31
Variable 5t9" 6! 31
' Variable 0 11'7.5" 31
Tor bunker 20 20 Thermal -neutron flux Variable 0 L, s" 32
Variable 0 6! 32
Variable 5'g" 6' 32
, A Variable 0 11'7.5" 30
Front bunker, 20 0,k Fast-neutron dose rate 0 Variable 6" 33
with shadow
shield
Front bunker, 2 in. poly- O,k Gamma-ray dose rate 0 Variable 6! 3l
with shadow ethylene, .
shield 2 in. borated
polyethylene,
and 4 in.

concreted

LT



Table 1 (cont.)

Shield Thickness (in.) Coordinates
Location of Top Front Type of Figure
Measurement Bunker Bunker Measurement X,u Y,V CZ,W Number
Front bunker, 2 in. poly- O,L Thermal-neutron flux 0 Variable 6! 35
with shadow ethylsne,
shield 2 in. borated
polyethylene,
and 4 in.
concrete?
From rear of 20 0 Fast-neutron and gamma- 0 0 Variable 36
front bunker ray dose rates and :
to 30 ft in thermal-neutron flux
front of
bunker
Tunnel, all 20 0 Fast-neutron and gamma- -Measurement made along 37
“three legs ray dose rates and centar line of tunnel
thermal-neutron flux
Tunnel, middle 20 0 Fest-neutron dose rate | 38
legc 20 i Fast-neutron dose rate 38
20 12 Fast-neutron dose rate 38
20 20 Fast-neutron dose rate Measur=ment made along 38
20 4(wW);0(E)P . Fast-neutron dose rate center line of tunnel 38
20 o(w) ; 4(&)P Fast-neutron dose rate 38
20 12(w);o(E)P Fast-neutron dose rate 38
20 0(W);12(E)P  Fast-neutron dose rate J 38

8T



Table 1 (cént.)

Shield Thié¢kness (in.) Coordinates
Location cf Top Front Type of Figure
Measurement Bunker Bunker Measurement X,u Y,V Z,W Number
Tunnel, middle 20 0 Gamma-ray dose rate 39
leg® 20 L Gamma-ray dose rate 29
20 12 Camma-ray dose rate . 29
20 20 Gamma-ray dose rate > Measurements made along 39
20 O(E) ; M(W) Gamma-ray dose rate center line of tunnel 29
20 M(E) o(w)® Gamma-ray dose rate 39
20 12( % Gamma-ray dose rate 39
20 12(E) o(w) Genma-ray dose rate 39
Tunnel, all 0] 240] Fest-neutron and gamma-  Measurement made along Lo
three legs ray doses and thermal- center line of tunnel
) neutron flux
In center of 0 0 Gamma-ray pulse-height 0 0 6" 41
top bunker L spectra .
20
In center of L 0 Gamma-ray pulse-height 0 0 6' L2
top bunker spectra
2 in. borated O Gamma-ray pulse-height
rolvethylene spectra
and 4 in.
concrete®
2 in. poly- 0 Gamma-ray pulse-height 0 0 6' 42

ethylene, 2
in. borated
polyethyiene,
and 4 in.
concrete?

spectra

6T



Table 1 (cont.)

Shield Thickness (in.) Coordinates
Location of Top Front Type of Figure
Measurement Bunker Bunker Measurement X, u y,V Z,W Number
In center of 20 0 Gamma-ray pulse-height Measuremsnt made in b3

middle leg
of tunneld

spectra

center of tunnel

a. Listed in order from top layer down.

b. The numbers preceding

side and east (right) side, respectively.

(W) and (E) indicate the thickness of shield, in inches, on the west (left)

¢. Includes mezsurement made while cover was removed from entrance hatch.

d. Measurements made with and without boron cover surrounding crystal.

0c
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Figures 9, 10, and 11% show measurements of fast-neutron and gamma-
ray dose rates and thermal-neutron fluxes, respectively, along the z axis
of the front bunker for various front-shield thicknesses. The fast-neutron
and gamma-ray dose rates shown in Fig. 12 were also obtained as a function
of z, but for different x and y coordinates. For these latter measurements

the full 20-in. shield was maintained on the front face.

Figures 13 through 24 all show the data obtained in the top bunker as
a function of position within the bunker for several different top-shield
thicknesses. Figure 2% is representative of measurements taken close to
and across the opening to the interconnecting tunnel in order to determine
whether variations in the shield on the front bunker affected measurements
in the top bunker. The front-slab thickness was varied from O to 20 in.
with less than a lO% effect observed in the gamma-ray dose rates and with

virtually no effect observed in the fast-neutron dose rates.

Figures 25 through 32 consist primarily of cross plots of the data
given in Figs. 13 through 23, each set of cross plots corresponding to a
specific top-shield thickness. These data demonstrate the variations of

radiation intensities with.position in the bunker for a fixed shield.

One of the’objectives of the experiment was to determine the relative
contributions from each of the six surfaces of a cubicle to the intensities
of the various radiations at the center of the cubicle. This was attempted
experimentally by using a shadow shield to block the detector's view of one
or more surfaces of the cubicle. Since most of the interest was in fast-
neutron dose rates, the shadow shields were designed specifically for neu-
tron attenuation. They were built ef 4 x 4 x 8 in. lithiated-paraffin
blocks consisting of 40 wt % lithium carbonate (natural lithium) and 60
Wt % paraffin. The blocks were stacked so as to approximate a truncated
pyramid 20 in. high with a 50-in. équare top and a 58-in. square bottom.
The two ends of the shadow shield were parallel to the surface being

shielded, the small end being nearest the detector.

*These figures and all succeeding figures are assembled as a group fol-
lowing the last page of text.



Figure 3% gives the results of the measurements taken in the front
bunker with a fast-neutron dosimeter while various shadow shields were in
position and the front face was either open or covered with a 4-in. shield.
Horizontal traverses were made so as to obtain a normalization value at a
point far enough from the shadow shields far the reading not to be exces-
sively perturbed by the presence of the shadow shields. Each set of

curves was normalized to the average reading obtained at y = 5 ft.

Figures 34 and %5 give the corresponding shadow-shield data for gamma-
ray dose rates and thermal-neutron fluxes, respectively. These data are
somewhat more difficult to interpret because the shadow shield was not
black to gamma rays and perturbed the thermal-neutron fluxes excessively.
Figure 34 also shows the results of removing 4 in. from the large end of
the front shadow shield, namely, a lh% increase in gamma-ray dose rate.

The fast-neutron dose rate did not vary with this configuration change.
The approximate relative contributions of each wall, as derived from the
fast-neutron dose-rate data by taking differences of the various measure-

ments, are shown below for the two front-shield configurations.

Contribution (%)

Shield on Front Face (in.) Front Side  Rear
0 7 4
L 5 5 >

1Y

Figure 36 shows measurements of fast-neutron and gamma-ray dose rates
and thermal-neutron fluxes taken along the z axis ‘of the front bunker with
no shield on the front face. It will be noted that these measurements
extended out the bunker to over the concrete pad in front of the bunker.
Included as notes on the figure are values, at four positions, of the
cadmium ratio, defined as the ratio of the measurements made with the

bare BFs counter to those with a cadmium-covered counter.
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DOSE-RATE AND FLUX MEASUREMENTS IN TUNNEL

Figures 37 through 40 give results of traverses along the center line
of the interconnecting tunnel for various slab configurations on the bunkers.
The data in Figs. 37, 38, and 39 were taken with the full shielding on the
top bunker. In Fig. 37, which is for the case of no shield on the front
bunker, the measurements are plotted as a function of the distance along the
center line of the tunnel, stérting from the x,z plane of the front bunker
and continuing along the center lines of all three legs, as shown in the

insert on the figure.

Figures 38 and 39 show the effects of various front-slab thickhesses
on the fast-neutron and gamma-ray dose rates, respectively, measured along
the center line of the long center leg of the tunnel. These data are ‘
plotted as a fuhction of the distance from the tunnel wall closest to the
source and include measurements for front-shield thicknesses of O, L, 12,
and 20 in. The zero-thickness curves in these figures correspond to the

data between 12.5 and 18.5 ft in Fig. 36.

Figures 38 and 39 also show measurements made with only one side of
a front slab in place. The curve labels indicate the shield thickness on
each side; that is, "b in. W - O in. E" indicates'that the west side of
the front face of fhe bunker had a L-in.-thick shield, whereas the east,
or right, side was unshielded. Figures 37 and 38 also include measurements
taken with a 20-in. shield on both bunkers but with the hatch removed from

the entranceway.

Figure 40 shows data for no shield on the top bunker and for 20 in.
on the front bunker plotted as a function of the distance along the center
line of the tunnel, starting with the w,u plane of the top bunker. Except
for the regions close to the bunkers, the shapes of these curves are quite
similar to those in Fig. 36, which gives comparable data for no shield on

Lhe fronl buiker.

The data obtained in the tunnels illustrate the importance to the
gamma-ray dose rates of the thermal-neutron captures in the tunnel walls,
as evidenced by the similarity of shape of the gamma-ray dose-rate and

thermal -neutron-flux curves. 1In order to calculate the production of
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capture gamma rays in the walls, it was necessary to know the thermal-
neutron flux distribution in the tunnel. To aid such calculations in this
and similar geometries, an attempt was made to measure the angular dis-
tribution of thermal neutrons leaving a small arealof the tunnel wall.

The measurements were made with a 3-in.-diam BF3 counter whose housing

was wrapped over its entire length with cadmium sheeting that extended

9 in. beyond the end of the counter, thus forming a collimator. The
collimator was used to "view" from several angles a spot on the tunnel
wall located at about the middle of the center leg. At each angle, mea-
surements were made with and without a cadmium cover over the opening in
the collimator, in order to correct for the contribution from the neutrons
above the cadmium-cutoff energy. The results showed that, for angles from
0 to 60 deg from the normal to the wall, the fluxes were constant to within
experimental error. This indicates a cosine distribution of the current
leaving the wall, since the wall area seen by the counter through the
collimator varies approximately as the inverse of the cosine of the polar

angle.

GAMMA-RAY SPECTRA DETERMINATIONS

In an attempt to assess the relative importances of various sources
of gamma rays, the pulse-height spectra of gamma rays in the center of both
the tunnel and the top bunker with various top-slab configurations were
determined with a 3-in. Nal crystal. Figure 41 shows pulse-height spectra
obtained in the top bunker with top-shield thicknesses of 0, 4, and 20 in.
Figure 42 repeats the L-in.-slab data and also includes data for a top-slab
configuration consisting of 2 in. of borated polyethylene and 4 in. of
concrete and for one consisting of layers (from the top down) of 2 in. of
polyethylene, 2 in. of borated polyethylene, and 4 in. of concrete.
Figure 43 gives the data obtained-in the tunnel, with and without a boroh
cover surrounding the crystal. Reduction of these data to incident spectra

has not been accomplished at this time..
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